1
|
Khan K, Zafar S, Badshah Y, Ashraf NM, Rafiq M, Danish L, Shabbir M, Trembley JH, Afsar T, Almajwal A, Razak S. Cross talk of tumor protein D52 (TPD52) with KLF9, PKCε, and MicroRNA 223 in ovarian cancer. J Ovarian Res 2023; 16:202. [PMID: 37833790 PMCID: PMC10571360 DOI: 10.1186/s13048-023-01292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Gynecologic cancers comprise malignancies in the female reproductive organs. Ovarian cancer ranks sixth in terms of incidence rates while seventh in terms of mortality rates. The stage at which ovarian cancer is diagnosed mainly determines the survival outcomes of patients. Various screening approaches are presently employed for diagnosing ovarian cancer; however, these techniques have low accuracy and are non-specific, resulting in high mortality rates of patients due to this disease. Hence, it is crucial to identify improved screening and diagnostic markers to overcome this cancer. This study aimed to find new biomarkers to facilitate the prognosis and diagnosis of ovarian cancer. METHODS Bioinformatics approaches were used to predict the tertiary structure and cellular localization along with phylogenetic analysis of TPD52. Its molecular interactions were determined through KEGG analysis, and real-time PCR-based expression analysis was performed to assess its co-expression with another oncogenic cellular pathway (miR-223, KLF9, and PKCε) proteins in ovarian cancer. RESULTS Bioinformatics analysis depicted the cytoplasmic localization of TPD52 and the high conservation of its coiled-coil domains. Further study revealed that TPD52 mRNA and miRNA-223 expression was elevated, while the expression of KLF 9 and PKCε was reduced in the blood of ovarian cancer patients. Furthermore, TPD52 and miR-223 expression were upregulated in the early stages of cancer and non-metastatic cancers. CONCLUSION TPD52, miR-223, PKCε, and KLF9, can be used as a blood based markers for disease prognosis, metastasis, and treatment response. The study outcomes hold great potential to be translated at the clinical level after further validation on larger cohorts.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Sameen Zafar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Yasmin Badshah
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Mehak Rafiq
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Lubna Danish
- Agricultural Research Institute, Tarnab, Peshawar, Pakistan
| | - Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Aquino A, Bianchi N, Terrazzan A, Franzese O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. BIOLOGY 2023; 12:1047. [PMID: 37626933 PMCID: PMC10451643 DOI: 10.3390/biology12081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
The frequent PKC dysregulations observed in many tumors have made these enzymes natural targets for anticancer applications. Nevertheless, this considerable interest in the development of PKC modulators has not led to the expected therapeutic benefits, likely due to the complex biological activities regulated by PKC isoenzymes, often playing ambiguous and protective functions, further driven by the occurrence of mutations. The structure, regulation and functions of PKCs have been extensively covered in other publications. Herein, we focused on PKC alterations mostly associated with complete functional loss. We also addressed the modest yet encouraging results obtained targeting PKC in selected malignancies and the more frequent negative clinical outcomes. The reported observations advocate the need for more selective molecules and a better understanding of the involved pathways. Furthermore, we underlined the most relevant immune mechanisms controlled by PKC isoforms potentially impacting the immune checkpoint inhibitor blockade-mediated immune recovery. We believe that a comprehensive examination of the molecular features of the tumor microenvironment might improve clinical outcomes by tailoring PKC modulation. This approach can be further supported by the identification of potential response biomarkers, which may indicate patients who may benefit from the manipulation of distinctive PKC isoforms.
Collapse
Affiliation(s)
- Angelo Aquino
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
3
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
4
|
Zahra K, Shabbir M, Badshah Y, Trembley JH, Badar Z, Khan K, Afsar T, Almajwal A, Alruwaili NW, Razak S. Determining KLF14 tertiary structure and diagnostic significance in brain cancer progression. Sci Rep 2022; 12:8039. [PMID: 35577881 PMCID: PMC9110742 DOI: 10.1038/s41598-022-12072-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Expression analysis of new protein targets may play a crucial role in the early detection and diagnosis of brain tumor progression. The study aimed to investigate the possible relation of KLF14, TPD52, miR-124, and PKCε in the development and progression of brain cancer and space occupying lesion (SOL) of the brain. One hundred human blood samples comprising varying diagnostic groups (SOL brain, grade I, II, III, IV) were analyzed by real-time quantitative PCR to determine the expression level of KLF14, TPD52, miR-124, and PKCε. TPD52 and PKCε were upregulated in brain cancer by 2.5- and 1.6-fold, respectively, whereas, KLF14 and miR-124 were downregulated in brain cancer. In metastatic and high-grade brain cancer, TPD52 and PKCε expression were up-regulated and KLF14 and miR-124 expression were down-regulated. Further, these genes were found to be differentially expressed in the blood of patients with SOL. Upregulation of TPD52 and PKCε, however, reduced expression of KLF14 and miR-124 in SOL of the brain as compared to healthy controls. Expression analysis of TPD52, KLF14, miR-124, and PKCε provided useful information on the differences existing between the normal brain and SOL, in addition to gliomas; thus, might prove to be useful having diagnostic or prognostic value.
Collapse
Affiliation(s)
- Kainat Zahra
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Zunaira Badar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf W Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Ostrowska-Podhorodecka Z, Ding I, Norouzi M, McCulloch CA. Impact of Vimentin on Regulation of Cell Signaling and Matrix Remodeling. Front Cell Dev Biol 2022; 10:869069. [PMID: 35359446 PMCID: PMC8961691 DOI: 10.3389/fcell.2022.869069] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Vimentin expression contributes to cellular mechanoprotection and is a widely recognized marker of fibroblasts and of epithelial-mesenchymal transition. But it is not understood how vimentin affects signaling that controls cell migration and extracellular matrix (ECM) remodeling. Recent data indicate that vimentin controls collagen deposition and ECM structure by regulating contractile force application to the ECM and through post-transcriptional regulation of ECM related genes. Binding of cells to the ECM promotes the association of vimentin with cytoplasmic domains of adhesion receptors such as integrins. After initial adhesion, cell-generated, myosin-dependent forces and signals that impact vimentin structure can affect cell migration. Post-translational modifications of vimentin determine its adaptor functions, including binding to cell adhesion proteins like paxillin and talin. Accordingly, vimentin regulates the growth, maturation and adhesive strength of integrin-dependent adhesions, which enables cells to tune their attachment to collagen, regulate the formation of cell extensions and control cell migration through connective tissues. Thus, vimentin tunes signaling cascades that regulate cell migration and ECM remodeling. Here we consider how specific properties of vimentin serve to control cell attachment to the underlying ECM and to regulate mesenchymal cell migration and remodeling of the ECM by resident fibroblasts.
Collapse
|
7
|
Safi S, Badshah Y, Shabbir M, Zahra K, Khan K, Dilshad E, Afsar T, Almajwal A, Alruwaili NW, Al-disi D, Abulmeaty M, Razak S. Predicting 3D Structure, Cross Talks, and Prognostic Significance of KLF9 in Cervical Cancer. Front Oncol 2022; 11:797007. [PMID: 35047407 PMCID: PMC8761731 DOI: 10.3389/fonc.2021.797007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Our study aimed to identify the new blood-based biomarkers for the diagnosis and prognosis of cervical cancer. Moreover, the three-dimensional (3D) structure of Kruppel-like factor 9 (KLF9) was also determined in order to better understand its function, and a signaling pathway was constructed to identity its upstream and downstream targets. In the current study, the co-expressions of tumor protein D52 (TPD52), KLF9, microRNA 223 (miR-223), and protein kinase C epsilon (PKCϵ) were evaluated in cervical cancer patients and a possible relation with disease outcome was revealed. The expressions of TPD52, KLF9, miR-223, and PKCϵ were studied in the blood of 100 cervical cancer patients and 100 healthy controls using real-time PCR. The 3D structure of KLF9 was determined through homology modeling via the SWISS-MODEL and assessed using the Ramachandran plot. The predicted 3D structure of KLF9 had a similarity index of 62% with its template (KLF4) with no bad bonds in it. In order to construct a genetic pathway, depicting the crosstalk between understudied genes, STRING analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and DAVID software were used. The constructed genetic pathway showed that all the understudied genes are linked to each other and involved in the PI3K/Akt signaling pathway. There was a 23-fold increase in TPD52 expression, a 2-fold increase in miR-223 expression, a 0.14-fold decrease in KLF9 expression, and a 0.05-fold decrease of PKCϵ expression in cervical cancer. In the present study, we observed an association of the expressions of TPD52, KLF9, miR-223, and PKCϵ with tumor stage, metastasis, and treatment status of cervical cancer patients. Elevated expressions of TPD52 and miR-223 and reduced expressions of KLF9 and PKCϵ in peripheral blood of cervical cancer patients may serve as predictors of disease diagnosis and prognosis. Nevertheless, further in vitro and tissue-level studies are required to strengthen their role as potential diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Sadia Safi
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Kainat Zahra
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf W. Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dara Al-disi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
OUP accepted manuscript. Hum Mol Genet 2022; 31:2236-2261. [DOI: 10.1093/hmg/ddac029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/12/2022] Open
|
9
|
Ostrowska-Podhorodecka Z, McCulloch CA. Vimentin regulates the assembly and function of matrix adhesions. Wound Repair Regen 2021; 29:602-612. [PMID: 33887795 DOI: 10.1111/wrr.12920] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
The intermediate filament protein vimentin is a widely used phenotypic marker for identifying cells of the mesenchymal linkage such as fibroblasts and myofibroblasts, but the full repertoire of vimentin's functional attributes has not been fully explored. Here we consider how vimentin, in addition to its contributions to mechanical stabilization of cell structure, also helps to control the assembly of cell adhesions and migration through collagen matrices. While the assembly and function of matrix adhesions are critical for the differentiation of myofibroblasts and many other types of adherent cells, a potential mechanism that explains how vimentin affects the recruitment and abundance of centrally important proteins in cell adhesions has been elusive. Here we review recent data indicating that vimentin plays a central regulatory role in the assembly of focal adhesions which form in response to the attachment to collagen. We show that in particular, vimentin is a key organizer of the β1 integrin adhesive machinery, which affects cell migration through collagen. This review provides a comprehensive picture of the surprisingly broad array of processes and molecules with which vimentin interacts to affect cell function in the context of fibroblast and myofibroblast adhesion and migration on collagen.
Collapse
|
10
|
Poelaert BJ, Knoche SM, Larson AC, Pandey P, Seshacharyulu P, Khan N, Maurer HC, Olive KP, Sheinin Y, Ahmad R, Singh AB, Batra SK, Rachagani S, Solheim JC. Amyloid Precursor-like Protein 2 Expression Increases during Pancreatic Cancer Development and Shortens the Survival of a Spontaneous Mouse Model of Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13071535. [PMID: 33810510 PMCID: PMC8036577 DOI: 10.3390/cancers13071535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary As pancreatic cancer is a disease with a high fatality rate, a better understanding of how it develops and the identification of new potential targets for its treatment are greatly needed. In this current study, we showed that the expression of amyloid precursor-like protein 2 (APLP2) in pancreatic cancer epithelial cells is higher than in precursor lesion epithelial cells, thus indicating that APLP2 increases during human pancreatic cancer development. We also generated a new mouse model that demonstrated the deletion of APLP2 expression specifically within the pancreas prolongs survival and decreases metastasis for mice with pancreatic cancer. Taken together, these findings open a new avenue toward comprehending and treating pancreatic cancer. Abstract In the United States, pancreatic cancer is a major cause of cancer-related deaths. Although substantial efforts have been made to understand pancreatic cancer biology and improve therapeutic efficacy, patients still face a bleak chance of survival. A greater understanding of pancreatic cancer development and the identification of novel treatment targets are desperately needed. Our analysis of gene expression data from patient samples showed an increase in amyloid precursor-like protein 2 (APLP2) expression within primary tumor epithelium relative to pancreatic intraepithelial neoplasia (PanIN) epithelial cells. Augmented expression of APLP2 in primary tumors compared to adjacent stroma was also observed. Genetically engineered mouse models of spontaneous pancreatic ductal adenocarcinoma were used to investigate APLP2′s role in cancer development. We found that APLP2 expression intensifies significantly during pancreatic cancer initiation and progression in the LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mouse model, as shown by immunohistochemistry analysis. In studies utilizing pancreas-specific heterozygous and homozygous knockout of APLP2 in the KPC mouse model background, we observed significantly prolonged survival and reduced metastatic progression of pancreatic cancer. These results demonstrate the importance of APLP2 in pancreatic cancer initiation and metastasis and indicate that APLP2 should be considered a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Brittany J. Poelaert
- Eppley Institute for Research in Cancer & Allied Diseases and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.J.P.); (S.M.K.); (A.C.L.); (P.P.); (N.K.)
| | - Shelby M. Knoche
- Eppley Institute for Research in Cancer & Allied Diseases and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.J.P.); (S.M.K.); (A.C.L.); (P.P.); (N.K.)
| | - Alaina C. Larson
- Eppley Institute for Research in Cancer & Allied Diseases and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.J.P.); (S.M.K.); (A.C.L.); (P.P.); (N.K.)
| | - Poomy Pandey
- Eppley Institute for Research in Cancer & Allied Diseases and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.J.P.); (S.M.K.); (A.C.L.); (P.P.); (N.K.)
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry & Molecular Biology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (R.A.); (A.B.S.); (S.K.B.); (S.R.)
| | - Nuzhat Khan
- Eppley Institute for Research in Cancer & Allied Diseases and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.J.P.); (S.M.K.); (A.C.L.); (P.P.); (N.K.)
| | - H. Carlo Maurer
- Columbia University Department of Medicine and the Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; (H.C.M.); (K.P.O.)
| | - Kenneth P. Olive
- Columbia University Department of Medicine and the Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; (H.C.M.); (K.P.O.)
| | - Yuri Sheinin
- Department of Pathology and Microbiology and the Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA;
| | - Rizwan Ahmad
- Department of Biochemistry & Molecular Biology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (R.A.); (A.B.S.); (S.K.B.); (S.R.)
| | - Amar B. Singh
- Department of Biochemistry & Molecular Biology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (R.A.); (A.B.S.); (S.K.B.); (S.R.)
| | - Surinder K. Batra
- Department of Biochemistry & Molecular Biology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (R.A.); (A.B.S.); (S.K.B.); (S.R.)
| | - Satyanarayana Rachagani
- Department of Biochemistry & Molecular Biology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (R.A.); (A.B.S.); (S.K.B.); (S.R.)
| | - Joyce C. Solheim
- Eppley Institute for Research in Cancer & Allied Diseases and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.J.P.); (S.M.K.); (A.C.L.); (P.P.); (N.K.)
- Department of Biochemistry & Molecular Biology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (R.A.); (A.B.S.); (S.K.B.); (S.R.)
- Correspondence: ; Tel.: +1-402-559-4539
| |
Collapse
|
11
|
Cooke M, Casado-Medrano V, Ann J, Lee J, Blumberg PM, Abba MC, Kazanietz MG. Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes. Sci Rep 2019; 9:6041. [PMID: 30988374 PMCID: PMC6465381 DOI: 10.1038/s41598-019-42581-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Despite our extensive knowledge on the biology of protein kinase C (PKC) and its involvement in disease, limited success has been attained in the generation of PKC isozyme-specific modulators acting via the C1 domain, the binding site for the lipid second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. Synthetic efforts had recently led to the identification of AJH-836, a DAG-lactone with preferential affinity for novel isozymes (nPKCs) relative to classical PKCs (cPKCs). Here, we compared the ability of AJH-836 and a prototypical phorbol ester (phorbol 12-myristate 13-acetate, PMA) to induce changes in gene expression in a lung cancer model. Gene profiling analysis using RNA-Seq revealed that PMA caused major changes in gene expression, whereas AJH-836 only induced a small subset of genes, thus providing a strong indication for a major involvement of cPKCs in their control of gene expression. MMP1, MMP9, and MMP10 were among the genes most prominently induced by PMA, an effect impaired by RNAi silencing of PKCα, but not PKCδ or PKCε. Comprehensive gene signature analysis and bioinformatics efforts, including functional enrichment and transcription factor binding site analyses of dysregulated genes, identified major differences in pathway activation and transcriptional networks between PMA and DAG-lactones. In addition to providing solid evidence for the differential involvement of individual PKC isozymes in the control of gene expression, our studies emphasize the importance of generating targeted C1 domain ligands capable of differentially regulating PKC isozyme-specific function in cellular models.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Universidad Nacional de La Plata, CP1900, La Plata, Argentina.
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Distinctive requirement of PKCε in the control of Rho GTPases in epithelial and mesenchymally transformed lung cancer cells. Oncogene 2019; 38:5396-5412. [PMID: 30923343 PMCID: PMC6609469 DOI: 10.1038/s41388-019-0796-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Diacylglycerol (DAG)/phorbol ester-regulated protein kinase C (PKC) isozymes have been widely linked to tumor promotion and the development of a metastatic phenotype. PKCε, an oncogenic member of the PKC family, is abnormally overexpressed in lung cancer and other cancer types. This kinase plays significant roles in proliferation, survival and migration; however its role in epithelial-to-mesenchymal transition (EMT) has been scarcely studied. Silencing experiments in non-small lung cancer (NSCLC) cells revealed that PKCε or other DAG-regulated PKCs (PKCα and PKCδ) were dispensable for the acquisition of a mesenchymal phenotype induced by transforming growth factor beta (TGF-β). Unexpectedly, we found a nearly complete down-regulation of PKCε expression in TGF-β-mesenchymally transformed NSCLC cells. PMA and AJH-836 (a DAG-mimetic that preferentially activates PKCε) promote ruffle formation in NSCLC cells via Rac1, however they fail to induce these morphological changes in TGF-β-mesenchymally transformed cells despite their elevated Rac1 activity. Several Rac Guanine nucleotide Exchange-Factors (Rac-GEFs) were also up-regulated in TGF-β-treated NSCLC cells, including Trio and Tiam2, which were required for cell motility. Lastly, we found that silencing or inhibiting PKCε enhances RhoA activity and stress fiber formation, a phenotype also observed in TGF-β-transformed cells. Our studies established a distinctive involvement of PKCε in epithelial and mesenchymal NSCLC cells, and identified a complex interplay between PKCε and small GTPases that contributes to regulation of NSCLC cell morphology and motile activity.
Collapse
|
13
|
Abstract
Protein kinase C (PKC) isozymes belong to a family of Ser/Thr kinases whose activity is governed by reversible release of an autoinhibitory pseudosubstrate. For conventional and novel isozymes, this is effected by binding the lipid second messenger, diacylglycerol, but for atypical PKC isozymes, this is effected by binding protein scaffolds. PKC shot into the limelight following the discovery in the 1980s that the diacylglycerol-sensitive isozymes are "receptors" for the potent tumor-promoting phorbol esters. This set in place a concept that PKC isozymes are oncoproteins. Yet three decades of cancer clinical trials targeting PKC with inhibitors failed and, in some cases, worsened patient outcome. Emerging evidence from cancer-associated mutations and protein expression levels provide a reason: PKC isozymes generally function as tumor suppressors and their activity should be restored, not inhibited, in cancer therapies. And whereas not enough activity is associated with cancer, variants with enhanced activity are associated with degenerative diseases such as Alzheimer's disease. This review describes the tightly controlled mechanisms that ensure PKC activity is perfectly balanced and what happens when these controls are deregulated. PKC isozymes serve as a paradigm for the wisdom of Confucius: "to go beyond is as wrong as to fall short."
Collapse
Affiliation(s)
- Alexandra C Newton
- a Department of Pharmacology , University of California at San Diego , La Jolla , CA , USA
| |
Collapse
|
14
|
Xu W, Zeng F, Li S, Li G, Lai X, Wang QJ, Deng F. Crosstalk of protein kinase C ε with Smad2/3 promotes tumor cell proliferation in prostate cancer cells by enhancing aerobic glycolysis. Cell Mol Life Sci 2018; 75:4583-4598. [PMID: 30209539 PMCID: PMC11105635 DOI: 10.1007/s00018-018-2914-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/31/2018] [Indexed: 01/08/2023]
Abstract
Protein kinase C ε (PKCε) has emerged as an oncogenic protein kinase and plays important roles in cancer cell survival, proliferation, and invasion. It is, however, still unknown whether PKCε affects cell proliferation via glucose metabolism in cancer cells. Here we report a novel function of PKCε that provides growth advantages for cancer cells by enhancing tumor cells glycolysis. We found that either PKCε or Smad2/3 promoted aerobic glycolysis, expression of the glycolytic genes encoding HIF-1α, HKII, PFKP and MCT4, and tumor cell proliferation, while overexpression of PKCε or Smad3 enhanced aerobic glycolysis and cell proliferation in a protein kinase D- or TGF-β-independent manner in PC-3M and DU145 prostate cancer cells. The effects of PKCε silencing were reversed by ectopic expression of Smad3. PKCε or Smad3 ectopic expression-induced increase in cell growth was antagonized by inhibition of lactate transportation. Furthermore, interaction of endogenous PKCε with Smad2/3 was primarily responsible for phosphorylation of Ser213 in the Samd3 linker region, and resulted in Smad3 binding to the promoter of the glycolytic genes, thereby promoting cell proliferation. Forced expression of mutant Smad3 (S213A) attenuated PKCε-stimulated protein overexpression of the glycolytic genes. Thus, our results demonstrate a novel PKCε function that promotes cell growth in prostate cancer cells by increasing aerobic glycolysis through crosstalk between PKCε and Smad2/3.
Collapse
Affiliation(s)
- Wanfu Xu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fangyin Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China
| | - Songyu Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guihuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoju Lai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Danielsson F, Peterson MK, Caldeira Araújo H, Lautenschläger F, Gad AKB. Vimentin Diversity in Health and Disease. Cells 2018; 7:E147. [PMID: 30248895 PMCID: PMC6210396 DOI: 10.3390/cells7100147] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn's disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, Royal Institute of Technology, 17165 Stockholm, Sweden.
| | | | | | - Franziska Lautenschläger
- Campus D2 2, Leibniz-Institut für Neue Materialien gGmbH (INM) and Experimental Physics, NT Faculty, E 2 6, Saarland University, 66123 Saarbrücken, Germany.
| | - Annica Karin Britt Gad
- Centro de Química da Madeira, Universidade da Madeira, 9020105 Funchal, Portugal.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.
| |
Collapse
|
16
|
Zhang M, Suarez E, Vasquez JL, Nathanson L, Peterson LE, Rajapakshe K, Basil P, Weigel NL, Coarfa C, Agoulnik IU. Inositol polyphosphate 4-phosphatase type II regulation of androgen receptor activity. Oncogene 2018; 38:1121-1135. [PMID: 30228349 PMCID: PMC6377303 DOI: 10.1038/s41388-018-0498-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/05/2018] [Accepted: 08/24/2018] [Indexed: 11/18/2022]
Abstract
Activation and transcriptional reprogramming of AR in advanced prostate cancer frequently coincides with the loss of two tumor suppressors, INPP4B and PTEN, which are highly expressed in human and mouse prostate epithelium. While regulation of AR signaling by PTEN has been described by multiple groups, it is not known whether the loss of INPP4B affects AR activity. Using prostate cancer cell lines we showed that INPP4B regulates AR transcriptional activity and the oncogenic signaling pathways Akt and PKC. Analysis of gene expression in prostate cancer patient cohorts showed a positive correlation between INPP4B expression and both AR mRNA levels and AR transcriptional output. Using an Inpp4b-/- mouse model, we demonstrated that INPP4B suppresses Akt and PKC signaling pathways and modulates AR transcriptional activity in normal mouse prostate. Remarkably, PTEN protein levels and phosphorylation of S380 were the same in Inpp4b-/- and WT males, suggesting that the observed changes were due exclusively to the loss of INPP4B. Our data show that INPP4B modulates AR activity in normal prostate and its loss contributes to the AR-dependent transcriptional profile in prostate cancer.
Collapse
Affiliation(s)
- Manqi Zhang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Egla Suarez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Judy L Vasquez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Leif E Peterson
- Center for Biostatistics, Houston Methodist Research Institute, Houston, TX, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Paul Basil
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Biomolecular Science Institute, School of Integrated Science and Humanity, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
17
|
Garg R, Blando JM, Perez CJ, Lal P, Feldman MD, Smyth EM, Ricciotti E, Grosser T, Benavides F, Kazanietz MG. COX-2 mediates pro-tumorigenic effects of PKCε in prostate cancer. Oncogene 2018; 37:4735-4749. [PMID: 29765153 PMCID: PMC6195867 DOI: 10.1038/s41388-018-0318-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/22/2018] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
Abstract
The pro-oncogenic kinase PKCε is overexpressed in human prostate cancer and cooperates with loss of the tumor suppressor Pten for the development of prostatic adenocarcinoma. However, the effectors driving PKCε-mediated phenotypes remain poorly defined. Here, using cellular and mouse models, we showed that PKCε overexpression acts synergistically with Pten loss to promote NF-κB activation and induce cyclooxygenase-2 (COX-2) expression, phenotypic traits which are also observed in human prostate tumors. Targeted disruption of PKCε from prostate cancer cells impaired COX-2 induction and PGE2 production. Notably, COX-2 inhibitors selectively killed prostate epithelial cells overexpressing PKCε, and this ability was greatly enhanced by Pten loss. Long-term COX-2 inhibition markedly reduced adenocarcinoma formation, as well as angiogenesis in a mouse model of prostate-specific PKCε expression and Pten loss. Overall, our results provide strong evidence for the involvement of the canonical NF-κB pathway and its target gene COX2 as PKCε effectors, and highlight the potential of PKCε as a useful biomarker for the use of COX inhibition for chemopreventive and/or chemotherapeutic purposes in prostate cancer.
Collapse
Affiliation(s)
- Rachana Garg
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jorge M Blando
- Department of Immunology, Immunopathology Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carlos J Perez
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Priti Lal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emer M Smyth
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tilo Grosser
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
D’Amico AE, Lennartz MR. Protein Kinase C-epsilon in Membrane Delivery during Phagocytosis. JOURNAL OF IMMUNOLOGICAL SCIENCES 2018; 2:26-32. [PMID: 30112519 PMCID: PMC6089528 DOI: 10.29245/2578-3009/2018/2.1134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During phagocytosis, internal membranes are recruited to the site of pathogen binding and fuse with the plasma membrane, providing the membrane needed for pseudopod extension and target uptake. The mechanism by which vesicles destined for the phagosome are generated, targeted, and fuse is unknown. We established that Golgi-associated protein kinase C-epsilon (PKC-ε) is necessary for the addition of membrane during FcyR-mediated phagocytosis. PKC-ε is tethered to the Golgi through interactions between its' regulatory domain and the Golgi lipids PI4P and diacylglycerol; disruption of these interactions prevents PKC-ε concentration at phagosomes and decreases phagocytosis. The accumulated evidence suggests that PKC-ε orchestrates vesicle formation at the Golgi by a mechanism requiring lipid binding but not enzymatic activity. This review discusses how PKC-ε might mediate vesicle formation at the level of budding and fission. Specifically, we discuss PKC-ε binding partners, the formation of lipid subdomains to generate membrane curvature, and PKC-ε mediated links to the actin and microtubule cytoskeleton to provide tension for vesicle fission. Assimilating information from several model systems, we propose a model for PKC-ε mediated vesicle formation for exocytosis during phagocytosis that may be applicable to other processes that require directed membrane delivery and fusion.
Collapse
Affiliation(s)
- Anna E. D’Amico
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue Albany, NY 12208, USA
| | - Michelle R. Lennartz
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue Albany, NY 12208, USA
| |
Collapse
|
19
|
Gelman IH. How the TRAMP Model Revolutionized the Study of Prostate Cancer Progression. Cancer Res 2017; 76:6137-6139. [PMID: 27803100 DOI: 10.1158/0008-5472.can-16-2636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York.
| |
Collapse
|
20
|
Bortezomib induces neuropathic pain through protein kinase C-mediated activation of presynaptic NMDA receptors in the spinal cord. Neuropharmacology 2017; 123:477-487. [PMID: 28663117 DOI: 10.1016/j.neuropharm.2017.06.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/06/2017] [Accepted: 06/24/2017] [Indexed: 12/22/2022]
Abstract
Chemotherapeutic drugs, including bortezomib, often cause painful peripheral neuropathy, which is a severe dose-limiting adverse effect experienced by many cancer patients. The glutamate N-methyl-d-aspartate receptors (NMDARs) at the spinal cord level are critically involved in the synaptic plasticity associated with neuropathic pain. In this study, we determined whether treatment with bortezomib, a proteasome inhibitor, affects the NMDAR activity of spinal dorsal horn neurons. Systemic treatment with bortezomib in rats did not significantly affect postsynaptic NMDAR currents elicited by puff application of NMDA directly to dorsal horn neurons. Bortezomib treatment markedly increased the baseline frequency of miniature excitatory postsynaptic currents (EPSCs), which was completely normalized by the NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5). AP5 also reduced the amplitude of monosynaptic EPSCs evoked by dorsal root stimulation in bortezomib-treated, but not vehicle-treated, rats. Furthermore, inhibition of protein kinase C (PKC) with chelerythrine fully reversed the increased frequency of miniature EPSCs and the amplitude of evoked EPSCs in bortezomib-treated rats. Intrathecal injection of AP5 and chelerythrine both profoundly attenuated mechanical allodynia and hyperalgesia induced by systemic treatment with bortezomib. In addition, treatment with bortezomib induced striking membrane translocation of PKC-βII, PKC-δ, and PKC-ε in the dorsal root ganglion. Our findings indicate that bortezomib treatment potentiates nociceptive input from primary afferent nerves via PKC-mediated tonic activation of presynaptic NMDARs. Targeting presynaptic NMDARs and PKC at the spinal cord level may be an effective strategy for treating chemotherapy-induced neuropathic pain.
Collapse
|
21
|
Hanes CM, D'Amico AE, Ueyama T, Wong AC, Zhang X, Hynes WF, Barroso MM, Cady NC, Trebak M, Saito N, Lennartz MR. Golgi-Associated Protein Kinase C-ε Is Delivered to Phagocytic Cups: Role of Phosphatidylinositol 4-Phosphate. THE JOURNAL OF IMMUNOLOGY 2017; 199:271-277. [PMID: 28539432 DOI: 10.4049/jimmunol.1700243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022]
Abstract
Protein kinase C-ε (PKC-ε) at phagocytic cups mediates the membrane fusion necessary for efficient IgG-mediated phagocytosis. The C1B and pseudosubstrate (εPS) domains are necessary and sufficient for this concentration. C1B binds diacylglycerol; the docking partner for εPS is unknown. Liposome assays revealed that the εPS binds phosphatidylinositol 4-phosphate (PI4P) and PI(3,5)P2 Wortmannin, but not LY294002, inhibits PKC-ε concentration at cups and significantly reduces the rate of phagocytosis. As Wortmannin inhibits PI4 kinase, we hypothesized that PI4P mediates the PKC-ε concentration at cups and the rate of phagocytosis. PKC-ε colocalizes with the trans-Golgi network (TGN) PI4P reporter, P4M, suggesting it is tethered at the TGN. Real-time imaging of GFP-PKC-ε-expressing macrophages revealed a loss of Golgi-associated PKC-ε during phagocytosis, consistent with a Golgi-to-phagosome translocation. Treatment with PIK93, a PI4 kinase inhibitor, reduces PKC-ε at both the TGN and the cup, decreases phagocytosis, and prevents the increase in capacitance that accompanies membrane fusion. Finally, expression of the Golgi-directed PI4P phosphatase, hSac1-K2A, recapitulates the PIK93 phenotype, confirming that Golgi-associated PI4P is critical for efficient phagocytosis. Together these data are consistent with a model in which PKC-ε is tethered to the TGN via an εPS-PI4P interaction. The TGN-associated pool of PKC-ε concentrates at the phagocytic cup where it mediates the membrane fusion necessary for phagocytosis. The novelty of these data lies in the demonstration that εPS binds PI4P and PI(3,5)P2 and that PI4P is necessary for PKC-ε localization at the TGN, its translocation to the phagocytic cup, and the membrane fusion required for efficient Fc [γ] receptor-mediated phagocytosis.
Collapse
Affiliation(s)
- Cheryl M Hanes
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - Anna E D'Amico
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - Takehiko Ueyama
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Alexander C Wong
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - W Frederick Hynes
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203; and
| | - Margarida M Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208
| | - Nathaniel C Cady
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203; and
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Naoaki Saito
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Michelle R Lennartz
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208;
| |
Collapse
|
22
|
Protein kinase C as a tumor suppressor. Semin Cancer Biol 2017; 48:18-26. [PMID: 28476658 DOI: 10.1016/j.semcancer.2017.04.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/31/2017] [Accepted: 04/28/2017] [Indexed: 01/01/2023]
Abstract
Protein kinase C (PKC) has historically been considered an oncoprotein. This stems in large part from the discovery in the early 1980s that PKC is directly activated by tumor-promoting phorbol esters. Yet three decades of clinical trials using PKC inhibitors in cancer therapies not only failed, but in some cases worsened patient outcome. Why has targeting PKC in cancer eluded successful therapies? Recent studies looking at the disease for insight provide an explanation: cancer-associated mutations in PKC are generally loss-of-function (LOF), supporting an unexpected function as tumor suppressors. And, contrasting with LOF mutations in cancer, germline mutations that enhance the activity of some PKC isozymes are associated with degenerative diseases such as Alzheimer's disease. This review provides a background on the diverse mechanisms that ensure PKC is only active when, where, and for the appropriate duration needed and summarizes recent findings converging on a paradigm reversal: PKC family members generally function by suppressing, rather than promoting, survival signaling.
Collapse
|
23
|
Protein Kinase C Epsilon Cooperates with PTEN Loss for Prostate Tumorigenesis through the CXCL13-CXCR5 Pathway. Cell Rep 2017; 19:375-388. [PMID: 28402859 DOI: 10.1016/j.celrep.2017.03.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/01/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022] Open
Abstract
PKCε, an oncogenic member of the PKC family, is aberrantly overexpressed in epithelial cancers. To date, little is known about functional interactions of PKCε with other genetic alterations, as well as the effectors contributing to its tumorigenic and metastatic phenotype. Here, we demonstrate that PKCε cooperates with the loss of the tumor suppressor Pten for the development of prostate cancer in a mouse model. Mechanistic analysis revealed that PKCε overexpression and Pten loss individually and synergistically upregulate the production of the chemokine CXCL13, which involves the transcriptional activation of the CXCL13 gene via the non-canonical nuclear factor κB (NF-κB) pathway. Notably, targeted disruption of CXCL13 or its receptor, CXCR5, in prostate cancer cells impaired their migratory and tumorigenic properties. In addition to providing evidence for an autonomous vicious cycle driven by PKCε, our studies identified a compelling rationale for targeting the CXCL13-CXCR5 axis for prostate cancer treatment.
Collapse
|
24
|
Newton AC, Brognard J. Reversing the Paradigm: Protein Kinase C as a Tumor Suppressor. Trends Pharmacol Sci 2017; 38:438-447. [PMID: 28283201 PMCID: PMC5403564 DOI: 10.1016/j.tips.2017.02.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/20/2022]
Abstract
The discovery in the 1980s that protein kinase C (PKC) is a receptor for the tumor-promoting phorbol esters fueled the dogma that PKC is an oncoprotein. Yet 30+ years of clinical trials for cancer using PKC inhibitors not only failed, but in some instances worsened patient outcome. The recent analysis of cancer-associated mutations, from diverse cancers and throughout the PKC family, revealed that PKC isozymes are generally inactivated in cancer, supporting a tumor suppressive function. In keeping with a bona fide tumor suppressive role, germline causal loss-of-function (LOF) mutations in one isozyme have recently been identified in lymphoproliferative disorders. Thus, strategies in cancer treatment should focus on restoring rather than inhibiting PKC.
Collapse
Affiliation(s)
- Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0721, USA.
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Cancer Research UK Manchester Institute, Manchester, UK.
| |
Collapse
|
25
|
Zhang RR, Swanson KI, Hall LT, Weichert JP, Kuo JS. Diapeutic cancer-targeting alkylphosphocholine analogs may advance management of brain malignancies. CNS Oncol 2016; 5:223-31. [PMID: 27616199 DOI: 10.2217/cns-2016-0017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The following is a special report on alkylphosphocholine analogs as targeted imaging and therapy agents for cancer, and their potential role in diagnosis and treatment in glioblastoma and brain metastases. These novel cancer-targeting agents display impressive tumor avidity with low background in the normal brain, and multimodal diagnostic imaging and therapy capabilities. The use of these agents may significantly improve diagnosis, treatment and post-treatment follow-up in patients with brain malignancies.
Collapse
Affiliation(s)
- Ray R Zhang
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53792, USA.,Department of Radiology, University of Wisconsin, Madison, WI 53705, USA
| | - Kyle I Swanson
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53792, USA
| | - Lance T Hall
- Department of Radiology, University of Wisconsin, Madison, WI 53705, USA
| | - Jamey P Weichert
- Department of Radiology, University of Wisconsin, Madison, WI 53705, USA.,Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA
| | - John S Kuo
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53792, USA.,Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA
| |
Collapse
|
26
|
Hafeez BB, Meske L, Singh A, Singh A, Zhong W, Powers P, John M, Griep AE, Verma AK. Tissue-specific conditional PKCε knockout mice: a model to precisely reveal PKCε functional role in initiation, promotion and progression of cancer. Oncotarget 2016; 7:33069-80. [PMID: 27102301 PMCID: PMC5078076 DOI: 10.18632/oncotarget.8850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/27/2016] [Indexed: 11/25/2022] Open
Abstract
PKCε is a transforming oncogene and a predictive biomarker of various human cancers. However, a precise in vivo link of PKCε to cancer induction, progression and metastasis remain undefined. To achieve these goals, we generated tissue specific conditional PKCε knockout mice (PKCε-CKO) using cre-lox technology. Homozygous PKCεLoxP/LoxP mice have normal body weight and phenotype. To determine what effect loss of PKCε would have on the prostate, the PKCεLoxP/LoxP mice were bred to probasin cre (PB-Cre4+) mice which express cre specifically in the prostate epithelium of postnatal mice. Western blot and immunohistochemical analyses showed reduced levels of PKCε specifically in the prostate of PKCε-CKO mice. Histopathological analyses of prostate from both PKCεLoxP/LoxP and prostate PKCε-CKO mice showed normal pathology. To determine the functional impact of prostate specific deletion of PKCε on prostate tumor growth, we performed an orthotopic xenograft study. Transgenic adenocarcinoma of the mouse prostate (TRAMP) cells (TRAMPC1, 2×106) were implanted in the prostate of PKCε-CKO mice. Mice were sacrificed at 6th week post-implantation. Results demonstrated a significant (P<0.05) decrease in the growth of TRAMPC1 cells-derived xenograft tumors in PKCε-CKO mice compared to wild type. To determine a link of PKCε to ultraviolet radiation (UVR) exposure-induced epidermal Stat3 phosphorylation, PKCεLoxP/LoxP mice were bred to tamoxifen-inducible K14 Cre mice. PKCε deletion in the epidermis resulted in inhibition of UVR-induced Stat3 phosphorylation. In summary, our novel PKCεLoxP/LoxP mice will be useful for defining the link of PKCε to various cancers in specific organ, tissue, or cells.
Collapse
Affiliation(s)
- Bilal Bin Hafeez
- Department of Human Oncology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Louise Meske
- Department of Human Oncology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Ashok Singh
- Department of Human Oncology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Anupama Singh
- Department of Human Oncology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Weixiong Zhong
- Department of Pathology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Patricia Powers
- University of Wisconsin Biotechnology Center, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Manorama John
- University of Wisconsin Biotechnology Center, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Anne E Griep
- Department of Cell and Regenerative Biology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Ajit K Verma
- Department of Human Oncology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
27
|
Joshi G, Singh PK, Negi A, Rana A, Singh S, Kumar R. Growth factors mediated cell signalling in prostate cancer progression: Implications in discovery of anti-prostate cancer agents. Chem Biol Interact 2015; 240:120-33. [PMID: 26297992 DOI: 10.1016/j.cbi.2015.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/16/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
Abstract
Cancer is one of the leading causes of mortality amongst world's population, in which prostate cancer is one of the most encountered malignancies among men. Globally, it is the sixth leading cause of cancer-related death in men. Prostate cancer is more prevalent in the developed world and is increasing at alarming rates in the developing countries. Prostate cancer is mostly a very sluggish progressing disease, caused by the overproduction of steroidal hormones like dihydrotestosterone or due to over-expression of enzymes such as 5-α-reductase. Various studies have revealed that growth factors play a crucial role in the progression of prostate cancer as they act either by directly elevating the level of steroidal hormones or upregulating enzyme efficacy by the active feedback mechanism. Presently, treatment options for prostate cancer include radiotherapy, surgery and chemotherapy. If treatment is done with prevailing traditional chemotherapy; it leads to resistance and development of androgen-independent prostate cancer that further complicates the situation with no cure option left. The current review article is an attempt to cover and establish an understanding of some major signalling pathways intervened through survival factors (IGF-1R), growth factors (TGF-α, EGF), Wnt, Hedgehog, interleukin, cytokinins and death factor receptor which are frequently dysregulated in prostate cancer. This will enable the researchers to design and develop better therapeutic strategies targeting growth factors and their cross talks mediated prostate cancer cell signalling.
Collapse
Affiliation(s)
- Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Pankaj Kumar Singh
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Arvind Negi
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Anil Rana
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Sandeep Singh
- Centre for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Bathinda 151001, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India.
| |
Collapse
|
28
|
Gutierrez-Uzquiza A, Lopez-Haber C, Jernigan DL, Fatatis A, Kazanietz MG. PKCε Is an Essential Mediator of Prostate Cancer Bone Metastasis. Mol Cancer Res 2015; 13:1336-46. [PMID: 26023164 DOI: 10.1158/1541-7786.mcr-15-0111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED The bone is a preferred site for metastatic homing of prostate cancer cells. Once prostate cancer patients develop skeletal metastases, they eventually succumb to the disease; therefore, it is imperative to identify key molecular drivers of this process. This study examines the involvement of protein kinase C epsilon (PKCε), an oncogenic protein that is abnormally overexpressed in human tumor specimens and cell lines, on prostate cancer cell bone metastasis. PC3-ML cells, a highly invasive prostate cancer PC3 derivative with bone metastatic colonization properties, failed to induce skeletal metastatic foci upon inoculation into nude mice when PKCε expression was silenced using shRNA. Interestingly, while PKCε depletion had only marginal effects on the proliferative, adhesive, and migratory capacities of PC3-ML cells in vitro or in the growth of xenografts upon s.c. inoculation, it caused a significant reduction in cell invasiveness. Notably, PKCε was required for transendothelial cell migration (TEM) as well as for the growth of PC3-ML cells in a bone biomimetic environment. At a mechanistic level, PKCε depletion abrogates the expression of IL1β, a cytokine implicated in skeletal metastasis. Taken together, PKCε is a key factor for driving the formation of bone metastasis by prostate cancer cells and is a potential therapeutic target for advanced stages of the disease. IMPLICATIONS This study uncovers an important new function of PKCε in the dissemination of cancer cells to the bone; thus, highlighting the promising potential of this oncogenic kinase as a therapeutic target for skeletal metastasis.
Collapse
Affiliation(s)
- Alvaro Gutierrez-Uzquiza
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cynthia Lopez-Haber
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Danielle L Jernigan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania. Program in Biology of Prostate Cancer, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
29
|
Obis T, Besalduch N, Hurtado E, Nadal L, Santafe MM, Garcia N, Tomàs M, Priego M, Lanuza MA, Tomàs J. The novel protein kinase C epsilon isoform at the adult neuromuscular synapse: location, regulation by synaptic activity-dependent muscle contraction through TrkB signaling and coupling to ACh release. Mol Brain 2015; 8:8. [PMID: 25761522 PMCID: PMC4348107 DOI: 10.1186/s13041-015-0098-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/16/2015] [Indexed: 12/03/2022] Open
Abstract
Background Protein kinase C (PKC) regulates a variety of neural functions, including neurotransmitter release. Although various PKC isoforms can be expressed at the synaptic sites and specific cell distribution may contribute to their functional diversity, little is known about the isoform-specific functions of PKCs in neuromuscular synapse. The present study is designed to examine the location of the novel isoform nPKCε at the neuromuscular junction (NMJ), their synaptic activity-related expression changes, its regulation by muscle contraction, and their possible involvement in acetylcholine release. Results We use immunohistochemistry and confocal microscopy to demonstrate that the novel isoform nPKCε is exclusively located in the motor nerve terminals of the adult rat NMJ. We also report that electrical stimulation of synaptic inputs to the skeletal muscle significantly increased the amount of nPKCε isoform as well as its phosphorylated form in the synaptic membrane, and muscle contraction is necessary for these nPKCε expression changes. The results also demonstrate that synaptic activity-induced muscle contraction promotes changes in presynaptic nPKCε through the brain-derived neurotrophic factor (BDNF)-mediated tyrosine kinase receptor B (TrkB) signaling. Moreover, nPKCε activity results in phosphorylation of the substrate MARCKS involved in actin cytoskeleton remodeling and related with neurotransmission. Finally, blocking nPKCε with a nPKCε-specific translocation inhibitor peptide (εV1-2) strongly reduces phorbol ester-induced ACh release potentiation, which further indicates that nPKCε is involved in neurotransmission. Conclusions Together, these results provide a mechanistic insight into how synaptic activity-induced muscle contraction could regulate the presynaptic action of the nPKCε isoform and suggest that muscle contraction is an important regulatory step in TrkB signaling at the NMJ.
Collapse
Affiliation(s)
- Teresa Obis
- Unitat d'Histologia i Neurobiologia (UHN). Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| | - Núria Besalduch
- Unitat d'Histologia i Neurobiologia (UHN). Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHN). Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHN). Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| | - Manel M Santafe
- Unitat d'Histologia i Neurobiologia (UHN). Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN). Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHN). Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| | - Mercedes Priego
- Unitat d'Histologia i Neurobiologia (UHN). Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN). Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHN). Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| |
Collapse
|
30
|
Hafeez BB, Fischer JW, Singh A, Zhong W, Mustafa A, Meske L, Sheikhani MO, Verma AK. Plumbagin Inhibits Prostate Carcinogenesis in Intact and Castrated PTEN Knockout Mice via Targeting PKCε, Stat3, and Epithelial-to-Mesenchymal Transition Markers. Cancer Prev Res (Phila) 2015; 8:375-86. [PMID: 25627799 DOI: 10.1158/1940-6207.capr-14-0231] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/10/2015] [Indexed: 11/16/2022]
Abstract
Prostate cancer continues to remain the most common cancer and the second leading cause of cancer-related deaths in American males. The Pten deletions and/or mutations are frequently observed in both primary prostate cancers and metastatic prostate tissue samples. Pten deletion in prostate epithelium in mice results in prostatic intraepithelial neoplasia (PIN), followed by progression to invasive adenocarcinoma. The Pten conditional knockout mice [(Pten-loxp/loxp:PB-Cre4(+)) (Pten-KO)] provide a unique preclinical model to evaluate agents for efficacy for both the prevention and treatment of prostate cancer. We present here for the first time that dietary plumbagin, a medicinal plant-derived naphthoquinone (200 or 500 ppm) inhibits tumor development in intact as well as castrated Pten-KO mice. Plumbagin has shown no signs of toxicity at either of these doses. Plumbagin treatment resulted in a decrease expression of PKCε, AKT, Stat3, and COX2 compared with the control mice. Plumbagin treatment also inhibited the expression of vimentin and slug, the markers of epithelial-to-mesenchymal transition (EMT) in prostate tumors. In summary, the results indicate that dietary plumbagin inhibits growth of both primary and castration-resistant prostate cancer (CRPC) in Pten-KO mice, possibly via inhibition of PKCε, Stat3, AKT, and EMT markers (vimentin and slug), which are linked to the induction and progression of prostate cancer.
Collapse
Affiliation(s)
- Bilal Bin Hafeez
- Department of Human Oncology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.
| | - Joseph W Fischer
- Department of Human Oncology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Ashok Singh
- Department of Human Oncology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Weixiong Zhong
- Department of Pathology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Ala Mustafa
- Department of Human Oncology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Louise Meske
- Department of Human Oncology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Mohammad Ozair Sheikhani
- Department of Human Oncology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Ajit Kumar Verma
- Department of Human Oncology, Wisconsin Institute for Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
31
|
Garg R, Benedetti LG, Abera MB, Wang H, Abba M, Kazanietz MG. Protein kinase C and cancer: what we know and what we do not. Oncogene 2014; 33:5225-37. [PMID: 24336328 DOI: 10.1038/onc.2013.524] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/20/2013] [Accepted: 10/20/2013] [Indexed: 02/08/2023]
Abstract
Since their discovery in the late 1970s, protein kinase C (PKC) isozymes represent one of the most extensively studied signaling kinases. PKCs signal through multiple pathways and control the expression of genes relevant for cell cycle progression, tumorigenesis and metastatic dissemination. Despite the vast amount of information concerning the mechanisms that control PKC activation and function in cellular models, the relevance of individual PKC isozymes in the progression of human cancer is still a matter of controversy. Although the expression of PKC isozymes is altered in multiple cancer types, the causal relationship between such changes and the initiation and progression of the disease remains poorly defined. Animal models developed in the last years helped to better understand the involvement of individual PKCs in various cancer types and in the context of specific oncogenic alterations. Unraveling the enormous complexity in the mechanisms by which PKC isozymes have an impact on tumorigenesis and metastasis is key for reassessing their potential as pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- R Garg
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L G Benedetti
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M B Abera
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Wang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M G Kazanietz
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Hodgson MC, Deryugina EI, Suarez E, Lopez SM, Lin D, Xue H, Gorlov IP, Wang Y, Agoulnik IU. INPP4B suppresses prostate cancer cell invasion. Cell Commun Signal 2014. [PMID: 25248616 DOI: 10.1186/preaccept-2663637391256502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND INPP4B and PTEN dual specificity phosphatases are frequently lost during progression of prostate cancer to metastatic disease. We and others have previously shown that loss of INPP4B expression correlates with poor prognosis in multiple malignancies and with metastatic spread in prostate cancer. RESULTS We demonstrate that de novo expression of INPP4B in highly invasive human prostate carcinoma PC-3 cells suppresses their invasion both in vitro and in vivo. Using global gene expression analysis, we found that INPP4B regulates a number of genes associated with cell adhesion, the extracellular matrix, and the cytoskeleton. Importantly, de novo expressed INPP4B suppressed the proinflammatory chemokine IL-8 and induced PAK6. These genes were regulated in a reciprocal manner following downregulation of INPP4B in the independently derived INPP4B-positive LNCaP prostate cancer cell line. Inhibition of PI3K/Akt pathway, which is highly active in both PC-3 and LNCaP cells, did not reproduce INPP4B mediated suppression of IL-8 mRNA expression in either cell type. In contrast, inhibition of PKC signaling phenocopied INPP4B-mediated inhibitory effect on IL-8 in either prostate cancer cell line. In PC-3 cells, INPP4B overexpression caused a decline in the level of metastases associated BIRC5 protein, phosphorylation of PKC, and expression of the common PKC and IL-8 downstream target, COX-2. Reciprocally, COX-2 expression was increased in LNCaP cells following depletion of endogenous INPP4B. CONCLUSION Taken together, we discovered that INPP4B is a novel suppressor of oncogenic PKC signaling, further emphasizing the role of INPP4B in maintaining normal physiology of the prostate epithelium and suppressing metastatic potential of prostate tumors.
Collapse
|
33
|
Abstract
Background INPP4B and PTEN dual specificity phosphatases are frequently lost during progression of prostate cancer to metastatic disease. We and others have previously shown that loss of INPP4B expression correlates with poor prognosis in multiple malignancies and with metastatic spread in prostate cancer. Results We demonstrate that de novo expression of INPP4B in highly invasive human prostate carcinoma PC-3 cells suppresses their invasion both in vitro and in vivo. Using global gene expression analysis, we found that INPP4B regulates a number of genes associated with cell adhesion, the extracellular matrix, and the cytoskeleton. Importantly, de novo expressed INPP4B suppressed the proinflammatory chemokine IL-8 and induced PAK6. These genes were regulated in a reciprocal manner following downregulation of INPP4B in the independently derived INPP4B-positive LNCaP prostate cancer cell line. Inhibition of PI3K/Akt pathway, which is highly active in both PC-3 and LNCaP cells, did not reproduce INPP4B mediated suppression of IL-8 mRNA expression in either cell type. In contrast, inhibition of PKC signaling phenocopied INPP4B-mediated inhibitory effect on IL-8 in either prostate cancer cell line. In PC-3 cells, INPP4B overexpression caused a decline in the level of metastases associated BIRC5 protein, phosphorylation of PKC, and expression of the common PKC and IL-8 downstream target, COX-2. Reciprocally, COX-2 expression was increased in LNCaP cells following depletion of endogenous INPP4B. Conclusion Taken together, we discovered that INPP4B is a novel suppressor of oncogenic PKC signaling, further emphasizing the role of INPP4B in maintaining normal physiology of the prostate epithelium and suppressing metastatic potential of prostate tumors. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0061-y) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Liu Y, Yuan J, Tan T, Jia W, Lugea A, Mareninova O, Waldron RT, Pandol SJ. Genetic inhibition of protein kinase Cε attenuates necrosis in experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G550-63. [PMID: 25035113 PMCID: PMC4154116 DOI: 10.1152/ajpgi.00432.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Understanding the regulation of death pathways, necrosis and apoptosis, in pancreatitis is important for developing therapies directed to the molecular pathogenesis of the disease. Protein kinase Cε (PKCε) has been previously shown to regulate inflammatory responses and zymogen activation in pancreatitis. Furthermore, we demonstrated that ethanol specifically activated PKCε in pancreatic acinar cells and that PKCε mediated the sensitizing effects of ethanol on inflammatory response in pancreatitis. Here we investigated the role of PKCε in the regulation of death pathways in pancreatitis. We found that genetic deletion of PKCε resulted in decreased necrosis and severity in the in vivo cerulein-induced pancreatitis and that inhibition of PKCε protected the acinar cells from CCK-8 hyperstimulation-induced necrosis and ATP reduction. These findings were associated with upregulation of mitochondrial Bak and Bcl-2/Bcl-xL, proapoptotic and prosurvival members in the Bcl-2 family, respectively, as well as increased mitochondrial cytochrome c release, caspase activation, and apoptosis in pancreatitis in PKCε knockout mice. We further confirmed that cerulein pancreatitis induced a dramatic mitochondrial translocation of PKCε, suggesting that PKCε regulated necrosis in pancreatitis via mechanisms involving mitochondria. Finally, we showed that PKCε deletion downregulated inhibitors of apoptosis proteins, c-IAP2, survivin, and c-FLIPs while promoting cleavage/inactivation of receptor-interacting protein kinase (RIP). Taken together, our findings provide evidence that PKCε activation during pancreatitis promotes necrosis through mechanisms involving mitochondrial proapoptotic and prosurvival Bcl-2 family proteins and upregulation of nonmitochondrial pathways that inhibit caspase activation and RIP cleavage/inactivation. Thus PKCε is a potential target for prevention and/or treatment of acute pancreatitis.
Collapse
Affiliation(s)
- Yannan Liu
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,2Beijing Hospital, Beijing, China,
| | - Jingzhen Yuan
- Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California;
| | - Tanya Tan
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,3St. George's University School of Medicine, St. George's, Grenada; and
| | - Wenzhuo Jia
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,2Beijing Hospital, Beijing, China,
| | - Aurelia Lugea
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,4Cedars-Sinai Medical Center, Los Angeles, California
| | - Olga Mareninova
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California;
| | - Richard T. Waldron
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,4Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen J. Pandol
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,4Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
35
|
Mencalha AL, Corrêa S, Abdelhay E. Role of calcium-dependent protein kinases in chronic myeloid leukemia: combined effects of PKC and BCR-ABL signaling on cellular alterations during leukemia development. Onco Targets Ther 2014; 7:1247-54. [PMID: 25045273 PMCID: PMC4099416 DOI: 10.2147/ott.s64303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Calcium-dependent protein kinases (PKCs) function in a myriad of cellular processes, including cell-cycle regulation, proliferation, hematopoietic stem cell differentiation, apoptosis, and malignant transformation. PKC inhibitors, when targeted to these pathways, have demonstrated efficacy against several types of solid tumors as well as leukemia. Chronic myeloid leukemia (CML) represents 20% of all adult leukemia. The aberrant Philadelphia chromosome has been reported as the main cause of CML development in hematopoietic stem cells, due to the formation of the BCR-ABL oncogene. PKCs and BCR-ABL coordinate several signaling pathways that are crucial to cellular malignant transformation. Experimental and clinical evidence suggests that pharmacological approaches using PKC inhibitors may be effective in the treatment of CML. This mini review summarizes articles from the National Center for Biotechnology Information website that have shown evidence of the involvement of PKC in CML.
Collapse
Affiliation(s)
- André L Mencalha
- Biophysics and Biometry Department, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro's State University (UERJ), Rio de Janeiro, Brazil
| | - Stephany Corrêa
- Bone Marrow Transplantation Unit (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Bone Marrow Transplantation Unit (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Knockdown of PKCε Expression Inhibits Growth, Induces Apoptosis and Decreases Invasiveness of Human Glioma Cells Partially Through Stat3. J Mol Neurosci 2014; 55:21-31. [DOI: 10.1007/s12031-014-0341-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
|
37
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
38
|
Tan B, Tan J, Du H, Quan Z, Xu X, Jiang X, Luo C, Wu X. HepaCAM inhibits clear cell renal carcinoma 786-0 cell proliferation via blocking PKCε translocation from cytoplasm to plasma membrane. Mol Cell Biochem 2014; 391:95-102. [PMID: 24515280 DOI: 10.1007/s11010-014-1991-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/29/2014] [Indexed: 01/01/2023]
Abstract
Hepatocyte cell adhesion molecule (HepaCAM) plays a crucial role in tumor progression and has been recognized as a novel tumor suppressor gene. The high protein expression level of protein kinase Cε (PKCε) has been discovered in many tumor types. In the present study, we determined HepaCAM and PKCε protein levels in human clear cell renal cell carcinoma (ccRCC) tissues and analyzed the correlation between them. We observed an inverse relationship in the expression of HepaCAM and PKCε in ccRCC and adjacent normal tissues. In ccRCC tissue, HepaCAM expression was undetectable while PKCε expression was high; the opposite was found in the adjacent normal tissue. Western blot analysis demonstrated that PKCε cytosolic protein levels increased while plasma membrane protein levels decreased without any change in total protein following infection of the ccRCC cell line 786-0 with adenovirus-GFP-HepaCAM (Ad-GFP-HepaCAM). Moreover, the application of Ad-GFP-HepaCAM combined with a PKCε-specific translocation inhibitor (εV1-2) effectively inhibited 786-0 cell growth. Ad-mediated expression of HepaCAM in 786-0 cells reduced the levels of phosphorylated AKT and cyclin D1 and inhibited cell proliferation. In summary, our studies point to interesting connections between HepaCAM and PKCε in tissues and in vitro. HepaCAM may prevent the translocation of PKCε from cytosolic to particulate fractions, resulting in the inhibition of 786-0 cell proliferation. Therapeutic manipulation of these novel protein targets may provide new ways of treating ccRCC.
Collapse
Affiliation(s)
- Bing Tan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Shiota M, Yokomizo A, Takeuchi A, Imada K, Kashiwagi E, Song Y, Inokuchi J, Tatsugami K, Uchiumi T, Naito S. Inhibition of protein kinase C/Twist1 signaling augments anticancer effects of androgen deprivation and enzalutamide in prostate cancer. Clin Cancer Res 2013; 20:951-61. [PMID: 24352647 DOI: 10.1158/1078-0432.ccr-13-1809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The progression of prostate cancer to metastatic and castration-resistant disease represents a critical step. We previously showed that the transcription factor Twist1, which promotes epithelial-mesenchymal transition, was involved in castration-resistant progression. Similarly, protein kinase C (PKC) has been implicated in both metastatic progression and castration resistance in prostate cancer. EXPERIMENTAL DESIGN In this study, we aimed to elucidate the role of PKC/Twist1 signaling in castration resistance, and to apply this information to the development of a novel therapeutic concept using PKC inhibitor Ro31-8220 against prostate cancer using various prostate cancer cell lines. RESULTS Androgen deprivation and the next-generation antiandrogen enzalutamide induced PKC activation and Twist1 expression, which were reversed by the PKC inhibitor Ro31-8220. Ro31-8220 suppressed cell proliferation in androgen-dependent prostate cancer LNCaP cells, which was augmented by its combination with androgen deprivation or enzalutamide. The favorable anticancer effects of the combination of Ro31-8220 and enzalutamide were also observed in castration-resistant C4-2 and 22Rv1 cells. Furthermore, PKC phosphorylation was elevated in castration-resistant and enzalutamide-resistant cells compared with their parental cells, leading to persistent sensitivity to Ro-31-8220 in castration- and enzalutamide-resistant cells. CONCLUSIONS Taken together, these findings indicate that PKC/Twist1 signaling contributes to castration resistance as well as enzalutamide resistance in prostate cancer, and suggest that therapeutics targeting PKC/Twist1 signaling, such as PKC inhibitors, represent a promising novel therapeutic strategy for prostate cancer, especially castration-resistant prostate cancer, when combined with enzalutamide.
Collapse
Affiliation(s)
- Masaki Shiota
- Authors' Affiliations: Departments of Urology and Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Wood TR, Chow RY, Hanes CM, Zhang X, Kashiwagi K, Shirai Y, Trebak M, Loegering DJ, Saito N, Lennartz MR. PKC-ε pseudosubstrate and catalytic activity are necessary for membrane delivery during IgG-mediated phagocytosis. J Leukoc Biol 2013; 94:109-22. [PMID: 23670290 DOI: 10.1189/jlb.1212634] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In RAW 264.7 cells, PKC-ε regulates FcγR-mediated phagocytosis. BMDM behave similarly; PKC-ε concentrates at phagosomes and internalization are reduced in PKC-ε⁻/⁻ cells. Two questions were asked: what is the role of PKC-ε? and what domains are necessary for PKC-ε concentration? Function was studied using BMDM and frustrated phagocytosis. On IgG surfaces, PKC-ε⁻/⁻ macrophages spread less than WT. Patch-clamping revealed that the spreading defect is a result of the failure of PKC-ε⁻/⁻ macrophages to add membrane. The defect is specific for FcγR ligation and can be reversed by expression of full-length (but not the isolated RD) PKC-ε in PKC-ε⁻/⁻ BMDM. Thus, PKC-ε function in phagocytosis requires translocation to phagosomes and the catalytic domain. The expression of chimeric PKC molecules in RAW cells identified the εPS as necessary for PKC-ε targeting. When placed into (nonlocalizing) PKC-δ, εPS was sufficient for concentration, albeit to a lesser degree than intact PKC-ε. In contrast, translocation of δ(εPSC1B) resembled that of WT PKC-ε. Thus, εPS and εC1B cooperate for optimal phagosome targeting. Finally, cells expressing εK437W were significantly less phagocytic than their PKC-ε-expressing counterparts, blocked at the pseudopod-extension phase. In summary, we have shown that εPS and εC1B are necessary and sufficient for targeting PKC-ε to phagosomes, where its catalytic activity is required for membrane delivery and pseudopod extension.
Collapse
Affiliation(s)
- Tiffany R Wood
- Centers for Cell Biology and Cancer Researchnces, Albany Medical College, Albany, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Protein kinase C epsilon and genetic networks in osteosarcoma metastasis. Cancers (Basel) 2013; 5:372-403. [PMID: 24216982 PMCID: PMC3730329 DOI: 10.3390/cancers5020372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the bone, and pulmonary metastasis is the most frequent cause of OS mortality. The aim of this study was to discover and characterize genetic networks differentially expressed in metastatic OS. Expression profiling of OS tumors, and subsequent supervised network analysis, was performed to discover genetic networks differentially activated or organized in metastatic OS compared to localized OS. Broad trends among the profiles of metastatic tumors include aberrant activity of intracellular organization and translation networks, as well as disorganization of metabolic networks. The differentially activated PRKCε-RASGRP3-GNB2 network, which interacts with the disorganized DLG2 hub, was also found to be differentially expressed among OS cell lines with differing metastatic capacity in xenograft models. PRKCε transcript was more abundant in some metastatic OS tumors; however the difference was not significant overall. In functional studies, PRKCε was not found to be involved in migration of M132 OS cells, but its protein expression was induced in M112 OS cells following IGF-1 stimulation.
Collapse
|
43
|
p120 catenin is a key effector of a Ras-PKCɛ oncogenic signaling axis. Oncogene 2013; 33:1385-94. [PMID: 23542175 DOI: 10.1038/onc.2013.91] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 12/18/2022]
Abstract
Within the family of protein kinase C (PKC) molecules, the novel isoform PRKCE (PKCɛ) acts as a bona fide oncogene in in vitro and in vivo models of tumorigenesis. Previous studies have reported expression of PKCɛ in breast, prostate and lung tumors above that of normal adjacent tissue. Data from the cancer genome atlas suggest increased copy number of PRKCE in triple negative breast cancer (TNBC). We find that overexpression of PKCɛ in a non-tumorigenic breast epithelial cell line is sufficient to overcome contact inhibition and results in the formation of cellular foci. Correspondingly, inhibition of PKCɛ in a TNBC cell model results in growth defects in two-dimensional (2D) and three-dimensional (3D) culture conditions and orthotopic xenografts. Using stable isotope labeling of amino acids in a cell culture phosphoproteomic approach, we find that CTNND1/p120ctn phosphorylation at serine 268 (P-S268) occurs in a strictly PKCɛ-dependent manner, and that loss of PKCɛ signaling in TNBC cells leads to reversal of mesenchymal morphology and signaling. In a model of Ras activation, inhibition of PKCɛ is sufficient to block mesenchymal cell morphology. Finally, treatment with a PKCɛ ATP mimetic inhibitor, PF-5263555, recapitulates genetic loss of function experiments impairing p120ctn phosphorylation as well as compromising TNBC cell growth in vitro and in vivo. We demonstrate PKCɛ as a tractable therapeutic target for TNBC, where p120ctn phosphorylation may serve as a readout for monitoring patient response.
Collapse
|
44
|
Song X, Wang M, Zhang L, Zhang J, Wang X, Liu W, Gu X, Lv C. Changes in cell ultrastructure and inhibition of JAK1/STAT3 signaling pathway in CBRH-7919 cells with astaxanthin. Toxicol Mech Methods 2013; 22:679-86. [PMID: 22889354 DOI: 10.3109/15376516.2012.717119] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Astaxanthin (AST), a xanthophylls carotenoid, possesses significant anticancer effects. However, to date, the molecular mechanism of anticancer remains unclear. In the present research, we studied the anticancer mechanism of AST, including the changes in cell ultrastructure, such as the mitochondrion, rough endoplasmic reticulum (RER), Golgi complex, and cytoskeleton, the inhibition of Janus kinase 1(JAK1)/transduction and the activators of the transcription-3 (STAT3) signaling pathway using rat hepatocellular carcinoma CBRH-7919 cells. Cell apoptosis was evaluated and the expressions of JAK1, STAT3, non-metastasis23-1 (nm23-1), and apoptotic gene like B-cell lymphoma/leukemia-2 (bcl-2), B-cell lymphoma-extra large (bcl-xl), proto-oncogene proteins c myc (c-myc) and bcl-2- associated X (bax) were also examined. The results showed that AST could induce cancer cell apoptosis. Under transmission electron microscope, the ultrastructure of treated cells were not clearly distinguishable, the membranes of the mitochondrion, RER, Golgi complex were broken or loosened, and the endoplasmic reticulum (ER) was degranulated. Cytoskeleton depolymerization of the microtubule system led to the collapse of extended vimentin intermediate filament bundles into short agglomerations with disordered distributions. AST inhibited the expression of STAT3, its upstream activator JAK1, and the STAT3 target antiapoptotic genes bcl-2, bcl-xl, and c-myc. Conversely, AST enhanced the expressions of nm23-1 and bax. Overall, our findings demonstrate that AST could induce the apoptosis of CBRH-7919 cells, which are involved in cell ultrastructure and the JAK1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiaodong Song
- Medicine Research Center, Binzhou Medical University, Yantai, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Plumbagin, a medicinal plant (Plumbago zeylanica)-derived 1,4-naphthoquinone, inhibits growth and metastasis of human prostate cancer PC-3M-luciferase cells in an orthotopic xenograft mouse model. Mol Oncol 2012; 7:428-39. [PMID: 23273564 DOI: 10.1016/j.molonc.2012.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 01/06/2023] Open
Abstract
We present here first time that Plumbagin (PL), a medicinal plant-derived 1,4-naphthoquinone, inhibits the growth and metastasis of human prostate cancer (PCa) cells in an orthotopic xenograft mouse model. In this study, human PCa PC-3M-luciferase cells (2 × 10(6)) were injected into the prostate of athymic nude mice. Three days post cell implantation, mice were treated with PL (2 mg/kg body wt. i.p. five days in a week) for 8 weeks. Growth and metastasis of PC-3M-luciferase cells was examined weekly by bioluminescence imaging of live mice. PL-treatment significantly (p = 0.0008) inhibited the growth of orthotopic xenograft tumors. Results demonstrated a significant inhibition of metastasis into liver (p = 0.037), but inhibition of metastasis into the lungs (p = 0.60) and lymph nodes (p = 0.27) was not observed to be significant. These results were further confirmed by histopathology of these organs. Results of histopathology demonstrated a significant inhibition of metastasis into lymph nodes (p = 0.034) and lungs (p = 0.028), and a trend to significance in liver (p = 0.075). None of the mice in the PL-treatment group showed PCa metastasis into the liver, but these mice had small metastasis foci into the lymph nodes and lungs. However, control mice had large metastatic foci into the lymph nodes, lungs, and liver. PL-caused inhibition of the growth and metastasis of PC-3M cells accompanies inhibition of the expression of: 1) PKCε, pStat3Tyr705, and pStat3Ser727, 2) Stat3 downstream target genes (survivin and Bcl(xL)), 3) proliferative markers Ki-67 and PCNA, 4) metastatic marker MMP9, MMP2, and uPA, and 5) angiogenesis markers CD31 and VEGF. Taken together, these results suggest that PL inhibits tumor growth and metastasis of human PCa PC3-M-luciferase cells, which could be used as a therapeutic agent for the prevention and treatment of human PCa.
Collapse
|
46
|
Garg R, Blando J, Perez CJ, Wang H, Benavides FJ, Kazanietz MG. Activation of nuclear factor κB (NF-κB) in prostate cancer is mediated by protein kinase C epsilon (PKCepsilon). J Biol Chem 2012; 287:37570-82. [PMID: 22955280 DOI: 10.1074/jbc.m112.398925] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein kinase C ε (PKCε) has emerged as an oncogenic kinase and plays important roles in cell survival, mitogenesis and invasion. PKCε is up-regulated in most epithelial cancers, including prostate, breast, and lung cancer. Here we report that PKCε is an essential mediator of NF-κB activation in prostate cancer cells. A strong correlation exists between PKCε overexpression and NF-κB activation status in prostate cancer cells. Moreover, transgenic overexpression of PKCε in the mouse prostate causes preneoplastic lesions that display significant NF-κB hyperactivation. PKCε RNAi depletion or inhibition in prostate cancer cells diminishes NF-κB translocation to the nucleus with subsequent impairment of both activation of NF-κB transcription and induction of NF-κB responsive genes in response to the proinflammatory cytokine tumor necrosis factor α (TNFα). On the other hand, PKCε overexpression in normal prostate cells enhances activation of the NF-κB pathway. A mechanistic analysis revealed that TNFα activates PKCε via a C1 domain/diacylglycerol-dependent mechanism that involves phosphatidylcholine-phospholipase C. Moreover, PKCε facilitates the assembly of the TNF receptor-I signaling complex to trigger NF-κB activation. Our studies identified a molecular link between PKCε and NF-κB that controls key responses implicated in prostate cancer progression.
Collapse
Affiliation(s)
- Rachana Garg
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hafeez BB, Zhong W, Mustafa A, Fischer JW, Witkowsky O, Verma AK. Plumbagin inhibits prostate cancer development in TRAMP mice via targeting PKCε, Stat3 and neuroendocrine markers. Carcinogenesis 2012; 33:2586-92. [PMID: 22976928 DOI: 10.1093/carcin/bgs291] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plumbagin (PL), 5-hydroxy-2-methyl-1,4-naphthoquinone, is a quinoid constituent isolated from the roots of the medicinal plant Plumbago zeylanica L. (also known as chitrak). PL has also been found in Juglans regia (English Walnut), Juglans cinerea (whitenut) and Juglans nigra (blacknut). The roots of P. zeylanica have been used in Indian and Chinese systems of medicine for more than 2500 years for the treatment of various types of ailments. We were the first to report that PL inhibits the growth and invasion of hormone refractory prostate cancer (PCa) cells [Aziz,M.H. et al. (2008) Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res., 68, 9024-9032.]. Now, we present that PL inhibits in vivo PCa development in the transgenic adenocarcinoma of mouse prostate (TRAMP). PL treatment (2 mg/kg body weight i.p. in 0.2 ml phosphate-buffered saline, 5 days a week) to FVB-TRAMP resulted in a significant (P < 0.01) decrease in prostate tumor size and urogenital apparatus weights at 13 and 20 weeks. Histopathological analysis revealed that PL treatment inhibited progression of prostatic intraepithelial neoplasia (PIN) to poorly differentiated carcinoma (PDC). No animal exhibited diffuse tumor formation in PL-treated group at 13 weeks, whereas 75% of the vehicle-treated mice elicited diffuse PIN and large PDC at this stage. At 20 weeks, 25% of the PL-treated animals demonstrated diffuse PIN and 75% developed small PDC, whereas 100% of the vehicle-treated mice showed large PDC. PL treatment inhibited expression of protein kinase C epsilon (PKCε), signal transducers and activators of transcription 3 phosphorylation, proliferating cell nuclear antigen and neuroendocrine markers (synaptophysin and chromogranin-A) in excised prostate tumor tissues. Taken together, these results further suggest PL could be a novel chemopreventive agent against PCa.
Collapse
Affiliation(s)
- Bilal Bin Hafeez
- Department of Human Oncology, Wisconsin Institute of Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Inoue T, Ogawa O. Role of signaling transduction pathways in development of castration-resistant prostate cancer. Prostate Cancer 2011; 2011:647987. [PMID: 22110995 PMCID: PMC3197001 DOI: 10.1155/2011/647987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/09/2011] [Indexed: 12/16/2022] Open
Abstract
Almost all patients who succumb to prostate cancer die of metastatic castration-resistant disease. Although docetaxel is the standard treatment for this disease and is associated with modest prolongation of survival, there is an urgent need for novel treatments for castration-resistant prostate cancer (CRPC). Great advances in our understanding of the biological and molecular mechanisms of prostate cancer progression have resulted in many clinical trials of numerous targeted therapies. In this paper, we review mechanisms of CRPC development, with particular focus on recent advances in the understanding of specific intracellular signaling pathways participating in the proliferation of CRPC cells.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
49
|
Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 2011; 68:3033-46. [PMID: 21637948 PMCID: PMC3162105 DOI: 10.1007/s00018-011-0735-1] [Citation(s) in RCA: 1074] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 02/06/2023]
Abstract
Vimentin, a major constituent of the intermediate filament family of proteins, is ubiquitously expressed in normal mesenchymal cells and is known to maintain cellular integrity and provide resistance against stress. Vimentin is overexpressed in various epithelial cancers, including prostate cancer, gastrointestinal tumors, tumors of the central nervous system, breast cancer, malignant melanoma, and lung cancer. Vimentin's overexpression in cancer correlates well with accelerated tumor growth, invasion, and poor prognosis; however, the role of vimentin in cancer progression remains obscure. In recent years, vimentin has been recognized as a marker for epithelial-mesenchymal transition (EMT). Although EMT is associated with several tumorigenic events, vimentin's role in the underlying events mediating these processes remains unknown. By virtue of its overexpression in cancer and its association with tumor growth and metastasis, vimentin serves as an attractive potential target for cancer therapy; however, more research would be crucial to evaluate its specific role in cancer. Our recent discovery of a vimentin-binding mini-peptide has generated further impetus for vimentin-targeted tumor-specific therapy. Furthermore, research directed toward elucidating the role of vimentin in various signaling pathways would reveal new approaches for the development of therapeutic agents. This review summarizes the expression and functions of vimentin in various types of cancer and suggests some directions toward future cancer therapy utilizing vimentin as a potential molecular target.
Collapse
Affiliation(s)
- Arun Satelli
- Department of Pediatrics, Unit 853, The University of Texas MD Anderson Cancer Center, 1515 Holocombe Blvd, Houston, TX 77030 USA
| | - Shulin Li
- Department of Pediatrics, Unit 853, The University of Texas MD Anderson Cancer Center, 1515 Holocombe Blvd, Houston, TX 77030 USA
- UTMD, Graduate School of Biomedical Science, Houston, TX 77030 USA
| |
Collapse
|
50
|
Sarveswaran S, Thamilselvan V, Brodie C, Ghosh J. Inhibition of 5-lipoxygenase triggers apoptosis in prostate cancer cells via down-regulation of protein kinase C-epsilon. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2108-17. [PMID: 21824498 DOI: 10.1016/j.bbamcr.2011.07.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 12/31/2022]
Abstract
Previous studies have shown that human prostate cancer cells constitutively generate 5-lipoxygenase (5-LOX) metabolites from arachidonic acid, and inhibition of 5-LOX blocks production of 5-LOX metabolites and triggers apoptosis in prostate cancer cells. This apoptosis is prevented by exogenous metabolites of 5-LOX, suggesting an essential role of 5-LOX metabolites in the survival of prostate cancer cells. However, downstream signaling mechanisms which mediate the survival-promoting effects of 5-LOX metabolites in prostate cancer cells are still unknown. Recently, we reported that MK591, a specific inhibitor of 5-LOX activity, induces apoptosis in prostate cancer cells without inhibition of Akt, or ERK, two well-characterized regulators of pro-survival mechanisms, suggesting the existence of an Akt and ERK-independent survival mechanism in prostate cancer cells regulated by 5-LOX. Here, we report that 5-LOX inhibition-induced apoptosis in prostate cancer cells occurs via rapid inactivation of protein kinase C-epsilon (PKCε), and that exogenous 5-LOX metabolites prevent both 5-LOX inhibition-induced down-regulation of PKCε and induction of apoptosis. Interestingly, pre-treatment of prostate cancer cells with diazoxide (a chemical activator of PKCε), or KAE1-1 (a cell-permeable, octa-peptide specific activator of PKCε) prevents 5-LOX inhibition-induced apoptosis, which indicates that inhibition of 5-LOX triggers apoptosis in prostate cancer cells via down-regulation of PKCε. Altogether, these findings suggest that metabolism of arachidonic acid by 5-LOX activity promotes survival of prostate cancer cells via signaling through PKCε, a pro-survival serine/threonine kinase.
Collapse
|