1
|
Shu L, Lin S, Zhou S, Yuan T. Glycan-Lectin interactions between platelets and tumor cells drive hematogenous metastasis. Platelets 2024; 35:2315037. [PMID: 38372252 DOI: 10.1080/09537104.2024.2315037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Glycosylation is a ubiquitous cellular or microenvironment-specific post-translational modification that occurs on the surface of normal cells and tumor cells. Tumor cell-associated glycosylation is involved in hematogenous metastasis. A wide variety of tumors undergo aberrant glycosylation to interact with platelets. As platelets have many opportunities to engage circulating tumor cells, they represent an important avenue into understanding the role glycosylation plays in tumor metastasis. Platelet involvement in tumor metastasis is evidenced by observations that platelets protect tumor cells from damaging shear forces and immune system attack, aid metastasis through the endothelium at specific sites, and facilitate tumor survival and colonization. During platelet-tumor-cell interactions, many opportunities for glycan-ligand binding emerge. This review integrates the latest information about glycans, their ligands, and how they mediate platelet-tumor interactions. We also discuss adaptive changes that tumors undergo upon glycan-lectin binding and the impact glycans have on targeted therapeutic strategies for treating tumors in clinical settings.
Collapse
Affiliation(s)
- Longqiang Shu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanyi Lin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, Peking University People's Hospital, Beijing, China
| | - Shumin Zhou
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Taha SR, Boulos F. E-cadherin staining in the diagnosis of lobular versus ductal neoplasms of the breast: the emperor has no clothes. Histopathology 2024. [PMID: 39138705 DOI: 10.1111/his.15295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Categorizing breast neoplasia as ductal or lobular is a daily exercise that relies on a combination of histologic and immunohistochemical tools. The historically robust link between loss of the E-cadherin molecule and lobular neoplasia has rendered staining for E-cadherin by immunohistochemistry a staple of this diagnostic process. Unfortunately, discordances between E-cadherin expression and histomorphology, and variations in E-cadherin staining patterns and intensities abound in clinical practice, but are often neglected in favour of a binary interpretation of the E-cadherin result. In this article, we highlight the complexities of E-cadherin expression through a review of the E-cadherin protein and its associated gene (CDH1), the mechanisms leading to aberrant/absent E-cadherin expression, and the implications of these factors on the reliability of the E-cadherin immunohistochemical stain in the classification of ductal versus lobular mammary neoplasia.
Collapse
Affiliation(s)
- Seyed R Taha
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fouad Boulos
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Lan ZZ, Sun FH, Chen C, Niu L, Shi JD, Zhang WY. CircPRDM5 inhibits the proliferation, migration, invasion, and glucose metabolism of gastric cancer cells by reducing GCNT4 expression in a miR-485-3p-dependent manner. Kaohsiung J Med Sci 2024; 40:231-243. [PMID: 38180297 DOI: 10.1002/kjm2.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
Circular RNA (circRNA) plays a key part in the pathological process of gastric cancer (GC). The study is organized to analyze the function of circPRDM5 in GC cell tumor properties. Expression levels of circPRDM5, miR-485-3p, glucosaminyl (N-acetyl) transferase 4 (GCNT4), ki67, E-cadherin, N-cadherin, and hexokinase 2 (HK2) were analyzed by quantitative real-time polymerase chain reaction (PCR), Western blotting or immunohistochemistry assay. Cell proliferation was assessed by cell colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration and invasion were investigated by transwell assay. Glycolysis was evaluated by the Seahorse XF Glycolysis Stress Test Kit. Dual-luciferase reporter assay and RNA pull-down assay were performed to identify the associations among circPRDM5, miR-485-3p, and GCNT4. Xenograft mouse model assay was conducted to determine the effects of circPRDM5 on tumor formation in vivo. CircPRDM5 and GCNT4 expression were downregulated, while miR-485-3p expression was upregulated in GC tissues and cells when compared with paracancerous tissues or human gastric epithelial cells. CircPRDM5 overexpression inhibited proliferation, migration, invasion, and glucose metabolism of GC cells; however, circPRDM5 depletion had the opposite effects. CircPRDM5 repressed tumor properties of GC cells in vivo. MiR-485-3p restoration relieved circPRDM5-induced effects in GC cells. GCNT4 overexpression remitted the promoting effects of miR-485-3p mimics on GC cell malignancy. CircPRDM5 acted as a sponge for miR-485-3p, and GCNT4 was identified as a target gene of miR-485-3p. Moreover, circPRDM5 regulated GCNT4 expression by interacting with miR-485-3p.CircPRDM5 acted as a miR-485-3p sponge to inhibit GC progression by increasing GCNT4 expression, proving a potential target for GC therapy.
Collapse
Affiliation(s)
- Zhang-Zhang Lan
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Feng-Hua Sun
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chuan Chen
- Department of Research and Development, Shenzhen Cheerland Biotechnology Co., Ltd, Shenzhen, China
| | - Li Niu
- Department of Research and Development, CheerLand Clinical Laboratory Co., Ltd, Shenzhen, China
| | - Jing-Dong Shi
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-Yong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Vos GM, Wu Y, van der Woude R, de Vries RP, Boons GJ. Chemo-Enzymatic Synthesis of Isomeric I-branched Polylactosamines Using Traceless Blocking Groups. Chemistry 2024; 30:e202302877. [PMID: 37909475 DOI: 10.1002/chem.202302877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Poly-N-acetyl lactosamines (polyLacNAc) are common structural motifs of N- and O-linked glycan, glycosphingolipids and human milk oligosaccharides. They can be branched by the addition of β1,6-linked N-acetyl-glucosamine (GlcNAc) moieties to internal galactoside (Gal) residues by the I-branching enzyme beta-1,6-N-acetylglucosaminyltransferase 2 (GCNT2). I-branching has been implicated in many biological processes and is also associated with various diseases such as cancer progression. Currently, there is a lack of methods that can install, in a regioselective manner, I-branches and allows the preparation of isomeric poly-LacNAc derivatives. Here, we described a chemo-enzymatic strategy that addresses this deficiency and is based on the enzymatic assembly of an oligo-LacNAc chain that at specific positions is modified by a GlcNTFA moiety. Replacement of the trifluoroacetyl (TFA) moiety by tert-butyloxycarbonyl (Boc) gives compounds in which the galactoside at the proximal site is blocked from modification by GCNT2. After elaboration of the antennae, the Boc group can be removed, and the resulting amine acetylated to give natural I-branched structures. It is also shown that fucosides can function as a traceless blocking group that can provide complementary I-branched structures from a single precursor. The methodology made it possible to synthesize a library of polyLacNAc chains having various topologies.
Collapse
Affiliation(s)
- Gaёl M Vos
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Yunfei Wu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA-30602, USA
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Chemistry Department, University of Georgia, Athens, GA-30602, USA
| |
Collapse
|
5
|
Mai L, Wen Z, Zhang Y, Gao Y, Lin G, Lian Z, Yang X, Zhou J, Lin X, Luo C, Peng W, Chen C, Peng J, Liu D, Marjani SL, Tao Q, Cui Y, Zhang J, Wu X, Weissman SM, Pan X. Shortcut barcoding and early pooling for scalable multiplex single-cell reduced-representation CpG methylation sequencing at single nucleotide resolution. Nucleic Acids Res 2023; 51:e108. [PMID: 37870443 PMCID: PMC10681715 DOI: 10.1093/nar/gkad892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
DNA methylation is essential for a wide variety of biological processes, yet the development of a highly efficient and robust technology remains a challenge for routine single-cell analysis. We developed a multiplex scalable single-cell reduced representation bisulfite sequencing (msRRBS) technology. It allows cell-specific barcoded DNA fragments of individual cells to be pooled before bisulfite conversion, free of enzymatic modification or physical capture of the DNA ends, and achieves read mapping rates of 62.5 ± 3.9%, covering 60.0 ± 1.4% of CpG islands and 71.6 ± 1.6% of promoters in K562 cells. Its reproducibility is shown in duplicates of bulk cells with close to perfect correlation (R = 0.97-0.99). At a low 1 Mb of clean reads, msRRBS provides highly consistent coverage of CpG islands and promoters, outperforming the conventional methods with orders of magnitude reduction in cost. Here, we use this method to characterize the distinct methylation patterns and cellular heterogeneity of six cell lines, plus leukemia and hepatocellular carcinoma models. Taking 4 h of hands-on time, msRRBS offers a unique, highly efficient approach for dissecting methylation heterogeneity in a variety of multicellular systems.
Collapse
Affiliation(s)
- Liyao Mai
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Zebin Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Yulong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Yu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Guanchuan Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Zhiwei Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Xiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jingjing Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Xianwei Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- SequMed Institute of Biomedical Sciences, Guangzhou 510530, Guangdong Province, China
| | - Chaochao Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Wanwan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Caiming Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Jiajia Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Duolian Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Sadie L Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT 06050, USA
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, 999077 Hong Kong, China
| | - Yongping Cui
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518035, Guangdong, China
| | - Junxiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- SequMed Institute of Biomedical Sciences, Guangzhou 510530, Guangdong Province, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sherman M Weissman
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518035, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
6
|
Bektas S, Kaptan E. Therapeutic potential of lectins in the treatment of breast cancer: A review. Int J Biol Macromol 2023; 249:126073. [PMID: 37536407 DOI: 10.1016/j.ijbiomac.2023.126073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Breast cancer is one of the most common malignancies and the leading cause of cancer-related deaths in women. There are 3 major subtypes of breast cancer that are distinguished by expression of estrogen or progesterone receptors and ERBB2 gene amplification. The 3 subtypes have different risk profiles and treatment strategies. Abnormal glycosylation is thought to play an important role in the development of the tumorigenic and metastatic phenotype of breast cancer and resistance to therapy. They may also be a potentially attractive target for breast cancer treatment. Proteins such as lectins, a family of carbohydrate-binding proteins found in a variety of organisms from viruses to humans, can specifically interact with abnormally glycosylated carbohydrate residues in cancer cells and induce cytotoxic effects. In recent years, there has been a growing number of research addressing studies demonstrating their antitumorigenic and antimalignant effects. This review summarizes recent findings on lectins from plants, animals, fungi, and bacteria that are potentially therapeutic agents against breast cancer and outlines the basis of their mechanism of action.
Collapse
Affiliation(s)
- Suna Bektas
- Istanbul University, Faculty of Science, Department of Biology, Vezneciler, 34134 Istanbul, Turkey
| | - Engin Kaptan
- Istanbul University, Faculty of Science, Department of Biology, Vezneciler, 34134 Istanbul, Turkey.
| |
Collapse
|
7
|
Gupta R, Ponangi R, Indresh KG. Role of glycosylation in breast cancer progression and metastasis: implications for miRNA, EMT and multidrug resistance. Glycobiology 2023; 33:545-555. [PMID: 37283470 DOI: 10.1093/glycob/cwad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/18/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
Breast cancer (BC) is one of the leading causes of death in women, globally. A variety of biological processes results in metastasis, a poorly understood pathological phenomenon, causing a high relapse rate. Glycosylation, microribonucleic acids (miRNAs) and epithelial to mesenchymal transition (EMT), have been shown to regulate this cascade where tumor cells detach from their primary site, enter the circulatory system and colonize distant sites. Integrated proteomics and glycomics approaches have been developed to probe the molecular mechanism regulating such metastasis. In this review, we describe specific aspects of glycosylation and its interrelation with miRNAs, EMT and multidrug resistance during BC progression and metastasis. We explore various approaches that determine the role of proteomes and glycosylation in BC diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Rohitesh Gupta
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| | - Rohan Ponangi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| | - Kuppanur G Indresh
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| |
Collapse
|
8
|
Chen Z, Yu H, Chen X, Chen W, Song W, Li Z. Mutual regulation between glycosylation and transforming growth factor-β isoforms signaling pathway. Int J Biol Macromol 2023; 236:123818. [PMID: 36858092 DOI: 10.1016/j.ijbiomac.2023.123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023]
Abstract
Transforming growth factor-beta (TGF-β) superfamily members orchestrate a wide breadth of biological processes. Through Sma and Mad (Smad)-related dependent or noncanonical pathways, TGF-β members involve in the occurrence and development of many diseases such as cancers, fibrosis, autoimmune diseases, cardiovascular diseases and brain diseases. Glycosylation is one kind of the most common posttranslational modifications on proteins or lipids. Abnormal protein glycosylation can lead to protein malfunction and biological process disorder, thereby causing serious diseases. Previously, researchers commonly make comprehensive systematic overviews on the roles of TGF-β signaling in a specific disease or biological process. In recent years, more and more evidences associate glycosylation modification with TGF-β signaling pathway, and we can no longer disengage and ignore the roles of glycosylation from TGF-β signaling to make investigation. In this review, we provide an overview of current findings involved in glycosylation within TGF-βs and theirs receptors, and the interaction effects between glycosylation and TGF-β subfamily signaling, concluding that there is an intricate mutual regulation between glycosylation and TGF-β signaling, hoping to present the glycosylation regulatory patterns that concealed in TGF-βs signaling pathways.
Collapse
Affiliation(s)
- Zhuo Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Xiangqin Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Wanghua Song
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
9
|
Wang D. Targeting the stage-specific embryonic antigen (SSEA)-0 tumor neoantigen. CURRENT TRENDS IN IMMUNOLOGY 2023; 24:1-7. [PMID: 38699667 PMCID: PMC11064955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Recognition of abnormal glycosylation in virtually any cancer type has raised a great interest in the glycan-based tumor biomarkers. Our team explored carbohydrate microarrays as a broad-spectrum immunoassay to probe the immunologically potent tumor glycan targets. This effort has led to the identification of a blood group precursor antigen SSEA-0 as a conserved breast cancer (BCA) marker. Since this immunogenic O-core glycan is normally hidden as a cryptic antigen but becomes overexpressed and surface-exposed by metastatic breast cancer cells (MBCA), its potential as a novel immunological target for precision immunotherapy against tumor metastasis warrants a focused investigation.
Collapse
Affiliation(s)
- Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, USA
| |
Collapse
|
10
|
Peng L, Liu Y, Chen J, Cheng M, Wu Y, Chen M, Zhong Y, Shen D, Chen L, Ye X. APEX1 regulates alternative splicing of key tumorigenesis genes in non-small-cell lung cancer. BMC Med Genomics 2022; 15:147. [PMID: 35780128 PMCID: PMC9250739 DOI: 10.1186/s12920-022-01290-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant alternative splicing (AS) contributes to tumor progression. Previous studies have shown that apurinic-apyrimidinic endonuclease-1 (APEX1) is involved in tumor progression. It is unknown whether APEX1 functions in tumor progression by regulation of AS. It is also unknown whether APEX1 can regulate non-small-cell lung cancer (NSCLC) proliferation and apoptosis. We analyzed APEX1 expression levels in 517 lung NSCLC samples from the TCGA (Cancer Genome Atlas) database. The impact of APEX1 over expression on A549 cell proliferation and apoptosis was detected by the methyl thiazolyl tetrazolium assay and by flow cytometry. The transcriptome of A549 cells with and without APEX1 over expression was determined by Illumina sequencing, followed by analysis of AS. RT-qPCR validated expression of APEX1-related genes in A549 cells. We have successfully applied RNA-seq technology to demonstrate APEX1 regulation of AS. RESULTS APEX1 expression was shown to be upregulated in NSCLC samples and to reduce cell proliferation and induce apoptosis of A549 cells. In addition, APEX1 regulated AS of key tumorigenesis genes involved in cancer proliferation and apoptosis within MAPK and Wnt signaling pathways. Each of these pathways are involved in lung cancer progression. Furthermore, validated AS events regulated by APEX1 were in key tumorigenesis genes; AXIN1 (axis inhibition protein 1), GCNT2 (N-acetyl glucosaminyl transferase 2), and SMAD3 (SMAD Family Member 3). These genes encode signaling pathway transcription regulatory factors. CONCLUSIONS We found that increased expression of APEX1 was an independent prognostic factor related to NSCLC progression. Therefore, APEX1 regulation of AS may serve as a molecular marker or therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Li Peng
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China.,Department of Cardiology, Zhongnan Hosipital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yuwei Liu
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Jing Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Mengxin Cheng
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Ying Wu
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Min Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Ya Zhong
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Dan Shen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Ling Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China.
| | - Xujun Ye
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
11
|
Rujchanarong D, Scott D, Park Y, Brown S, Mehta AS, Drake R, Sandusky GE, Nakshatri H, Angel PM. Metabolic Links to Socioeconomic Stresses Uniquely Affecting Ancestry in Normal Breast Tissue at Risk for Breast Cancer. Front Oncol 2022; 12:876651. [PMID: 35832545 PMCID: PMC9273232 DOI: 10.3389/fonc.2022.876651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
A primary difference between black women (BW) and white women (WW) diagnosed with breast cancer is aggressiveness of the tumor. Black women have higher mortalities with similar incidence of breast cancer compared to other race/ethnicities, and they are diagnosed at a younger age with more advanced tumors with double the rate of lethal, triple negative breast cancers. One hypothesis is that chronic social and economic stressors result in ancestry-dependent molecular responses that create a tumor permissive tissue microenvironment in normal breast tissue. Altered regulation of N-glycosylation of proteins, a glucose metabolism-linked post-translational modification attached to an asparagine (N) residue, has been associated with two strong independent risk factors for breast cancer: increased breast density and body mass index (BMI). Interestingly, high body mass index (BMI) levels have been reported to associate with increases of cancer-associated N-glycan signatures. In this study, we used matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) to investigate molecular pattern changes of N-glycosylation in ancestry defined normal breast tissue from BW and WW with significant 5-year risk of breast cancer by Gail score. N-glycosylation was tested against social stressors including marital status, single, education, economic status (income), personal reproductive history, the risk factors BMI and age. Normal breast tissue microarrays from the Susan G. Komen tissue bank (BW=43; WW= 43) were used to evaluate glycosylation against socioeconomic stress and risk factors. One specific N-glycan (2158 m/z) appeared dependent on ancestry with high sensitivity and specificity (AUC 0.77, Brown/Wilson p-value<0.0001). Application of a linear regression model with ancestry as group variable and socioeconomic covariates as predictors identified a specific N-glycan signature associated with different socioeconomic stresses. For WW, household income was strongly associated to certain N-glycans, while for BW, marital status (married and single) was strongly associated with the same N-glycan signature. Current work focuses on understanding if combined N-glycan biosignatures can further help understand normal breast tissue at risk. This study lays the foundation for understanding the complexities linking socioeconomic stresses and molecular factors to their role in ancestry dependent breast cancer risk.
Collapse
Affiliation(s)
- Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Danielle Scott
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Yeonhee Park
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sean Brown
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Richard Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
12
|
Xia T, Xiang T, Xie H. Update on the role of C1GALT1 in cancer (Review). Oncol Lett 2022; 23:97. [PMID: 35154428 PMCID: PMC8822393 DOI: 10.3892/ol.2022.13217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer remains one of the most difficult diseases to treat. In the quest for early diagnoses to improve patient survival and prognosis, targeted therapies have become a hot research topic in recent years. Glycosylation is the most common posttranslational modification in mammalian cells. Core 1β1,3-galactosyltransferase (C1GALT1) is a key glycosyltransferase in the glycosylation process and is the key enzyme in the formation of the core 1 structure on which most complex and branched O-glycans are formed. A recent study reported that C1GALT1 was aberrantly expressed in tumors. In cancer cells, C1GALT1 is regulated by different factors. In the present review, the expression of C1GALT1 in different tumors and its possible molecular mechanisms of action are described and the role of C1GALT1 in cancer development is discussed.
Collapse
Affiliation(s)
- Tong Xia
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ting Xiang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hailong Xie
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
13
|
Lee H, Cai F, Kelekar N, Velupally NK, Kim J. Targeting PGM3 as a Novel Therapeutic Strategy in KRAS/LKB1 Co-Mutant Lung Cancer. Cells 2022; 11:cells11010176. [PMID: 35011738 PMCID: PMC8750012 DOI: 10.3390/cells11010176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 01/11/2023] Open
Abstract
In non-small-cell lung cancer (NSCLC), concurrent mutations in the oncogene KRAS and tumor suppressor STK11 (also known as LKB1) confer an aggressive malignant phenotype, an unfavourability towards immunotherapy, and overall poor prognoses in patients. In a previous study, we showed that murine KRAS/LKB1 co-mutant tumors and human co-mutant cancer cells have an enhanced dependence on glutamine-fructose-6-phosphate transaminase 2 (GFPT2), a rate-limiting enzyme in the hexosamine biosynthesis pathway (HBP), which could be targeted to reduce survival of KRAS/LKB1 co-mutants. Here, we found that KRAS/LKB1 co-mutant cells also exhibit an increased dependence on N-acetylglucosamine-phosphate mutase 3 (PGM3), an enzyme downstream of GFPT2. Genetic or pharmacologic suppression of PGM3 reduced KRAS/LKB1 co-mutant tumor growth in both in vitro and in vivo settings. Our results define an additional metabolic vulnerability in KRAS/LKB1 co-mutant tumors to the HBP and provide a rationale for targeting PGM3 in this aggressive subtype of NSCLC.
Collapse
Affiliation(s)
- Hyunmin Lee
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; (H.L.); (N.K.); (N.K.V.)
| | - Feng Cai
- Children’s Medical Center Research Institute, UT-Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Neil Kelekar
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; (H.L.); (N.K.); (N.K.V.)
| | - Nipun K. Velupally
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; (H.L.); (N.K.); (N.K.V.)
| | - Jiyeon Kim
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; (H.L.); (N.K.); (N.K.V.)
- Correspondence:
| |
Collapse
|
14
|
Cheng CC, Lin CF, Lin YC, Young TH, Lou PJ. Overexpression of N-acetylglucosaminyltransferase V promotes human parotid gland acinar cell immortalization via the epidermal receptor activation. J Cell Physiol 2021; 237:1780-1789. [PMID: 34806177 DOI: 10.1002/jcp.30641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Abstract
The purpose of this study is to maintain the proliferation capability of human parotid gland acinar cells (ACs) in vitro to extend passage number and to study the mechanism that regulates AC stemness. N-acetylglucosaminyltransferase V (GnT-V) is the Golgi enzyme, and it has been reported that the β1,6GlcNAc-branched N-linked glycans are associated with various cell behaviors. Therefore, we modify the gene expression of ACs by transfection of the GnT-V-overexpression plasmid, and we found that upregulation of GnT-V extensively increased ACs proliferation and stemness properties in ACs/GnT-V compared to ACs transfected with Mock plasmid. More importantly, we observed that high levels of GnT-V positively correlated with ALDH1A3 expression via increasing phosphorylation of cell surface receptors and activating the downstream signaling transduction. Hence, the current study suggested that GnT-V is a significant factor for cell immortalization in the ACs model by activating the EGFR/ERK/ALDH1A3 signaling pathway.
Collapse
Affiliation(s)
- Ching-Chia Cheng
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Feng Lin
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yong-Chong Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Biomedical Engineering, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Jen Lou
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
15
|
Block CJ, Mitchell AV, Wu L, Glassbrook J, Craig D, Chen W, Dyson G, DeGracia D, Polin L, Ratnam M, Gibson H, Wu G. RNA binding protein RBMS3 is a common EMT effector that modulates triple-negative breast cancer progression via stabilizing PRRX1 mRNA. Oncogene 2021; 40:6430-6442. [PMID: 34608266 PMCID: PMC9421946 DOI: 10.1038/s41388-021-02030-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) has been recognized as a driving force for tumor progression in breast cancer. Recently, our group identified the RNA Binding Motif Single Stranded Interacting Protein 3 (RBMS3) to be significantly associated with an EMT transcriptional program in breast cancer. Additional expression profiling demonstrated that RBMS3 was consistently upregulated by multiple EMT transcription factors and correlated with mesenchymal gene expression in breast cancer cell lines. Functionally, RBMS3 was sufficient to induce EMT in two immortalized mammary epithelial cell lines. In triple-negative breast cancer (TNBC) models, RBMS3 was necessary for maintaining the mesenchymal phenotype and invasion and migration in vitro. Loss of RBMS3 significantly impaired both tumor progression and spontaneous metastasis in vivo. Using a genome-wide approach to interrogate mRNA stability, we found that ectopic expression of RBMS3 upregulates many genes that are resistant to degradation following transcriptional blockade by actinomycin D (ACTD). Specifically, RBMS3 was shown to interact with the mRNA of EMT transcription factor PRRX1 and promote PRRX1 mRNA stability. PRRX1 is required for RBMS3-mediated EMT and is partially sufficient to rescue the effect of RBMS3 knockdown in TNBC cell lines. Together, this study identifies RBMS3 as a novel and common effector of EMT, which could be a promising therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- C. James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Allison V. Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Ling Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA.,Department of Molecular and Cellular Biology, McNair Medical Institute Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - James Glassbrook
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Douglas Craig
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Wei Chen
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Gregory Dyson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Donald DeGracia
- Department of Physiology, Wayne State University school of Medicine, Detroit, MI 48201, USA
| | - Lisa Polin
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Manohar Ratnam
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
16
|
Chen P, Guo Y, Jia L, Wan J, He T, Fang C, Li T. Interaction Between Functionally Activate Endometrial Microbiota and Host Gene Regulation in Endometrial Cancer. Front Cell Dev Biol 2021; 9:727286. [PMID: 34631710 PMCID: PMC8495019 DOI: 10.3389/fcell.2021.727286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: In this study, we mainly explored two questions: Which microorganisms were functionally active in the endometrium of patients with endometrial cancer (EC)? What kind of response did the human host respond to functionally active microorganisms? Methods: Nine endometrial cancer patients and eight normal subjects were included in this study. HMP Unified Metabolic Analysis Network 3 (HUMAnN3) was used to obtain functional information of microorganisms. In addition, metaCyc-based GSEA functional enrichment analysis was used to obtain information on the metabolic pathways of the human host. At the same time, the O2PLS model and Spearman correlation analysis were used to analyze the microorganisms–host interaction. Results: With the novel metatranscriptome analysis pipeline, we described the composition of more than 5,000 functionally active microorganisms and analyzed the difference in microorganisms between the EC and the normal group. Our research found that these microorganisms were involved in part of the metabolic process of endometrial cancer, such as 6-sulfo-sialyl Lewis x epitope, N-acetyl-beta-glucosaminyl. In addition, the host–microbiota crosstalk of EC endometrium also included many biological processes, mainly functions related to tumor migration and the Apelin signaling pathway. Conclusion: The functionally active microorganisms in the EC endometrium played an essential role in the occurrence and migration of tumors. This meant that functionally active microorganisms could not be ignored in the treatment of endometrial cancer. This study helped to better understand the possible role of endometrial functional, active microorganisms in the occurrence and development of EC in patients with endometrial cancer and provided new information for new attempts to treat EC.
Collapse
Affiliation(s)
- Peigen Chen
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingchun Guo
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Jia
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Wan
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - TianTian He
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cong Fang
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Li
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Glycobiology of the Epithelial to Mesenchymal Transition. Biomedicines 2021; 9:biomedicines9070770. [PMID: 34356834 PMCID: PMC8301408 DOI: 10.3390/biomedicines9070770] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Glycosylation consists in the covalent, enzyme mediated, attachment of sugar chains to proteins and lipids. A large proportion of membrane and secreted proteins are indeed glycoproteins, while glycolipids are fundamental component of cell membranes. The biosynthesis of sugar chains is mediated by glycosyltransferases, whose level of expression represents a major factor of regulation of the glycosylation process. In cancer, glycosylation undergoes profound changes, which often contribute to invasion and metastasis. Epithelial to mesenchymal transition (EMT) is a key step in metastasis formation and is intimately associated with glycosylation changes. Numerous carbohydrate structures undergo up- or down-regulation during EMT and often regulate the process. In this review, we will discuss the relationship with EMT of the N-glycans, of the different types of O-glycans, including the classical mucin-type, O-GlcNAc, O-linked fucose, O-linked mannose and of glycolipids. Finally, we will discuss the role in EMT of galectins, a major class of mammalian galactoside-binding lectins. While the expression of specific carbohydrate structures can be used as a marker of EMT and of the propensity to migrate, the manipulation of the glycosylation machinery offers new perspectives for cancer treatment through inhibition of EMT.
Collapse
|
18
|
Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Cells 2021; 10:cells10051252. [PMID: 34069424 PMCID: PMC8159107 DOI: 10.3390/cells10051252] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cells undergo proliferation and apoptosis, migration and differentiation via a number of cell surface receptors, most of which are heavily glycosylated. This review discusses receptor glycosylation and the known roles of glycans on the functions of receptors expressed in diverse cell types. We included growth factor receptors that have an intracellular tyrosine kinase domain, growth factor receptors that have a serine/threonine kinase domain, and cell-death-inducing receptors. N- and O-glycans have a wide range of functions including roles in receptor conformation, ligand binding, oligomerization, and activation of signaling cascades. A better understanding of these functions will enable control of cell survival and cell death in diseases such as cancer and in immune responses.
Collapse
|
19
|
Perez M, Chakraborty A, Lau LS, Mohammed NBB, Dimitroff CJ. Melanoma-associated glycosyltransferase GCNT2 as an emerging biomarker and therapeutic target. Br J Dermatol 2021; 185:294-301. [PMID: 33660254 DOI: 10.1111/bjd.19891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2021] [Indexed: 12/17/2022]
Abstract
In metastatic melanoma, with a dismal survival rate and propensity for treatment resistance and recurrence, it is critical to establish biomarkers that better predict treatment response and disease severity. The melanoma glycome, composed of complex carbohydrates termed glycans, is an under-investigated area of research, although it is gaining momentum in the cancer biomarker and therapeutics field. Novel findings suggest that glycans play a major role in influencing melanoma progression and could be exploited for prognosticating metastatic activity and/or as therapeutic targets. In this review, we discuss the role of aberrant glycosylation, particularly the specialized function of β1,6 N-acetylglucosaminyltransferase 2 (GCNT2), in melanoma pathogenesis and summarize mechanisms of GCNT2 regulation to illuminate its potential as a predictive marker and therapeutic target.
Collapse
Affiliation(s)
- M Perez
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - A Chakraborty
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - L S Lau
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - N B B Mohammed
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - C J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
20
|
Zhang J, Ten Dijke P, Wuhrer M, Zhang T. Role of glycosylation in TGF-β signaling and epithelial-to-mesenchymal transition in cancer. Protein Cell 2021; 12:89-106. [PMID: 32583064 PMCID: PMC7862465 DOI: 10.1007/s13238-020-00741-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Glycosylation is a common posttranslational modification on membrane-associated and secreted proteins that is of pivotal importance for regulating cell functions. Aberrant glycosylation can lead to uncontrolled cell proliferation, cell-matrix interactions, migration and differentiation, and has been shown to be involved in cancer and other diseases. The epithelial-to-mesenchymal transition is a key step in the metastatic process by which cancer cells gain the ability to invade tissues and extravasate into the bloodstream. This cellular transformation process, which is associated by morphological change, loss of epithelial traits and gain of mesenchymal markers, is triggered by the secreted cytokine transforming growth factor-β (TGF-β). TGF-β bioactivity is carefully regulated, and its effects on cells are mediated by its receptors on the cell surface. In this review, we first provide a brief overview of major types of glycans, namely, N-glycans, O-glycans, glycosphingolipids and glycosaminoglycans that are involved in cancer progression. Thereafter, we summarize studies on how the glycosylation of TGF-β signaling components regulates TGF-β secretion, bioavailability and TGF-β receptor function. Then, we review glycosylation changes associated with TGF-β-induced epithelial-to-mesenchymal transition in cancer. Identifying and understanding the mechanisms by which glycosylation affects TGF-β signaling and downstream biological responses will facilitate the identification of glycans as biomarkers and enable novel therapeutic approaches.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
21
|
Wu YX, Lu HF, Lin YH, Chuang HY, Su SC, Liao YJ, Twu YC. Branched I antigen regulated cell susceptibility against natural killer cytotoxicity through its N-linked glycosylation and overall expression. Glycobiology 2021; 31:624-635. [PMID: 33403394 DOI: 10.1093/glycob/cwaa117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 11/14/2022] Open
Abstract
Cell surface glycosylation has been known as an important modification process that can be targeted and manipulated by malignant cells to escape from host immunosurveillance. We previously showed that the blood group branched I antigen on the leukemia cell surface can regulate the cell susceptibility against natural killer (NK) cell-mediated cytotoxicity through interfering target-NK interaction. In this work, we first identified N-linkage as the major glycosylation linkage type for branched I glycan formation on leukemia cells, and this linkage was responsible for cell sensitivity against therapeutic NK-92MI targeting. Secondly, by examining different leukemia cell surface death receptors, we showed death receptor Fas had highest expressions in both Raji and TF-1a cells. Mutations on two Fas extracellular N-linkage sites (118 and 136) for glycosylation impaired activation of Fas-mediated apoptosis during NK-92MI cytotoxicity. Last, we found that the surface I antigen expression levels enable leukemia cells to respond differently against NK-92MI targeting. In low I antigen expressing K-562 cell, reduction of I antigen presence greatly reduced leukemia cell susceptibility against NK-92MI targeting. But in other high I antigen expressing leukemia cells, similar reduction in I antigen expression did not affect cell susceptibility.
Collapse
Affiliation(s)
- Yu-Xuan Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, 45, Cheng-Hsin St., Taipei, 112, Taiwan.,Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, 510, Zhongzheng Rd., New Taipei City, 242, Taiwan
| | - Yen-Hsi Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan.,Department of Clinical Laboratory, Chung Shan Medical University Hospital, 110, Sec. 1, Jianguo N. Rd., Taichung City, 402, Taiwan
| | - Hui-Yu Chuang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, 222, Maijin Rd., Keelung City, 204, Taiwan.,Central Research Laboratory, Xiamen Chang Gung Hospital, 123, Xiafei Rd., Haicang District, Xiamen, China
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan
| |
Collapse
|
22
|
Kong F, Li N, Tu T, Tao Y, Bi Y, Yuan D, Zhang N, Yang X, Kong D, You H, Zheng K, Tang R. Hepatitis B virus core protein promotes the expression of neuraminidase 1 to facilitate hepatocarcinogenesis. J Transl Med 2020; 100:1602-1617. [PMID: 32686743 DOI: 10.1038/s41374-020-0465-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023] Open
Abstract
Neuraminidase 1 (NEU1) has been reported to be associated with hepatocellular carcinoma (HCC). However, the function and associated molecular mechanisms of NEU1 in hepatitis B virus (HBV)-related HCC have not been well investigated. In the present study, the expression of NEU1 mediated by HBV and HBV core protein (HBc) was measured in hepatoma cells. The expression of NEU1 protein was detected via immunohistochemical analysis in HBV-associated HCC tissues. The role of NEU1 in the activation of signaling pathways and epithelial-mesenchymal transition (EMT) and the proliferation and migration of hepatoma cells mediated by HBc was assessed. We found that NEU1 was upregulated in HBV-positive hepatoma cells and HBV-related HCC tissues. HBV promoted NEU1 expression at the mRNA and protein level via HBc in hepatoma cells. Mechanistically, HBc was able to enhance the activity of the NEU1 promoter through NF-κB binding sites. In addition, through the increase in NEU1 expression, HBc contributed to activation of downstream signaling pathways and EMT in hepatoma cells. Moreover, NEU1 facilitated the proliferation and migration of hepatoma cells mediated by HBc. Taken together, our findings provide novel insight into the molecular mechanism underlying the oncogenesis mediated by HBc and demonstrate that NEU1 plays a vital role in HBc-mediated functional abnormality in HCC. Thus, NEU1 may serve as a potential therapeutic target in HBV-associated HCC.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Nan Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou, Jiangsu, P.R. China
| | - Tao Tu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Shuyang Traditional Chinese Medicine Hospital, Shuyang, Jiangsu, P.R. China
| | - Yukai Tao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yanwei Bi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Dongchen Yuan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Ning Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China. .,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.
| |
Collapse
|
23
|
Key factors mediated by PI3K signaling pathway and related genes in endometrial carcinoma. J Bioenerg Biomembr 2020; 52:465-473. [PMID: 33159265 DOI: 10.1007/s10863-020-09854-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
By analyzing the gene expression of endometrial carcinoma (EC) patients, the key factors in PI3K signaling pathway and its related genes mediating EC were explored. The EC samples and normal endometrial samples were downloaded from TCGA database and GTEx database. The R language "limma" package was used for differential analysis, and the expression level of genes in each tissue was analyzed by "gganatogram" package. Functional enrichment analysis of differential genes was carried out by KOBAS, an online bioinformatics website. The correlation between key genes and differential genes was evaluated using TCGA data and GTEx combined gene expression data. The corresponding clinical data were downloaded from TCGA database and GTEx database, and the R language "survival" package was used to assess the potential of candidate differential genes as a key factor of EC. Based on the combined differential analysis of TCGA and GTEx databases, 299 genes with significant differential in expression were finally got. Functional enrichment analysis revealed that genes were predominantly enriched in the entry of "Pathways in cancer", including RAC2 and PIK3R3 genes which were related with the abnormal PI3K pathway in cancer. PIK3R3, a key gene in the PI3K signaling pathway, was highly-expressed in EC. SPDEF, GCNT2, KIAA1324, C9orf152, MARVELD3, and APEX2 genes were found to be positively correlated with PIK3R3 in EC, all of which were highly expressed in EC. KM survival analysis showed that SPDEF, GCNT2, KIAA1324 and C9orf152 were significantly correlated with patients' survival. ROC analysis showed that SPDEF, GCNT2, KIAA1324 and C9orf152 gene could be used as potential markers for prognosis and survival of EC patients. It was found that PIK3R3, a key gene in the PI3K signaling pathway, was highly expressed in EC. The SPDEF, GCNT2, KIAA1324 and C9orf152 genes were also highly expressed in EC, and were positively correlated with PIK3R3 in EC. Moreover, they are significantly correlated with the patients' survival, suggesting that they may be potential markers for the prognosis of patients with EC.
Collapse
|
24
|
Sun H, Chang J, Ye M, Weng W, Zhang M, Ni S, Tan C, Huang D, Wang L, Du X, Xu MD, Sheng W. GCNT4 is Associated with Prognosis and Suppress Cell Proliferation in Gastric Cancer. Onco Targets Ther 2020; 13:8601-8613. [PMID: 32922038 PMCID: PMC7457769 DOI: 10.2147/ott.s248997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022] Open
Abstract
Background GCNT4 is a member of the glucosaminyl (N-acetyl) transferases family that has been implicated in multiple human malignancies. However, the role of GCNT4 in gastric cancer (GC) is unknown. In this present study, we aimed to explore the role and clinicopathological correlation of GCNT4 in GC. Materials and Methods We first evaluated the dysregulation of GCNT4 in The Cancer Genome Atlas (TCGA) and then we performed RT-qPCR and immunohistochemistry to validate the results in a cohort of in-house patients. The clinicopathological correlation and function of GCNT4 in GC were also analysed. Results GCNT4 was found to be significantly downregulated in GC. In addition, GCNT4 expression correlated with tumour depth, nervous invasion and pathological tumor-node-metastasis (pTNM) stage. Moreover, lower GCNT4 levels conferred poor overall survival (OS) and disease-free survival (DFS) to GC patients. Multivariate Cox regression analysis revealed that GCNT4 protein expression is an independent prognostic factor for OS in patients with GC. Further functional experimental results revealed that overexpression of GCNT4 appears to halt GC cell proliferation and the cell cycle. Conclusion Altogether, these findings indicated that GCNT4 regulates the GC cell cycle and have important implications for the selection of therapeutic targets to prevent tumour proliferation.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Pathology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Jinjia Chang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China
| | - Min Ye
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai 200032, People's Republic of China
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai 200032, People's Republic of China
| | - Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai 200032, People's Republic of China
| | - Shujuan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai 200032, People's Republic of China
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai 200032, People's Republic of China
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai 200032, People's Republic of China
| | - Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai 200032, People's Republic of China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai 200032, People's Republic of China
| | - Mi-Die Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai 200032, People's Republic of China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
25
|
Zhang W, Yang Z, Gao X, Wu Q. Advances in the discovery of novel biomarkers for cancer: spotlight on protein N-glycosylation. Biomark Med 2020; 14:1031-1045. [PMID: 32940073 DOI: 10.2217/bmm-2020-0185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Progress on glycosylation and tumor markers has not been extensively reported. Glycosylation plays an important part in post-translational modification. Previous research on glycosylation-modified biomarkers has lagged behind due to insufficient understanding of glycosylation-related regulations. However, some new methods and ideas illustrated in recent research may provide new inspirations in the field. This article aims to review current advances in revealing relationship between tumors and abnormal N-glycosylation and discuss leading-edge applications of N-glycosylation in developing novel tumor biomarkers.
Collapse
Affiliation(s)
- Wenyao Zhang
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Zhiping Yang
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Xiaoliang Gao
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Qiong Wu
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
- Department of Clinical Nutrition, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| |
Collapse
|
26
|
Corso G, Figueiredo J, De Angelis SP, Corso F, Girardi A, Pereira J, Seruca R, Bonanni B, Carneiro P, Pravettoni G, Guerini Rocco E, Veronesi P, Montagna G, Sacchini V, Gandini S. E-cadherin deregulation in breast cancer. J Cell Mol Med 2020; 24:5930-5936. [PMID: 32301282 PMCID: PMC7294130 DOI: 10.1111/jcmm.15140] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
E‐cadherin protein (CDH1 gene) integrity is fundamental to the process of epithelial polarization and differentiation. Deregulation of the E‐cadherin function plays a crucial role in breast cancer metastases, with worse prognosis and shorter overall survival. In this narrative review, we describe the inactivating mechanisms underlying CDH1 gene activity and its possible translation to clinical practice as a prognostic biomarker and as a potential targeted therapy.
Collapse
Affiliation(s)
- Giovanni Corso
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy
| | - Joana Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Federica Corso
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Antonia Girardi
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy
| | - Joana Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Raquel Seruca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Patricia Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy.,Division of Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Guerini Rocco
- Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy.,Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo Veronesi
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy
| | - Giacomo Montagna
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Virgilio Sacchini
- Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy.,Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
27
|
Punzi S, Balestrieri C, D'Alesio C, Bossi D, Dellino GI, Gatti E, Pruneri G, Criscitiello C, Lovati G, Meliksetyan M, Carugo A, Curigliano G, Natoli G, Pelicci PG, Lanfrancone L. WDR5 inhibition halts metastasis dissemination by repressing the mesenchymal phenotype of breast cancer cells. Breast Cancer Res 2019; 21:123. [PMID: 31752957 PMCID: PMC6873410 DOI: 10.1186/s13058-019-1216-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Development of metastases and drug resistance are still a challenge for a successful systemic treatment in breast cancer (BC) patients. One of the mechanisms that confer metastatic properties to the cell relies in the epithelial-to-mesenchymal transition (EMT). Moreover, both EMT and metastasis are partly modulated through epigenetic mechanisms, by repression or induction of specific related genes. Methods We applied shRNAs and drug targeting approaches in BC cell lines and metastatic patient-derived xenograft (PDX) models to inhibit WDR5, the core subunit of histone H3 K4 methyltransferase complexes, and evaluate its role in metastasis regulation. Result We report that WDR5 is crucial in regulating tumorigenesis and metastasis spreading during BC progression. In particular, WDR5 loss reduces the metastatic properties of the cells by reverting the mesenchymal phenotype of triple negative- and luminal B-derived cells, thus inducing an epithelial trait. We also suggest that this regulation is mediated by TGFβ1, implying a prominent role of WDR5 in driving EMT through TGFβ1 activation. Moreover, such EMT reversion can be induced by drug targeting of WDR5 as well, leading to BC cell sensitization to chemotherapy and enhancement of paclitaxel-dependent effects. Conclusions We suggest that WDR5 inhibition could be a promising pharmacologic approach to reduce cell migration, revert EMT, and block metastasis formation in BC, thus overcoming resistance to standard treatments.
Collapse
Affiliation(s)
- Simona Punzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Balestrieri
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.,Humanitas University, Pieve Emanuele (MI), 20090, Italy.,Humanitas Clinical and Research Institute, Rozzano (MI), 20089, Italy
| | - Carolina D'Alesio
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.,Present address: Department of Internal Medicine and Medical Specialties (Di.M.I), University of Genova, Genoa, Italy
| | - Daniela Bossi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.,Present address: Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elena Gatti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giancarlo Pruneri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Pathology, Biobank for Translational Medicine Unit, European Institute of Oncology, IRCCS, Milan, Italy.,Present address: Istituto Nazionale dei Tumori - Fondazione IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Division of Early Drug Development for Innovative Therapy, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Lovati
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Marine Meliksetyan
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Carugo
- Institute for Applied Cancer Science, UT MD Anderson Cancer Cente, Houston, TX, 77030, USA
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Division of Early Drug Development for Innovative Therapy, European Institute of Oncology IRCCS, Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.,Humanitas University, Pieve Emanuele (MI), 20090, Italy.,Humanitas Clinical and Research Institute, Rozzano (MI), 20089, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
28
|
Huang CH, Liao YJ, Chiou TJ, Huang HT, Lin YH, Twu YC. TGF-β regulated leukemia cell susceptibility against NK targeting through the down-regulation of the CD48 expression. Immunobiology 2019; 224:649-658. [PMID: 31421859 DOI: 10.1016/j.imbio.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/29/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022]
Abstract
Transforming growth factor-β (TGF-β) is known to function as a dual role regulatory cytokine for being either a suppresser or promoter during tumor initiation and progression. In solid tumors, TGF-β secreted from tumor microenvironment acts as a suppresser against host immunity, like natural killer (NK) cells, to favor tumor evasion. However, besides solid tumors, the underlying mechanism of how TGF-β regulates leukemogenesis, tumor progression, immunoediting, and NK function is still not clear in detail. In this study, we found that TGF-β induced leukemia MEG-01 and U937 cells to become less sensitive to NK-92MI targeting by down-regulating CD48, a ligand for NK activating receptor 2B4, but not down-regulating other tumor-associated carbohydrate antigens (TACAs). In CD48-knockdown cells, cells responding to NK-92MI targeting displayed a phenotype of less NK susceptibility and cell conjugation. On the other hand, when NK cells were treated with TGF-β, TGF-β suppressed NK recognition, degranulation, and killing activity in time-dependent manner by regulating ICAM-1 binding capacity instead of affecting expressions of activating and inhibitory receptors. Taken together, both leukemia cells and immune NK cells could be regulated by TGF-β through suppressing leukemia cell surface CD48 to escape from host surveillance and down-regulating NK cell surface ICAM-1 binding activity to impair NK functions, respectively. Our results suggested that TGF-β had effect in leukemia similar to that observed in solid tumors but through different regulatory mechanism.
Collapse
Affiliation(s)
- Chin-Han Huang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzeon-Jye Chiou
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cancer Center, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Ting Huang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Hsi Lin
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
29
|
I-branched carbohydrates as emerging effectors of malignant progression. Proc Natl Acad Sci U S A 2019; 116:13729-13737. [PMID: 31213534 DOI: 10.1073/pnas.1900268116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell surface carbohydrates, termed "glycans," are ubiquitous posttranslational effectors that can tune cancer progression. Often aberrantly displayed or found at atypical levels on cancer cells, glycans can impact essentially all progressive steps, from malignant transformation to metastases formation. Glycans are structural entities that can directly bind promalignant glycan-binding proteins and help elicit optimal receptor-ligand activity of growth factor receptors, integrins, integrin ligands, lectins, and other type-1 transmembrane proteins. Because glycans play an integral role in a cancer cell's malignant activity and are frequently uniquely expressed, preclinical studies on the suitability of glycans as anticancer therapeutic targets and their promise as biomarkers of disease progression continue to intensify. While sialylation and fucosylation have predominated the focus of cancer-associated glycan modifications, the emergence of blood group I antigens (or I-branched glycans) as key cell surface moieties capable of modulating cancer virulence has reenergized investigations into the role of the glycome in malignant progression. I-branched glycans catalyzed principally by the I-branching enzyme GCNT2 are now indicated in several malignancies. In this Perspective, the putative role of GCNT2/I-branching in cancer progression is discussed, including exciting insights on how I-branches can potentially antagonize the cancer-promoting activity of β-galactose-binding galectins.
Collapse
|
30
|
Zou ZY, Liu J, Chang C, Li JJ, Luo J, Jin Y, Ma Z, Wang TH, Shao JL. Biliverdin administration regulates the microRNA-mRNA expressional network associated with neuroprotection in cerebral ischemia reperfusion injury in rats. Int J Mol Med 2019; 43:1356-1372. [PMID: 30664169 PMCID: PMC6365090 DOI: 10.3892/ijmm.2019.4064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Inflammatory response has an important role in the outcome of cerebral ischemia reperfusion injury (CIR). Biliverdin (BV) administration can relieve CIR in rats, but the mechanism remains unknown. The aim of the present study was to explore the expressional network of microRNA (miRNA)-mRNA in CIR rats following BV administration. A rat middle cerebral artery occlusion model with BV treatment was established. After neurobehavior was evaluated by neurological severity scores (NSS), miRNA and mRNA expressional profiles were analyzed by microarray technology from the cerebral cortex subjected to ischemia and BV administration. Then, bioinformatics prediction was used to screen the correlation between miRNA and mRNA, and 20 candidate miRNAs and 33 candidate mRNAs were verified by reverse transcription-quantitative polymerase chain reaction. Furthermore, the regulation relationship between ETS proto-oncogene 1 (Ets1) and miRNA204-5p was examined by luciferase assay. A total of 86 miRNAs were differentially expressed in the BV group compared with the other groups. A total of 10 miRNAs and 26 candidate genes were identified as a core 'microRNA-mRNA' regulatory network that was linked with the functional improvement of BV administration in CIR rats. Lastly, the luciferase assay results confirmed that miRNA204-5p directly targeted Ets1. The present findings suggest that BV administration may regulate multiple miRNAs and mRNAs to improve neurobehavior in CIR rats, by influencing cell proliferation, apoptosis, maintaining ATP homeostasis, and angiogenesis.
Collapse
Affiliation(s)
- Zhi-Yao Zou
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Jia Liu
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Cheng Chang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Jun-Jie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Jing Luo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Yuan Jin
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Zheng Ma
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Ting-Hua Wang
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Jian-Lin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
31
|
Peng F, He Q, Cheng C, Pan J. GCNT2 induces epithelial-mesenchymal transition and promotes migration and invasion in esophageal squamous cell carcinoma cells. Cell Biochem Funct 2018; 37:42-51. [DOI: 10.1002/cbf.3371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Fei Peng
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy; Jinan University; Guangzhou China
| | - Qi He
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy; Jinan University; Guangzhou China
| | - Chao Cheng
- Department of Thoracic Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Jingxuan Pan
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy; Jinan University; Guangzhou China
| |
Collapse
|
32
|
Xu X, Chen Z, Shi YF, Wang HM, He Y, Shi L, Chen T, Wu JL, Zhang XB. Functional inactivation of OsGCNT induces enhanced disease resistance to Xanthomonas oryzae pv. oryzae in rice. BMC PLANT BIOLOGY 2018; 18:264. [PMID: 30382816 PMCID: PMC6211509 DOI: 10.1186/s12870-018-1489-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/17/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Spotted-leaf mutants are important to reveal programmed cell death and defense-related pathways in rice. We previously characterized the phenotype performance of a rice spotted-leaf mutant spl21 and narrowed down the causal gene locus spl21(t) to an 87-kb region in chromosome 12 by map-based cloning. RESULT We showed that a single base substitution from A to G at position 836 in the coding sequence of Oryza sativa beta-1,6-N-acetylglucosaminyl transferase (OsGCNT), effectively mutating Tyr to Cys at position 279 in the translated protein sequence, was responsible for the spotted-leaf phenotype as it could be rescued by functional complementation. Compared to the wild type IR64, the spotted-leaf mutant spl21 exhibited loss of chlorophyll, breakdown of chloroplasts, down-regulation of photosynthesis-related genes, and up-regulation of senescence associated genes, which indicated that OsGCNT regulates premature leaf senescence. Moreover, the enhanced resistance to the bacterial leaf blight pathogen Xanthomonas oryzae pv. oryzae, up-regulation of pathogenesis-related genes and increased level of jasmonate which suggested that OsGCNT is a negative regulator of defense response in rice. OsGCNT was expressed constitutively in the leaves, sheaths, stems, roots, and panicles, and OsGCNT-GFP was localized to the Golgi apparatus. High throughput RNA sequencing analysis provided further evidence for the biological effects of loss of OsGCNT function on cell death, premature leaf senescence and enhanced disease resistance in rice. Thus, we demonstrated that the novel OsGCNT regulated rice innate immunity and immunity-associated leaf senescence probably by changing the jasmonate metabolic pathway. CONCLUSIONS These results reveal that a novel gene Oryza sativa beta-1,6-N-acetylglucosaminyl transferase (OsGCNT) is responsible for the spotted-leaf mutant spl21, and OsGCNT acts as a negative-regulator mediating defense response and immunity-associated premature leaf senescence probably by activating jasmonate signaling pathway.
Collapse
Affiliation(s)
- Xia Xu
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Zheng Chen
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yong-feng Shi
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Hui-mei Wang
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yan He
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Lei Shi
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Ting Chen
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Jian-li Wu
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xiao-bo Zhang
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
33
|
Sweeney JG, Liang J, Antonopoulos A, Giovannone N, Kang S, Mondala TS, Head SR, King SL, Tani Y, Brackett D, Dell A, Murphy GF, Haslam SM, Widlund HR, Dimitroff CJ. Loss of GCNT2/I-branched glycans enhances melanoma growth and survival. Nat Commun 2018; 9:3368. [PMID: 30135430 PMCID: PMC6105653 DOI: 10.1038/s41467-018-05795-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer cells often display altered cell-surface glycans compared to their nontransformed counterparts. However, functional contributions of glycans to cancer initiation and progression remain poorly understood. Here, from expression-based analyses across cancer lineages, we found that melanomas exhibit significant transcriptional changes in glycosylation-related genes. This gene signature revealed that, compared to normal melanocytes, melanomas downregulate I-branching glycosyltransferase, GCNT2, leading to a loss of cell-surface I-branched glycans. We found that GCNT2 inversely correlated with clinical progression and that loss of GCNT2 increased melanoma xenograft growth, promoted colony formation, and enhanced cell survival. Conversely, overexpression of GCNT2 decreased melanoma xenograft growth, inhibited colony formation, and increased cell death. More focused analyses revealed reduced signaling responses of two representative glycoprotein families modified by GCNT2, insulin-like growth factor receptor and integrins. Overall, these studies reveal how subtle changes in glycan structure can regulate several malignancy-associated pathways and alter melanoma signaling, growth, and survival.
Collapse
Affiliation(s)
- Jenna Geddes Sweeney
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Jennifer Liang
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Aristotelis Antonopoulos
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - Nicholas Giovannone
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Shuli Kang
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Tony S. Mondala
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Steven R. Head
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Sandra L. King
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Yoshihiko Tani
- 0000 0004 1762 2623grid.410775.0Japanese Red Cross Kinki Block Blood Center, 7-5-17 Saito Asagi, Ibaraki-shi, Osaka 567-0085 Japan
| | - Danielle Brackett
- 0000 0004 0378 8294grid.62560.37Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Anne Dell
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - George F. Murphy
- 000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA ,0000 0004 0378 8294grid.62560.37Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Stuart M. Haslam
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - Hans R. Widlund
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Charles J. Dimitroff
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
34
|
Ferreira IG, Pucci M, Venturi G, Malagolini N, Chiricolo M, Dall'Olio F. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling. Int J Mol Sci 2018; 19:ijms19020580. [PMID: 29462882 PMCID: PMC5855802 DOI: 10.3390/ijms19020580] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1) by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2) through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3) by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.
Collapse
Affiliation(s)
- Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
35
|
The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages. Immunity 2017; 47:903-912.e4. [PMID: 29126797 DOI: 10.1016/j.immuni.2017.10.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/25/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
Abstract
Alveolar macrophages (AMs) derive from fetal liver monocytes, which colonize the lung during embryonic development and give rise to fully mature AMs perinatally. AM differentiation requires granulocyte macrophage colony-stimulating factor (GM-CSF), but whether additional factors are involved in AM regulation is not known. Here we report that AMs, in contrast to most other tissue macrophages, were also dependent on transforming growth factor-β receptor (TGF-βR) signaling. Conditional deletion of TGF-βR in mice at different time points halted the development and differentiation of AMs. In adult mice, TGF-β was also critical for AM homeostasis. The source of TGF-β was AMs themselves, indicative of an autocrine loop that promotes AM self-maintenance. Mechanistically, TGF-βR signaling resulted in upregulation of PPAR-γ, a signature transcription factor essential for the development of AMs. These findings reveal an additional layer of complexity regarding the guidance cues, which govern the genesis, maturation, and survival of AMs.
Collapse
|
36
|
Song T, Cao S, Tao S, Liang S, Du W, Liang Y. A Novel Unsupervised Algorithm for Biological Process-based Analysis on Cancer. Sci Rep 2017; 7:4671. [PMID: 28680165 PMCID: PMC5498659 DOI: 10.1038/s41598-017-04961-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/30/2017] [Indexed: 12/04/2022] Open
Abstract
The aberrant alterations of biological functions are well known in tumorigenesis and cancer development. Hence, with advances in high-throughput sequencing technologies, capturing and quantifying the functional alterations in cancers based on expression profiles to explore cancer malignant process is highlighted as one of the important topics among cancer researches. In this article, we propose an algorithm for quantifying biological processes by using gene expression profiles over a sample population, which involves the idea of constructing principal curves to condense information of each biological process by a novel scoring scheme on an individualized manner. After applying our method on several large-scale breast cancer datasets in survival analysis, a subset of these biological processes extracted from corresponding survival model is then found to have significant associations with clinical outcomes. Further analyses of these biological processes enable the study of the interplays between biological processes and cancer phenotypes of interest, provide us valuable insights into cancer biology in biological process level and guide the precision treatment for cancer patients. And notably, prognosis predictions based on our method are consistently superior to the existing state of art methods with the same intention.
Collapse
Affiliation(s)
- Tianci Song
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
| | - Sha Cao
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Sheng Tao
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Sen Liang
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Wei Du
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China.
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| | - Yanchun Liang
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China.
- Zhuhai Laboratory of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Zhuhai College of Jilin University, Zhuhai, 519041, China.
| |
Collapse
|
37
|
Chao CC, Wu PH, Huang HC, Chung HY, Chou YC, Cai BH, Kannagi R. Downregulation of miR-199a/b-5p is associated with GCNT2 induction upon epithelial-mesenchymal transition in colon cancer. FEBS Lett 2017; 591:1902-1917. [PMID: 28542779 DOI: 10.1002/1873-3468.12685] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 11/08/2022]
Abstract
β-1,6-N-acetylglucosaminyltransferase 2 (GCNT2), which encodes a key glycosyltransferase for blood group I antigen synthesis, is induced upon epithelial-mesenchymal transition (EMT). Our results indicate that GCNT2 is upregulated upon EMT induced with epidermal growth factor and basic FGF in cultured human colon cancer cells. GCNT2 knockdown or overexpression decreases or increases, respectively, malignancy-related characteristics of colon cancer cells and I antigen levels. MiR-199a/b-5p is markedly downregulated upon EMT in colon cancer cells. Here, we find that miR-199a/b-5p consistently regulates GCNT2 expression in reporter assays and that it binds directly to the GCNT2 3' untranslated region intracellularly in RNA-induced silencing complex-trap assays. Overexpression of miR-199a/b-5p decreases GCNT2 expression and suppresses I antigen production. Based on these findings, we propose that miR-199a/b-5p regulates GCNT2 and I antigen expression in colon cancer cells undergoing EMT.
Collapse
Affiliation(s)
- Chia-Chun Chao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Han Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Hsiao-Yu Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,National RNAi Core Facility, Academia Sinica, Taipei, Taiwan
| | - Bi-He Cai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Reiji Kannagi
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
38
|
Lee YH, Liao YJ, Huang CH, Chang FL, Fan TH, Twu YC. Branched I antigens on leukemia cells enhanced sensitivity against natural killer-cell cytotoxicity through affecting the target-effector interaction. Transfusion 2017; 57:1040-1051. [PMID: 28337749 DOI: 10.1111/trf.13982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND The aberrant glycosylation on proteins and lipids has been implicated in malignant transformations for promoting the tumorigenesis, metastasis, and evasion from the host immunity. The I-branching β-1,6-N-acetylglucosaminyltransferase, converting the straight i to branched I histo-blood group antigens, reportedly could influence the migration, invasion, and metastasis of solid tumors. STUDY DESIGN AND METHODS We first chose the highly cytotoxic natural killer (NK)-92MI cells as effector against leukemia for this cell line has been used in several clinical trials. Fluorescence-activated cell sorting and nonradioactive cytotoxicity assay were performed to reexamine the role of NK-activating receptors, their corresponding ligands, and the tumor-associated carbohydrate antigens in this NK-92MI-leukemia in vitro system. The I role on cytotoxic mechanism was further studied especially on the effector-target interactions by cytotoxic analysis and conjugate formation assay. RESULTS We showed that expression levels of leukemia surface ligands for NK-activating receptors did not positively reflect susceptibility to NK-92MI. Instead, the expression of I antigen on the leukemia cells was found important in mediating the susceptibility to NK targeting by affecting the interaction with effector cells. Furthermore, susceptibility was shown to dramatically increase while overexpressing branched I antigens on the I- cells. By both conjugate and cytotoxicity assay, we revealed that the presence of I antigen on leukemia cells enhanced the interaction with NK-92MI cells, increasing susceptibility to cell-mediated lysis. CONCLUSION In our system, branched I antigens on the leukemia were involved in the immunosurveillance mediated by NK cells specifically through affecting the effector-target interaction.
Collapse
Affiliation(s)
- Yen-Hua Lee
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology
| | - Chin-Han Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Ling Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Hsi Fan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
39
|
Munkley J. Glycosylation is a global target for androgen control in prostate cancer cells. Endocr Relat Cancer 2017; 24:R49-R64. [PMID: 28159857 DOI: 10.1530/erc-16-0569] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/03/2017] [Indexed: 12/17/2022]
Abstract
Changes in glycan composition are common in cancer and can play important roles in all of the recognised hallmarks of cancer. We recently identified glycosylation as a global target for androgen control in prostate cancer cells and further defined a set of 8 glycosylation enzymes (GALNT7, ST6GalNAc1, GCNT1, UAP1, PGM3, CSGALNACT1, ST6GAL1 and EDEM3), which are also significantly upregulated in prostate cancer tissue. These 8 enzymes are under direct control of the androgen receptor (AR) and are linked to the synthesis of important cancer-associated glycans such as sialyl-Tn (sTn), sialyl LewisX (SLeX), O-GlcNAc and chondroitin sulfate. Glycosylation has a key role in many important biological processes in cancer including cell adhesion, migration, interactions with the cell matrix, immune surveillance, cell signalling and cellular metabolism. Our results suggest that alterations in patterns of glycosylation via androgen control might modify some or all of these processes in prostate cancer. The prostate is an abundant secretor of glycoproteins of all types, and alterations in glycans are, therefore, attractive as potential biomarkers and therapeutic targets. Emerging data on these often overlooked glycan modifications have the potential to improve risk stratification and therapeutic strategies in patients with prostate cancer.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic MedicineNewcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
40
|
Yu X, Zhao Y, Wang L, Chen X, Su Z, Zhang H, Yuan Q, Wang S. Sialylated β1, 6 branched N-glycans modulate the adhesion, invasion and metastasis of hepatocarcinoma cells. Biomed Pharmacother 2016; 84:1654-1661. [PMID: 27847205 DOI: 10.1016/j.biopha.2016.10.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 12/25/2022] Open
Abstract
The mouse hepatocarcinoma cell lines Hca-F and Hca-P have been derived from hepatocarcinoma in mice and metastasize only to the lymph node. Hca-F cells displayed greater lymphatic metastasis ability than Hca-P cells. When the two cell lines were compared for cell surface sialylated β1,6 branched N-glycans by flow cytometry using L-PHA and SNA, Hca-F cells were found to express significantly higher levels. To explore the effect of increased sialylated β1,6 branched N-glycans on hepatocarcinoma progression, we inhibit their expression in Hca-F cells by using swainsonine treatment and RNA interference. We found that swainsonine treatment or GnT-V-shRNA transfection significantly inhibited the formation of β1,6 branched N-glycans, and partially inhibited the expression of α2,6 sialic acids. Knockdown of sialylated β1,6 branched N-glycans significantly attenuated the invasive and metastatic capability both in vitro and in vivo. Blockade of α2,6 sialic acid expression on Hca-F cell surface by the treatment with neuraminidase caused reduction in cellular adherence to lymph node. In addition, knockdown of sialylated β1,6 branched N-glycans could decrease the expression of Notch1, NICD1, NICD2 and HES1 in Hca-F cells. Collectively, these findings suggest that increased sialylated β1,6 branched N-glycans may contribute to hepatocarcinoma progression by altering the adhesive, invasive and metastatic ability to lymph node via Notch signaling pathway.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Pathology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yujie Zhao
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Liping Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xixi Chen
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Zhen Su
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Han Zhang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Qingmin Yuan
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| |
Collapse
|
41
|
Liao YJ, Lee YH, Chang FL, Ho H, Huang CH, Twu YC. The SHP2-ERK2 signaling pathway regulates branched I antigen formation by controlling the binding of CCAAT/enhancer binding protein α to the IGnTC promoter region during erythroid differentiation. Transfusion 2016; 56:2691-2702. [PMID: 27600951 DOI: 10.1111/trf.13796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/20/2016] [Accepted: 06/25/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Phosphorylation status of the transcription factor CCAAT/enhancer binding protein α (C/EBPα) has been demonstrated in a human hematopoietic cell model to regulate the formation of branched I antigen by affecting its binding affinity to the promoter region of the IGnTC gene during erythroid and granulocytic differentiation. STUDY DESIGN AND METHODS The K-562 cell line was induced to differentiate into red blood cells (RBCs) or granulocytes by sodium butyrate or retinoic acid, respectively, to study the involvement of three MAP kinase pathways in I antigen synthesis. The regulatory effects of the extracellular signal-regulated kinase (ERK)2-Src homology region 2 domain-containing phosphatase 2 (SHP2) pathway on phosphorylation status and binding affinities of C/EBPα as well as the subsequent activation of IGnTC and synthesis of surface I formation were studied in wild-type K-562 cells and in mutant cells that overexpress ERK2 and SHP2. RESULTS We found that SHP2-ERK2 signaling regulates the phosphorylation status of C/EBPα to alter its binding affinity onto the IGnTC promoter region, thereby activating the synthesis of cell surface I antigen formation during erythropoiesis. CONCLUSION SHP2-ERK2 signaling acts upstream of C/EBPα as a regulator of cell surface I antigen synthesis. Such regulation is specific for RBC but not for granulocyte differentiation.
Collapse
Affiliation(s)
- Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University
| | - Yen-Hua Lee
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Fu-Ling Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsun Ho
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Han Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
42
|
Taparra K, Tran PT, Zachara NE. Hijacking the Hexosamine Biosynthetic Pathway to Promote EMT-Mediated Neoplastic Phenotypes. Front Oncol 2016; 6:85. [PMID: 27148477 PMCID: PMC4834358 DOI: 10.3389/fonc.2016.00085] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/27/2016] [Indexed: 01/07/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a highly conserved program necessary for orchestrating distant cell migration during embryonic development. Multiple studies in cancer have demonstrated a critical role for EMT during the initial stages of tumorigenesis and later during tumor invasion. Transcription factors (TFs) such as SNAIL, TWIST, and ZEB are master EMT regulators that are aberrantly overexpressed in many malignancies. Recent evidence correlates EMT-related transcriptomic alterations with metabolic reprograming in cancer. Metabolic alterations may allow cancer to adapt to environmental stressors, supporting the irregular macromolecular demand of rapid proliferation. One potential metabolic pathway of increasing importance is the hexosamine biosynthesis pathway (HBP). The HBP utilizes glycolytic intermediates to generate the metabolite UDP-GlcNAc. This and other charged nucleotide sugars serve as the basis for biosynthesis of glycoproteins and other glycoconjugates. Recent reports in the field of glycobiology have cultivated great curiosity within the cancer research community. However, specific mechanistic relationships between the HBP and fundamental pathways of cancer, such as EMT, have yet to be elucidated. Altered protein glycosylation downstream of the HBP is well positioned to mediate many cellular changes associated with EMT including cell-cell adhesion, responsiveness to growth factors, immune system evasion, and signal transduction programs. Here, we outline some of the basics of the HBP and putative roles the HBP may have in driving EMT-related cancer processes. With novel appreciation of the HBP's connection to EMT, we hope to illuminate the potential for new therapeutic targets of cancer.
Collapse
Affiliation(s)
- Kekoa Taparra
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
43
|
Mikami J, Tobisawa Y, Yoneyama T, Hatakeyama S, Mori K, Hashimoto Y, Koie T, Ohyama C, Fukuda M. I-branching N-acetylglucosaminyltransferase regulates prostate cancer invasiveness by enhancing α5β1 integrin signaling. Cancer Sci 2016; 107:359-68. [PMID: 26678556 PMCID: PMC4814258 DOI: 10.1111/cas.12859] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/29/2015] [Accepted: 12/12/2015] [Indexed: 01/20/2023] Open
Abstract
Cell surface carbohydrates are important for cell migration and invasion of prostate cancer (PCa). Accordingly, the I‐branching N‐acetylglucosaminyltransferase (GCNT2) converts linear i‐antigen to I‐branching glycan, and its expression is associated with breast cancer progression. In the present study, we identified relationships between GCNT2 expression and clinicopathological parameters in patients with PCa. Paraffin‐embedded PCa specimens were immunohistochemically tested for GCNT2 expression, and the roles of GCNT2 in PCa progression were investigated using cell lines with high GCNT2 expression and low GCNT2 expression. GCNT2‐positive cells were significantly lesser in organ‐confined disease than in that with extra‐capsular extensions, and GCNT2‐negative tumors were associated with significantly better prostate‐specific antigen‐free survival compared with GCNT2‐positive tumors. Subsequent functional studies revealed that knockdown of GCNT2 expression in PCa cell lines significantly inhibited cell migration and invasion. GCNT2 regulated the expression of cell surface I‐antigen on the O‐glycan and glycolipid. Moreover, I‐antigen‐bearing glycolipids were subject to α5β1 integrin–fibronectin mediated protein kinase B phosphorylation. In conclusion, GCNT2 expression is closely associated with invasive potential of PCa.
Collapse
Affiliation(s)
- Jotaro Mikami
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tohru Yoneyama
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuyuki Mori
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuhiro Hashimoto
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Koie
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Minoru Fukuda
- Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Sanford Burnham Prebys Medical Discovery Institute, Tumor Microenvironment and Metastasis Program, NCI-Designated Cancer Center, La Jolla, California, USA
| |
Collapse
|
44
|
Kölbl AC, Andergassen U, Jeschke U. The Role of Glycosylation in Breast Cancer Metastasis and Cancer Control. Front Oncol 2015; 5:219. [PMID: 26528431 PMCID: PMC4602128 DOI: 10.3389/fonc.2015.00219] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/24/2015] [Indexed: 01/08/2023] Open
Abstract
Glycosylation and its correlation to the formation of remote metastasis in breast cancer had been an important scientific topic in the last 25 years. With the development of new analytical techniques, new insights were gained on the mechanisms underlying metastasis formation and the role of aberrant glycosylation within. Mucin-1 and Galectin were recognized as key players in glycosylation. Interestingly, aberrant carbohydrate structures seem to support the development of brain metastasis in breast cancer patients, as changes in glycosylation structures facilitate an overcoming of blood–brain barrier. Changes in the gene expression of glycosyltransferases are the leading cause for a modification of carbohydrate chains, so that also altered gene expression plays a role for glycosylation. In consequence, glycosylation and changes within can be useful for cancer diagnosis, determination of tumor stage, and prognosis, but can as well be targets for therapeutic strategies. Thus, further research on this topic would worthwhile for cancer combating.
Collapse
Affiliation(s)
- Alexandra C Kölbl
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich , Munich , Germany
| | - Ulrich Andergassen
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich , Munich , Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich , Munich , Germany
| |
Collapse
|
45
|
Murakami M, Yoshimoto T, Nakabayashi K, Tsuchiya K, Minami I, Bouchi R, Izumiyama H, Fujii Y, Abe K, Tayama C, Hashimoto K, Suganami T, Hata KI, Kihara K, Ogawa Y. Integration of transcriptome and methylome analysis of aldosterone-producing adenomas. Eur J Endocrinol 2015; 173:185-95. [PMID: 25953827 DOI: 10.1530/eje-15-0148] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/07/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The pathophysiology of aldosterone-producing adenomas (APA) has been investigated intensively through genetic and genomic approaches. However, the role of epigenetics in APA is not fully understood. In the present study, we explored the relationship between gene expression and DNA methylation status in APA. METHODS We conducted an integrated analysis of transcriptome and methylome data of paired APA-adjacent adrenal gland (AAG) samples from the same patient. The adrenal specimens were obtained from seven Japanese patients with APA who underwent adrenalectomy. Gene expression and genome-wide CpG methylation profiles were obtained from RNA and DNA samples that were extracted from those seven paired tissues. RESULTS Methylome analysis showed global CpG hypomethylation in APA relative to AAG. The integration of gene expression and methylation status showed that 34 genes were up-regulated with CpG hypomethylation in APA. Of these, three genes (CYP11B2, MC2R, and HPX) may be related to aldosterone production, and five genes (PRRX1, RAB38, FAP, GCNT2, and ASB4) are potentially involved in tumorigenesis. CONCLUSION The present study is the first methylome analysis to compare APA with AAG in the same patients. Our integrated analysis of transcriptome and methylome revealed DNA hypomethylation in APA and identified several up-regulated genes with DNA hypomethylation that may be involved in aldosterone production and tumorigenesis.
Collapse
Affiliation(s)
- Masanori Murakami
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Takanobu Yoshimoto
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Kazuhiko Nakabayashi
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Kyoichiro Tsuchiya
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Isao Minami
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Ryotaro Bouchi
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Hajime Izumiyama
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Yasuhisa Fujii
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Kosei Abe
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Chiharu Tayama
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Koshi Hashimoto
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Takayoshi Suganami
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Ken-ichiro Hata
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Kazunori Kihara
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan
| |
Collapse
|
46
|
Patil SA, Bshara W, Morrison C, Chandrasekaran EV, Matta KL, Neelamegham S. Overexpression of α2,3sialyl T-antigen in breast cancer determined by miniaturized glycosyltransferase assays and confirmed using tissue microarray immunohistochemical analysis. Glycoconj J 2015; 31:509-21. [PMID: 25142811 DOI: 10.1007/s10719-014-9548-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glycan structure alterations during cancer regulate disease progression and represent clinical biomarkers. The study determined the degree to which changes in glycosyltransferase activities during cancer can be related to aberrant cell-surface tumor associated carbohydrate structures (TACA). To this end, changes in sialyltransferase (sialylT), fucosyltransferase (fucT) and galactosyltransferase (galT) activity were measured in normal and tumor tissue using a miniaturized enzyme activity assay and synthetic glycoconjugates bearing terminal LacNAc Type-I (Galβ1-3GlcNAc), LacNAc Type-II (Galβ1-4GlcNAc), and mucin core-1/Type-III (Galβ1-3GalNAc) structures. These data were related to TACA using tissue microarrays containing 115 breast and 26 colon cancer specimen. The results show that primary human breast and colon tumors, but not adjacent normal tissue, express elevated β1,3GalT and α2,3SialylT activity that can form α2,3SialylatedType-IIIglycans (Siaα2-3Galβ1-3GalNAc). Prostate tumors did not exhibit such elevated enzymatic activities. α1,3/4FucT activity was higher in breast, but not in colon tissue. The enzymology based prediction of enhanced α2,3sialylated Type-III structures in breast tumors was verified using histochemical analysis of tissue sections and tissue microarrays. Here, the binding of two markers that recognize Galβ1-3GalNAc (peanut lectin and mAb A78-G/A7) was elevated in breast tumor, but not in normal control, only upon sialidase treatment. These antigens were also upregulated in colon tumors though to a lesser extent. α2,3sialylatedType-III expression correlated inversely with patient HER2 expression and breast metastatic potential. Overall, enzymology measurements of glycoT activity predict truncated O-glycan structures in tumors. High expression of the α2,3sialylated T-antigen O-glycans occur in breast tumors. A transformation from linear core-1 glycan to other epitopes may accompany metastasis.
Collapse
Affiliation(s)
- Shilpa A Patil
- Chemical and Biological Engineering, State University of New York, 906 Furnas Hall, Buffalo, NY, 14260, USA
| | | | | | | | | | | |
Collapse
|
47
|
Vasconcelos-Dos-Santos A, Oliveira IA, Lucena MC, Mantuano NR, Whelan SA, Dias WB, Todeschini AR. Biosynthetic Machinery Involved in Aberrant Glycosylation: Promising Targets for Developing of Drugs Against Cancer. Front Oncol 2015; 5:138. [PMID: 26161361 PMCID: PMC4479729 DOI: 10.3389/fonc.2015.00138] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022] Open
Abstract
Cancer cells depend on altered metabolism and nutrient uptake to generate and keep the malignant phenotype. The hexosamine biosynthetic pathway is a branch of glucose metabolism that produces UDP-GlcNAc and its derivatives, UDP-GalNAc and CMP-Neu5Ac and donor substrates used in the production of glycoproteins and glycolipids. Growing evidence demonstrates that alteration of the pool of activated substrates might lead to different glycosylation and cell signaling. It is already well established that aberrant glycosylation can modulate tumor growth and malignant transformation in different cancer types. Therefore, biosynthetic machinery involved in the assembly of aberrant glycans are becoming prominent targets for anti-tumor drugs. This review describes three classes of glycosylation, O-GlcNAcylation, N-linked, and mucin type O-linked glycosylation, involved in tumor progression, their biosynthesis and highlights the available inhibitors as potential anti-tumor drugs.
Collapse
Affiliation(s)
| | - Isadora A Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Miguel Clodomiro Lucena
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Natalia Rodrigues Mantuano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Stephen A Whelan
- Department of Biochemistry, Cardiovascular Proteomics Center, Boston University School of Medicine , Boston, MA , USA
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Adriane Regina Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| |
Collapse
|
48
|
Glycosyltransferases as Markers for Early Tumorigenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:792672. [PMID: 26161413 PMCID: PMC4486746 DOI: 10.1155/2015/792672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022]
Abstract
Background. Glycosylation is the most frequent posttranslational modification of proteins and lipids influencing inter- and intracellular communication and cell adhesion. Altered glycosylation patterns are characteristically observed in tumour cells. Normal and altered carbohydrate chains are transferred to their acceptor structures via glycosyltransferases. Here, we present the correlation between the presence of three different glycosyltransferases and tumour characteristics. Methods. 235 breast cancer tissue samples were stained immunohistochemically for the glycosyltransferases N-acetylgalactosaminyltransferase 6 (GALNT6), β-1,6-N-acetylglucosaminyltransferase 2 (GCNT2), and ST6 (α-N-acetyl-neuraminyl-2,3-β-galactosyl-1,3)-N-acetylgalactosamine α-2,6-sialyltransferase 1 (ST6GALNac1). Staining was evaluated by light microscopy and was correlated to different tumour characteristics by statistical analysis. Results. We found a statistically significant correlation for the presence of glycosyltransferases and tumour size and grading. Specifically smaller tumours with low grading revealed the highest incidences of glycosyltransferases. Additionally, Her4-expression but not pHer4-expression is correlated with the presence of glycosyltransferases. All other investigated parameters could not uncover any statistically significant reciprocity. Conclusion. Here we show, that glycosyltransferases can identify small tumours with well-differentiated cells; hence, glycosylation patterns could be used as a marker for early tumourigenesis. This assumption is supported by the fact that Her4 is also correlated to glycosylation, whereas the activated form of Her4 does not show such a connection with glycosylation.
Collapse
|
49
|
Sebestyén E, Zawisza M, Eyras E. Detection of recurrent alternative splicing switches in tumor samples reveals novel signatures of cancer. Nucleic Acids Res 2015; 43:1345-56. [PMID: 25578962 PMCID: PMC4330360 DOI: 10.1093/nar/gku1392] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The determination of the alternative splicing isoforms expressed in cancer is fundamental for the development of tumor-specific molecular targets for prognosis and therapy, but it is hindered by the heterogeneity of tumors and the variability across patients. We developed a new computational method, robust to biological and technical variability, which identifies significant transcript isoform changes across multiple samples. We applied this method to more than 4000 samples from the The Cancer Genome Atlas project to obtain novel splicing signatures that are predictive for nine different cancer types, and find a specific signature for basal-like breast tumors involving the tumor-driver CTNND1. Additionally, our method identifies 244 isoform switches, for which the change occurs in the most abundant transcript. Some of these switches occur in known tumor drivers, including PPARG, CCND3, RALGDS, MITF, PRDM1, ABI1 and MYH11, for which the switch implies a change in the protein product. Moreover, some of the switches cannot be described with simple splicing events. Surprisingly, isoform switches are independent of somatic mutations, except for the tumor-suppressor FBLN2 and the oncogene MYH11. Our method reveals novel signatures of cancer in terms of transcript isoforms specifically expressed in tumors, providing novel potential molecular targets for prognosis and therapy. Data and software are available at: http://dx.doi.org/10.6084/m9.figshare.1061917 and https://bitbucket.org/regulatorygenomicsupf/iso-ktsp.
Collapse
Affiliation(s)
- Endre Sebestyén
- Computational Genomics, Universitat Pompeu Fabra, Dr. Aiguader 88, E08003 Barcelona, Spain
| | - Michał Zawisza
- Universitat Politècnica de Catalunya, Jordi Girona 1-3, E08034 Barcelona, Spain
| | - Eduardo Eyras
- Computational Genomics, Universitat Pompeu Fabra, Dr. Aiguader 88, E08003 Barcelona, Spain Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, E08010 Barcelona, Spain
| |
Collapse
|
50
|
Guo H, Abbott KL. Functional impact of tumor-specific N-linked glycan changes in breast and ovarian cancers. Adv Cancer Res 2015; 126:281-303. [PMID: 25727151 DOI: 10.1016/bs.acr.2014.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Changes in glycosylation have been implicated in various human diseases, including cancer. Research over the past few decades has produced significant findings that illustrate the importance of cancer-specific alterations in glycosylation in the regulation of tumor formation and metastasis. The identification of glycan-based biomarkers and strategies targeting specific glycan epitopes on the tumor cell surface has become one of the widely pursued research areas. In this chapter, we will summarize and provide perspective on available knowledge about the functional roles that glycan structures play in the development and progression of the gynecological cancers, breast and ovarian, with a specific focus on N-linked glycans. A better understanding of the functional roles for glycans in cancer will drive future innovations for diagnostics and therapeutics.
Collapse
|