1
|
Drzewiecka M, Gajos-Michniewicz A, Hoser G, Jaśniak D, Barszczewska-Pietraszek G, Sitarek P, Czarny P, Piekarski J, Radek M, Czyż M, Skorski T, Śliwiński T. Histone Deacetylases (HDAC) Inhibitor-Valproic Acid Sensitizes Human Melanoma Cells to Dacarbazine and PARP Inhibitor. Genes (Basel) 2023; 14:1295. [PMID: 37372475 DOI: 10.3390/genes14061295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
The inhibition of histone deacetylases (HDACs) holds promise as a potential anti-cancer therapy as histone and non-histone protein acetylation is frequently disrupted in cancer, leading to cancer initiation and progression. Additionally, the use of a histone deacetylase inhibitor (HDACi) such as the class I HDAC inhibitor-valproic acid (VPA) has been shown to enhance the effectiveness of DNA-damaging factors, such as cisplatin or radiation. In this study, we found that the use of VPA in combination with talazoparib (BMN-673-PARP1 inhibitor-PARPi) and/or Dacarbazine (DTIC-alkylating agent) resulted in an increased rate of DNA double strand breaks (DSBs) and reduced survival (while not affecting primary melanocytes) and the proliferation of melanoma cells. Furthermore, the pharmacological inhibition of class I HDACs sensitizes melanoma cells to apoptosis following exposure to DTIC and BMN-673. In addition, the inhibition of HDACs causes the sensitization of melanoma cells to DTIV and BMN-673 in melanoma xenografts in vivo. At the mRNA and protein level, the histone deacetylase inhibitor downregulated RAD51 and FANCD2. This study aims to demonstrate that combining an HDACi, alkylating agent and PARPi could potentially enhance the treatment of melanoma, which is commonly recognized as being among the most aggressive malignant tumors. The findings presented here point to a scenario in which HDACs, via enhancing the HR-dependent repair of DSBs created during the processing of DNA lesions, are essential nodes in the resistance of malignant melanoma cells to methylating agent-based therapies.
Collapse
Affiliation(s)
- Małgorzata Drzewiecka
- Laboratory of Medical Genetics Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 92-215 Lodz, Poland
| | - Grażyna Hoser
- Department of Flow Cytometry, Medical Center for Postgraduate Education, 01-813 Warsaw, Poland
| | - Dominika Jaśniak
- Laboratory of Medical Genetics Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | | | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Janusz Piekarski
- Department of Surgical Oncology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Maciej Radek
- Department of Neurosurgery, Surgery of Spine and Peripheral Nerves, Medical University of Lodz, University Hospital WAM-CSW, 90-549 Lodz, Poland
| | - Małgorzata Czyż
- Department of Molecular Biology of Cancer, Medical University of Lodz, 92-215 Lodz, Poland
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
3
|
Adhikari S, Bhattacharya A, Adhikary S, Singh V, Gadad S, Roy S, Das C. The paradigm of drug resistance in cancer: an epigenetic perspective. Biosci Rep 2022; 42:BSR20211812. [PMID: 35438143 PMCID: PMC9069444 DOI: 10.1042/bsr20211812] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Innate and acquired resistance towards the conventional therapeutic regimen imposes a significant challenge for the successful management of cancer for decades. In patients with advanced carcinomas, acquisition of drug resistance often leads to tumor recurrence and poor prognosis after the first therapeutic cycle. In this context, cancer stem cells (CSCs) are considered as the prime drivers of therapy resistance in cancer due to their 'non-targetable' nature. Drug resistance in cancer is immensely influenced by different properties of CSCs such as epithelial-to-mesenchymal transition (EMT), a profound expression of drug efflux pump genes, detoxification genes, quiescence, and evasion of apoptosis, has been highlighted in this review article. The crucial epigenetic alterations that are intricately associated with regulating different mechanisms of drug resistance, have been discussed thoroughly. Additionally, special attention is drawn towards the epigenetic mechanisms behind the interaction between the cancer cells and their microenvironment which assists in tumor progression and therapy resistance. Finally, we have provided a cumulative overview of the alternative treatment strategies and epigenome-modifying therapies that show the potential of sensitizing the resistant cells towards the conventional treatment strategies. Thus, this review summarizes the epigenetic and molecular background behind therapy resistance, the prime hindrance of present day anti-cancer therapies, and provides an account of the novel complementary epi-drug-based therapeutic strategies to combat drug resistance.
Collapse
Affiliation(s)
- Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Shrikanth S. Gadad
- Department of Molecular and Translational Medicine, Center of Emphasis in Cancer, Texas Tech University Health Sciences Center El Paso, El Paso, TX, U.S.A
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, U.S.A
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
4
|
Tsai HC, Wei KC, Chen PY, Huang CY, Chen KT, Lin YJ, Cheng HW, Chen YR, Wang HT. Valproic Acid Enhanced Temozolomide-Induced Anticancer Activity in Human Glioma Through the p53-PUMA Apoptosis Pathway. Front Oncol 2021; 11:722754. [PMID: 34660288 PMCID: PMC8518553 DOI: 10.3389/fonc.2021.722754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma (GBM), the most lethal type of brain tumor in adults, has considerable cellular heterogeneity. The standard adjuvant chemotherapeutic agent for GBM, temozolomide (TMZ), has a modest response rate due to the development of drug resistance. Multiple studies have shown that valproic acid (VPA) can enhance GBM tumor control and prolong survival when given in conjunction with TMZ. However, the beneficial effect is variable. In this study, we analyzed the impact of VPA on GBM patient survival and its possible correlation with TMZ treatment and p53 gene mutation. In addition, the molecular mechanisms of TMZ in combination with VPA were examined using both p53 wild-type and p53 mutant human GBM cell lines. Our analysis of clinical data indicates that the survival benefit of a combined TMZ and VPA treatment in GBM patients is dependent on their p53 gene status. In cellular experiments, our results show that VPA enhanced the antineoplastic effect of TMZ by enhancing p53 activation and promoting the expression of its downstream pro-apoptotic protein, PUMA. Our study indicates that GBM patients with wild-type p53 may benefit from a combined TMZ+VPA treatment.
Collapse
Affiliation(s)
- Hong-Chieh Tsai
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan.,Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan.,Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ko-Ting Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ya-Jui Lin
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Wei Cheng
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Rou Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiang-Tsui Wang
- Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Doctor Degree Program in Toxicology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Franzese O, Torino F, Giannetti E, Cioccoloni G, Aquino A, Faraoni I, Fuggetta MP, De Vecchis L, Giuliani A, Kaina B, Bonmassar E. Abscopal Effect and Drug-Induced Xenogenization: A Strategic Alliance in Cancer Treatment? Int J Mol Sci 2021; 22:ijms221910672. [PMID: 34639014 PMCID: PMC8509363 DOI: 10.3390/ijms221910672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The current state of cancer treatment is still far from being satisfactory considering the strong impairment of patients' quality of life and the high lethality of malignant diseases. Therefore, it is critical for innovative approaches to be tested in the near future. In view of the crucial role that is played by tumor immunity, the present review provides essential information on the immune-mediated effects potentially generated by the interplay between ionizing radiation and cytotoxic antitumor agents when interacting with target malignant cells. Therefore, the radiation-dependent abscopal effect (i.e., a biological effect of ionizing radiation that occurs outside the irradiated field), the influence of cancer chemotherapy on the antigenic pattern of target neoplastic cells, and the immunogenic cell death (ICD) caused by anticancer agents are the main topics of this presentation. It is widely accepted that tumor immunity plays a fundamental role in generating an abscopal effect and that anticancer drugs can profoundly influence not only the host immune responses, but also the immunogenic pattern of malignant cells. Remarkably, several anticancer drugs impact both the abscopal effect and ICD. In addition, certain classes of anticancer agents are able to amplify already expressed tumor-associated antigens (TAA). More importantly, other drugs, especially triazenes, induce the appearance of new tumor neoantigens (TNA), a phenomenon that we termed drug-induced xenogenization (DIX). The adoption of the abscopal effect is proposed as a potential therapeutic modality when properly applied concomitantly with drug-induced increase in tumor cell immunogenicity and ICD. Although little to no preclinical or clinical studies are presently available on this subject, we discuss this issue in terms of potential mechanisms and therapeutic benefits. Upcoming investigations are aimed at evaluating how chemical anticancer drugs, radiation, and immunotherapies are interacting and cooperate in evoking the abscopal effect, tumor xenogenization and ICD, paving the way for new and possibly successful approaches in cancer therapy.
Collapse
Affiliation(s)
- Ornella Franzese
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Elisa Giannetti
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Giorgia Cioccoloni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - Angelo Aquino
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Isabella Faraoni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Liana De Vecchis
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Anna Giuliani
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, D-55131 Mainz, Germany
- Correspondence: (B.K.); (E.B.)
| | - Enzo Bonmassar
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
- Correspondence: (B.K.); (E.B.)
| |
Collapse
|
6
|
Pang B, Zhang J, Zhang X, Yuan J, Shi Y, Qiao L. Inhibition of lipogenesis and induction of apoptosis by valproic acid in prostate cancer cells via the C/EBPα/SREBP-1 pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:354-364. [PMID: 33471067 DOI: 10.1093/abbs/gmab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism reprogramming is now accepted as a new hallmark of cancer. Hence, targeting the lipogenesis pathway may be a potential avenue for cancer treatment. Valproic acid (VPA) emerges as a promising drug for cancer therapy; however, the underlying mechanisms are not yet fully understood. In this study, we aimed to investigate the effects and mechanisms of VPA on cell viability, lipogenesis, and apoptosis in human prostate cancer PC-3 and LNCaP cells. The results showed that VPA significantly reduced lipid accumulation and induced apoptosis of PC-3 and LNCaP cells. Moreover, the expression of CCAAT/enhancer-binding protein α (C/EBPα), as well as sterol regulatory element-binding protein 1 (SREBP-1) and its downstream effectors, including fatty acid synthase (FASN), acetyl CoA carboxylase 1 (ACC1), and anti-apoptotic B-cell lymphoma 2 (Bcl-2), was markedly decreased in PC-3 and LNCaP cells after VPA administration. Mechanistically, the overexpression of C/EBPα rescued the levels of SREBP-1, FASN, ACC1, and Bcl-2, enhanced lipid accumulation, and attenuated apoptosis of VPA-treated PC-3 cells. Conversely, knockdown of C/EBPα by siRNA further decreased lipid accumulation, enhanced apoptosis, and reduced the levels of SREBP-1, FASN, ACC1, and Bcl-2. In addition, SREBP-1a and 1c enhanced the expressions of FASN and ACC1, but only SREBP-1a had a significant effect on Bcl-2 expression in VPA-treated PC-3 cells. Based on the results, we concluded that VPA significantly inhibits cell viability via decreasing lipogenesis and inducing apoptosis via the C/EBPα/SREBP-1 pathway in prostate cancer cells. Therefore, VPA that targets lipid metabolism and apoptosis is a promising candidate for PCa chemotherapy.
Collapse
Affiliation(s)
- Bo Pang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Juanjuan Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Xi Zhang
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Jihong Yuan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Yanan Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Ling Qiao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| |
Collapse
|
7
|
Ni XR, Guo CC, Yu YJ, Yu ZH, Cai HP, Wu WC, Ma JX, Chen FR, Wang J, Chen ZP. Combination of levetiracetam and IFN-α increased temozolomide efficacy in MGMT-positive glioma. Cancer Chemother Pharmacol 2020; 86:773-782. [PMID: 33074386 DOI: 10.1007/s00280-020-04169-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Glioma, especially glioblastoma (GBM), is the most aggressive malignant brain tumor and its standard therapy is often ineffective because of temozolomide (TMZ) resistance. Reversal of the TMZ resistance might improve the prognosis of glioma patients. We previously found that interferon-α (IFN-α) and anti-epileptic drug levetiracetam (LEV) could sensitize glioma to TMZ, respectively. In this study, we further investigated the efficiency of combining of LEV and IFN-α for improving the efficacy of TMZ. METHODS We evaluated whether LEV and IFN-α could increase TMZ efficacy using colony formation assay and cell viability assay with MGMT-positive and MGMT-negative glioma cell lines in vitro. Subcutaneous xenografts and orthotopic xenografts mice models were used in vivo to observe the tumor growth and mice survival upon treatments with TMZ, TMZ + IFN-α, TMZ + LEV, or TMZ + LEV + IFN-α. The expression levels of MGMT, markers of pro-apoptotic and anti-apoptotic in tumor samples were analyzed by Western blotting. RESULTS The combinational use of IFN-α, LEV, and TMZ showed the best anti-tumor activity in MGMT-positive cell lines (U138, GSC-1, U118, and T98 G). TMZ + LEV + IFN-α further obviously increased TMZ + LEV or TMZ + IFN-α efficiency in MGMT-positive cell lines, while not in negative cell lines (SKMG-4, U87, U373, and U251) in vitro, which were also observed in subcutaneous mice models (U138, GSC-1 compared to SKMG-4, U87) and orthotopic models (GSC-1) in vivo. Strikingly, the combination of LEV and IFN-α together with TMZ significantly prolonged the survival of mice with orthotopic GSC-1 glioma. Furthermore, we confirmed that the combination of LEV and IFN-α enhanced the inhibition of MGMT and the activation of apoptosis in U138 tumor on the basis of TMZ treatment. CONCLUSIONS The combination use of LEV and IFN-α could be an optimal method to overcome TMZ resistance through obvious MGMT inhibition in MGMT-positive glioma.
Collapse
Affiliation(s)
- Xiang-Rong Ni
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Cheng-Cheng Guo
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Yan-Jiao Yu
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Zhi-Hui Yu
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Hai-Ping Cai
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Wei-Chi Wu
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Jun-Xiao Ma
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Fu-Rong Chen
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China
| | - Jing Wang
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China.
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangdong, 510060, People's Republic of China.
| |
Collapse
|
8
|
Muraki M. Sensitization to cell death induced by soluble Fas ligand and agonistic antibodies with exogenous agents: A review. AIMS MEDICAL SCIENCE 2020. [DOI: 10.3934/medsci.2020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
9
|
Kaina B, Christmann M. DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. DNA Repair (Amst) 2019; 78:128-141. [PMID: 31039537 DOI: 10.1016/j.dnarep.2019.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/16/2022]
Abstract
Alkylating agents have been used since the 60ties in brain cancer chemotherapy. Their target is the DNA and, although the DNA of normal and cancer cells is damaged unselectively, they exert tumor-specific killing effects because of downregulation of some DNA repair activities in cancer cells. Agents exhibiting methylating properties (temozolomide, procarbazine, dacarbazine, streptozotocine) induce at least 12 different DNA lesions. These are repaired by damage reversal mechanisms involving the alkyltransferase MGMT and the alkB homologous protein ALKBH2, and through base excision repair (BER). There is a strong correlation between the MGMT expression level and therapeutic response in high-grade malignant glioma, supporting the notion that O6-methylguanine and, for nitrosoureas, O6-chloroethylguanine are the most relevant toxic damages at therapeutically relevant doses. Since MGMT has a significant impact on the outcome of anti-cancer therapy, it is a predictive marker of the effectiveness of methylating anticancer drugs, and clinical trials are underway aimed at assessing the influence of MGMT inhibition on the therapeutic success. Other DNA repair factors involved in methylating drug resistance are mismatch repair, DNA double-strand break (DSB) repair by homologous recombination (HR) and DSB signaling. Base excision repair and ALKBH2 might also contribute to alkylating drug resistance and their downregulation may have an impact on drug sensitivity notably in cells expressing a high amount of MGMT and at high doses of temozolomide, but the importance in a therapeutic setting remains to be shown. MGMT is frequently downregulated in cancer cells (up to 40% in glioblastomas), which is due to CpG promoter methylation. Astrocytoma (grade III) are frequently mutated in isocitrate dehydrogenase (IDH1). These tumors show a surprisingly good therapeutic response. IDH1 mutation has an impact on ALKBH2 activity thus influencing DNA repair. A master switch between survival and death is p53, which often retains transactivation activity (wildtype) in malignant glioma. The role of p53 in regulating survival via DNA repair and the routes of death are discussed and conclusions as to cancer therapeutic options were drawn.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Markus Christmann
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
10
|
Makita K, Hara H, Sano E, Okamoto Y, Ochiai Y, Harada T, Ueda T, Nakayama T, Aizawa S, Yoshino A. Interferon-β sensitizes human malignant melanoma cells to temozolomide-induced apoptosis and autophagy. Int J Oncol 2019; 54:1864-1874. [PMID: 30864696 DOI: 10.3892/ijo.2019.4743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 01/25/2019] [Indexed: 11/05/2022] Open
Abstract
Malignant melanoma is a highly aggressive skin cancer that is highly resistant to chemotherapy. Adjuvant therapy is administered to patients with melanoma that possess no microscopic metastases or have a high risk of developing microscopic metastases. Methylating agents, including dacarbazine (DTIC) and temozolomide (TMZ), pegylated interferon (IFN)‑α2b and interleukin‑2 have been approved for adjuvant immuno‑chemotherapy; however, unsatisfactory results have been reported following the administration of methylating agents. IFN‑β has been considered to be a signaling molecule with an important therapeutic potential in cancer. The aim of the present study was to elucidate whether antitumor effects could be augmented by the combination of TMZ and IFN‑β in malignant melanoma. We evaluated the efficacy of TMZ and IFN‑β by comparing O6‑methylguanine‑DNA transferase (MGMT)‑proficient and ‑deficient cells, as MGMT has been reported to be associated with the resistance to methylating agents. Cell viability was determined by counting living cells with a Coulter counter, and apoptosis was analyzed by dual staining with Annexin V Alexa Fluor® 488 and propidium iodide. The expression of proteins involved in the cell cycle, apoptosis and autophagy was evaluated by western blot analysis. The combined treatment with TMZ and IFN‑β suppressed cell proliferation and induced cell cycle arrest. We also demonstrated that a combination of TMZ and IFN‑β enhanced apoptosis and autophagy more efficiently compared with TMZ treatment alone. These findings suggest that antitumor activity may be potentiated by IFN‑β in combination with TMZ.
Collapse
Affiliation(s)
- Kotaro Makita
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiroyuki Hara
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Emiko Sano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 277-8562, Japan
| | - Yutaka Okamoto
- Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Yushi Ochiai
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Tomonori Harada
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 277-8562, Japan
| | - Tomohiro Nakayama
- Division of Companion Diagnostics, Department of Pathology and Microbiology, Nihon University of School of Medicine, Tokyo 173-8610, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Atsuo Yoshino
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
11
|
Lajkó E, Spring S, Hegedüs R, Biri-Kovács B, Ingebrandt S, Mező G, Kőhidai L. Comparative cell biological study of in vitro antitumor and antimetastatic activity on melanoma cells of GnRH-III-containing conjugates modified with short-chain fatty acids. Beilstein J Org Chem 2018; 14:2495-2509. [PMID: 30344773 PMCID: PMC6178282 DOI: 10.3762/bjoc.14.226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023] Open
Abstract
Background: Peptide hormone-based targeted tumor therapy is an approved strategy to selectively block the tumor growth and spreading. The gonadotropin-releasing hormone receptors (GnRH-R) overexpressed on different tumors (e.g., melanoma) could be utilized for drug-targeting by application of a GnRH analog as a carrier to deliver a covalently linked chemotherapeutic drug directly to the tumor cells. In this study our aim was (i) to analyze the effects of GnRH-drug conjugates on melanoma cell proliferation, adhesion and migration, (ii) to study the mechanisms of tumor cell responses, and (iii) to compare the activities of conjugates with the free drug. Results: In the tested conjugates, daunorubicin (Dau) was coupled to 8Lys of GnRH-III (GnRH-III(Dau=Aoa)) or its derivatives modified with 4Lys acylated with short-chain fatty acids (acetyl group in [4Lys(Ac)]-GnRH-III(Dau=Aoa) and butyryl group in [4Lys(Bu)]-GnRH-III(Dau=Aoa)). The uptake of conjugates by A2058 melanoma model cells proved to be time dependent. Impedance-based proliferation measurements with xCELLigence SP system showed that all conjugates elicited irreversible tumor growth inhibitory effects mediated via a phosphoinositide 3-kinase-dependent signaling. GnRH-III(Dau=Aoa) and [4Lys(Ac)]-GnRH-III(Dau=Aoa) were shown to be blockers of the cell cycle in the G2/M phase, while [4Lys(Bu)]-GnRH-III(Dau=Aoa) rather induced apoptosis. In short-term, the melanoma cell adhesion was significantly increased by all the tested conjugates. The modification of the GnRH-III in position 4 was accompanied by an increased cellular uptake, higher cytotoxic and cell adhesion inducer activity. By studying the cell movement of A2058 cells with a holographic microscope, it was found that the migratory behavior of melanoma cells was increased by [4Lys(Ac)]-GnRH-III(Dau=Aoa), while the GnRH-III(Dau=Aoa) and [4Lys(Bu)]-GnRH-III(Dau=Aoa) decreased this activity. Conclusion: Internalization and cytotoxicity of the conjugates showed that GnRH-III peptides could guard Dau to melanoma cells and promote antitumor activity. [4Lys(Bu)]-GnRH-III(Dau=Aoa) possessing the butyryl side chain acting as a “second drug” proved to be the best candidate for targeted tumor therapy due to its cytotoxicity and immobilizing effect on tumor cell spreading. The applicability of impedimetry and holographic phase imaging for characterizing cancer cell behavior and effects of targeted chemotherapeutics with small structural differences (e.g., length of the side chain in 4Lys) was also clearly suggested.
Collapse
Affiliation(s)
- Eszter Lajkó
- Department Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Sarah Spring
- Department Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.,Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastraße 1, 66482 Zweibrücken, Germany
| | - Rózsa Hegedüs
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Beáta Biri-Kovács
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.,Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Sven Ingebrandt
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastraße 1, 66482 Zweibrücken, Germany
| | - Gábor Mező
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.,Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - László Kőhidai
- Department Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| |
Collapse
|
12
|
Krumm A, Barckhausen C, Kücük P, Tomaszowski KH, Loquai C, Fahrer J, Krämer OH, Kaina B, Roos WP. Enhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance. Cancer Res 2016; 76:3067-77. [PMID: 26980768 DOI: 10.1158/0008-5472.can-15-2680] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
DNA-damaging anticancer drugs remain a part of metastatic melanoma therapy. Epigenetic reprogramming caused by increased histone deacetylase (HDAC) activity arising during tumor formation may contribute to resistance of melanomas to the alkylating drugs temozolomide, dacarbazine, and fotemustine. Here, we report on the impact of class I HDACs on the response of malignant melanoma cells treated with alkylating agents. The data show that malignant melanomas in situ contain a high level of HDAC1/2 and malignant melanoma cells overexpress HDAC1/2/3 compared with noncancer cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes malignant melanoma cells to apoptosis following exposure to alkylating agents, while not affecting primary melanocytes. Inhibition of HDAC1/2/3 caused sensitization of melanoma cells to temozolomide in vitro and in melanoma xenografts in vivo HDAC1/2/3 inhibition resulted in suppression of DNA double-strand break (DSB) repair by homologous recombination because of downregulation of RAD51 and FANCD2. This sensitized cells to the cytotoxic DNA lesion O(6)-methylguanine and caused a synthetic lethal interaction with the PARP-1 inhibitor olaparib. Furthermore, knockdown experiments identified HDAC2 as being responsible for the regulation of RAD51. The influence of class I HDACs on DSB repair by homologous recombination and the possible clinical implication on malignant melanoma therapy with temozolomide and other alkylating drugs suggests a combination approach where class I HDAC inhibitors such as valproic acid or MS-275 (entinostat) appear to counteract HDAC- and RAD51/FANCD2-mediated melanoma cell resistance. Cancer Res; 76(10); 3067-77. ©2016 AACR.
Collapse
Affiliation(s)
- Andrea Krumm
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany
| | | | - Pelin Kücük
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany
| | | | - Carmen Loquai
- Department of Dermatology, Medical Center of the University Mainz, Mainz, Germany
| | - Jörg Fahrer
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany
| | | | - Bernd Kaina
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany
| | - Wynand Paul Roos
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany.
| |
Collapse
|
13
|
Abstract
DNA is vulnerable to damage resulting from endogenous metabolites, environmental and dietary carcinogens, some anti-inflammatory drugs, and genotoxic cancer therapeutics. Cells respond to DNA damage by activating complex signalling networks that decide cell fate, promoting not only DNA repair and survival but also cell death. The decision between cell survival and death following DNA damage rests on factors that are involved in DNA damage recognition, and DNA repair and damage tolerance, as well as on factors involved in the activation of apoptosis, necrosis, autophagy and senescence. The pathways that dictate cell fate are entwined and have key roles in cancer initiation and progression. Furthermore, they determine the outcome of cancer therapy with genotoxic drugs. Understanding the molecular basis of these pathways is important not only for gaining insight into carcinogenesis, but also in promoting successful cancer therapy. In this Review, we describe key decision-making nodes in the complex interplay between cell survival and death following DNA damage.
Collapse
Affiliation(s)
- Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Adam D Thomas
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| |
Collapse
|
14
|
Fu X, Zhang M, Gao Q, Yang F, Li Y, Ding N. Total Synthesis of Two Diastereomers of Megastigmane Glycoside Lauroside B. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1095925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xiaozhe Fu
- Department of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qi Gao
- Complex Carbohydrate Research Center, the University of Georgia, Athens, 30605, GA, USA
| | - Fengling Yang
- Department of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
15
|
Roos WP, Quiros S, Krumm A, Merz S, Switzeny OJ, Christmann M, Loquai C, Kaina B. B-Raf inhibitor vemurafenib in combination with temozolomide and fotemustine in the killing response of malignant melanoma cells. Oncotarget 2015; 5:12607-20. [PMID: 25557167 PMCID: PMC4350346 DOI: 10.18632/oncotarget.2610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/21/2014] [Indexed: 12/27/2022] Open
Abstract
In the treatment of metastatic melanoma, a highly therapy-refractory cancer, alkylating agents are used and, for the subgroup of BRAFV600E cancers, the B-Raf inhibitor vemurafenib. Although vemurafenib is initially beneficial, development of drug resistance occurs leading to tumor relapse, which necessitates the requirement for combined or sequential therapy with other drugs, including genotoxic alkylating agents. This leads to the question whether vemurafenib and alkylating agents act synergistically and whether chronic vemurafenib treatment alters the melanoma cell response to alkylating agents. Here we show that a) BRAFV600E melanoma cells are killed by vemurafenib, driving apoptosis, b) BRAFV600E melanoma cells are neither more resistant nor sensitive to temozolomide/fotemustine than non-mutant cells, c) combined treatment with vemurafenib plus temozolomide or fotemustine has an additive effect on cell kill, d) acquired vemurafenib resistance of BRAFV600E melanoma cells does not affect MGMT, MSH2, MSH6, PMS2 and MLH1, nor does it affect the resistance to temozolomide and fotemustine, e) metastatic melanoma biopsies obtained from patients prior to and after vemurafenib treatment did not show a change in the MGMT promoter methylation status and MGMT expression level. The data suggest that consecutive treatment with vemurafenib and alkylating drugs is a reasonable strategy for metastatic melanoma treatment.
Collapse
Affiliation(s)
- Wynand P Roos
- Institute of Toxicology, Medical University Center, Mainz, Germany
| | - Steve Quiros
- Institute of Toxicology, Medical University Center, Mainz, Germany
| | - Andrea Krumm
- Institute of Toxicology, Medical University Center, Mainz, Germany
| | - Stephanie Merz
- Institute of Toxicology, Medical University Center, Mainz, Germany
| | | | | | - Carmen Loquai
- Department of Dermatology, Medical University Center, Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, Medical University Center, Mainz, Germany
| |
Collapse
|
16
|
Serrano OK, Parrow NL, Violet PC, Yang J, Zornjak J, Basseville A, Levine M. Antitumor effect of pharmacologic ascorbate in the B16 murine melanoma model. Free Radic Biol Med 2015; 87:193-203. [PMID: 26119785 DOI: 10.1016/j.freeradbiomed.2015.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 11/29/2022]
Abstract
Because 5-year survival rates for patients with metastatic melanoma remain below 25%, there is continued need for new therapeutic approaches. For some tumors, pharmacologic ascorbate treatment may have a beneficial antitumor effect and may work synergistically with standard chemotherapeutics. To investigate this possibility in melanoma, we examined the effect of pharmacologic ascorbate on B16-F10 cells. Murine models were employed to compare tumor size following treatment with ascorbate, and the chemotherapeutic agents dacarbazine or valproic acid, alone or in combination with ascorbate. Results indicated that nearly all melanoma cell lines were susceptible to ascorbate-mediated cytotoxicity. Compared to saline controls, pharmacologic ascorbate decreased tumor size in both C57BL/6 (P < 0.0001) and NOD-scid tumor bearing mice (P < 0.0001). Pharmacologic ascorbate was superior or equivalent to dacarbazine as an antitumor agent. Synergy was not apparent when ascorbate was combined with either dacarbazine or valproic acid; the latter combination may have additional toxicities. Pharmacologic ascorbate induced DNA damage in melanoma cells, as evidenced by increased phosphorylation of the histone variant, H2A.X. Differences were not evident in tumor samples from C57BL/6 mice treated with pharmacologic ascorbate compared to tumors from saline-treated controls. Together, these results suggest that pharmacologic ascorbate has a cytotoxic effect against melanoma that is largely independent of lymphocytic immune functions and that continued investigation of pharmacologic ascorbate in cancer treatment is warranted.
Collapse
Affiliation(s)
- Oscar K Serrano
- Department of Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, USA
| | - Nermi L Parrow
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jacqueline Yang
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Zornjak
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Agnes Basseville
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Tomaszowski KH, Schirrmacher R, Kaina B. Multidrug Efflux Pumps Attenuate the Effect of MGMT Inhibitors. Mol Pharm 2015; 12:3924-34. [PMID: 26379107 DOI: 10.1021/acs.molpharmaceut.5b00341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Various mechanisms of drug resistance attenuate the effectiveness of cancer therapeutics, including drug transport and DNA repair. The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) is a key factor determining the resistance against alkylating anticancer drugs inducing the genotoxic DNA lesions O(6)-methylguanine and O(6)-chloroethylguanine, and MGMT inactivation or depletion renders cells more susceptible to treatment with methylating and chloroethylating agents. Highly specific and efficient inhibitors of the repair protein MGMT were designed, including O(6)-benzylguanine (O(6)BG) and O(6)-(4-bromothenyl)guanine (O(6)BTG) that are nontoxic on their own. Unfortunately, these inhibitors do not select between MGMT in normal and cancer cells, causing nontarget effects in the healthy tissue. Therefore, a targeting strategy for MGMT inhibitors is required. Here, we used O(6)BG and O(6)BTG conjugated to β-d-glucose (O(6)BG-Glu and O(6)BTG-Glu, respectively) in order to selectively inhibit MGMT in tumors, harnessing their high demand for glucose. Both glucose conjugates efficiently inhibited MGMT in several cancer cell lines, but with different extents of sensitization to DNA alkylating agents, with lomustine being more effective than temozolomide. We further show that the glucose conjugates are subject to ATP-binding cassette (ABC) transporter mediated efflux, involving P-glycoprotein, MRP1, and BCRP, which impacts the efficiency of MGMT inhibition. Surprisingly, also O(6)BG and O(6)BTG were subject to an active transport out of the cell. We also show that pharmacological inhibition of efflux transporters increases the induction of cell death following treatment with these MGMT inhibitors and temozolomide. We conclude that strategies of attenuating the efflux by ABC transporters are required for achieving successful MGMT targeting.
Collapse
Affiliation(s)
- Karl-Heinz Tomaszowski
- Department of Toxicology, University Medical Center , Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Ralf Schirrmacher
- Montreal Neurological Hospital and Institute , 3801 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Bernd Kaina
- Department of Toxicology, University Medical Center , Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| |
Collapse
|
18
|
Challenging resistance mechanisms to therapies for metastatic melanoma. Trends Pharmacol Sci 2013; 34:656-66. [PMID: 24210882 DOI: 10.1016/j.tips.2013.10.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 11/20/2022]
Abstract
Melanoma is the most aggressive form of skin cancer and, if spread outside the epidermis, has a dismal prognosis. Before the approval of the anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) monoclonal antibody ipilimumab and the BRAF inhibitors vemurafenib and dabrafenib, no other agents had demonstrated better results in terms of overall survival than the DNA-methylating compound dacarbazine (or its oral analog temozolomide). However, most patients with metastatic melanoma do not obtain long-lasting clinical benefit from ipilimumab and responses to BRAF inhibitors are short lived. Thus, combination therapies with inhibitors of DNA repair (e.g., poly(ADP-ribose) polymerase [PARP] inhibitors), novel immunomodulators (monoclonal antibodies against programmed death-1 [PD-1] or its ligand PD-L1), targeted therapies (mitogen-activated protein kinase [MAPK]/extracellular signal-regulated kinase [ERK] kinase [MEK] or phosphatidylinositol 3-kinase [PI3K]/AKT/mammalian target of rapamycin [mTOR] inhibitors) or antiangiogenic agents are currently being investigated to improve the efficacy of antimelanoma therapies. This review discusses the implications of simultaneously targeting key regulators of melanoma cell proliferation/survival and immune responses to counteract resistance.
Collapse
|
19
|
Činčárová L, Zdráhal Z, Fajkus J. New perspectives of valproic acid in clinical practice. Expert Opin Investig Drugs 2013; 22:1535-47. [DOI: 10.1517/13543784.2013.853037] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Kotsarenko KV, Lylo VV, Macewicz LL, Babenko LA, Kornelyuk AI, Ruban TA, Lukash LL. Change in the MGMT gene expression under the influence of exogenous cytokines in human cells in vitro. CYTOL GENET+ 2013. [DOI: 10.3103/s0095452713040087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Merkel CA, Medrano RFV, Barauna VG, Strauss BE. Combined p19Arf and interferon-beta gene transfer enhances cell death of B16 melanoma in vitro and in vivo. Cancer Gene Ther 2013; 20:317-25. [PMID: 23618951 DOI: 10.1038/cgt.2013.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Approximately 90% of melanomas retain wild-type p53, a characteristic that may help shape the development of novel treatment strategies. Here, we employed an adenoviral vector where transgene expression is controlled by p53 to deliver the p19 alternate reading frame (Arf) and interferon-β (IFNβ) complementary DNAs in the B16 mouse model of melanoma. In vitro, cell death was enhanced by combined gene transfer (63.82±15.30% sub-G0 cells); yet introduction of a single gene resulted in significantly fewer hypoploid cells (37.73±7.3% or 36.96±11.58%, p19Arf or IFNβ, respectively, P<0.05). Annexin V staining and caspase-3 cleavage indicate a cell death mechanism consistent with apoptosis. Using reverse transcriptase quantitative PCR, we show that key transcriptional targets of p53 were upregulated in the presence of p19Arf, although treatment with IFNβ did not alter expression of the genes studied. In situ gene therapy revealed significant inhibition of subcutaneous tumors by IFNβ (571±25 mm3) or the combination of p19Arf and IFNβ (489±124 mm3) as compared with the LacZ control (1875±33 mm3, P<0.001), whereas p19Arf yielded an intermediate result (1053±169 mm3, P<0.01 vs control). However, only the combination was associated with increased cell death and prolonged survival (P<0.01). As shown here, the combined transfer of p19Arf and IFNβ using p53-responsive vectors enhanced cell death both in vitro and in vivo.
Collapse
Affiliation(s)
- C A Merkel
- Viral Vector Laboratory, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | |
Collapse
|
22
|
Barckhausen C, Roos WP, Naumann SC, Kaina B. Malignant melanoma cells acquire resistance to DNA interstrand cross-linking chemotherapeutics by p53-triggered upregulation of DDB2/XPC-mediated DNA repair. Oncogene 2013; 33:1964-74. [DOI: 10.1038/onc.2013.141] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 03/12/2013] [Accepted: 03/18/2013] [Indexed: 11/09/2022]
|
23
|
Banik D, Khan ANH, Walseng E, Segal BH, Abrams SI. Interferon regulatory factor-8 is important for histone deacetylase inhibitor-mediated antitumor activity. PLoS One 2012; 7:e45422. [PMID: 23028998 PMCID: PMC3446900 DOI: 10.1371/journal.pone.0045422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
The notion that epigenetic alterations in neoplasia are reversible has provided the rationale to identify epigenetic modifiers for their ability to induce or enhance tumor cell death. Histone deacetylase inhibitors (HDACi) represent one such class of anti-neoplastic agents. Despite great interest for clinical use, little is known regarding the molecular targets important for response to HDACi-based cancer therapy. We had previously shown that interferon regulatory factor (IRF)-8, originally discovered as a leukemia suppressor gene by regulating apoptosis, also regulates Fas-mediated killing in non-hematologic tumor models. Furthermore, we and others have shown that epigenetic mechanisms are involved in repression of IRF-8 in tumors. Therefore, in our preclinical tumor model, we tested the hypothesis that IRF-8 expression is important for response to HDACi-based antitumor activity. In the majority of experiments, we selected the pan-HDACi, Trichostatin A (TSA), because it was previously shown to restore Fas sensitivity to tumor cells. Overall, we found that: 1) TSA alone and more so in combination with IFN-γ enhanced both IRF-8 expression and Fas-mediated death of tumor cells in vitro; 2) TSA treatment enhanced IRF-8 promoter activity via a STAT1-dependent pathway; and 3) IRF-8 was required for this death response, as tumor cells rendered IRF-8 incompetent were significantly less susceptible to Fas-mediated killing in vitro and to HDACi-mediated antitumor activity in vivo. Thus, IRF-8 status may underlie a novel molecular basis for response to HDACi-based antitumor treatment.
Collapse
Affiliation(s)
- Debarati Banik
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - A. Nazmul H. Khan
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Even Walseng
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Brahm H. Segal
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Nakada M, Furuta T, Hayashi Y, Minamoto T, Hamada JI. The strategy for enhancing temozolomide against malignant glioma. Front Oncol 2012; 2:98. [PMID: 22912934 PMCID: PMC3418701 DOI: 10.3389/fonc.2012.00098] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/24/2012] [Indexed: 01/24/2023] Open
Abstract
A combined therapy of the alkylating agent temozolomide (TMZ) and radiotherapy is standard treatment, and it improves the survival of patients with newly diagnosed glioblastoma (GBM). The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes the most cytotoxic lesions generated by TMZ, O6-methylguanine, establishing MGMT as one of the most important DNA repair mechanisms of TMZ-induced DNA damage. Thus, the expression of MGMT, its activity, and its promoter methylation status are associated with the response of GBM to TMZ, confirming that MGMT promotes clinical resistance to TMZ. Previous studies have shown that a variety of drugs such as interferon-β (IFN-β), levetiracetam (LEV), resveratrol, and valproic acid (VAP) increased the sensitivity of TMZ through MGMT-dependent or MGMT-independent mechanisms. In this review, we describe drugs and promising molecules that influence the responsiveness of GBM to TMZ and discuss their putative mechanism of action. In MGMT-positive GBMs, drugs that modulate MGMT activity could enhance the therapeutic activity of TMZ. Thus, administration of these drugs as an adjunct to TMZ chemotherapy may have clinical applications in patients with malignant gliomas to improve the outcome.
Collapse
Affiliation(s)
- Mitsutoshi Nakada
- Department of Neurosurgery, Kanazawa University Kanazawa, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
25
|
Wieczorek M, Ginter T, Brand P, Heinzel T, Krämer OH. Acetylation modulates the STAT signaling code. Cytokine Growth Factor Rev 2012; 23:293-305. [PMID: 22795479 DOI: 10.1016/j.cytogfr.2012.06.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
A fascinating question of modern biology is how a limited number of signaling pathways generate biological diversity and crosstalk phenomena in vivo. Well-defined posttranslational modification patterns dictate the functions and interactions of proteins. The signal transducers and activators of transcription (STATs) are physiologically important cytokine-induced transcription factors. They are targeted by a multitude of posttranslational modifications that control and modulate signaling responses and gene expression. Beyond phosphorylation of serine and tyrosine residues, lysine acetylation has recently emerged as a critical modification regulating STAT functions. Interestingly, acetylation can determine STAT signaling codes by various molecular mechanisms, including the modulation of other posttranslational modifications. Here, we provide an overview on the acetylation of STATs and how this protein modification shapes cellular cytokine responses. We summarize recent advances in understanding the impact of STAT acetylation on cell growth, apoptosis, innate immunity, inflammation, and tumorigenesis. Furthermore, we discuss how STAT acetylation can be targeted by small molecules and we consider the possibility that additional molecules controlling STAT signaling are regulated by acetylation. Our review also summarizes evolutionary aspects and we show similarities between the acetylation-dependent control of STATs and other important molecules. We propose the concept that, similar to the 'histone code', distinct posttranslational modifications and their crosstalk orchestrate the functions and interactions of STAT proteins.
Collapse
Affiliation(s)
- Martin Wieczorek
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
26
|
Lin CJ, Lee CC, Shih YL, Lin TY, Wang SH, Lin YF, Shih CM. Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic Biol Med 2012; 52:377-91. [PMID: 22094224 DOI: 10.1016/j.freeradbiomed.2011.10.487] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 01/22/2023]
Abstract
The alkylating agent temozolomide (TMZ) is the major chemotherapeutic drug used clinically in the treatment of malignant gliomas. This study investigated the mechanism behind TMZ-induced cell death and the possibility that resveratrol might increase TMZ efficacy. TMZ induced both apoptotic cell death and cytoprotective autophagy through a reactive oxygen species (ROS) burst and extracellular signal-regulated kinase (ERK) activation, which was suppressed by resveratrol, resulting in a decrease in autophagy and an increase in apoptosis, suggesting that the ROS/ERK pathway plays a crucial role in the fate of cells after TMZ treatment. Isobolographic analysis indicated that the combination of TMZ and resveratrol has a synergistic effect. Moreover, an in vivo mouse xenograft study also showed that coadministration of resveratrol and TMZ reduced tumor volumes by suppressing ROS/ERK-mediated autophagy and subsequently inducing apoptosis. Taken together, our data indicate that TMZ-induced ROS/ERK-mediated autophagy protected glioma cells from apoptosis, and the combination of resveratrol with TMZ could improve the efficacy of chemotherapy for brain tumors.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Biochemistry, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
|