1
|
Hillion S, Miranda A, Le Dantec C, Boudigou M, Le Pottier L, Cornec D, Torres RM, Pelanda R. Maf expression in B cells restricts reactive plasmablast and germinal center B cell expansion. Nat Commun 2024; 15:7982. [PMID: 39266537 PMCID: PMC11393457 DOI: 10.1038/s41467-024-52224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
Precise regulation of B cell differentiation is essential for an effective adaptive immune response. Here, we show that B cell development in mice with B cell-specific Maf deletion is unaffected, but marginal zone B cells, germinal centre B cells, and plasmablasts are significantly more frequent in the spleen of naive Maf-deficient mice compared to wild type controls. In the context of a T cell-dependent immunization, Maf deletion causes increased proliferation of germinal centre B cells and extrafollicular plasmablasts. This is accompanied by higher production of antigen-specific IgG1 antibodies with minimal modification of early memory B cells, but a reduction in plasma cell numbers. Single-cell RNA sequencing shows upregulation of genes associated with DNA replication and cell cycle progression, confirming the role of Maf in cell proliferation. Subsequent pathway analysis reveals that Maf influences cellular metabolism, transporter activity, and mitochondrial proteins, which have been implicated in controlling the germinal centre reaction. In summary, our findings demonstrate that Maf acts intrinsically in B cells as a negative regulator of late B cell differentiation, plasmablast proliferation and germinal centre B cell formation.
Collapse
Affiliation(s)
- Sophie Hillion
- LBAI, UMR1227, Univ Brest, Inserm, and CHU de Brest, Brest, France.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Anjelica Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | | | | | - Divi Cornec
- LBAI, UMR1227, Univ Brest, Inserm, and CHU de Brest, Brest, France
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
2
|
Pfeuffer L, Siegert V, Frede J, Rieger L, Trozzo R, de Andrade Krätzig N, Ring S, Sarhadi S, Beck N, Niedermeier S, Abril-Gil M, Elbahloul M, Remke M, Steiger K, Eichner R, Jellusova J, Rad R, Bassermann F, Winter C, Ruland J, Buchner M. B-cell intrinsic RANK signaling cooperates with TCL1 to induce lineage-dependent B-cell transformation. Blood Cancer J 2024; 14:151. [PMID: 39198400 PMCID: PMC11358282 DOI: 10.1038/s41408-024-01123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
B-cell malignancies, such as chronic lymphocytic leukemia (CLL) and multiple myeloma (MM), remain incurable, with MM particularly prone to relapse. Our study introduces a novel mouse model with active RANK signaling and the TCL1 oncogene, displaying both CLL and MM phenotypes. In younger mice, TCL1 and RANK expression expands CLL-like B1-lymphocytes, while MM originates from B2-cells, becoming predominant in later stages and leading to severe disease progression and mortality. The induced MM mimics human disease, exhibiting features like clonal plasma cell expansion, paraproteinemia, anemia, and kidney and bone failure, as well as critical immunosurveillance strategies that promote a tumor-supportive microenvironment. This research elucidates the differential impacts of RANK activation in B1- and B2-cells and underscores the distinct roles of single versus combined oncogenes in B-cell malignancies. We also demonstrate that human MM cells express RANK and that inhibiting RANK signaling can reduce MM progression in a xenotransplantation model. Our study provides a rationale for further investigating the effects of RANK signaling in B-cell transformation and the shaping of a tumor-promoting microenvironment.
Collapse
Affiliation(s)
- Lisa Pfeuffer
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Viola Siegert
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Julia Frede
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Leonie Rieger
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Department of Medicine III, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Riccardo Trozzo
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
| | - Niklas de Andrade Krätzig
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
| | - Sandra Ring
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Shamim Sarhadi
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Nicole Beck
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Stefan Niedermeier
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Mar Abril-Gil
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Mohamed Elbahloul
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Department of Medicine III, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Marianne Remke
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Ruth Eichner
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Department of Medicine III, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Julia Jellusova
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Roland Rad
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Bassermann
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Department of Medicine III, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Center for Cancer Research (BZKF), Munich, Germany
| | - Christof Winter
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Munich, 81675, Munich, Germany
| | - Maike Buchner
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Du MT, Bergsagel PL, Chesi M. Immunocompetent Mouse Models of Multiple Myeloma: Therapeutic Implications. Hematol Oncol Clin North Am 2024; 38:533-546. [PMID: 38233233 PMCID: PMC10942746 DOI: 10.1016/j.hoc.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Immunocompetent mouse models of multiple myeloma (MM) are particularly needed in the era of T cell redirected therapy to understand drivers of sensitivity and resistance, optimize responses, and prevent toxicities. Three mouse models have been extensively characterized: the Balb/c plasmacytomas, the 5TMM, and the Vk*MYC. In the last year, additional models have been generated, which, for the first time, capture primary MM initiating events, like MMSET/NSD2 or cyclin D1 dysregulation. However, the long latency needed for tumor development and the lack of transplantable lines limit their utilization. Future studies should focus on modeling hyperdiploid MM.
Collapse
Affiliation(s)
- Megan Tien Du
- Department of Medicine, Mayo Clinic, 13400 East Shea Boulevard, MCCRB 3-040, Scottsdale, AZ 85259, USA
| | - Peter Leif Bergsagel
- Department of Medicine, Mayo Clinic, 13400 East Shea Boulevard, MCCRB 3-040, Scottsdale, AZ 85259, USA
| | - Marta Chesi
- Department of Medicine, Mayo Clinic, 13400 East Shea Boulevard, MCCRB 3-040, Scottsdale, AZ 85259, USA.
| |
Collapse
|
4
|
Katsarou A, Trasanidis N, Ponnusamy K, Kostopoulos IV, Alvarez-Benayas J, Papaleonidopoulou F, Keren K, Sabbattini PMR, Feldhahn N, Papaioannou M, Hatjiharissi E, Sudbery IM, Chaidos A, Caputo VS, Karadimitris A. MAF functions as a pioneer transcription factor that initiates and sustains myelomagenesis. Blood Adv 2023; 7:6395-6410. [PMID: 37224458 PMCID: PMC10598502 DOI: 10.1182/bloodadvances.2023009772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Deregulated expression of lineage-affiliated transcription factors (TFs) is a major mechanism of oncogenesis. However, how the deregulation of nonlineage affiliated TF affects chromatin to initiate oncogenic transcriptional programs is not well-known. To address this, we studied the chromatin effects imposed by oncogenic MAF as the cancer-initiating driver in the plasma cell cancer multiple myeloma. We found that the ectopically expressed MAF endows myeloma plasma cells with migratory and proliferative transcriptional potential. This potential is regulated by the activation of enhancers and superenhancers, previously inactive in healthy B cells and plasma cells, and the cooperation of MAF with the plasma cell-defining TF IRF4. Forced ectopic MAF expression confirms the de novo ability of oncogenic MAF to convert transcriptionally inert chromatin to active chromatin with the features of superenhancers, leading to the activation of the MAF-specific oncogenic transcriptome and the acquisition of cancer-related cellular phenotypes such as CCR1-dependent cell migration. These findings establish oncogenic MAF as a pioneer transcription factor that can initiate as well as sustain oncogenic transcriptomes and cancer phenotypes. However, despite its pioneer function, myeloma cells remain MAF-dependent, thus validating oncogenic MAF as a therapeutic target that would be able to circumvent the challenges of subsequent genetic diversification driving disease relapse and drug resistance.
Collapse
Affiliation(s)
- Alexia Katsarou
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Nikolaos Trasanidis
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Kanagaraju Ponnusamy
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Ioannis V. Kostopoulos
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Jaime Alvarez-Benayas
- Department of the Higher School of Computer Science, Nebrija ARIES Research Group, Universidad Antonio de Nebrija, Madrid, Spain
| | - Foteini Papaleonidopoulou
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Keren Keren
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Pierangela M. R. Sabbattini
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Niklas Feldhahn
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Maria Papaioannou
- Division of Haematology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdoxia Hatjiharissi
- Division of Haematology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ian M. Sudbery
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Aristeidis Chaidos
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Valentina S. Caputo
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Cancer Biology and Therapy laboratory, School of Applied Science, London South Bank University, London, United Kingdom
| | - Anastasios Karadimitris
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| |
Collapse
|
5
|
Flietner E, Yu M, Poudel G, Veltri AJ, Zhou Y, Rajagopalan A, Feng Y, Lasho T, Wen Z, Sun Y, Patnaik MM, Callander NS, Asimakopoulos F, Wang D, Zhang J. Molecular characterization stratifies VQ myeloma cells into two clusters with distinct risk signatures and drug responses. Oncogene 2023; 42:1751-1762. [PMID: 37031341 PMCID: PMC10367583 DOI: 10.1038/s41388-023-02684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of malignant plasma cells in the bone marrow and extramedullary sites. We previously characterized a VQ model for human high-risk MM. The various VQ lines display different disease phenotypes and survival rates, suggesting significant intra-model variation. Here, we use whole-exome sequencing and copy number variation (CNV) analysis coupled with RNA-Seq to stratify the VQ lines into corresponding clusters: Group A cells had monosomy chromosome (chr) 5 and overexpressed genes and pathways associated with sensitivity to bortezomib (Btz) treatment in human MM patients. By contrast, Group B VQ cells carried recurrent amplification (Amp) of chr3 and displayed high-risk MM features, including downregulation of Fam46c, upregulation of cancer growth pathways associated with functional high-risk MM, and expression of Amp1q and high-risk UAMS-70 and EMC-92 gene signatures. Consistently, in sharp contrast to Group A VQ cells that showed short-term response to Btz, Group B VQ cells were de novo resistant to Btz in vivo. Our study highlights Group B VQ lines as highly representative of the human MM subset with ultrahigh risk.
Collapse
Affiliation(s)
- Evan Flietner
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mei Yu
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Govinda Poudel
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Yun Zhou
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Adhithi Rajagopalan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yubin Feng
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Terra Lasho
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Zhi Wen
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, 54449, USA
| | - Yuqian Sun
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Natalie S Callander
- Division of Hematology/Oncology, Department of Medicine, UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA.
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
6
|
Zhang Z, Li M, Lin P, Ren Y, He Y, Wang S, Xu Y, Cao B, Wang G, Moran MF, Mao X. The ubiquitin ligase HERC4 suppresses MafA transcriptional activity triggered by GSK3β in myeloma by atypical K63-linked polyubiquitination. J Biol Chem 2023; 299:104675. [PMID: 37028761 DOI: 10.1016/j.jbc.2023.104675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
MafA and c-Maf are close members of the Maf transcription factor family and indicators of poor prognosis of multiple myeloma (MM). Our previous study finds that the ubiquitin ligase HERC4 induces c-Maf degradation but stabilizes MafA, and the mechanism is elusive. In the present study we find that HERC4 interacts with MafA and mediates its K63-linked polyubiquitination at K33. Moreover, HERC4 inhibits MafA phosphorylation and its transcriptional activity triggered by glycogen synthase kinase 3β (GSK3β). The K33R MafA variant prevents HERC4 from inhibiting MafA phosphorylation and increases MafA transcriptional activity. Further analyses reveal that MafA can also activate the STAT3 signaling but it is suppressed by HERC4. Lastly, we demonstrate that lithium chloride, a GSK3β inhibitor, can upregulate HERC4 and synergizes dexamethasone, a typical anti-MM drug, in inhibiting MM cell proliferation and xenograft growth in nude mice. These findings thus highlight a novel regulation of MafA oncogenic activity in MM and provide the rationale by targeting HERC4/GSK3β/MafA for the treatment of MM.
Collapse
Affiliation(s)
- Zubin Zhang
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Peng Lin
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ying Ren
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yuanming He
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Siyu Wang
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yujia Xu
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Biyin Cao
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guanghui Wang
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Michael F Moran
- The Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5G 0A4, Canada
| | - Xinliang Mao
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
7
|
Larrayoz M, Garcia-Barchino MJ, Celay J, Etxebeste A, Jimenez M, Perez C, Ordoñez R, Cobaleda C, Botta C, Fresquet V, Roa S, Goicoechea I, Maia C, Lasaga M, Chesi M, Bergsagel PL, Larrayoz MJ, Calasanz MJ, Campos-Sanchez E, Martinez-Cano J, Panizo C, Rodriguez-Otero P, Vicent S, Roncador G, Gonzalez P, Takahashi S, Katz SG, Walensky LD, Ruppert SM, Lasater EA, Amann M, Lozano T, Llopiz D, Sarobe P, Lasarte JJ, Planell N, Gomez-Cabrero D, Kudryashova O, Kurilovich A, Revuelta MV, Cerchietti L, Agirre X, San Miguel J, Paiva B, Prosper F, Martinez-Climent JA. Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma. Nat Med 2023; 29:632-645. [PMID: 36928817 PMCID: PMC10033443 DOI: 10.1038/s41591-022-02178-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 12/09/2022] [Indexed: 03/17/2023]
Abstract
The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials.
Collapse
Affiliation(s)
- Marta Larrayoz
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Maria J Garcia-Barchino
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Jon Celay
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Amaia Etxebeste
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Maddalen Jimenez
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Cristina Perez
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Raquel Ordoñez
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Cesar Cobaleda
- Immune System Development and Function Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas/Universidad Autonoma, Madrid, Spain
| | - Cirino Botta
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Vicente Fresquet
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Sergio Roa
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Ibai Goicoechea
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Catarina Maia
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Miren Lasaga
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Marta Chesi
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - P Leif Bergsagel
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Maria J Larrayoz
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Maria J Calasanz
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Elena Campos-Sanchez
- Immune System Development and Function Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas/Universidad Autonoma, Madrid, Spain
| | - Jorge Martinez-Cano
- Immune System Development and Function Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas/Universidad Autonoma, Madrid, Spain
| | - Carlos Panizo
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Paula Rodriguez-Otero
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Silvestre Vicent
- Program in Solid Tumors, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBERONC, Pamplona, Spain
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Biotechnology Program, Spanish National Cancer Research Centre CNIO, Madrid, Spain
| | - Patricia Gonzalez
- Monoclonal Antibodies Unit, Biotechnology Program, Spanish National Cancer Research Centre CNIO, Madrid, Spain
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shannon M Ruppert
- Oncology Biomarker Development, Genentech, South San Francisco, CA, USA
| | - Elisabeth A Lasater
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Diana Llopiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Juan J Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Nuria Planell
- Translational Bioinformatics Unit, Navarra-Biomed, Public University of Navarra, IDISNA, Pamplona, Spain
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit, Navarra-Biomed, Public University of Navarra, IDISNA, Pamplona, Spain
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| | | | | | - Maria V Revuelta
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Leandro Cerchietti
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Xabier Agirre
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Jesus San Miguel
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Bruno Paiva
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Felipe Prosper
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Jose A Martinez-Climent
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain.
| |
Collapse
|
8
|
Kasprzyk ME, Sura W, Dzikiewicz-Krawczyk A. Enhancing B-Cell Malignancies-On Repurposing Enhancer Activity towards Cancer. Cancers (Basel) 2021; 13:3270. [PMID: 34210001 PMCID: PMC8269369 DOI: 10.3390/cancers13133270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
B-cell lymphomas and leukemias derive from B cells at various stages of maturation and are the 6th most common cancer-related cause of death. While the role of several oncogenes and tumor suppressors in the pathogenesis of B-cell neoplasms was established, recent research indicated the involvement of non-coding, regulatory sequences. Enhancers are DNA elements controlling gene expression in a cell type- and developmental stage-specific manner. They ensure proper differentiation and maturation of B cells, resulting in production of high affinity antibodies. However, the activity of enhancers can be redirected, setting B cells on the path towards cancer. In this review we discuss different mechanisms through which enhancers are exploited in malignant B cells, from the well-studied translocations juxtaposing oncogenes to immunoglobulin loci, through enhancer dysregulation by sequence variants and mutations, to enhancer hijacking by viruses. We also highlight the potential of therapeutic targeting of enhancers as a direction for future investigation.
Collapse
|
9
|
Pisano M, Cheng Y, Sun F, Dhakal B, D’Souza A, Chhabra S, Knight JM, Rao S, Zhan F, Hari P, Janz S. Laboratory Mice - A Driving Force in Immunopathology and Immunotherapy Studies of Human Multiple Myeloma. Front Immunol 2021; 12:667054. [PMID: 34149703 PMCID: PMC8206561 DOI: 10.3389/fimmu.2021.667054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Mouse models of human cancer provide an important research tool for elucidating the natural history of neoplastic growth and developing new treatment and prevention approaches. This is particularly true for multiple myeloma (MM), a common and largely incurable neoplasm of post-germinal center, immunoglobulin-producing B lymphocytes, called plasma cells, that reside in the hematopoietic bone marrow (BM) and cause osteolytic lesions and kidney failure among other forms of end-organ damage. The most widely used mouse models used to aid drug and immunotherapy development rely on in vivo propagation of human myeloma cells in immunodeficient hosts (xenografting) or myeloma-like mouse plasma cells in immunocompetent hosts (autografting). Both strategies have made and continue to make valuable contributions to preclinical myeloma, including immune research, yet are ill-suited for studies on tumor development (oncogenesis). Genetically engineered mouse models (GEMMs), such as the widely known Vκ*MYC, may overcome this shortcoming because plasma cell tumors (PCTs) develop de novo (spontaneously) in a highly predictable fashion and accurately recapitulate many hallmarks of human myeloma. Moreover, PCTs arise in an intact organism able to mount a complete innate and adaptive immune response and tumor development reproduces the natural course of human myelomagenesis, beginning with monoclonal gammopathy of undetermined significance (MGUS), progressing to smoldering myeloma (SMM), and eventually transitioning to frank neoplasia. Here we review the utility of transplantation-based and transgenic mouse models of human MM for research on immunopathology and -therapy of plasma cell malignancies, discuss strengths and weaknesses of different experimental approaches, and outline opportunities for closing knowledge gaps, improving the outcome of patients with myeloma, and working towards a cure.
Collapse
Affiliation(s)
- Michael Pisano
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Yan Cheng
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fumou Sun
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Binod Dhakal
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anita D’Souza
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Saurabh Chhabra
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M. Knight
- Departments of Psychiatry, Medicine, and Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sridhar Rao
- Division of Hematology, Oncology and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, United States
| | - Fenghuang Zhan
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Parameswaran Hari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
10
|
Takahashi S. Functional analysis of large MAF transcription factors and elucidation of their relationships with human diseases. Exp Anim 2021; 70:264-271. [PMID: 33762508 PMCID: PMC8390310 DOI: 10.1538/expanim.21-0027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The large MAF transcription factor group is a group of transcription factors with an acidic region, a basic region, and a leucine zipper region. Four types of MAF, MAFA, MAFB, c-MAF, and NRL, have been identified in humans and mice. In order to elucidate the functions of the large MAF transcription factor group in vivo, our research group created genetically modified MAFA-, MAFB-, and c-MAF-deficient mice and analyzed their phenotypes. MAFA is expressed in pancreatic β cells and is essential for insulin transcription and secretion. MAFB is essential for the development of pancreatic endocrine cells, formation of inner ears, podocyte function in the kidneys, and functional differentiation of macrophages. c-MAF is essential for lens formation and osteoblast differentiation. Furthermore, a single-base mutation in genes encoding the large MAF transcription factor group causes congenital renal disease, eye disease, bone disease, diabetes, and tumors in humans. This review describes the functions of large MAF transcription factors in vivo and their relationships with human diseases.
Collapse
Affiliation(s)
- Satoru Takahashi
- Department of Anatomy and Embryology, Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
11
|
Metabolic Effects of Recurrent Genetic Aberrations in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13030396. [PMID: 33494394 PMCID: PMC7865460 DOI: 10.3390/cancers13030396] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Oncogene activation and malignant transformation exerts energetic, biosynthetic and redox demands on cancer cells due to increased proliferation, cell growth and tumor microenvironment adaptation. As such, altered metabolism is a hallmark of cancer, which is characterized by the reprogramming of multiple metabolic pathways. Multiple myeloma (MM) is a genetically heterogeneous disease that arises from terminally differentiated B cells. MM is characterized by reciprocal chromosomal translocations that often involve the immunoglobulin loci and a restricted set of partner loci, and complex chromosomal rearrangements that are associated with disease progression. Recurrent chromosomal aberrations in MM result in the aberrant expression of MYC, cyclin D1, FGFR3/MMSET and MAF/MAFB. In recent years, the intricate mechanisms that drive cancer cell metabolism and the many metabolic functions of the aforementioned MM-associated oncogenes have been investigated. Here, we discuss the metabolic consequences of recurrent chromosomal translocations in MM and provide a framework for the identification of metabolic changes that characterize MM cells.
Collapse
|
12
|
Current Understanding of Myelomatous Mesenchymal Stromal Cells Extended through Advances in Experimental Methods. Cancers (Basel) 2020; 13:cancers13010025. [PMID: 33374627 PMCID: PMC7793501 DOI: 10.3390/cancers13010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary As the amount of information available has grown, now it is known that many types of non-hematopoietic cells, including mesenchymal stem/progenitor cells, mature mesenchymal cells, and endothelial cells, as well as mature hematopoietic cells such as monocytes, macrophages, T-cells, and B-cells, have roles in the pathogenesis of multiple myeloma. This review focuses on the role of mesenchymal cells in the microenvironment of multiple myeloma. We summarize the experimental strategies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells. Abstract Multiple myeloma is an incurable cancer formed by malignant plasma cells. For the proliferation and survival of myeloma cells, as well as the occurrence of the complications, numerous intra- and extra-cellular mechanisms are involved. The interaction of myeloma cells with the microenvironment is known to be one of the most critical mechanisms. A specific microenvironment could affect the progression and growth of tumor cells, as well as drug resistance. Among various microenvironment components, such as hematological and non-hematological cells, and soluble factors (cytokines, chemokines, and extracellular matrix (ECM) proteins), in this review, we focus on the role of mesenchymal cells. We aimed to summarize the experimental strategies used for conducting studies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells.
Collapse
|
13
|
Xu Y, Sun T, Zeng K, Xu M, Chen J, Xu X, Zhang Z, Cao B, Tang X, Wu D, Kong Y, Zeng Y, Mao X. Anti-bacterial and anti-viral nanchangmycin displays anti-myeloma activity by targeting Otub1 and c-Maf. Cell Death Dis 2020; 11:818. [PMID: 32999280 PMCID: PMC7527563 DOI: 10.1038/s41419-020-03017-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022]
Abstract
As a deubiqutinase Otub1 stabilizes and promotes the oncogenic activity of the transcription factor c-Maf in multiple myeloma (MM), a malignancy of plasma cells. In the screen for bioactive inhibitors of the Otub1/c-Maf axis for MM treatment, nanchangmycin (Nam), a polyketide antibiotic, was identified to suppress c-Maf activity in the presence of Otub1. By suppressing Otub1, Nam induces c-Maf polyubiquitination and subsequent degradation in proteasomes but does not alter its mRNA level. Consistently, Nam downregulates the expression of CCND2, ARK5, and ITGB7, the downstream genes regulated by c-Maf, and promotes MM cell apoptosis as evidenced by PARP and Caspase-3 cleavage, as well as Annexin V staining. In line with the hypothesis, overexpression of Otub1 partly rescues Nam-induced MM cell apoptosis, and interestingly, when Otub1 is knocked down, Nam-decreased MM cell survival is also partly ablated, suggesting Otub1 is essential for Nam anti-MM activity. Nam also displays potent anti-MM activity synergistically with Doxorubicin or lenalidomide. In the in vivo assays, Nam almost completely suppresses the growth of MM xenografts in nude mice at low dosages but it shows no toxicity. Given its safety and efficacy, Nam has a potential for MM treatment by targeting the Otub1/c-Maf axis.
Collapse
Affiliation(s)
- Yujia Xu
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital; Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Tong Sun
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215100, P. R. China
| | - Kun Zeng
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Min Xu
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215620, China
| | - Jinhao Chen
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215620, China
| | - Xiaofeng Xu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215100, P. R. China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaowen Tang
- Department of Urology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, P. R. China
| | - Depei Wu
- Department of Urology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, P. R. China
| | - Yan Kong
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215100, P. R. China
| | - Yuanying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215100, P. R. China.
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital; Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
14
|
Mebendazole elicits potent antimyeloma activity by inhibiting the USP5/c-Maf axis. Acta Pharmacol Sin 2019; 40:1568-1577. [PMID: 31197245 PMCID: PMC7468578 DOI: 10.1038/s41401-019-0249-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
c-Maf is a critical oncogenic transcription factor that contributes to myelomagenesis. Our previous studies demonstrated that the deubiquitinase USP5 stabilizes c-Maf and promotes myeloma cell proliferation and survival; therefore, the USP5/c-Maf axis could be a potential target for myeloma therapy. As a concept of principle, the present study established a USP5/c-Maf-based luciferase system that was used to screen an FDA-approved drug library. It was found that mebendazole, a typical anthelmintic drug, preferentially induced apoptosis in c-Maf-expressing myeloma cells. Moreover, oral administration of mebendazole delayed the growth of human myeloma xenografts in nude mice but did not show overt toxicity. Further studies showed that the selective antimyeloma activity of mebendazole was associated with the inhibition of the USP5/c-Maf axis. Mebendazole downregulated USP5 expression and disrupted the interaction between USP5 and c-Maf, thus leading to increased levels of c-Maf ubiquitination and subsequent c-Maf degradation. Mebendazole inhibited c-Maf transcriptional activity, as confirmed by both luciferase assays and expression measurements of c-Maf downstream genes. In summary, this study identified mebendazole as a USP5/c-Maf inhibitor that could be developed as a novel antimyeloma agent.
Collapse
|
15
|
Vlummens P, De Veirman K, Menu E, De Bruyne E, Offner F, Vanderkerken K, Maes K. The Use of Murine Models for Studying Mechanistic Insights of Genomic Instability in Multiple Myeloma. Front Genet 2019; 10:740. [PMID: 31475039 PMCID: PMC6704229 DOI: 10.3389/fgene.2019.00740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. In normal plasma cell development, cells undergo programmed DNA breaks and translocations, a process necessary for generation of a wide repertoire of antigen-specific antibodies. This process also makes them vulnerable for the acquisition of chromosomal defects. Well-known examples of these aberrations, already seen at time of MM diagnosis, are hyperdiploidy or the translocations involving the immunoglobulin heavy chain. Over the recent years, however, novel aspects concerning genomic instability and its role in tumor development, disease progression and nascence of refractory disease were identified. As such, genomic instability is becoming a very relevant research topic with the potential identification of novel disease pathways. In this review, we aim to describe recent studies involving murine MM models focusing on the deregulation of processes implicated in genomic instability and their clinical impact. More specifically, we will discuss chromosomal instability, DNA damage and repair responses, development of drug resistance, and recent insights into the study of clonal hierarchy using different murine MM models. Lastly, we will discuss the importance and the use of murine MM models in the pre-clinical evaluation of promising novel therapeutic agents.
Collapse
Affiliation(s)
- Philip Vlummens
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Clinical Hematology, Ghent University Hospital, Gent, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fritz Offner
- Department of Clinical Hematology, Ghent University Hospital, Gent, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
16
|
Zhang J, Ye ZW, Townsend DM, Hughes-Halbert C, Tew KD. Racial disparities, cancer and response to oxidative stress. Adv Cancer Res 2019; 144:343-383. [PMID: 31349903 PMCID: PMC7104807 DOI: 10.1016/bs.acr.2019.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At the intersection of genetics, biochemistry and behavioral sciences, there is a largely untapped opportunity to consider how ethnic and racial disparities contribute to individual sensitivity to reactive oxygen species and how these might influence susceptibility to various cancers and/or response to classical cancer treatment regimens that pervasively result in the formation of such chemical species. This chapter begins to explore these connections and builds a platform from which to consider how the disciplines can be strengthened further.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Chanita Hughes-Halbert
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
17
|
Drug resistance in multiple myeloma. Cancer Treat Rev 2018; 70:199-208. [DOI: 10.1016/j.ctrv.2018.09.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/05/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
|
18
|
Maes K, Boeckx B, Vlummens P, De Veirman K, Menu E, Vanderkerken K, Lambrechts D, De Bruyne E. The genetic landscape of 5T models for multiple myeloma. Sci Rep 2018; 8:15030. [PMID: 30301958 PMCID: PMC6177465 DOI: 10.1038/s41598-018-33396-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/25/2018] [Indexed: 12/24/2022] Open
Abstract
Murine models for multiple myeloma (MM) are often used to investigate pathobiology of multiple myeloma and disease progression. Unlike transgenic mice models, where it is known which oncogene is driving MM disease, the somatic aberrations of spontaneous syngeneic 5T models of MM have not yet been reported. Here, we analyzed the copy-number alterations (CNA) and mutational landscape of 5T2, 5T33vv and 5TGM1 murine MM models using whole-genome and whole-exome sequencing. Forty four percent of the genome of 5T2 cells is affected by CNAs while this was only 11% and 17% for 5T33vv and 5TGM1 cells, respectively. We found that up to 69% of the genes linked to gain of 1q or deletion of 13q in MM patients are present as respectively gains in 5T2 cells or deletions in 5T33 and 5TGM1 cells. Exome sequencing furthermore revealed mutations of genes involved in RAS/MAPK, PI3K/AKT1 and JAK/STAT signaling, DNA damage response, cell cycle, epigenetic regulation and extracellular matrix organization. We observed a statistically significant overlap of genes mutated in the 5T models and MM patients. Overall, the genetic landscape of the 5T models is heterogeneous with a high number of aberrations involving genes in various multiple myeloma-related pathways.
Collapse
Affiliation(s)
- Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, 1090, Belgium.
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, Katholieke Universiteit Leuven, VIB Center for Cancer Biology, Leuven, 3000, Belgium
| | - Philip Vlummens
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, 1090, Belgium
- Department of Clinical Hematology, Ghent University Hospital, Gent, 9000, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, 1090, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, 1090, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, 1090, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, Katholieke Universiteit Leuven, VIB Center for Cancer Biology, Leuven, 3000, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussel, 1090, Belgium
| |
Collapse
|
19
|
Du Y, Liu Y, Xu Y, Juan J, Zhang Z, Xu Z, Cao B, Wang Q, Zeng Y, Mao X. The transmembrane protein TMEPAI induces myeloma cell apoptosis by promoting degradation of the c-Maf transcription factor. J Biol Chem 2018; 293:5847-5859. [PMID: 29467225 DOI: 10.1074/jbc.ra117.000972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/14/2018] [Indexed: 11/06/2022] Open
Abstract
TMEPAI (transmembrane prostate androgen-induced protein, also called prostate transmembrane protein, androgen-induced 1 (PMEPA1)) is a type I transmembrane (TM) protein, but its cellular function is largely unknown. Here, studying factors influencing the stability of c-Maf, a critical transcription factor in multiple myeloma (MM), we found that TMEPAI induced c-Maf degradation. We observed that TMEPAI recruited NEDD4 (neural precursor cell expressed, developmentally down-regulated 4), a WW domain-containing ubiquitin ligase, to c-Maf, leading to its degradation through the proteasomal pathway. Further investigation revealed that TMEPAI interacts with NEDD4 via its conserved PY motifs. Alanine substitution or deletion of these motifs abrogated the TMEPAI complex formation with NEDD4, resulting in failed c-Maf degradation. Functionally, TMEPAI suppressed the transcriptional activity of c-Maf. Of note, increased TMEPAI expression was positively associated with the overall survival of MM patients. Moreover, TMEPAI was down-regulated in MM cells, and re-expression of TMEPAI induced MM cell apoptosis. In conclusion, this study highlights that TMEPAI decreases c-Maf stability by recruiting the ubiquitin ligase NEDD4 to c-Maf for proteasomal degradation. Our findings suggest that the restoration of functional TMEPA1 expression may represent a promising complementary therapeutic strategy for treating patients with MM.
Collapse
Affiliation(s)
- Yanyun Du
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yan Liu
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujia Xu
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiaxiang Juan
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zubin Zhang
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhuan Xu
- the Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215100, China
| | - Biyin Cao
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qi Wang
- the Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou 215100, China, and
| | - Xinliang Mao
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China, .,the Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
20
|
Bieghs L, Johnsen HE, Maes K, Menu E, Van Valckenborgh E, Overgaard MT, Nyegaard M, Conover CA, Vanderkerken K, De Bruyne E. The insulin-like growth factor system in multiple myeloma: diagnostic and therapeutic potential. Oncotarget 2018; 7:48732-48752. [PMID: 27129151 PMCID: PMC5217049 DOI: 10.18632/oncotarget.8982] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a highly heterogeneous plasma cell malignancy. The MM cells reside in the bone marrow (BM), where reciprocal interactions with the BM niche foster MM cell survival, proliferation, and drug resistance. As in most cancers, the insulin-like growth factor (IGF) system has been demonstrated to play a key role in the pathogenesis of MM. The IGF system consists of IGF ligands, IGF receptors, IGF binding proteins (IGFBPs), and IGFBP proteases and contributes not only to the survival, proliferation, and homing of MM cells, but also MM-associated angiogenesis and osteolysis. Furthermore, increased IGF-I receptor (IGF-IR) expression on MM cells correlates with a poor prognosis in MM patients. Despite the prominent role of the IGF system in MM, strategies targeting the IGF-IR using blocking antibodies or small molecule inhibitors have failed to translate into the clinic. However, increasing preclinical evidence indicates that IGF-I is also involved in the development of drug resistance against current standard-of-care agents against MM, including proteasome inhibitors, immunomodulatory agents, and corticoids. IGF-IR targeting has been able to overcome or revert this drug resistance in animal models, enhancing the efficacy of standard-of-care agents. This finding has generated renewed interest in the therapeutic potential of IGF-I targeting in MM. The present review provides an update of the impact of the different IGF system components in MM and discusses the diagnostic and therapeutic potentials.
Collapse
Affiliation(s)
- Liesbeth Bieghs
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Hematology, Aalborg Hospital, Aalborg University, Denmark.,Department of Biomedicin, Aarhus University, Aarhus, Denmark
| | - Hans E Johnsen
- Department of Hematology, Aalborg Hospital, Aalborg University, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Denmark.,Department of Clinical Medicine, Aalborg University, Denmark
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Mette Nyegaard
- Department of Biomedicin, Aarhus University, Aarhus, Denmark
| | - Cheryl A Conover
- Division of Endocrinology, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, Rochester, NY, USA
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Inhibition of the deubiquitinase USP5 leads to c-Maf protein degradation and myeloma cell apoptosis. Cell Death Dis 2017; 8:e3058. [PMID: 28933784 PMCID: PMC5636991 DOI: 10.1038/cddis.2017.450] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/04/2022]
Abstract
The deubiquitinase USP5 stabilizes c-Maf, a key transcription factor in multiple myeloma (MM), but the mechanisms and significance are unclear. In the present study, USP5 was found to interact with c-Maf and prevented it from degradation by decreasing its polyubiquitination level. Specifically, the 308th and 347th lysine residues in c-Maf were critical for USP5-mediated deubiquitination and stability. There are five key domains in the USP5 protein and subsequent studies revealed that the cryptic ZnF domain and the C-box domain interacted with c-Maf but the UBA1/UBA2 domain partly increased its stability. Notably, MafA and MafB are also members of the c-Maf family, however, USP5 failed to deubiquitinate MafA, suggesting its substrate specificity. In the functional studies, USP5 was found to promoted the transcriptional activity of c-Maf. Consistent with the high level of c-Maf protein in MM cells, USP5 was also highly expressed. When USP5 was knocked down, c-Maf underwent degradation. Interestingly, USP5 silence led to apoptosis of MM cells expressing c-Maf but not MM cells lacking c-Maf, indicating c-Maf is a key factor in USP5-mediated MM cell proliferation and survival. Consistent with this finding, WP1130, an inhibitor of several Dubs including USP5, suppressed the transcriptional activity of c-Maf and induced MM cell apoptosis. When c-Maf was overexpressed, WP1130-induced MM cell apoptosis was abolished. Taken together, these findings suggest that USP5 regulates c-Maf stability and MM cell survival. Targeting the USP5/c-Maf axis could be a potential strategy for MM treatment.
Collapse
|
22
|
Xu Y, Zhang Z, Li J, Tong J, Cao B, Taylor P, Tang X, Wu D, Moran MF, Zeng Y, Mao X. The ubiquitin-conjugating enzyme UBE2O modulates c-Maf stability and induces myeloma cell apoptosis. J Hematol Oncol 2017; 10:132. [PMID: 28673317 PMCID: PMC5496436 DOI: 10.1186/s13045-017-0499-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/16/2017] [Indexed: 12/31/2022] Open
Abstract
Background UBE2O is proposed as a ubiquitin-conjugating enzyme, but its function was largely unknown. Methods Mass spectrometry was applied to identify c-Maf ubiquitination-associated proteins. Immunoprecipitation was applied for c-Maf and UBE2O interaction. Immunoblotting was used for Maf protein stability. Luciferase assay was used for c-Maf transcriptional activity. Lentiviral infections were applied for UBE2O function in multiple myeloma (MM) cells. Flow cytometry and nude mice xenografts were applied for MM cell apoptosis and tumor growth assay, respectively. Results UBE2O was found to interact with c-Maf, a critical transcription factor in MM, by the affinity purification/tandem mass spectrometry assay and co-immunoprecipitation assays. Subsequent studies showed that UBE2O mediated c-Maf polyubiquitination and degradation. Moreover, UBE2O downregulated the transcriptional activity of c-Maf and the expression of cyclin D2, a typical gene modulated by c-Maf. DNA microarray revealed that UBE2O was expressed in normal bone marrow cells but downregulated in MGUS, smoldering MM and MM cells, which was confirmed by RT-PCR in primary MM cells, suggesting its potential role in myeloma pathophysiology. When UBE2O was restored, c-Maf protein in MM cells was significantly decreased and MM cells underwent apoptosis. Furthermore, the human MM xenograft in nude mice showed that re-expression of UBE2O delayed the growth of myeloma xenografts in nude mice in association with c-Maf downregulation and activation of the apoptotic pathway. Conclusions UBE2O mediates c-Maf polyubiquitination and degradation, induces MM cell apoptosis, and suppresses myeloma tumor growth, which provides a novel insight in understanding myelomagenesis and UBE2O biology.
Collapse
Affiliation(s)
- Yujia Xu
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Zubin Zhang
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jie Li
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jiefei Tong
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, M5G 0A4, Canada
| | - Biyin Cao
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Paul Taylor
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, M5G 0A4, Canada
| | - Xiaowen Tang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Michael F Moran
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, M5G 0A4, Canada
| | - Yuanying Zeng
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China. .,Department of Oncology, Suzhou Municipal Hospital East Campus, Suzhou, 215100, People's Republic of China.
| | - Xinliang Mao
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China. .,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
23
|
Miyai M, Tsunekage Y, Saito M, Kohno K, Takahashi K, Kataoka K. Ectopic expression of the transcription factor MafB in basal keratinocytes induces hyperproliferation and perturbs epidermal homeostasis. Exp Dermatol 2017; 26:1039-1045. [PMID: 28418611 DOI: 10.1111/exd.13364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 12/26/2022]
Abstract
Mammalian epidermis is composed of four morphologically and functionally distinct layers of keratinocytes. The innermost basal layer consists of proliferating self-renewing keratinocytes, which also undergo asymmetric cell division to differentiate into postmitotic suprabasal cells throughout life. Control of the balance between growth and differentiation of basal cells is important for epidermal homeostasis to prevent skin disorders including malignancies; however, the underlying mechanism remains to be elucidated. Recently, MafB was identified as one of the transcription factors that regulate epidermal keratinocyte differentiation. MafB is expressed in postmitotic differentiating keratinocytes, and epidermal differentiation is partially impaired in MafB-deficient mice. To further establish the roles of MafB in the epidermis in vivo, we generated mice transgenic for MafB under the control of the basal cell-specific keratin (Krt) 14 promoter. In the epidermis of transgenic mice at embryonic day 18.5, the number of proliferating Krt14-positive basal-like cells was increased, and the granular and cornified layers were thickened. Furthermore, these MafB transgenic mice developed papillomas spontaneously with age. Therefore, MafB promotes differentiation in postmitotic keratinocytes and simultaneously has potential to promote growth when ectopically expressed in undifferentiated basal keratinocytes.
Collapse
Affiliation(s)
- Masashi Miyai
- Laboratory of Molecular and Developmental Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yukino Tsunekage
- Laboratory of Molecular Medical Bioscience, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Michiko Saito
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kenji Kohno
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kenzo Takahashi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kohsuke Kataoka
- Laboratory of Molecular and Developmental Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan.,Laboratory of Molecular Medical Bioscience, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
24
|
Hamouda MA, Jacquel A, Robert G, Puissant A, Richez V, Cassel R, Fenouille N, Roulland S, Gilleron J, Griessinger E, Dubois A, Bailly-Maitre B, Goncalves D, Mallavialle A, Colosetti P, Marchetti S, Amiot M, Gomez-Bougie P, Rochet N, Deckert M, Avet-Loiseau H, Hofman P, Karsenti JM, Jeandel PY, Blin-Wakkach C, Nadel B, Cluzeau T, Anderson KC, Fuzibet JG, Auberger P, Luciano F. BCL-B (BCL2L10) is overexpressed in patients suffering from multiple myeloma (MM) and drives an MM-like disease in transgenic mice. J Exp Med 2016; 213:1705-22. [PMID: 27455953 PMCID: PMC4995074 DOI: 10.1084/jem.20150983] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
Luciano et al. generate transgenic mice expressing the Bcl-B gene under the control of the VH promoter and Eµ enhancer and show that these mice recapitulate the characteristic features of human MM. Multiple myeloma (MM) evolves from a premalignant condition known as monoclonal gammopathy of undetermined significance (MGUS). However, the factors underlying the malignant transformation of plasmocytes in MM are not fully characterized. We report here that Eµ-directed expression of the antiapoptotic Bcl-B protein in mice drives an MM phenotype that reproduces accurately the human disease. Indeed, with age, Eµ-bcl-b transgenic mice develop the characteristic features of human MM, including bone malignant plasma cell infiltration, a monoclonal immunoglobulin peak, immunoglobulin deposit in renal tubules, and highly characteristic bone lytic lesions. In addition, the tumors are serially transplantable in irradiated wild-type mice, underlying the tumoral origin of the disease. Eµ-bcl-b plasmocytes show increased expression of a panel of genes known to be dysregulated in human MM pathogenesis. Treatment of Eµ-bcl-b mice with drugs currently used to treat patients such as melphalan and VELCADE efficiently kills malignant plasmocytes in vivo. Finally, we find that Bcl-B is overexpressed in plasmocytes from MM patients but neither in MGUS patients nor in healthy individuals, suggesting that Bcl-B may drive MM. These findings suggest that Bcl-B could be an important factor in MM disease and pinpoint Eµ-bcl-b mice as a pertinent model to validate new therapies in MM.
Collapse
Affiliation(s)
- Mohamed-Amine Hamouda
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Arnaud Jacquel
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Guillaume Robert
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Alexandre Puissant
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Valentine Richez
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Service de Médecine Interne, Centre Hospitalier Universitaire de Nice, 06003 Nice, France
| | - Romeo Cassel
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Nina Fenouille
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Sandrine Roulland
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, INSERM U1104, Centre National de la Recherche Scientifique (CNRS) UMR 7280, 13288 Marseille, France
| | - Jerome Gilleron
- Team 7, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France
| | - Emmanuel Griessinger
- Team 4, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France
| | - Alix Dubois
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Beatrice Bailly-Maitre
- Team 8, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France
| | - Diogo Goncalves
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Aude Mallavialle
- Team 11, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France
| | - Pascal Colosetti
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Sandrine Marchetti
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | | | | | - Nathalie Rochet
- Université de Nice Sophia-Antipolis, 06000 Nice, France UMR 7277, 06108 Nice, France
| | - Marcel Deckert
- Team 11, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France
| | - Herve Avet-Loiseau
- Cancer Research Center of Toulouse, UMR 1037, INSERM-Université Toulouse III Paul Sabatier (UPS)-CNRS, 31037 Toulouse, France
| | - Paul Hofman
- Service d'Anatomopathologie, Centre Hospitalier Universitaire de Nice, 06003 Nice, France
| | - Jean-Michel Karsenti
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Nice, 06003 Nice, France
| | - Pierre-Yves Jeandel
- Service de Médecine Interne, Centre Hospitalier Universitaire de Nice, 06003 Nice, France
| | - Claudine Blin-Wakkach
- Université de Nice Sophia-Antipolis, 06000 Nice, France CNRS UMR 7370, 06108 Nice, France
| | - Bertrand Nadel
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, INSERM U1104, Centre National de la Recherche Scientifique (CNRS) UMR 7280, 13288 Marseille, France
| | - Thomas Cluzeau
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Nice, 06003 Nice, France
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jean-Gabriel Fuzibet
- Service de Médecine Interne, Centre Hospitalier Universitaire de Nice, 06003 Nice, France
| | - Patrick Auberger
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Frederic Luciano
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| |
Collapse
|
25
|
Ohguchi H, Hideshima T, Bhasin MK, Gorgun GT, Santo L, Cea M, Samur MK, Mimura N, Suzuki R, Tai YT, Carrasco RD, Raje N, Richardson PG, Munshi NC, Harigae H, Sanda T, Sakai J, Anderson KC. The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival. Nat Commun 2016; 7:10258. [PMID: 26728187 PMCID: PMC4728406 DOI: 10.1038/ncomms10258] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022] Open
Abstract
KDM3A is implicated in tumorigenesis; however, its biological role in multiple myeloma (MM) has not been elucidated. Here we identify KDM3A–KLF2–IRF4 axis dependence in MM. Knockdown of KDM3A is toxic to MM cells in vitro and in vivo. KDM3A maintains expression of KLF2 and IRF4 through H3K9 demethylation, and knockdown of KLF2 triggers apoptosis. Moreover, KLF2 directly activates IRF4 and IRF4 reciprocally upregulates KLF2, forming a positive autoregulatory circuit. The interaction of MM cells with bone marrow milieu mediates survival of MM cells. Importantly, silencing of KDM3A, KLF2 or IRF4 both decreases MM cell adhesion to bone marrow stromal cells and reduces MM cell homing to the bone marrow, in association with decreased ITGB7 expression in MAF-translocated MM cell lines. Our results indicate that the KDM3A–KLF2–IRF4 pathway plays an essential role in MM cell survival and homing to the bone marrow, and therefore represents a therapeutic target. Several histone modifiers have been implicated in the survival of multiple myeloma cells. Here, the authors reveal a role for the histone demethylase KDM3A in the survival of this haematologic cancer, and show that mechanistically KDM3A removes H3K9 methylation from the promoters of KLF2 and IRF4, genes essential for myeloma cell survival.
Collapse
Affiliation(s)
- Hiroto Ohguchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Manoj K Bhasin
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | - Gullu T Gorgun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Loredana Santo
- MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Michele Cea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Mehmet K Samur
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Naoya Mimura
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Rikio Suzuki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Ruben D Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Noopur Raje
- MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,West Roxbury Division, VA Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, Department of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
26
|
Wada A, Ito A, Iitsuka H, Tsuneyama K, Miyazono T, Murakami J, Shibahara N, Sakurai H, Saiki I, Nakayama T, Yoshie O, Koizumi K, Sugiyama T. Role of chemokine CX3CL1 in progression of multiple myeloma via CX3CR1 in bone microenvironments. Oncol Rep 2015; 33:2935-9. [PMID: 25962684 DOI: 10.3892/or.2015.3941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/02/2015] [Indexed: 11/06/2022] Open
Abstract
Several chemokines/chemokine receptors such as CXCL12, CCL3, CXCR4 and CCR1 attract multiple myelomas to specific microenvironments. In the present study, we investigated whether the CX3CL1/CX3CR1 axis is involved in the interaction of the multiple myeloma cells with their microenvironment. The expression of CX3CR1 (also known as fractalkine) was detected in three of the seven human myeloma cell lines. CX3CL1-induced phosphorylation of Akt and ERK1/2 was detected in the CX3CR1-positive cell lines, but not in the CX3CR1-negative cell lines. In addition, CX3CL1-induced cell adhesion to fibronectin and vascular cell adhesion molecule-1 (VCAM-1) in the human myeloma RPMI-8226 cell line. We also investigated whether a relationship existed between myeloma cells and osteoclasts that may function via the CX3CL1/CX3CR1 axis. Conditioned medium from CX3CL1-stimulated RPMI-8226 cells drastically increased the osteoclast differentiation. Collectively, the results from the present study support the concept of the CX3CL1-mediated activation of the progression of the multiple myeloma via CX3CR1. Thus, CX3CR1 may represent a potential therapeutic target for the treatment of multiple myeloma in a bone microenvironment.
Collapse
Affiliation(s)
- Akinori Wada
- Department of Gastroenterology and Hematology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Aya Ito
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hirofumi Iitsuka
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Koichi Tsuneyama
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takayoshi Miyazono
- Department of Gastroenterology and Hematology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Jun Murakami
- Department of Gastroenterology and Hematology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Naotoshi Shibahara
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kinki University School of Pharmaceutical Sciences, Osaka, Japan
| | - Osamu Yoshie
- Department of Microbiology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Keiichi Koizumi
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Toshiro Sugiyama
- Department of Gastroenterology and Hematology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| |
Collapse
|
27
|
Cellular immunotherapy in multiple myeloma: lessons from preclinical models. Biochim Biophys Acta Rev Cancer 2014; 1846:392-404. [PMID: 25109893 DOI: 10.1016/j.bbcan.2014.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 12/20/2022]
Abstract
The majority of multiple myeloma patients relapse with the current treatment strategies, raising the need for alternative therapeutic approaches. Cellular immunotherapy is a rapidly evolving field and currently being translated into clinical trials with encouraging results in several cancer types, including multiple myeloma. Murine multiple myeloma models are of critical importance for the development and refinement of cellular immunotherapy. In this review, we summarize the immune cell changes that occur in multiple myeloma patients and we discuss the cell-based immunotherapies that have been tested in multiple myeloma, with a focus on murine models.
Collapse
|
28
|
Song CL, Ren JH, Ran LK, Li YG, Li XS, Chen X, Li WY, Huang AL, Chen J. Cyclin D2 plays a regulatory role in HBV replication. Virology 2014; 462-463:149-57. [PMID: 24992041 DOI: 10.1016/j.virol.2014.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/18/2014] [Accepted: 05/25/2014] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is the leading cause of liver diseases. However, the molecular mechanisms of HBV infection and carcinogenesis have not been fully elucidated. In this study, we found that cyclin D2 was upregualted in HBV-expressing cells and liver tissues of HBV-transgenic mice. Gene silencing of cyclin D2 inhibited HBV DNA replicative intermediates, 3.5 kb mRNA, core protein level, as well as the secretions of HBsAg and HBeAg. On the contrary, overexpression of cyclin D2 promoted HBV replication. Furthermore, cyclin D2 regulated HBV replication by enhancing the activity of HBV core and Sp1 promoters by targeting transcription factor CREB2. Silencing of CREB2 abolished enhancement of HBV replication induced by cyclin D2. Together, our study has uncovered a positive role of cyclin D2 in HBV replication. It is conceivable that therapeutic application of cyclin D2 inhibitor in HBV infection therapy.
Collapse
Affiliation(s)
- Chun-li Song
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ji-hua Ren
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Long-kuan Ran
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yong-guo Li
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, China
| | - Xiao-song Li
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiang Chen
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wan-yu Li
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ai-long Huang
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
29
|
GSK3-mediated MAF phosphorylation in multiple myeloma as a potential therapeutic target. Blood Cancer J 2014; 4:e175. [PMID: 24442204 PMCID: PMC3913936 DOI: 10.1038/bcj.2013.67] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/22/2013] [Accepted: 10/30/2013] [Indexed: 01/12/2023] Open
Abstract
Multiple myeloma (MM) is an incurable haematological malignancy characterised by the proliferation of mature antibody-secreting plasma B cells in the bone marrow. MM can arise from initiating translocations, of which the musculoaponeurotic fibrosarcoma (MAF) family is implicated in ∼5%. MMs bearing Maf translocations are of poor prognosis. These translocations are associated with elevated Maf expression, including c-MAF, MAFB and MAFA, and with t(14;16) and t(14;20) translocations, involving c-MAF and MAFB, respectively. c-MAF is also overexpressed in MM through MEK/ERK activation, bringing the number of MMs driven by the deregulation of a Maf gene close to 50%. Here we demonstrate that MAFB and c-MAF are phosphorylated by the Ser/Thr kinase GSK3 in human MM cell lines. We show that LiCl-induced GSK3 inhibition targets these phosphorylations and specifically decreases proliferation and colony formation of Maf-expressing MM cell lines. Interestingly, bortezomib induced stabilisation of Maf phosphorylation, an observation that could explain, at least partially, the low efficacy of bortezomib for patients carrying Maf translocations. Thus, GSK3 inhibition could represent a new therapeutic approach for these patients.
Collapse
|
30
|
Hu Y, Zheng M, Gali R, Tian Z, Topal Görgün G, Munshi NC, Mitsiades CS, Anderson KC. A novel rapid-onset high-penetrance plasmacytoma mouse model driven by deregulation of cMYC cooperating with KRAS12V in BALB/c mice. Blood Cancer J 2013; 3:e156. [PMID: 24185503 PMCID: PMC3880436 DOI: 10.1038/bcj.2013.53] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 12/28/2022] Open
Abstract
Our goal is to develop a rapid and scalable system for functionally evaluating deregulated genes in multiple myeloma (MM). Here, we forcibly expressed human cMYC and KRAS12V in mouse T2 B cells (IgM(+)B220(+)CD38(+)IgD(+)) using retroviral transduction and transplanted these cells into lethally irradiated recipient mice. Recipients developed plasmacytomas with short onset (70 days) and high penetrance, whereas neither cMYC nor KRAS12V alone induced disease in recipient mice. Tumor cell morphology and cell surface biomarkers (CD138(+)B220(-)IgM(-)GFP(+)) indicate a plasma cell neoplasm. Gene set enrichment analysis further confirms that the tumor cells have a plasma cell gene expression signature. Plasmacytoma cells infiltrated multiple loci in the bone marrow, spleen and liver; secreted immunoglobulins; and caused glomerular damage. Our findings therefore demonstrate that deregulated expression of cMYC with KRAS12V in T2 B cells rapidly generates a plasma cell disease in mice, suggesting utility of this model both to elucidate molecular pathogenesis and to validate novel targeted therapies.
Collapse
Affiliation(s)
- Y Hu
- Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hu J, Van Valckenborgh E, Menu E, De Bruyne E, Vanderkerken K. Understanding the hypoxic niche of multiple myeloma: therapeutic implications and contributions of mouse models. Dis Model Mech 2013; 5:763-71. [PMID: 23115205 PMCID: PMC3484859 DOI: 10.1242/dmm.008961] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy and is characterized by the clonal expansion of plasma cells in the bone marrow. Recently, hypoxia has received increased interest in the context of MM, in both basic and translational research. In this review, we describe the discovery of the hypoxic niche in MM and how it can be targeted therapeutically. We also discuss mouse models that closely mimic human MM, highlighting those that allow preclinical research into new therapies that exploit the hypoxic niche in MM.
Collapse
Affiliation(s)
- Jinsong Hu
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | |
Collapse
|
32
|
Tassone P, Neri P, Burger R, Di Martino MT, Leone E, Amodio N, Caraglia M, Tagliaferri P. Mouse models as a translational platform for the development of new therapeutic agents in multiple myeloma. Curr Cancer Drug Targets 2013; 12:814-22. [PMID: 22671927 PMCID: PMC3587184 DOI: 10.2174/156800912802429292] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 11/25/2011] [Accepted: 12/08/2011] [Indexed: 12/22/2022]
Abstract
Mouse models of multiple myeloma (MM) are basic tools for translational research and play a fundamental role in the development of new therapeutics against plasma cell malignancies. All available models, including transplantable murine tumors in syngenic mice, xenografts of established human cell lines in immunocompromised mice and transgenic models that mirror specific steps of MM pathogenesis, have demonstrated some weaknesses in predicting clinical results, particularly for new drugs targeting the human bone marrow microenvironment (huBMM). The recent interest to models recapitulating the in vivo growth of primary MM cells in a human (SCID-hu) or humanized (SCID-synth-hu) host recipient has provided powerful platforms for the investigation of new compounds targeting MM and/or its huBMM. Here, we review and discuss strengths and weaknesses of the key in vivo models that are currently utilized in the MM preclinical investigation.
Collapse
Affiliation(s)
- P Tassone
- Medical Oncology, Magna Græcia University, Viale Europa, Campus Salvatore Venuta, 88100 Catanzaro, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Fryer RA, Graham TJ, Smith EM, Walker-Samuel S, Morgan GJ, Robinson SP, Davies FE. Characterization of a novel mouse model of multiple myeloma and its use in preclinical therapeutic assessment. PLoS One 2013; 8:e57641. [PMID: 23437401 PMCID: PMC3578800 DOI: 10.1371/journal.pone.0057641] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 01/28/2013] [Indexed: 01/22/2023] Open
Abstract
To aid preclinical development of novel therapeutics for myeloma, an in vivo model which recapitulates the human condition is required. An important feature of such a model is the interaction of myeloma cells with the bone marrow microenvironment, as this interaction modulates tumour activity and protects against drug-induced apoptosis. Therefore NOD/SCIDγc(null) mice were injected intra-tibially with luciferase-tagged myeloma cells. Disease progression was monitored by weekly bioluminescent imaging (BLI) and measurement of paraprotein levels. Results were compared with magnetic resonance imaging (MRI) and histology. Assessment of model suitability for preclinical drug testing was investigated using bortezomib, melphalan and two novel agents. Cells engrafted at week 3, with a significant increase in BLI radiance occurring between weeks 5 and 7. This was accompanied by an increase in paraprotein secretion, MRI-derived tumour volume and CD138 positive cells within the bone marrow. Treatment with known anti-myeloma agents or novel agents significantly attenuated the increase in all disease markers. In addition, intra-tibial implantation of primary patient plasma cells resulted in development of myeloma within bone marrow. In conclusion, using both myeloma cell lines and primary patient cells, we have developed a model which recapitulates human myeloma by ensuring the key interaction of tumour cells with the microenvironment.
Collapse
Affiliation(s)
- Rosemary A. Fryer
- Haemato-Oncology Research Unit, The Institute of Cancer Research, London, United Kingdom
| | - Timothy J. Graham
- Cancer Research UK & EPSRC Cancer Imaging Centre, The Institute of Cancer Research, London, United Kingdom
| | - Emma M. Smith
- Haemato-Oncology Research Unit, The Institute of Cancer Research, London, United Kingdom
| | - Simon Walker-Samuel
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Gareth J. Morgan
- Haemato-Oncology Research Unit, The Institute of Cancer Research, London, United Kingdom
| | - Simon P. Robinson
- Cancer Research UK & EPSRC Cancer Imaging Centre, The Institute of Cancer Research, London, United Kingdom
| | - Faith E. Davies
- Haemato-Oncology Research Unit, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
34
|
Vicente-Dueñas C, González-Herrero I, García Cenador MB, García Criado FJ, Sánchez-García I. Loss of p53 exacerbates multiple myeloma phenotype by facilitating the reprogramming of hematopoietic stem/progenitor cells to malignant plasma cells by MafB. Cell Cycle 2012; 11:3896-900. [PMID: 22983007 DOI: 10.4161/cc.22186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a serious, mostly incurable human cancer of malignant plasma cells. Chromosomal translocations affecting MAFB are present in a significant percentage of multiple myeloma patients. Genetically engineered Sca1-MafB mice, in which MafB expression is limited to hematopoietic stem/progenitor cells (HS/P-Cs), display the phenotypic features of MM. Contrary to many other types of cancer, it is not yet known if the p53 gene plays any essential role in the pathogenesis of this disease. Here, we show, taking advantage of the Sca1-MafB MM mouse model, that loss of p53 does not rescue the multiple myeloma disease, but instead accelerates its development and exacerbates the MM phenotype. Therefore, the efficiency of the MafB-induced MM reprogramming of normal HS/P-Cs to terminally differentiated malignant plasma cells is enhanced by p53 deficiency, in analogy to what happens in reprogramming to pluripotency. These results raise caution about interfering with p53 function when treating multiple myeloma.
Collapse
Affiliation(s)
- Carolina Vicente-Dueñas
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain.
| | | | | | | | | |
Collapse
|
35
|
A novel molecular mechanism involved in multiple myeloma development revealed by targeting MafB to haematopoietic progenitors. EMBO J 2012; 31:3704-17. [PMID: 22903061 PMCID: PMC3442275 DOI: 10.1038/emboj.2012.227] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022] Open
Abstract
Transgenic expression of the MafB oncogene in haematopoietic stem/progenitor cells induces plasma cell neoplasia reminiscent of human multiple myeloma and suggests DNA methylation as cause of malignant transformation. Understanding the cellular origin of cancer can help to improve disease prevention and therapeutics. Human plasma cell neoplasias are thought to develop from either differentiated B cells or plasma cells. However, when the expression of Maf oncogenes (associated to human plasma cell neoplasias) is targeted to mouse B cells, the resulting animals fail to reproduce the human disease. Here, to explore early cellular changes that might take place in the development of plasma cell neoplasias, we engineered transgenic mice to express MafB in haematopoietic stem/progenitor cells (HS/PCs). Unexpectedly, we show that plasma cell neoplasias arise in the MafB-transgenic mice. Beyond their clinical resemblance to human disease, these neoplasias highly express genes that are known to be upregulated in human multiple myeloma. Moreover, gene expression profiling revealed that MafB-expressing HS/PCs were more similar to B cells and tumour plasma cells than to any other subset, including wild-type HS/PCs. Consistent with this, genome-scale DNA methylation profiling revealed that MafB imposes an epigenetic program in HS/PCs, and that this program is preserved in mature B cells of MafB-transgenic mice, demonstrating a novel molecular mechanism involved in tumour initiation. Our findings suggest that, mechanistically, the haematopoietic progenitor population can be the target for transformation in MafB-associated plasma cell neoplasias.
Collapse
|
36
|
Reexpression of oncoprotein MafB in proliferative β-cells and Men1 insulinomas in mouse. Oncogene 2011; 31:3647-54. [DOI: 10.1038/onc.2011.538] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|