1
|
Kumar R. Role of conformational dynamics and flexibilities in the steroid receptor-coregulator protein complex formation. Gen Comp Endocrinol 2021; 309:113780. [PMID: 33882296 DOI: 10.1016/j.ygcen.2021.113780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Understanding of the mechanisms of actions of the steroid hormone receptor (SHR)-coregulator (CoR) protein complexes in the gene regulations has revolutionized the field of molecular endocrinology and endocrine-related oncology. The discovery and characterization of steroid receptor coactivators (SRCs) and their ability to bind various transcription factors including SHRs to coordinate the regulation of multiple target genes highlights their importance as key coregulators in various cellular signaling crosstalks as well as therapeutic target for various endocrine-related disorders specifically endocrine cancers. The dynamic nature of the SHR-CoR multi-protein complexes indicate the critical role of conformational flexibilities within specific protein(s). In recent years, the importance of conformational dynamics of the SHRs in the intramolecular and intermolecular allosteric regulations mediated via their intrinsically disordered (ID) surfaces has been highlighted. In this review article, we have discussed the importance of ID conformations within the SRCs that may also be playing an important role in the formation/deformation of multi protein complexes involving SHRs and CoRs and subsequent target gene regulation.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Biomedical Sciences, University of Houston - College of Medicine, Houston, TX, United States.
| |
Collapse
|
2
|
Zhang J, Yang Y, Liu H, Hu H. Src-1 and SP2 promote the proliferation and epithelial-mesenchymal transition of nasopharyngeal carcinoma. Open Med (Wars) 2021; 16:1061-1069. [PMID: 34307888 PMCID: PMC8284335 DOI: 10.1515/med-2021-0248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/09/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is characterized by high morbidity and morality, especially in Southern China. Transcription factors intensively participate in the initiation and development of NPC. This study aimed to investigate the roles of Src-1 in NPC. mRNA level was determined by qRT-PCR. Western blot was carried out for the protein level. CCK-8 assay was performed to determine cell viability, colony formation for NPC cell proliferation, and transwell for cell migration and invasion ability. The results showed Steroid receptor coactivator 1 (Src-1) was overexpressed in SNE-2 and 6-10B. The expression of Src-1 and SP2 was in positive correlation. Overexpression of Src-1 promoted the cell viability, colony formation, and epithelial-mesenchymal transition (EMT), manifested by the increase of migration and invasion ability, while knockdown of Src-1 exerted opposite effects. Additionally, knockdown or overexpression of SP2 reversed the effects of overexpressed or downregulated Src-1, which was reversed by the depletion of SP2. Moreover, Src-1 interacted with SP2 to regulate EMT-related genes such as E-cad, N-cad, Vimentin, and ZEB1, and proliferation- and apoptosis-related genes, such as bax, cytochrome c, and cleaved caspase3 and bcl-2. Thus, blocking the interaction between Src-1 and SP2 may be a therapeutic target for inhibiting the metastasis of NPC.
Collapse
Affiliation(s)
- Jingjing Zhang
- Ear, Nose, Throat Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Yuanyuan Yang
- Ear, Nose, Throat Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Hongyu Liu
- Ear, Nose, Throat Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Hongyi Hu
- Ear, Nose, Throat Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| |
Collapse
|
3
|
Usman RM, Razzaq F, Akbar A, Farooqui AA, Iftikhar A, Latif A, Hassan H, Zhao J, Carew JS, Nawrocki ST, Anwer F. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance. Asia Pac J Clin Oncol 2021; 17:193-208. [PMID: 32970929 DOI: 10.1111/ajco.13449] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022]
Abstract
A hallmark feature of tumorigenesis is uncontrolled cell division. Autophagy is regulated by more than 30 genes and it is one of several mechanisms by which cells maintain homeostasis. Autophagy promotes cancer progression and drug resistance. Several genes play important roles in autophagy-induced tumorigenesis and drug resistance including Beclin-1, MIF, HMGB1, p53, PTEN, p62, RAC3, SRC3, NF-2, MEG3, LAPTM4B, mTOR, BRAF and c-MYC. These genes alter cell growth, cellular microenvironment and cell division. Mechanisms involved in tumorigenesis and drug resistance include microdeletions, genetic mutations, loss of heterozygosity, hypermethylation, microsatellite instability and translational modifications at a molecular level. Disrupted or altered autophagy has been reported in hematological malignancies like lymphoma, leukemia and myeloma as well as multiple solid organ tumors like colorectal, hepatocellular, gall bladder, pancreatic, gastric and cholangiocarcinoma among many other malignancies. In addition, defects in autophagy also play a role in drug resistance in cancers like osteosarcoma, ovarian and lung carcinomas following treatment with drugs such as doxorubicin, paclitaxel, cisplatin, gemcitabine and etoposide. Therapeutic approaches that modulate autophagy are a novel future direction for cancer drug development that may help to prevent issues with disease progression and overcome drug resistance.
Collapse
Affiliation(s)
- Rana Muhammad Usman
- Department of Medicine, The University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Faryal Razzaq
- Foundation University Medical College, Islamabad, Pakistan
| | - Arshia Akbar
- Department of Medical Intensive Care, Holy Family Hospital, Rawalpindi, Pakistan
| | | | - Ahmad Iftikhar
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Azka Latif
- Department of Medicine, Crieghton University, Omaha, NE, USA
| | - Hamza Hassan
- Department of Hematology & Medical Oncology, Boston University Medical Center, Boston, MA, USA
| | - Jianjun Zhao
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer S Carew
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | | | - Faiz Anwer
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Bufalin targets the SRC-3/MIF pathway in chemoresistant cells to regulate M2 macrophage polarization in colorectal cancer. Cancer Lett 2021; 513:63-74. [PMID: 34000344 DOI: 10.1016/j.canlet.2021.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022]
Abstract
M2-polarized macrophages are one of critical factors in tumour chemoresistance. An increasing number of studies have shown that M2 macrophage polarization can be promoted by chemoresistance. A large number of evidences indicate that Bufalin has significant antitumour effect, previous studies have found that Bufalin can reduce the polarization of M2 macrophages to play an anti-tumour effect in vivo, but the mechanism remains unclear. In our study, we found that Bufalin reduced the polarization of M2 macrophages induced by chemoresistant cells both in vivo and in vitro; however, Bufalin had no obvious direct effect on M2 macrophage polarization. Furthermore, we demonstrated that Bufalin targeted the SRC-3 protein to reduce MIF release in chemoresistant cells in order to regulate the polarization of M2 macrophages. More interestingly, we also found that Cinobufacini, Bufalin is its main active monomer, which its could regulate the polarization of M2 macrophages to enhance the anti-tumour effect of oxaliplatin in vivo and in the clinic. Overall, this study provides a theoretical basis for the clinical application of drugs containing Bufalin as the main active ingredient in combination with established chemotherapy for the treatment of colorectal cancer.
Collapse
|
5
|
SRC-3, a Steroid Receptor Coactivator: Implication in Cancer. Int J Mol Sci 2021; 22:ijms22094760. [PMID: 33946224 PMCID: PMC8124743 DOI: 10.3390/ijms22094760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Steroid receptor coactivator-3 (SRC-3), also known as amplified in breast cancer 1 (AIB1), is a member of the SRC family. SRC-3 regulates not only the transcriptional activity of nuclear receptors but also many other transcription factors. Besides the essential role of SRC-3 in physiological functions, it also acts as an oncogene to promote multiple aspects of cancer. This review updates the important progress of SRC-3 in carcinogenesis and summarizes its mode of action, which provides clues for cancer therapy.
Collapse
|
6
|
de Semir D, Bezrookove V, Nosrati M, Dar AA, Miller JR, Leong SP, Kim KB, Liao W, Soroceanu L, McAllister S, Debs RJ, Schadendorf D, Leachman SA, Cleaver JE, Kashani-Sabet M. Nuclear Receptor Coactivator NCOA3 Regulates UV Radiation-Induced DNA Damage and Melanoma Susceptibility. Cancer Res 2021; 81:2956-2969. [PMID: 33766890 DOI: 10.1158/0008-5472.can-20-3450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/10/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
Melanoma occurs as a consequence of inherited susceptibility to the disease and exposure to UV radiation (UVR) and is characterized by uncontrolled cellular proliferation and a high mutational load. The precise mechanisms by which UVR contributes to the development of melanoma remain poorly understood. Here we show that activation of nuclear receptor coactivator 3 (NCOA3) promotes melanomagenesis through regulation of UVR sensitivity, cell-cycle progression, and circumvention of the DNA damage response (DDR). Downregulation of NCOA3 expression, either by genetic silencing or small-molecule inhibition, significantly suppressed melanoma proliferation in melanoma cell lines and patient-derived xenografts. NCOA3 silencing suppressed expression of xeroderma pigmentosum C and increased melanoma cell sensitivity to UVR. Suppression of NCOA3 expression led to activation of DDR effectors and reduced expression of cyclin B1, resulting in G2-M arrest and mitotic catastrophe. A SNP in NCOA3 (T960T) reduced NCOA3 protein expression and was associated with decreased melanoma risk, given a significantly lower prevalence in a familial melanoma cohort than in a control cohort without cancer. Overexpression of wild-type NCOA3 promoted melanocyte survival following UVR and was accompanied by increased levels of UVR-induced DNA damage, both of which were attenuated by overexpression of NCOA3 (T960T). These results describe NCOA3-regulated pathways by which melanoma can develop, with germline NCOA3 polymorphisms enabling enhanced melanocyte survival in the setting of UVR exposure, despite an increased mutational burden. They also identify NCOA3 as a novel therapeutic target for melanoma. SIGNIFICANCE: This study explores NCOA3 as a regulator of the DDR and a therapeutic target in melanoma, where activation of NCOA3 contributes to melanoma development following exposure to ultraviolet light.
Collapse
Affiliation(s)
- David de Semir
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - Vladimir Bezrookove
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - Mehdi Nosrati
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - Altaf A Dar
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - James R Miller
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - Stanley P Leong
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - Kevin B Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, California
| | - Liliana Soroceanu
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Sean McAllister
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Robert J Debs
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Dirk Schadendorf
- Department of Dermatology, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sancy A Leachman
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - James E Cleaver
- Department of Dermatology, University of California San Francisco, San Francisco, California
| | - Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California. .,California Pacific Medical Center Research Institute, San Francisco, California
| |
Collapse
|
7
|
Elevated SRC3 expression predicts pemetrexed resistance in lung adenocarcinoma. Biomed Pharmacother 2020; 125:109958. [PMID: 32036219 DOI: 10.1016/j.biopha.2020.109958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has been the leading cause of cancer-related death for many years worldwide. Pemetrexed, either as monotherapy or combined with other agents, is the preferred chemotherapy regimen for lung adenocarcinoma. However, both de novo and acquired resistance against pemetrexed frequently occur and lead to poor prognosis of patients. The underlying mechanisms remain poorly characterized. Here, RNA-seq analysis is utilized to compare gene expression levels in an adenocarcinoma cell line A549 with those in its pemetrexed-resistant counterpart, A549/PEM. We show that SRC3 is one of the most significantly upregulated genes in pemetrexed-resistant cells. SRC3 specifically enhances pemetrexed resistance in cultured adenocarcinoma cells. In addition, SRC3 increases pemetrexed resistance by decreasing chemotherapy-induced apoptosis via downregulating ROS level. Mechanistically, SRC3 enhances pemetrexed resistance via regulating Nrf2 and AKT signaling pathway. High SRC3 expression is positively correlated with decreased responsiveness to pemetrexed rather than other chemotherapeutic agents and predicts a poorer clinical outcome in lung adenocarcinoma patients. These data indicate that knockdown of SRC3 may be useful to treat pemetrexed-resistant lung cancer and may also provide a specific biomarker to predict pemetrexed responsiveness in lung cancer.
Collapse
|
8
|
Jeong JS, Lee DH, Lee JE, An SM, Yi PI, Lee GS, Hwang DY, Yang SY, Kim SC, An BS. The Expression and Contribution of SRCs with Preeclampsia Placenta. Reprod Sci 2020; 27:1513-1521. [PMID: 31997259 DOI: 10.1007/s43032-020-00142-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/26/2019] [Indexed: 11/28/2022]
Abstract
The steroid hormones act by binding to their receptors and subsequently interacting with coactivators. Several classes of coactivators have been identified and shown to be essential in estradiol (E2) responsiveness. The major coregulators are the p160 steroid receptor coactivator (SRC) family. Although the function of SRCs in other organs has been well studied, it has not been thoroughly studied in the placenta. In addition, the correlation between preeclampsia (PE) and SRCs has not been examined previously. Therefore, we compared the expression patterns of SRCs in normal and PE placentas. In human PE placental tissues, SRC-1 mRNA, and protein levels were downregulated in the PE group. In addition, to assess the expression of SRCs in a PE environment, we used Reduced Uterine Perfusion Pressure (RUPP) model and placental cells were cultured in hypoxia condition. SRC-1 proteins were reduced in the placenta of PE-like rat RUPP model. Furthermore, SRCs proteins were significantly downregulated in hypoxia-grown placental cells. To examine the interaction between estrogen receptors (ERs) and SRC-1 protein, we performed co-immunoprecipitation. The interaction of SRC-1 with ERα was significantly stronger than that with ERβ. In PE placenta, the interaction of both ERα and ERβ with SRC-1 was stronger than that in normal placenta. In summary, our results demonstrate that expression levels of SRC-1, not SRC-2 and SRC-3, were decreased in hypoxia-induced PE placenta, which may further reduce the signaling of sex steroid hormones such as E2. The dysregulated signaling of E2 by SRC-1 expression could be associated with the PE placental symptoms of patients.
Collapse
Affiliation(s)
- Jea Sic Jeong
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, 50 Cheonghak-ri, Samrangjin-eup, Miryang, Gyeongsangnam-do, 627-706, South Korea
| | - Dong Hyung Lee
- Department of Obstetrics and Gynecology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University College of Medicine, Yangsan, Gyeongnam, 50612, South Korea
| | - Jae-Eon Lee
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, 50 Cheonghak-ri, Samrangjin-eup, Miryang, Gyeongsangnam-do, 627-706, South Korea
| | - Sung-Min An
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, 50 Cheonghak-ri, Samrangjin-eup, Miryang, Gyeongsangnam-do, 627-706, South Korea
| | - Pyong In Yi
- Department of Bioenvironmental Energy, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Busan, South Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, 50 Cheonghak-ri, Samrangjin-eup, Miryang, Gyeongsangnam-do, 627-706, South Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, 50 Cheonghak-ri, Samrangjin-eup, Miryang, Gyeongsangnam-do, 627-706, South Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University College of Medicine, Yangsan, Gyeongnam, 50612, South Korea.
| | - Beum-Soo An
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, 50 Cheonghak-ri, Samrangjin-eup, Miryang, Gyeongsangnam-do, 627-706, South Korea.
| |
Collapse
|
9
|
Li Y, Li L, Chen M, Yu X, Gu Z, Qiu H, Qin G, Long Q, Fu X, Liu T, Li W, Huang W, Shi D, Kang T, Luo M, Wu X, Deng W. MAD2L2 inhibits colorectal cancer growth by promoting NCOA3 ubiquitination and degradation. Mol Oncol 2018; 12:391-405. [PMID: 29360267 PMCID: PMC5830628 DOI: 10.1002/1878-0261.12173] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/25/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Nuclear receptor coactivator 3 (NCOA3) is a transcriptional coactivator that has elevated expression in multiple tumor types, including colorectal cancer (CRC). However, the molecular mechanisms that regulate the tumorigenic functions of NCOA3 in CRC remain largely unknown. In this study, we aimed to discover and identify the novel regulatory proteins of NCOA3 and explore their mechanisms of action. Immunoprecipitation (IP) coupled with mass spectrometry (IP-MS) analysis was used to detect, identify, and verify the proteins that interacted with NCOA3 in CRC cells. The biological functions of the candidate proteins and the underlying molecular mechanism were investigated in CRC cells and mouse model in vitro and in vivo. The clinical significance of NCOA3 and its interaction partner protein in CRC patients was also studied. We identified mitotic arrest deficient 2-like protein 2 (MAD2L2, also known as MAD2B or REV7), with two signal peptide sequences of LIPLK and EVYPVGIFQK, to be an interaction partner of NCOA3. Overexpression of MAD2L2 suppressed the proliferation, migration, and clonogenicity of CRC cells by inducing the degradation of NCOA3. The mechanism study showed that increased MAD2L2 expression in CRC cells activated p38, which was required for the phosphorylation of NCOA3 that led to its ubiquitination and degradation by the proteasome. Moreover, we found that MAD2L2 predicted favorable prognosis in CRC patients. We have discovered a novel role of MAD2L2 in the regulation of NCOA3 degradation and proposed that MAD2L2 serves as a tumor suppressor in CRC.
Collapse
Affiliation(s)
- Yixin Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Liren Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Miao Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Xinfa Yu
- Shunde Hospital of Southern Medical UniversityFoshanChina
| | - Zhuoyu Gu
- Department of PharmacologyMedical CollegeJinan UniversityGuangzhouChina
| | - Huijuan Qiu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Ge Qin
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Qian Long
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Xiaoyan Fu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Tianze Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Wenbin Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Wenlin Huang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
- State Key Laboratory of Targeted Drug for Tumors of Guangdong ProvinceGuangzhou Double Bioproduct Inc.GuangzhouChina
| | - Dingbo Shi
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Tiebang Kang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Meihua Luo
- Shunde Hospital of Southern Medical UniversityFoshanChina
| | - Xiaojun Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Wuguo Deng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| |
Collapse
|
10
|
Xiong D, Pan J, Yin Y, Jiang H, Szabo E, Lubet RA, Wang Y, You M. Novel mutational landscapes and expression signatures of lung squamous cell carcinoma. Oncotarget 2017; 9:7424-7441. [PMID: 29484121 PMCID: PMC5800913 DOI: 10.18632/oncotarget.23716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/26/2017] [Indexed: 12/15/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a major subtype of Non-Small Cell Lung Cancer. To increase our understanding of the LUSC pathobiology, we performed exome sequencing and RNA-seq in 16 murine carcinogen-induced LUSC tumors and 8 normal murine lung tissue samples. Additionally, we conducted single-cell RNA-seq on two independent tumors from the same murine model. We identified a list of 59 cancer genes recurrently mutated in the mice LUSC tumors, 47 (80%) of which were also mutated in human LUSCs. At the single cell level, we detected unique clonal mutation patterns for each of the two LUSC tumors, being initiated from clones carrying the mutant Igfbp7 and Trp53 genes, respectively. We also identified an expression signature serving as an effective classifier for LUSC tumors and a strong predictor of survival outcomes of lung cancer patients. Lastly, we found that some of the mutant LUSC genes were associated with the significantly altered tumoral expression of inhibitory immune checkpoint genes such as PD-L1, VISTA, TIM3 and LAG3 in human LUSCs. The novel findings of clonal evolution, mutational landscapes and expression signatures of LUSC suggested new targets for the overall LUSC therapy and the immunotherapy of LUSC.
Collapse
Affiliation(s)
- Donghai Xiong
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jing Pan
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yuxin Yin
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hui Jiang
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eva Szabo
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Ronald A Lubet
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Yian Wang
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ming You
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
11
|
Clarisse D, Thommis J, Van Wesemael K, Houtman R, Ratman D, Tavernier J, Offner F, Beck I, De Bosscher K. Coregulator profiling of the glucocorticoid receptor in lymphoid malignancies. Oncotarget 2017; 8:109675-109691. [PMID: 29312638 PMCID: PMC5752551 DOI: 10.18632/oncotarget.22764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Coregulators cooperate with nuclear receptors, such as the glucocorticoid receptor (GR), to enhance or repress transcription. These regulatory proteins are implicated in cancer, yet, their role in lymphoid malignancies, including multiple myeloma (MM) and acute lymphoblastic leukemia (ALL), is largely unknown. Here, we report the use and extension of the microarray assay for real-time nuclear receptor coregulator interactions (MARCoNI) technology to detect coregulator associations with endogenous GR in cell lysates. We use MARCoNI to determine the GR coregulator profile of glucocorticoid-sensitive (MM and ALL) and glucocorticoid-resistant (ALL) cells, and identify common and unique coregulators for different cell line comparisons. Overall, we identify SRC-1/2/3, PGC-1α, RIP140 and DAX-1 as the strongest interacting coregulators of GR in MM and ALL cells and show that the interaction strength does not correlate with GR protein levels. Lastly, as a step towards patient samples, we determine the GR coregulator profile of peripheral blood mononuclear cells. We profile the interactions between GR and coregulators in MM and ALL cells and suggest to further explore the GR coregulator profile in hematological patient samples.
Collapse
Affiliation(s)
- Dorien Clarisse
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jonathan Thommis
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Karlien Van Wesemael
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - René Houtman
- PamGene International B.V., 's Hertogenbosch, The Netherlands
| | - Dariusz Ratman
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Current/Present address: Roche Global IT Solutions, Roche-Polska, Warsaw, Poland
| | - Jan Tavernier
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ilse Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Department of Health Sciences, Odisee University College, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
12
|
Yuan Y, Shan N, Tan B, Deng Q, Liu Y, Wang H, Luo X, He C, Luo X, Zhang H, Baker PN, Olson DM, Qi H. SRC-3 Plays a Critical Role in Human Umbilical Vein Endothelial Cells by Regulating the PI3K/Akt/mTOR Pathway in Preeclampsia. Reprod Sci 2017; 25:748-758. [DOI: 10.1177/1933719117725818] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yu Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Nan Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Qinyin Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yangming Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hanbin Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaofang Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Chengjin He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Philip N. Baker
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - David M. Olson
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Rohira AD, Yan F, Wang L, Wang J, Zhou S, Lu A, Yu Y, Xu J, Lonard DM, O'Malley BW. Targeting SRC Coactivators Blocks the Tumor-Initiating Capacity of Cancer Stem-like Cells. Cancer Res 2017; 77:4293-4304. [PMID: 28611048 PMCID: PMC5559321 DOI: 10.1158/0008-5472.can-16-2982] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/20/2017] [Accepted: 06/08/2017] [Indexed: 01/06/2023]
Abstract
Tumor-initiating cells (TIC) represent cancer stem-like cell (CSC) subpopulations within tumors that are thought to give rise to recurrent cancer after therapy. Identifying key regulators of TIC/CSC maintenance is essential for the development of therapeutics designed to limit recurrence. The steroid receptor coactivator 3 (SRC-3) is overexpressed in a wide range of cancers, driving tumor initiation, cell proliferation, and metastasis. Here we report that SRC-3 supports the TIC/CSC state and induces an epithelial-to-mesenchymal transition (EMT) by driving expression of the master EMT regulators and stem cell markers. We also show that inhibition of SRC-3 and SRC-1 with SI-2, a second-generation SRC-3/SRC-1 small-molecule inhibitor, targets the CSC/TIC population both in vitro and in vivo Collectively, these results identify SRC coactivators as regulators of stem-like capacity in cancer cells and that these coactivators can serve as potential therapeutic targets to prevent the recurrence of cancer. Cancer Res; 77(16); 4293-304. ©2017 AACR.
Collapse
Affiliation(s)
- Aarti D Rohira
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Fei Yan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Lei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jin Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas
| | - Suoling Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Andrew Lu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Yang Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
14
|
Shen L, Zhang F, Huang R, Yan J, Shen B. Honokiol inhibits bladder cancer cell invasion through repressing SRC-3 expression and epithelial-mesenchymal transition. Oncol Lett 2017; 14:4294-4300. [PMID: 28943942 DOI: 10.3892/ol.2017.6665] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/15/2017] [Indexed: 01/11/2023] Open
Abstract
Urinary bladder cancer (UBC) is one of the most common urological cancer types. Muscle invasive bladder cancer possesses high propensity for metastasis with poor prognosis. Honokiol is a lignan isolated from Magnolia officinalis with high bioavailability and potent anticancer effects. The results of the present study demonstrated that honokiol significantly inhibited UBC cell migration and invasion in a dose-dependent manner compared with the vehicle-treated control group. In addition, honokiol treatment suppressed epithelial-mesenchymal transition by induction of E-cadherin and repression of N-cadherin. Honokiol was capable of significantly downregulating the expression of cell invasion-associated genes, steroid receptor coactivator-3 (SRC-3), matrix metalloproteinase (MMP)-2 and Twist1. Notably, the inhibition of UBC cell invasion by honokiol was reversed by reintroduction of oncoprotein SRC-3 expression, with the restoration of MMP-2 and Twist1, and reduction of E-cadherin expression. Furthermore, the results of the luciferase assay confirmed that SRC-3 could regulate Twist1 promoter activity. Taken together, the results of the present study suggest that honokiol is a promising agent against UBC cell invasion via downregulation of SRC-3 and its target genes.
Collapse
Affiliation(s)
- Lan Shen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu 210061, P.R. China
| | - Fang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Ruimin Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Jun Yan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu 210061, P.R. China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| |
Collapse
|
15
|
Elkhadragy L, Chen M, Miller K, Yang MH, Long W. A regulatory BMI1/let-7i/ERK3 pathway controls the motility of head and neck cancer cells. Mol Oncol 2017; 11:194-207. [PMID: 28079973 PMCID: PMC5288292 DOI: 10.1002/1878-0261.12021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/16/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022] Open
Abstract
Extracellular signal‐regulated kinase 3 (ERK3) is an atypical mitogen‐activated protein kinase (MAPK), whose biological activity is tightly regulated by its cellular abundance. Recent studies have revealed that ERK3 is upregulated in multiple cancers and promotes cancer cell migration/invasion and drug resistance. Little is known, however, about how ERK3 expression level is upregulated in cancers. Here, we have identified the oncogenic polycomb group protein BMI1 as a positive regulator of ERK3 level in head and neck cancer cells. Mechanistically, BMI1 upregulates ERK3 expression by suppressing the tumor suppressive microRNA (miRNA) let‐7i, which directly targets ERK3 mRNA. ERK3 then acts as an important downstream mediator of BMI1 in promoting cancer cell migration. Importantly, ERK3 protein level is positively correlated with BMI1 level in head and neck tumor specimens of human patients. Taken together, our study revealed a molecular pathway consisting of BMI1, miRNA let‐7i, and ERK3, which controls the migration of head and neck cancer cells, and suggests that ERK3 kinase is a potential new therapeutic target in head and neck cancers, particularly those with BMI1 overexpression.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Minyi Chen
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kennon Miller
- Department of Pathology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Muh-Hwa Yang
- Institute of Clinic Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
16
|
Xu FP, Liu YH, Luo XL, Zhang F, Zhou HY, Ge Y, Liu C, Chen J, Luo DL, Yan LX, Mei P, Xu J, Zhuang HG. Overexpression of SRC-3 promotes esophageal squamous cell carcinoma aggressiveness by enhancing cell growth and invasiveness. Cancer Med 2016; 5:3500-3511. [PMID: 27781415 PMCID: PMC5224859 DOI: 10.1002/cam4.884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023] Open
Abstract
Steroid receptor coactivator‐3 (SRC‐3), a transcriptional coactivator for nuclear receptors and other transcription factors, plays an important role in the genesis and progression of several cancers. However, studies investigated the role of SRC‐3 in esophageal squamous cell carcinomas (ESCCs) are limited, and the role of SRC‐3 in tumor progression remains unclear. We examined the expression of SRC‐3 in 8 ESCC cell lines and 302 human ESCC tissues by qPCR, Western blot, and immunohistochemistry. In addition, ESCC cell lines were subjected to proliferation and invasion assays, tumorigenicity assay, flow cytometry assay, qPCR, Western blot, and Chromatin Immunoprecipitation assay to investigate the role of SRC‐3 in cancer progression. SRC‐3 was overexpressed in 48% of cases and correlated with poor overall (P = 0.0076) and progression‐free (P = 0.0069) survival of surgically resected ESCC patient. Cox regression analysis revealed that SRC‐3 is an independent prognostic marker. Furthermore, we found that activation of insulin‐like growth factor (IGF)/AKT) was involved in the SRC‐3 on the cell growth and invasiveness in two ESCC cell lines, Eca109 and EC18 cells. SRC‐3 overexpression is clinically and functionally relevant to the progression of human ESCC, and might be a useful molecular target for ESCC prognosis and treatment.
Collapse
Affiliation(s)
- Fang-Ping Xu
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan-Hui Liu
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin-Lan Luo
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fen Zhang
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hai-Yu Zhou
- Department of Thoracic Surgery, Cancer Center, Guangdong General Hospital, Guangzhou, China
| | - Yan Ge
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chao Liu
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie Chen
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong-Lan Luo
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li-Xu Yan
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Mei
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie Xu
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Heng-Guo Zhuang
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
17
|
Zou Z, Luo X, Nie P, Wu B, Zhang T, Wei Y, Wang W, Geng G, Jiang J, Mi Y. Inhibition of SRC-3 enhances sensitivity of human cancer cells to histone deacetylase inhibitors. Biochem Biophys Res Commun 2016; 478:227-233. [PMID: 27425252 DOI: 10.1016/j.bbrc.2016.07.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/13/2016] [Indexed: 12/31/2022]
Abstract
SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors (SAHA and romidepsin). In contrast, overexpression of SRC-3 decreased SAHA-induced cancer cell apoptosis. Furthermore, we found that SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. The combination of bufalin and SAHA was particular efficient in attenuating AKT activation and reducing Bcl-2 levels. Taken together, these accumulating data might guide development of new breast and lung cancer therapies.
Collapse
Affiliation(s)
- Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000, China.
| | - Xiaoyong Luo
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang 471000, China
| | - Peipei Nie
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510000, China
| | - Baoyan Wu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000, China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000, China
| | - Yanchun Wei
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000, China
| | - Wenyi Wang
- Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Guojun Geng
- Xiamen Cancer Center, Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Jie Jiang
- Xiamen Cancer Center, Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Yanjun Mi
- Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China.
| |
Collapse
|
18
|
Steroid Receptor Coactivator-3 (SRC-3/AIB1) as a Novel Therapeutic Target in Triple Negative Breast Cancer and Its Inhibition with a Phospho-Bufalin Prodrug. PLoS One 2015; 10:e0140011. [PMID: 26431029 PMCID: PMC4592245 DOI: 10.1371/journal.pone.0140011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
Triple negative breast cancer (TNBC) has the poorest prognosis of all types of breast cancer and currently lacks efficient targeted therapy. Chemotherapy is the traditional standard-of-care for TNBC, but is frequently accompanied by severe side effects. Despite the fact that high expression of steroid receptor coactivator 3 (SRC-3) is correlated with poor survival in estrogen receptor positive breast cancer patients, its role in TNBC has not been extensively investigated. Here, we show that high expression of SRC-3 correlates with both poor overall survival and post progression survival in TNBC patients, suggesting that SRC-3 can serve as a prognostic marker for TNBC. Furthermore, we demonstrated that bufalin, a SRC-3 small molecule inhibitor, when introduced even at nM concentrations, can significantly reduce TNBC cell viability and motility. However, because bufalin has minimal water solubility, its in vivo application is limited. Therefore, we developed a water soluble prodrug, 3-phospho-bufalin, to facilitate its in vivo administration. In addition, we demonstrated that 3-phospho-bufalin can effectively inhibit tumor growth in an orthotopic TNBC mouse model, suggesting its potential application as a targeted therapy for TNBC treatment.
Collapse
|
19
|
Wang L, Yu Y, Chow DC, Yan F, Hsu CC, Stossi F, Mancini MA, Palzkill T, Liao L, Zhou S, Xu J, Lonard DM, O'Malley BW. Characterization of a Steroid Receptor Coactivator Small Molecule Stimulator that Overstimulates Cancer Cells and Leads to Cell Stress and Death. Cancer Cell 2015; 28:240-52. [PMID: 26267537 PMCID: PMC4536575 DOI: 10.1016/j.ccell.2015.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/12/2015] [Accepted: 07/10/2015] [Indexed: 12/18/2022]
Abstract
By integrating growth pathways on which cancer cells rely, steroid receptor coactivators (SRC-1, SRC-2, and SRC-3) represent emerging targets in cancer therapeutics. High-throughput screening for SRC small molecule inhibitors (SMIs) uncovered MCB-613 as a potent SRC small molecule "stimulator" (SMS). We demonstrate that MCB-613 can super-stimulate SRCs' transcriptional activity. Further investigation revealed that MCB-613 increases SRCs' interactions with other coactivators and markedly induces ER stress coupled to the generation of reactive oxygen species (ROS). Because cancer cells overexpress SRCs and rely on them for growth, we show that we can exploit MCB-613 to selectively induce excessive stress in cancer cells. This suggests that over-stimulating the SRC oncogenic program can be an effective strategy to kill cancer cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dar-Chone Chow
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fei Yan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Chao Hsu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suoling Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Huang GM, Sun Y, Ge X, Wan X, Li CB. Gambogic acid induces apoptosis and inhibits colorectal tumor growth via mitochondrial pathways. World J Gastroenterol 2015; 21:6194-6205. [PMID: 26034354 PMCID: PMC4445096 DOI: 10.3748/wjg.v21.i20.6194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/22/2014] [Accepted: 01/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of gambogic acid (GA) on apoptosis in the HT-29 human colon cancer cell line.
METHODS: H-29 cells were used for in vitro experiments in this study. Relative cell viability was assessed using MTT assays. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling and Hoechst 33342 staining, and quantified by flow cytometry. Cellular ultrastructure was observed by transmission electron microscopy. Real-time PCR and Western blot analyses were used to evaluate gene and protein expression levels. For in vivo experiments, BALB/c nude mice received subcutaneous injections of HT-29 cells in the right armpit. When well-established xenografts were palpable with a tumor size of 75 mm3, mice were randomly assigned to a vehicle (negative) control, positive control or GA treatment group (n = 6 each). The animals in the treatment group received one of three dosages of GA (in saline; 5, 10 or 20 mg/kg) via the caudal vein twice weekly, whereas animals in the negative and positive control groups were given equal volumes of 0.9% saline or 10 mg/kg docetaxel, respectively, via the caudal vein once weekly.
RESULTS: The cell viability assay showed that GA inhibited proliferation of HT-29 cells in a dose- and time-dependent manner after treatment with GA (0.00, 0.31, 0.62, 1.25, 2.50, 5.00 or 10.00 μmol/L) for 24, 48 or 72 h. After 48 h, the percentage of apoptotic cells in cells treated with 0.00, 1.25, 2.50 and 5.00 μmol/L GA was 1.4% ± 0.3%, 9.8% ± 1.2%, 25.7% ± 3.3% and 49.3% ± 5.8%, respectively. Ultrastructural analysis of HT-29 cells treated for 48 h with 2.5μmol/L GA revealed apoptotic bodies and condensed and fragmented nuclei. Levels of caspase-8, -9 and -3 mRNAs were significantly increased after treatment with GA (1.25, 2.50 or 5.00 μmol/L) for 48 h (P < 0.05 for all). Protein levels of apoptosis-related factors Fas, FasL, FADD, cytochrome c, and Apaf-1 were increased in GA-treated cells, whereas levels of pro-caspase-8, -9 and -3 were significantly decreased (P < 0.05 for all). Furthermore, GA significantly and dose-dependently inhibited the growth of HT-29 tumors in a mouse xenograft model (P < 0.05).
CONCLUSION: GA inhibits HT-29 proliferation via induction of apoptosis. The anti-cancer effects are likely mediated by death receptor (extrinsic) and mitochondrial (intrinsic) pathways.
Collapse
|
21
|
Gao F, Zhou B, Xu JC, Gao X, Li SX, Zhu GC, Zhang XG, Yang C. The role of LGR5 and ALDH1A1 in non-small cell lung cancer: Cancer progression and prognosis. Biochem Biophys Res Commun 2015; 462:91-8. [PMID: 25881507 DOI: 10.1016/j.bbrc.2015.04.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 12/12/2022]
Abstract
The Leucine rich repeat containing G protein coupled receptor 5 (LGR5), may be a candidate marker of non-small cell lung cancer (NSCLC) cells with stem cell-like properties. Aldehyde dehydrogenase 1A1 (ALDH1A1) is one of NSCLC stem cell markers. To identify the relationship of LGR5 and ALDH1A1 in NSCLC, we analyzed the expression of LGR5 and ALDH1A1 in NSCLC samples, and determined their clinical significance. We performed quantitative RT-PCR for LGR5 and ALDH1A1 expression in 24 NSCLC patients, and showed that LGR5 and ALDH1A1 mRNA were frequently increased in NSCLC tissues in comparison to that in adjacent normal tissues (p = 0.0005 and p < 0.0001, respectively). Besides, the expression of LGR5 and ALDH1A1 mRNA has a significant correlation (r = 0.416, P = 0.0483). The expression of LGR5 and ALDH1A1 in 109 NSCLC tumors and 50 adjacent normal tissues were detected by immunohistochemistry. Positive LGR5 and ALDH1A1 expression was defined in 28.4% and 41.3% of the NSCLC tumors, respectively. Further analysis indicated that 24 of these LGR5⁺ (24/31) samples expressed ALDH1A1(r = 0.3883, p < 0.0001), we also found co-localization of LGR5 and ALDH1A1 in tumor tissue samples. LGR5 and ALDH1A1 expression was significantly associated with higher pathological TNM stage of the disease (stage I + II and III + IV) (P = 0.0311 and p = 0.0221, respectively), the co-expression of LGR5 and ALDH1A1 was associated with nodal status (p = 0.0424). High expression of LGR5 or ALDH1A1 was related to poor prognosis (P = 0.0125 and p = 0.0410, respectively), and NSCLC patients with co-expression of LGR5 and ALDH1A1 had a poorer prognosis than the others (P = 0.0011). Both of them can be an independent risk factor of a poorer prognosis (P = 0.016 and P = 0.024, respectively). The expression of LGR5 and ALDH1A1 were closely associated with the tumorigenicity, metastasis and poor prognosis of NSCLC, and LGR5⁺ cells in NSCLC were likely to be the cancer cells with stem cell-like properties due to the significant correlation between LGR5 and ALDH1A1.
Collapse
Affiliation(s)
- Fei Gao
- Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, Jiangsu, PR China
| | - Bin Zhou
- Institute of Clinical Immunology of Jiangsu Province, The First Affiliated of Soochow University, 708 Renmin Road, Suzhou 215007, PR China
| | - Jun-Chi Xu
- The Fifth People's Hospital of Suzhou, 1 Xier Road, Suzhou, Jiangsu, PR China
| | - Xin Gao
- Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, Jiangsu, PR China
| | - Shu-Xiang Li
- Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, Jiangsu, PR China
| | - Geng-Chao Zhu
- Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, Jiangsu, PR China
| | - Xue Guang Zhang
- Institute of Clinical Immunology of Jiangsu Province, The First Affiliated of Soochow University, 708 Renmin Road, Suzhou 215007, PR China
| | - Chen Yang
- Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, Jiangsu, PR China.
| |
Collapse
|
22
|
Lindskog C, Edlund K, Mattsson JSM, Micke P. Immunohistochemistry-based prognostic biomarkers in NSCLC: novel findings on the road to clinical use? Expert Rev Mol Diagn 2015; 15:471-90. [DOI: 10.1586/14737159.2015.1002772] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Jin J, Wang Y, Wang J, Xu Y, Chen S, Wang J, Ran X, Su Y. Increased radiosensitivity and radiation-induced apoptosis in SRC-3 knockout mice. JOURNAL OF RADIATION RESEARCH 2014; 55:443-450. [PMID: 24309719 PMCID: PMC4014155 DOI: 10.1093/jrr/rrt132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/10/2013] [Accepted: 10/18/2013] [Indexed: 06/02/2023]
Abstract
Steroid receptor coactivator-3 (SRC-3), a multifunctional transcriptional coactivator, plays an important role in regulation of cell apoptosis in chemoresistant cancer cells. However, its role in radiation-induced apoptosis in hematopoietic cells is still unclear. In this study, we used SRC-3 knockout (SRC-3(-/-)) mice to assess the role of SRC-3 in radiation-induced hematopoietic injury in vivo. After a range of doses of irradiation, SRC-3(-/-) mice exhibited lower counts of peripheral blood cells and bone marrow (BM) mononuclear cells and excessive BM depression, which resulted in a significantly higher mortality compared with wildtype mice. Moreover, BM mononuclear cells obtained from SRC-3(-/-) mice showed a remarkable increase in radiation-induced apoptosis. Collectively, our data demonstrate that SRC-3 plays a role in radiation-induced apoptosis of BM hematopoietic cells. Regulation of SRC-3 might influence the radiosensitivity of hematopoietic cells, which highlights a potential therapeutic target for radiation-induced hematopoietic injury.
Collapse
Affiliation(s)
- Jie Jin
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
- Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jin Wang
- Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yang Xu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Shilei Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xinze Ran
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
24
|
Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, Wang J, Qi R, Matzuk AJ, Song X, Madoux F, Hodder P, Chase P, Griffin PR, Zhou S, Liao L, Xu J, O'Malley BW. Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res 2014; 74:1506-1517. [PMID: 24390736 DOI: 10.1158/0008-5472.can-13-2939] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Virtually all transcription factors partner with coactivators that recruit chromatin remodeling factors and interact with the basal transcription machinery. Coactivators have been implicated in cancer cell proliferation, invasion, and metastasis, including the p160 steroid receptor coactivator (SRC) family composed of SRC-1 (NCOA1), SRC-2 (TIF2/GRIP1/NCOA2), and SRC-3 (AIB1/ACTR/NCOA3). Given their broad involvement in many cancers, they represent candidate molecular targets for new chemotherapeutics. Here, we report on the results of a high-throughput screening effort that identified the cardiac glycoside bufalin as a potent small-molecule inhibitor for SRC-3 and SRC-1. Bufalin strongly promoted SRC-3 protein degradation and was able to block cancer cell growth at nanomolar concentrations. When incorporated into a nanoparticle delivery system, bufalin was able to reduce tumor growth in a mouse xenograft model of breast cancer. Our work identifies bufalin as a potentially broad-spectrum small-molecule inhibitor for cancer.
Collapse
Affiliation(s)
- Ying Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dar-Chone Chow
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy G Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruogu Qi
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander J Matzuk
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xianzhou Song
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Franck Madoux
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Peter Hodder
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Peter Chase
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Suoling Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Luo F, Li W, Zhang J, Huang K, Fu J, Xie Z. Overexpression of steroid receptor coactivator-3 in bone cancers: an in vivo immunohistochemical study with tissue microarray. Pathol Res Pract 2013; 209:790-6. [PMID: 24134957 DOI: 10.1016/j.prp.2013.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/02/2013] [Accepted: 09/16/2013] [Indexed: 11/17/2022]
Abstract
Bone tissue is steroid-responsive and profoundly regulated by steroids and/or their receptors. Bone cancers (either primary or metastatic) belong to the most dangerous tumors. Previous studies have demonstrated overexpression of steroid receptor coactivator-3 (SRC-3) in many cancers, such as breast cancer, prostate cancer, thyroid cancer, functioning in the regulation of cancer cell proliferation, invasion, and metastasis. However, so far, the expression and function of SRC-3 in bone cancers have not yet been clarified. In this study, nickel-intensified immunohistochemistry was conducted using a commercial tissue microarray (with 94 cases of bone cancer tissue and 10 normal bone tissues), and the 4-scoring system was employed to evaluate the expression levels of SRC-3 immunoreactivity. The results showed that in normal bone tissue, levels of SRC-3 are almost negative (score=0), the total positivity (score=1-3) of SRC-3 immunoreactivities in bone cancers was 74.47%. There were no significant differences in gender, status (malignant or benign) or (mean) age (p>0.05). The percentage of positivity was 77.78% in osteogenic tumors, 58.82% in cartilage tumors, 70% in giant cell tumors, 100% in hematopoietic tumors, 77.78% in miscellaneous lesions, and 75% in miscellaneous tumors. Age related differences of SRC-3 immunoreactivities were detected in cartilage tumors and giant cell tumors (p<0.05). The above results clearly demonstrated a high frequency of overexpression of SRC-3 immunoreactivities in different bone cancers, indicating its potential roles in the prognosis and treatment of these cancers.
Collapse
Affiliation(s)
- Fei Luo
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | |
Collapse
|
26
|
Dasgupta S, Lonard DM, O'Malley BW. Nuclear receptor coactivators: master regulators of human health and disease. Annu Rev Med 2013; 65:279-92. [PMID: 24111892 DOI: 10.1146/annurev-med-051812-145316] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transcriptional coregulators (coactivators and corepressors) have emerged as the principal modulators of the functions of nuclear receptors and other transcription factors. During the decade since the discovery of steroid receptor coactivator-1 (SRC-1), the first authentic coregulator, more than 400 coregulators have been identified and characterized, and deciphering their function has contributed significantly to our understanding of their role in human physiology. Deregulated expression of coregulators has been implicated in diverse disease states and related pathologies. The advancement of molecular technologies has enabled us to better characterize the molecular associations of the SRC family of coactivators with other protein complexes in the context of gene regulation. These continuing discoveries not only expand our knowledge of the roles of coactivators in various human diseases but allow us to discover novel coactivator-targeting strategies for therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030;
| | | | | |
Collapse
|
27
|
Zhang Y, Wang JH, Liu B, Qu PB. Steroid Receptor Coactivator-3 Promotes Bladder Cancer Through Upregulation of CXCR4. Asian Pac J Cancer Prev 2013; 14:3847-50. [DOI: 10.7314/apjcp.2013.14.6.3847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
28
|
Yi P, Xia W, Wu RC, Lonard DM, Hung MC, O'Malley BW. SRC-3 coactivator regulates cell resistance to cytotoxic stress via TRAF4-mediated p53 destabilization. Genes Dev 2013; 27:274-87. [PMID: 23388826 DOI: 10.1101/gad.203760.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Steroid receptor coactivator 3 (SRC-3) is an oncogenic nuclear receptor coactivator that plays a significant role in drug resistance. Using a lentiviral cDNA library rescue screening approach, we identified a SRC-3 downstream gene-TRAF4 (tumor necrosis factor [TNF] receptor associated-factor 4)-that functions in cell resistance to cytotoxic stress. TRAF4 expression is positively correlated with SRC-3 expression in human breast cancers. Similar to that observed for SRC-3 overexpression, breast cancer cells overexpressing TRAF4 are more resistant to stress-induced death. Here, we further dissected the underlying molecular mechanism for SRC-3 and TRAF4-mediated resistance to cytotoxic agents. We observed that SRC-3 expression is inversely correlated with the expression of p53-regulated proapoptotic genes in breast cancers and further found that SRC-3 and TRAF4 overexpression diminished cytotoxic stress-induced up-regulation of the tumor suppressor p53 protein. To determine the mechanism, we showed that the TRAF domain of TRAF4 bound to the N-terminal TRAF-like region of the deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also named USP7) and blocked the access of p53 to the same region of HAUSP. This TRAF4-mediated inhibition of HAUSP then led to the loss of p53 deubiquitination and its stabilization in response to cellular stress. Consistent with this cellular function, we also found that TRAF4 overexpression in breast cancer patients was associated significantly with poor prognosis. Because of SRC-3's ability to abrogate p53 function, our results suggest that SRC-3 overexpression may be especially important in tumors in which p53 is not mutated.
Collapse
Affiliation(s)
- Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The nuclear receptor superfamily includes transcription factors that transduce steroid, thyroid and retinoid hormones and other ligands in conjunction with coregulators. To date, over 350 coregulators have been reported in the literature, and advances in proteomic analyses of coregulator protein complexes have revealed that a far greater number of coregulator-interacting proteins also exist. Coregulator dysfunction has been implicated in diverse pathological states, genetic syndromes and cancer. A hallmark of disease related to the disruption of normal coregulator function is the pleiotropic effect on animal physiology, which is frequently manifested as the dysregulation of metabolic and neurological systems. Coregulators have broad physiological and pathological functions that make them promising new drug targets for diseases such as hormone-dependent cancers. Advances in proteomics, genomics and transcriptomics have provided novel insights into the biology of coregulators at a system-wide level and will lead the way to a new understanding of how coregulators can be evaluated in the context of complex and multifaceted genetic factors, hormones, diet, the environment and stress. Ultimately, better knowledge of the associations that exist between coregulator function and human diseases is expected to expand the indications for the use of future coregulator-targeted drugs.
Collapse
Affiliation(s)
- David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Gray SG, Baird AM, O'Kelly F, Nikolaidis G, Almgren M, Meunier A, Dockry E, Hollywood D, Ekström TJ, Perry AS, O'Byrne KJ. Gemcitabine reactivates epigenetically silenced genes and functions as a DNA methyltransferase inhibitor. Int J Mol Med 2012; 30:1505-11. [PMID: 23007409 DOI: 10.3892/ijmm.2012.1138] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/06/2012] [Indexed: 11/06/2022] Open
Abstract
Gemcitabine is indicated in combination with cisplatin as first-line therapy for solid tumours including non-small cell lung cancer (NSCLC), bladder cancer and mesothelioma. Gemcitabine is an analogue of pyrimidine cytosine and functions as an anti-metabolite. Structurally, however, gemcitabine has similarities to 5-aza-2-deoxycytidine (decitabine/Dacogen®), a DNA methyltransferase inhibitor (DNMTi). NSCLC, mesothelioma and prostate cancer cell lines were treated with decitabine and gemcitabine. Reactivation of epigenetically silenced genes was examined by RT-PCR/qPCR. DNA methyltransferase activity in nuclear extracts and recombinant proteins was measured using a DNA methyl-transferase assay, and alterations in DNA methylation status were examined using methylation-specific PCR (MS-PCR) and pyrosequencing. We observe a reactivation of several epigenetically silenced genes including GSTP1, IGFBP3 and RASSF1A. Gemcitabine functionally inhibited DNA methyltransferase activity in both nuclear extracts and recombinant proteins. Gemcitabine dramatically destabilised DNMT1 protein. However, DNA CpG methylation was for the most part unaffected by gemcitabine. In conclusion, gemcitabine both inhibits and destabilises DNA methyltransferases and reactivates epigenetically silenced genes having activity equivalent to decitabine at concentrations significantly lower than those achieved in the treatment of patients with solid tumours. This property may contribute to the anticancer activity of gemcitabine.
Collapse
Affiliation(s)
- Steven G Gray
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Republic of Ireland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Long W, Foulds CE, Qin J, Liu J, Ding C, Lonard DM, Solis LM, Wistuba II, Qin J, Tsai SY, Tsai MJ, O'Malley BW. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. J Clin Invest 2012; 122:1869-80. [PMID: 22505454 DOI: 10.1172/jci61492] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/07/2012] [Indexed: 12/30/2022] Open
Abstract
In contrast to the well-studied classic MAPKs, such as ERK1/2, little is known concerning the regulation and substrates of the atypical MAPK ERK3 signaling cascade and its function in cancer progression. Here, we report that ERK3 interacted with and phosphorylated steroid receptor coactivator 3 (SRC-3), an oncogenic protein overexpressed in multiple human cancers at serine 857 (S857). This ERK3-mediated phosphorylation at S857 was essential for interaction of SRC-3 with the ETS transcription factor PEA3, which promotes upregulation of MMP gene expression and proinvasive activity in lung cancer cells. Importantly, knockdown of ERK3 or SRC-3 inhibited the ability of lung cancer cells to invade and form tumors in the lung in a xenograft mouse model. In addition, ERK3 was found to be highly upregulated in human lung carcinomas. Our study identifies a previously unknown role for ERK3 in promoting lung cancer cell invasiveness by phosphorylating SRC-3 and regulating SRC-3 proinvasive activity by site-specific phosphorylation. As such, ERK3 protein kinase may be an attractive target for therapeutic treatment of invasive lung cancer.
Collapse
Affiliation(s)
- Weiwen Long
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li B, Liang F, Hu J, He AX. Reno: regularized non-parametric analysis of protein lysate array data. Bioinformatics 2012; 28:1223-9. [PMID: 22467912 DOI: 10.1093/bioinformatics/bts131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The reverse-phase protein lysate arrays have been used to quantify the relative expression levels of a protein in a number of cellular samples simultaneously. To avoid quantification bias due to mis-specification of commonly used parametric models, a nonparametric approach based on monotone response curves may be used. The existing methods, however, aggregate the protein concentration levels of replicates of each sample, and therefore fail to account for within-sample variability. RESULTS We propose a method of regularization on protein concentration estimation at the level of individual dilution series to account for within-sample or within-group variability. We use an efficient algorithm to optimize an approximate objective function, with a data-adaptive approach to choose the level of shrinkage. Simulation results show that the proposed method quantifies protein concentration levels well. We show through the analysis of protein lysate array data from cell lines of different cancer groups that accounting for within-sample variability leads to better statistical analysis. AVAILABILITY Code written in statistical programming language R is available at: http://odin.mdacc.tmc.edu/~jhhu/Reno
Collapse
Affiliation(s)
- Bin Li
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | | | | | | |
Collapse
|
33
|
Wu MY, Fu J, Xu J, O'Malley BW, Wu RC. Steroid receptor coactivator 3 regulates autophagy in breast cancer cells through macrophage migration inhibitory factor. Cell Res 2012; 22:1003-21. [PMID: 22430150 DOI: 10.1038/cr.2012.44] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SRC-3/AIB1 (steroid receptor coactivator 3/amplified in breast cancer 1) is an authentic oncogene that contributes to the development of drug resistance and poor disease-free survival in cancer patients. Autophagy is also an important cell death mechanism that has tumor suppressor function. In this study, we identified macrophage migration inhibitory factor (MIF) as a novel target gene of SRC-3 and demonstrated its importance in cell survival. Specifically, we showed that MIF is a strong suppressor of autophagic cell death. We further showed that suppression of MIF, in turn, induced autophagic cell death, enhanced chemosensitivity and inhibited tumorigenesis in a xenograft mouse tumorigenesis model. Our study demonstrated that regulation of MIF expression and suppression of autophagic cell death is a potent mechanism by which SRC-3 contributes to increased chemoresistance and tumorigenicity.
Collapse
Affiliation(s)
- Mei-Yi Wu
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20037, USA.
| | | | | | | | | |
Collapse
|
34
|
Bucur O, Stancu AL, Khosravi-Far R, Almasan A. Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications. Cell Death Dis 2012; 3:e263. [PMID: 22297295 PMCID: PMC3288344 DOI: 10.1038/cddis.2012.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
González-Arenas A, Hansberg-Pastor V, Hernández-Hernández OT, González-García TK, Henderson-Villalpando J, Lemus-Hernández D, Cruz-Barrios A, Rivas-Suárez M, Camacho-Arroyo I. Estradiol increases cell growth in human astrocytoma cell lines through ERα activation and its interaction with SRC-1 and SRC-3 coactivators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:379-86. [DOI: 10.1016/j.bbamcr.2011.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 02/07/2023]
|
36
|
Johnson AB, O'Malley BW. Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol 2012; 348:430-9. [PMID: 21664237 PMCID: PMC3202666 DOI: 10.1016/j.mce.2011.04.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/04/2011] [Accepted: 04/22/2011] [Indexed: 01/17/2023]
Abstract
Coactivators are a diverse group of non-DNA binding proteins that induce structural changes in agonist-bound nuclear receptors (NRs) that are essential for NR-mediated transcriptional activation. Once bound, coactivators function to bridge enhancer binding proteins to the general transcription machinery, as well as to recruit secondary coactivators that modify promoter and enhancer chromatin in a manner permissive for transcriptional activation. In the following review article, we focus on one of the most in-depth studied families of coactivators, the steroid receptor coactivators (SRC) 1, 2, and 3. SRCs are widely implicated in NR-mediated diseases, especially in cancers, with the majority of studies focused on their roles in breast cancer. We highlight the relevant literature supporting the oncogenic activity of SRCs and their future as diagnostic and prognostic indicators. With much interest in the development of selective receptor modulators (SRMs), we focus on how these coactivators regulate the interactions between SRMs and their respective NRs; and, importantly, the influence that coactivators have on the functional output of SRMs. Furthermore, we speculate that coactivator-specific inhibitors could provide powerful, all-encompassing treatments that target multiple modes of oncogenic regulation in cancers resistant to typical anti-endocrine treatments.
Collapse
Affiliation(s)
- Amber B Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | | |
Collapse
|
37
|
Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, O'Malley BW. Small molecule inhibition of the steroid receptor coactivators, SRC-3 and SRC-1. Mol Endocrinol 2011; 25:2041-53. [PMID: 22053001 DOI: 10.1210/me.2011-1222] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Overexpression of steroid receptor coactivator (SRC)-1 and SRC-3 is associated with cancer initiation, metastasis, advanced disease, and resistance to chemotherapy. In most of these cases, SRC-1 and SRC-3 have been shown to promote tumor cell growth by activating nuclear receptor and multiple growth factor signaling cascades that lead to uncontrolled tumor cell growth. Up until now, most targeted chemotherapeutic drugs have been designed largely to block a single pathway at a time, but cancers frequently acquire resistance by switching to alternative growth factor pathways. We reason that the development of chemotherapeutic agents against SRC coactivators that sit at the nexus of multiple cell growth signaling networks and transcriptional factors should be particularly effective therapeutics. To substantiate this hypothesis, we report the discovery of 2,2'-bis-(Formyl-1,6,7-trihydroxy-5-isopropyl-3-methylnaphthalene (gossypol) as a small molecule inhibitor of coactivator SRC-1 and SRC-3. Our data indicate that gossypol binds directly to SRC-3 in its receptor interacting domain. In MCF-7 breast cancer cells, gossypol selectively reduces the cellular protein concentrations of SRC-1 and SRC-3 without generally altering overall protein expression patterns, SRC-2, or other coactivators, such as p300 and coactivator-associated arginine methyltransferase 1. Gossypol reduces the concentration of SRC-3 in prostate, lung, and liver cancer cell lines. Gossypol inhibits cell viability in the same cancer cell lines where it promotes SRC-3 down-regulation. Additionally, gossypol sensitizes lung and breast cancer cell lines to the inhibitory effects of other chemotherapeutic agents. Importantly, gossypol is selectively cytotoxic to cancer cells, whereas normal cell viability is not affected. This data establish the proof-of-principle that, as a class, SRC-1 and SRC-3 coactivators are accessible chemotherapeutic targets. Given their function as integrators of multiple cell growth signaling systems, SRC-1/SRC-3 small molecule inhibitors comprise a new class of drugs that have potential as novel chemotherapeutics able to defeat aspects of acquired cancer cell resistance mechanisms.
Collapse
Affiliation(s)
- Ying Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
38
|
Zhang Z, Stiegler AL, Boggon TJ, Kobayashi S, Halmos B. EGFR-mutated lung cancer: a paradigm of molecular oncology. Oncotarget 2011; 1:497-514. [PMID: 21165163 PMCID: PMC3001953 DOI: 10.18632/oncotarget.186] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The development of EGFR tyrosine kinase inhibitors for clinical use in non-small cell lung cancer and the subsequent discovery of activating EGFR mutations have led to an explosion of knowledge in the fields of EGFR biology, targeted therapeutics and lung cancer research. EGFR-mutated adenocarcinoma of the lung has clearly emerged as a unique clinical entity necessitating the routine introduction of molecular diagnostics into our current diagnostic algorithms and leading to the evidence-based preferential usage of EGFR-targeted agents for patients with EGFR-mutant lung cancers. This review will summarize our current understanding of the functional role of activating mutations, key downstream signaling pathways and regulatory mechanisms, pivotal primary and acquired resistance mechanisms, structure-function relationships and ultimately the incorporation of molecular diagnostics and small molecule EGFR tyrosine kinase inhibitors into our current treatment paradigms.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, New York Presbyterian Hospital- Columbia University Medical Center, New York, NY, USA
| | | | | | | | | |
Collapse
|
39
|
Chien CD, Kirilyuk A, Li JV, Zhang W, Lahusen T, Schmidt MO, Oh AS, Wellstein A, Riegel AT. Role of the nuclear receptor coactivator AIB1-Delta4 splice variant in the control of gene transcription. J Biol Chem 2011; 286:26813-27. [PMID: 21636853 DOI: 10.1074/jbc.m110.216200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncogene amplified in breast cancer 1 (AIB1) is a nuclear receptor coactivator that plays a major role in the progression of various cancers. We previously identified a splice variant of AIB1 called AIB1-Δ4 that is overexpressed in breast cancer. Using mass spectrometry, we define the translation initiation of AIB1-Δ4 at Met(224) of the full-length AIB1 sequence and have raised an antibody to a peptide representing the acetylated N terminus. We show that AIB1-Δ4 is predominantly localized in the cytoplasm, although leptomycin B nuclear export inhibition demonstrates that AIB1-Δ4 can enter and traffic through the nucleus. Our data indicate an import mechanism enhanced by other coactivators such as p300/CBP. We report that the endogenously and exogenously expressed AIB1-Δ4 is recruited as efficiently as full-length AIB1 to estrogen-response elements of genes, and it enhances estrogen-dependent transcription more effectively than AIB1. Expression of an N-terminal AIB1 protein fragment, which is lost in the AIB1-Δ4 isoform, potentiates AIB1 as a coactivator. This suggests a model whereby the transcriptional activity of AIB1 is squelched by a repressive mechanism utilizing the N-terminal domain and that the increased coactivator function of AIB1-Δ4 is due to the loss of this inhibitory domain. Finally, we show, using Scorpion primer technology, that AIB1-Δ4 expression is correlated with metastatic capability of human cancer cell lines.
Collapse
Affiliation(s)
- Christopher D Chien
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ma G, Ren Y, Wang K, He J. SRC-3 has a role in cancer other than as a nuclear receptor coactivator. Int J Biol Sci 2011; 7:664-72. [PMID: 21647249 PMCID: PMC3107475 DOI: 10.7150/ijbs.7.664] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/01/2011] [Indexed: 01/01/2023] Open
Abstract
Steroid receptor coactivator-3 (SRC-3), also known as AIB1, is a member of the p160 steroid receptor coactivator family. Since SRC-3 was found to be amplified in breast cancer in 1997, the role of SRC-3 in cancer has been broadly investigated. SRC-3 initially was identified as a transcriptional coactivator for nuclear receptors such as the estrogen receptor (ER), involved in the proliferation of hormone-dependent cancers. However, increasing clinical evidence shows that dysregulation of SRC-3 expression in several human hormone-independent cancers is correlated with pathological factors and clinical prognosis. Recently, both in vivo and in vitro studies demonstrate that SRC-3 may influence a number of cancer cellular processes in several ways independent of nuclear receptor signaling. In addition, an SRC-3 transgenic mice model shows that SRC-3 induces tumors in several mouse tissues. These results indicate that the role of SRC-3 in cancer is not just as a nuclear receptor coactivator. The focus of this review is to examine possible SRC-3 roles in cancer, other than as a nuclear receptor coactivator.
Collapse
Affiliation(s)
- Gang Ma
- Department of Surgical Oncology, First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P. R. China
| | | | | | | |
Collapse
|
41
|
Dai B, Meng J, Peyton M, Girard L, Bornmann WG, Ji L, Minna JD, Fang B, Roth JA. STAT3 mediates resistance to MEK inhibitor through microRNA miR-17. Cancer Res 2011; 71:3658-68. [PMID: 21444672 DOI: 10.1158/0008-5472.can-10-3647] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AZD6244 is a small molecule inhibitor of the MEK (MAP/ERK kinase) pathway currently in clinical trials. However, the mechanisms mediating intrinsic resistance to MEK inhibition are not fully characterized. To define molecular mechanisms of MEK inhibitor resistance, we analyzed responses of 38 lung cancer cell lines following AZD6244 treatment and their genome-wide gene expression profiles and identified a panel of genes correlated with sensitivity or resistance to AZD6244 treatment. In particular, ingenuity pathway analysis revealed that activation of the STAT3 pathway was associated with MEK inhibitor resistance. Inhibition of this pathway by JSI-124, a STAT3-specific small molecule inhibitor, or with STAT3-specific siRNA sensitized lung cancer cells to AZD6244 and induced apoptosis. Moreover, combining a STAT3 inhibitor with AZD6244 induced expression of BIM and PARP cleavage, whereas activation of the STAT3 pathway inhibited BIM expression and elicited resistance to MEK inhibitors. We found that the STAT3-regulated microRNA miR-17 played a critical role in MEK inhibitor resistance, such that miR-17 inhibition sensitized resistant cells to AZD6244 by inducing BIM and PARP cleavage. Together, these results indicated that STAT3-mediated overexpression of miR-17 blocked BIM expression and caused resistance to AZD6244. Our findings suggest novel approaches to overcome resistance to MEK inhibitors by combining AZD6244 with STAT3 or miR-17 inhibitors.
Collapse
Affiliation(s)
- Bingbing Dai
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The role of epigenetics in resistance to Cisplatin chemotherapy in lung cancer. Cancers (Basel) 2011; 3:1426-53. [PMID: 24212667 PMCID: PMC3756421 DOI: 10.3390/cancers3011426] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 12/23/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common cause of cancer related death in the world. Cisplatin and carboplatin are the most commonly used cytotoxic chemotherapeutic agents to treat the disease. These agents, usually combined with drugs such as gemcitabine or pemetrexed, induce objective tumor responses in only 20-30% of patients. Aberrant epigenetic regulation of gene expression is a frequent event in NSCLC. In this article we review the emerging evidence that epigenetics and the cellular machinery involved with this type of regulation may be key elements in the development of cisplatin resistance in NSCLC.
Collapse
|
43
|
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) is a transcriptional coactivator involved in the differentiation of stem cell as well as the development of multiple organs. Recently, TAZ has also been identified as a major component of the novel Hippo-LATS tumor suppressor pathway and to function as an oncogene in breast cancer. We show for the first time that TAZ is an oncogene in non-small cell lung cancer (NSCLC). Our results show that TAZ is overexpressed in NSCLC cells and that lentivirus-mediated overexpression of TAZ in HBE135 immortalized human bronchial epithelial cells causes increased cell proliferation and transformation, which can be restored back to its original levels by knockdown of TAZ. In addition, short-hairpin RNA (shRNA)-mediated knockdown of TAZ expression in NSCLC cells suppresses their proliferation and anchorage-independent growth in vitro, and tumor growth in mice in vivo, which can be reversed by re-introduction of shRNA-resistant TAZ into TAZ-knockdown NSCLC cells. These results indicate that TAZ is an oncogene and has an important role in tumorigenicity of NSCLC cells. Therefore, TAZ may present a novel target for the future diagnosis, prognosis and therapy of lung cancer.
Collapse
|
44
|
Bulynko YA, O'Malley BW. Nuclear receptor coactivators: structural and functional biochemistry. Biochemistry 2010; 50:313-28. [PMID: 21141906 DOI: 10.1021/bi101762x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transcription of eukaryotic cell is a multistep process tightly controlled by concerted action of macromolecules. Nuclear receptors are ligand-activated sequence-specific transcription factors that bind DNA and activate (or repress) transcription of specific sets of nuclear target genes. Successful activation of transcription by nuclear receptors and most other transcription factors requires "coregulators" of transcription. Coregulators make up a diverse family of proteins that physically interact with and modulate the activity of transcription factors and other components of the gene expression machinery via multiple biochemical mechanisms. The coregulators include coactivators that accomplish reactions required for activation of transcription and corepressors that suppress transcription. This review summarizes our current knowledge of nuclear receptor coactivators with an emphasis on their biochemical mechanisms of action and means of regulation.
Collapse
Affiliation(s)
- Yaroslava A Bulynko
- Molecular and Cellular Biology, BCM130 Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
45
|
Sullivan JP, Spinola M, Dodge M, Raso MG, Behrens C, Gao B, Schuster K, Shao C, Larsen JE, Sullivan LA, Honorio S, Xie Y, Scaglioni PP, DiMaio JM, Gazdar AF, Shay JW, Wistuba II, Minna JD. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 2010; 70:9937-48. [PMID: 21118965 DOI: 10.1158/0008-5472.can-10-0881] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aldehyde dehydrogenase (ALDH) is a candidate marker for lung cancer cells with stem cell-like properties. Immunohistochemical staining of a large panel of primary non-small cell lung cancer (NSCLC) samples for ALDH1A1, ALDH3A1, and CD133 revealed a significant correlation between ALDH1A1 (but not ALDH3A1 or CD133) expression and poor prognosis in patients including those with stage I and N0 disease. Flow cytometric analysis of a panel of lung cancer cell lines and patient tumors revealed that most NSCLCs contain a subpopulation of cells with elevated ALDH activity, and that this activity is associated with ALDH1A1 expression. Isolated ALDH(+) lung cancer cells were observed to be highly tumorigenic and clonogenic as well as capable of self-renewal compared with their ALDH(-) counterparts. Expression analysis of sorted cells revealed elevated Notch pathway transcript expression in ALDH(+) cells. Suppression of the Notch pathway by treatment with either a γ-secretase inhibitor or stable expression of shRNA against NOTCH3 resulted in a significant decrease in ALDH(+) lung cancer cells, commensurate with a reduction in tumor cell proliferation and clonogenicity. Taken together, these findings indicate that ALDH selects for a subpopulation of self-renewing NSCLC stem-like cells with increased tumorigenic potential, that NSCLCs harboring tumor cells with ALDH1A1 expression have inferior prognosis, and that ALDH1A1 and CD133 identify different tumor subpopulations. Therapeutic targeting of the Notch pathway reduces this ALDH(+) component, implicating Notch signaling in lung cancer stem cell maintenance.
Collapse
Affiliation(s)
- James P Sullivan
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|