1
|
Miyazaki K, Ariake K, Sato S, Miura T, Xun J, Douchi D, Ishida M, Ohtsuka H, Mizuma M, Nakagawa K, Kamei T, Unno M. GFPT2 expression is induced by gemcitabine administration and enhances invasion by activating the hexosamine biosynthetic pathway in pancreatic cancer. Clin Exp Metastasis 2024; 41:777-789. [PMID: 38888874 PMCID: PMC11499537 DOI: 10.1007/s10585-024-10298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Our previous studies revealed a novel link between gemcitabine (GEM) chemotherapy and elevated glutamine-fructose-6-phosphate transaminase 2 (GFPT2) expression in pancreatic cancer (PaCa) cells. GFPT2 is a rate-limiting enzyme in the hexosamine biosynthesis pathway (HBP). HBP can enhance metastatic potential by regulating epithelial-mesenchymal transition (EMT). The aim of this study was to further evaluate the effect of chemotherapy-induced GFPT2 expression on metastatic potential. GFPT2 expression was evaluated in a mouse xenograft model following GEM exposure and in clinical specimens of patients after chemotherapy using immunohistochemical analysis. The roles of GFPT2 in HBP activation, downstream pathways, and cellular functions in PaCa cells with regulated GFPT2 expression were investigated. GEM exposure increased GFPT2 expression in tumors resected from a mouse xenograft model and in patients treated with neoadjuvant chemotherapy (NAC). GFPT2 expression was correlated with post-operative liver metastasis after NAC. Its expression activated the HBP, promoting migration and invasion. Treatment with HBP inhibitors reversed these effects. Additionally, GFPT2 upregulated ZEB1 and vimentin expression and downregulated E-cadherin expression. GEM induction upregulated GFPT2 expression. Elevated GFPT2 levels promoted invasion by activating the HBP, suggesting the potential role of this mechanism in promoting chemotherapy-induced metastasis.
Collapse
Affiliation(s)
- Kent Miyazaki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kyohei Ariake
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Department of Gastroenterological Surgery, Sendai City Medical Center Sendai Open Hospital, Sendai, Japan.
| | - Satoko Sato
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Takayuki Miura
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jingyu Xun
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daisuke Douchi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Xue T, Wang X, Pan X, Liu M, Xu F. PTX promotes breast cancer migration and invasion by recruiting ATF4 to upregulate FGF19. Cell Signal 2024; 122:111309. [PMID: 39053672 DOI: 10.1016/j.cellsig.2024.111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/03/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Widely-spread among women, breast cancer is a malignancy with fatalities, and chemotherapy is a vital treatment option for it. Recent studies have underscored the potential of chemotherapeutic agents such as paclitaxel, adriamycin, cyclophosphamide, and gemcitabine, among others, in facilitating tumor metastasis, with paclitaxel being extensively researched in this context. The molecular mechanism of these genes and their potential relevance to breast cancer is noteworthy. METHOD Clinical tissue specimens were used to analyze the expression and clinical significance of FGF19 or P-FGFR4 in patients with breast cancer before and after chemotherapy. qRT-PCR, ELISA, immunofluorescence and Western blotting were used to detect the expression level of FGF19 in breast cancer cells. The biological impacts of paclitaxel, FGF19, and ATF4 on breast cancer cells were assessed through CCK8, Transwell, and Western blot assays. The expression of ATF4 in breast cancer cells was determined through database analysis, Western blot analysis, qRT-PCR, and immunofluorescence. The direct interaction between FGF19 and ATF4 was confirmed by a luciferase assay, and Western blotting was used to assess the levels of key proteins in the stress response pathway. To confirm the effects of PTX and FGF19 in vivo, we established a lung metastasis model in nude mice. RESULTS FGF19 expression was increased in breast cancer patients after chemotherapy. Paclitaxel can boost the migration and invasion of breast cancer cells, accompanied by an increase in FGF19 expression. ATF4 might be involved in facilitating the enhancing effect of FGF19 on breast cancer cell migration. Finally, stimulation during paclitaxel treatment could trigger a stress response, influencing the expression of FGF19 and the migration of breast cancer cells. CONCLUSION These data suggest that paclitaxel regulates FGF19 expression through ATF4 and thus promotes breast cancer cell migration and invasion.
Collapse
Affiliation(s)
- Ting Xue
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xuezhen Wang
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xianjun Pan
- Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Mei Liu
- Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Faliang Xu
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China; Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.
| |
Collapse
|
3
|
Deo A, Sleeman JP, Shaked Y. The role of host response to chemotherapy: resistance, metastasis and clinical implications. Clin Exp Metastasis 2024; 41:495-507. [PMID: 37999904 DOI: 10.1007/s10585-023-10243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Chemotherapy remains the primary treatment for most metastatic cancers. However, the response to chemotherapy and targeted agents is often transient, and concurrent development of resistance is the primary impediment to effective cancer therapy. Strategies to overcome resistance to treatment have focused on cancer cell intrinsic factors and the tumor microenvironment (TME). Recent evidence indicates that systemic chemotherapy has a significant impact on the host that either facilitates tumor growth, allowing metastatic spread, or renders treatment ineffective. These host responses include the release of bone marrow-derived cells, activation of stromal cells in the TME, and induction of different molecular effectors. Here, we provide an overview of chemotherapy-induced systemic host responses that support tumor aggressiveness and metastasis, and which contribute to therapy resistance. Studying host responses to chemotherapy provides a solid basis for the development of adjuvant strategies to improve treatment outcomes and delay resistance to chemotherapy. This review discusses the emerging field of host response to cancer therapy, and its preclinical and potential clinical implications, explaining how under certain circumstances, these host effects contribute to metastasis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Abhilash Deo
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jonathan P Sleeman
- European Centre for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Karlsruhe Institute for Technology (KIT), IBCS-BIP, Campus Nord, 76344, Eggenstein- Leopoldshafen, Germany
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
4
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15:1428920. [PMID: 39015566 PMCID: PMC11249567 DOI: 10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
Affiliation(s)
- Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Chang Lu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Narasimha M. Beeraka
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, India
| | - Sergey Efetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail Enikeev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, India
| | - Mingze He
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zhi Li
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15. [DOI: https:/doi.org/10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
|
6
|
Caggia S, Johnston A, Walunj DT, Moore AR, Peer BH, Everett RW, Oyelere AK, Khan SA. Gα i2 Protein Inhibition Blocks Chemotherapy- and Anti-Androgen-Induced Prostate Cancer Cell Migration. Cancers (Basel) 2024; 16:296. [PMID: 38254786 PMCID: PMC10813862 DOI: 10.3390/cancers16020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
We have previously shown that heterotrimeric G-protein subunit alphai2 (Gαi2) is essential for cell migration and invasion in prostate, ovarian and breast cancer cells, and novel small molecule inhibitors targeting Gαi2 block its effects on migratory and invasive behavior. In this study, we have identified potent, metabolically stable, second generation Gαi2 inhibitors which inhibit cell migration in prostate cancer cells. Recent studies have shown that chemotherapy can induce the cancer cells to migrate to distant sites to form metastases. In the present study, we determined the effects of taxanes (docetaxel), anti-androgens (enzalutamide and bicalutamide) and histone deacetylase (HDAC) inhibitors (SAHA and SBI-I-19) on cell migration in prostate cancer cells. All treatments induced cell migration, and simultaneous treatments with new Gαi2 inhibitors blocked their effects on cell migration. We concluded that a combination treatment of Gαi2 inhibitors and chemotherapy could blunt the capability of cancer cells to migrate and form metastases.
Collapse
Affiliation(s)
- Silvia Caggia
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| | - Alexis Johnston
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
| | - Dipak T. Walunj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
| | - Aanya R. Moore
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| | - Benjamin H. Peer
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
| | - Ravyn W. Everett
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Shafiq A. Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| |
Collapse
|
7
|
Thapa BV, Banerjee M, Glimm T, Saini DK, Bhat R. The senescent mesothelial matrix accentuates colonization by ovarian cancer cells. Cell Mol Life Sci 2023; 81:2. [PMID: 38043093 PMCID: PMC10694112 DOI: 10.1007/s00018-023-05017-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 12/05/2023]
Abstract
Ovarian cancer is amongst the most morbid of gynecological malignancies due to its diagnosis at an advanced stage, a transcoelomic mode of metastasis, and rapid transition to chemotherapeutic resistance. Like all other malignancies, the progression of ovarian cancer may be interpreted as an emergent outcome of the conflict between metastasizing cancer cells and the natural defense mounted by microenvironmental barriers to such migration. Here, we asked whether senescence in coelom-lining mesothelia, brought about by drug exposure, affects their interaction with disseminated ovarian cancer cells. We observed that cancer cells adhered faster on senescent human and murine mesothelial monolayers than on non-senescent controls. Time-lapse epifluorescence microscopy showed that mesothelial cells were cleared by a host of cancer cells that surrounded the former, even under sub-confluent conditions. A multiscale computational model predicted that such colocalized mesothelial clearance under sub-confluence requires greater adhesion between cancer cells and senescent mesothelia. Consistent with the prediction, we observed that senescent mesothelia expressed an extracellular matrix with higher levels of fibronectin, laminins and hyaluronan than non-senescent controls. On senescent matrix, cancer cells adhered more efficiently, spread better, and moved faster and persistently, aiding the spread of cancer. Inhibition assays using RGD cyclopeptides suggested the adhesion was predominantly contributed by fibronectin and laminin. These findings led us to propose that the senescence-associated matrisomal phenotype of peritoneal barriers enhances the colonization of invading ovarian cancer cells contributing to the metastatic burden associated with the disease.
Collapse
Affiliation(s)
- Bharat Vivan Thapa
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
- Undergraduate Program, Indian Institute of Science, Bangalore, 560012, India
| | - Mallar Banerjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Tilmann Glimm
- Department of Mathematics, Western Washington University, Bellingham, WA, 98229, USA
| | - Deepak K Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India.
| | - Ramray Bhat
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
8
|
Sigdel I, Ofori-Kwafo A, Heizelman RJ, Nestor-Kalinoski A, Prabhakarpandian B, Tiwari AK, Tang Y. Biomimetic on-chip assay reveals the anti-metastatic potential of a novel thienopyrimidine compound in triple-negative breast cancer cell lines. Front Bioeng Biotechnol 2023; 11:1227119. [PMID: 37840664 PMCID: PMC10569307 DOI: 10.3389/fbioe.2023.1227119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: This study presents a microfluidic tumor microenvironment (TME) model for evaluating the anti-metastatic efficacy of a novel thienopyrimidines analog with anti-cancer properties utilizing an existing commercial platform. The microfluidic device consists of a tissue compartment flanked by vascular channels, allowing for the co-culture of multiple cell types and providing a wide range of culturing conditions in one device. Methods: Human metastatic, drug-resistant triple-negative breast cancer (TNBC) cells (SUM159PTX) and primary human umbilical vein endothelial cells (HUVEC) were used to model the TME. A dynamic perfusion scheme was employed to facilitate EC physiological function and lumen formation. Results: The measured permeability of the EC barrier was comparable to observed microvessels permeability in vivo. The TNBC cells formed a 3D tumor, and co-culture with HUVEC negatively impacted EC barrier integrity. The microfluidic TME was then used to model the intravenous route of drug delivery. Paclitaxel (PTX) and a novel non-apoptotic agent TPH104c were introduced via the vascular channels and successfully reached the TNBC tumor, resulting in both time and concentration-dependent tumor growth inhibition. PTX treatment significantly reduced EC barrier integrity, highlighting the adverse effects of PTX on vascular ECs. TPH104c preserved EC barrier integrity and prevented TNBC intravasation. Discussion: In conclusion, this study demonstrates the potential of microfluidics for studying complex biological processes in a controlled environment and evaluating the efficacy and toxicity of chemotherapeutic agents in more physiologically relevant conditions. This model can be a valuable tool for screening potential anticancer drugs and developing personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Indira Sigdel
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| | - Awurama Ofori-Kwafo
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| | - Robert J. Heizelman
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Andrea Nestor-Kalinoski
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | | | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Yuan Tang
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| |
Collapse
|
9
|
Ma Y, Guo C, Wang X, Wei X, Ma J. Impact of chemotherapeutic agents on liver microenvironment: oxaliplatin create a pro-metastatic landscape. J Exp Clin Cancer Res 2023; 42:237. [PMID: 37697332 PMCID: PMC10494354 DOI: 10.1186/s13046-023-02804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/20/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Chemotherapeutic agents are used to control tumor proliferation. However, their influence in the pre-metastatic niche of target organs has not been well studied. Oxaliplatin (OXA) is a drug applied in standard treatments of colorectal cancer (CRC), while the direct effect of which on the pre-metastatic microenvironment of the liver remains unclear. METHODS Models of liver metastases were established with luciferase expressing CT26 cells in BALB/c and BALB/c-nude mice. Single-cell RNA Sequencing was performed to examine the immune microenvironment in the liver elicited by OXA. Immunofluorescence and flowcytometry were utilized to confirm the changes in the number of immune cells. LDH, CellTrace CFSE Cell Proliferation and apoptosis assays were conducted to explore the impact of OXA on T cells ex vivo. The correlation between chemotherapy-related lymphopenia and metastases was assessed by meta-analysis. RESULTS Herein we discovered that administration of OXA prior to the occurrence of liver metastasis actually accelerated tumor development and colonization in the liver. Single-cell RNA sequencing revealed that the landscape of the liver immune microenvironment had been changed to immunosuppressive phenotype. Macrophages after the treatment of OXA exhibited a high ability to inhibit the activation of T cells. Further investigation revealed a significant decrease in the number of T cells in the liver, particularly CD8+ T cells with reduced capacity of proliferation, activation, and killing. When mice were treated with T cell supplementation, the OXA-induced metastasis was notably abolished, indicating that the OXA-primed liver microenvironment could be reversed by the infusion of T cells. Consistent with our findings in mice, a meta-analysis was performed to verify that chemotherapy-related lymphopenia was associated with an inferior prognosis related with high incidence of metastasis, suggesting the pivotal role of chemotherapy in pre-metastatic niche formation. Furthermore, a notable reduction in the count of both macrophages and T cells was observed in the liver of colorectal cancer (CRC) patient undergoing OXA-based chemotherapy. CONCLUSIONS Our findings proposed that immunosuppressive microenvironment in liver induced by OXA enhanced liver metastasis of colorectal cancer, which highlighted a new consideration to balance the pro metastases and anti-cancer possibility of OXA treatment.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Chang Guo
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100730, People's Republic of China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xijun Wang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Xundong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100730, People's Republic of China.
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100730, People's Republic of China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
10
|
Li C, Lang J, Wang Y, Cheng Z, Zu M, Li F, Sun J, Deng Y, Ji T, Nie G, Zhao Y. Self-assembly of CXCR4 antagonist peptide-docetaxel conjugates for breast tumor multi-organ metastasis inhibition. Acta Pharm Sin B 2023; 13:3849-3861. [PMID: 37719382 PMCID: PMC10501865 DOI: 10.1016/j.apsb.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
As a representative chemotherapeutic drug, docetaxel (DTX) has been used for breast cancer treatment for decades. However, the poor solubility of DTX limits its efficacy, and the DTX based therapy increases the metastasis risk due to the upregulation of C-X-C chemokine receptor type 4 (CXCR4) expression during the treatment. Herein, we conjugated CXCR4 antagonist peptide (CTCE) with DTX (termed CTCE-DTX) as an anti-metastasis agent to treat breast cancer. CTCE-DTX could self-assemble to nanoparticles, targeting CXCR4-upregulated metastatic tumor cells and enhancing the DTX efficacy. Thus, the CTCE-DTX NPs achieved promising efficacy on inhibiting both bone-specific metastasis and lung metastasis of triple-negative breast cancer. Our work provided a rational strategy on designing peptide-drug conjugates with synergistic anti-tumor efficacy.
Collapse
Affiliation(s)
- Chen Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayan Lang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhou Wang
- Pancreas Centre, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhaoxia Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Mali Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fenfen Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jingyi Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Wang R, Wang Y, Liu X, Liu M, Sun L, Pan X, Hu H, Jiang B, Zou Y, Liu Q, Gong Y, Wang M, Sun G. Anastasis enhances metastasis and chemoresistance of colorectal cancer cells through upregulating cIAP2/NFκB signaling. Cell Death Dis 2023; 14:388. [PMID: 37391410 PMCID: PMC10313691 DOI: 10.1038/s41419-023-05916-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Chemotherapy is a common strategy to treat cancer. However, acquired resistance and metastasis are the major obstacles to successful treatment. Anastasis is a process by which cells survive executioner caspase activation when facing apoptotic stress. Here we demonstrate that colorectal cancer cells can undergo anastasis after transient exposure to chemotherapeutic drugs. Using a lineage tracing system to label and isolate cells that have experienced executioner caspase activation in response to drug treatment, we show that anastasis grants colorectal cancer cells enhanced migration, metastasis, and chemoresistance. Mechanistically, treatment with chemotherapeutic drugs induces upregulated expression of cIAP2 and activation of NFκB, which are required for cells to survive executioner caspase activation. The elevated cIAP2/NFκB signaling persists in anastatic cancer cells to promote migration and chemoresistance. Our study unveils that cIAP2/NFκB-dependent anastasis promotes acquired resistance and metastasis after chemotherapy.
Collapse
Affiliation(s)
- Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohe Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Menghao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lili Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
12
|
Wang Y, Wang R, Liu X, Liu M, Sun L, Pan X, Hu H, Jiang B, Zou Y, Liu Q, Gong Y, Wang M, Sun G. Chemotherapy-induced executioner caspase activation increases breast cancer malignancy through epigenetic de-repression of CDH12. Oncogenesis 2023; 12:34. [PMID: 37355711 DOI: 10.1038/s41389-023-00479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Cancer relapse and metastasis are major obstacles for effective treatment. One important mechanism to eliminate cancer cells is to induce apoptosis. Activation of executioner caspases is the key step in apoptosis and was considered "a point of no return". However, in recent years, accumulating evidence has demonstrated that cells can survive executioner caspase activation in response to apoptotic stimuli through a process named anastasis. Here we show that breast cancer cells that have survived through anastasis (anastatic cells) after exposure to chemotherapeutic drugs acquire enhanced proliferation and migration. Mechanistically, cadherin 12 (CDH12) is persistently upregulated in anastatic cells and promotes breast cancer malignancy via activation of ERK and CREB. Moreover, we demonstrate that executioner caspase activation induced by chemotherapeutic drugs results in loss of DNA methylation and repressive histone modifications in the CDH12 promoter region, leading to increased CDH12 expression. Our work unveils the mechanism underlying anastasis-induced enhancement in breast cancer malignancy, offering new therapeutic targets for preventing post-chemotherapy cancer relapse and metastasis.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohe Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Menghao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lili Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
13
|
Zhu C, Liu P, Li C, Zhang Y, Yin J, Hou L, Zheng G, Liu X. Near-Death Cells Cause Chemotherapy-Induced Metastasis via ATF4-Mediated NF-κB Signaling Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205835. [PMID: 36739602 PMCID: PMC10074103 DOI: 10.1002/advs.202205835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Cytotoxic chemotherapy is a primary treatment modality for many patients with advanced cancer. Increasing preclinical and clinical observations indicate that chemotherapy can exacerbate tumor metastasis. However, the underlying mechanism remains unclear. Here, it is attempted to identify the mechanisms underlying chemotherapy-induced cancer recurrence and metastasis. It is revealed that a small subpopulation of "near-death cells" (NDCs) with compromised plasma membranes can reverse the death process to enhance survival and repopulation after exposure to lethal doses of cytotoxins. Moreover, these NDCs acquire enhanced tumorigenic and metastatic capabilities, but maintain chemosensitivity in multiple models. Mechanistically, cytotoxin exposure induces activating transcription factor 4 (ATF4)-dependent nonclassical NF-κB signaling activation; ultimately, this results in nuclear translocation of p52 and RelB in NDCs. Deletion of ATF4 in parental cancer cells significantly reduces colony formation and metastasis of NDCs, whereas overexpression of ATF4 activates the nonclassical NF-κB signaling pathway to promote chemotherapy-induced metastasis of NDCs. Overall, these results provide novel mechanistic insights into the chemotherapy-induced metastasis and indicate the pivotal role of NDCs in mediating tumor relapse after cytotoxic therapy. This study also suggests that targeting ATF4 may be an effective approach in improving the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Chenchen Zhu
- Department of BiochemistrySchool of MedicineShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong510275China
| | - Pei Liu
- Department of BiochemistrySchool of MedicineShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong510275China
| | - Chuan‐Yuan Li
- Department of DermatologyDuke University Medical CenterDurhamNC27710USA
| | - Yuli Zhang
- Department of BiochemistrySchool of MedicineShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong510275China
| | - Jiang Yin
- Cancer Research Institute and Cancer HospitalGuangzhou Medical UniversityGuangzhouGuangdong510180China
| | - Linlin Hou
- Department of BiochemistrySchool of MedicineShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong510275China
| | - Guopei Zheng
- Cancer Research Institute and Cancer HospitalGuangzhou Medical UniversityGuangzhouGuangdong510180China
| | - Xinjian Liu
- Department of BiochemistrySchool of MedicineShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong510275China
- Bebetter Med Inc.GuangzhouGuangdong510525China
| |
Collapse
|
14
|
Patras L, Shaashua L, Matei I, Lyden D. Immune determinants of the pre-metastatic niche. Cancer Cell 2023; 41:546-572. [PMID: 36917952 PMCID: PMC10170403 DOI: 10.1016/j.ccell.2023.02.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Primary tumors actively and specifically prime pre-metastatic niches (PMNs), the future sites of organotropic metastasis, preparing these distant microenvironments for disseminated tumor cell arrival. While initial studies of the PMN focused on extracellular matrix alterations and stromal reprogramming, it is increasingly clear that the far-reaching effects of tumors are in great part achieved through systemic and local PMN immunosuppression. Here, we discuss recent advances in our understanding of the tumor immune microenvironment and provide a comprehensive overview of the immune determinants of the PMN's spatiotemporal evolution. Moreover, we depict the PMN immune landscape, based on functional pre-clinical studies as well as mounting clinical evidence, and the dynamic, reciprocal crosstalk with systemic changes imposed by cancer progression. Finally, we outline emerging therapeutic approaches that alter the dynamics of the interactions driving PMN formation and reverse immunosuppression programs in the PMN ensuring early anti-tumor immune responses.
Collapse
Affiliation(s)
- Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lee Shaashua
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Park WY, Gray JM, Holewinski RJ, Andresson T, So JY, Carmona-Rivera C, Hollander MC, Yang HH, Lee M, Kaplan MJ, Cappell SD, Yang L. Apoptosis-induced nuclear expulsion in tumor cells drives S100a4-mediated metastatic outgrowth through the RAGE pathway. NATURE CANCER 2023; 4:419-435. [PMID: 36973439 PMCID: PMC10042736 DOI: 10.1038/s43018-023-00524-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/07/2023] [Indexed: 03/29/2023]
Abstract
Most tumor cells undergo apoptosis in circulation and at the metastatic organ sites due to host immune surveillance and a hostile microenvironment. It remains to be elucidated whether dying tumor cells have a direct effect on live tumor cells during the metastatic process and what the underlying mechanisms are. Here we report that apoptotic cancer cells enhance the metastatic outgrowth of surviving cells through Padi4-mediated nuclear expulsion. Tumor cell nuclear expulsion results in an extracellular DNA-protein complex that is enriched with receptor for advanced glycation endproducts (RAGE) ligands. The chromatin-bound RAGE ligand S100a4 activates RAGE receptors in neighboring surviving tumor cells, leading to Erk activation. In addition, we identified nuclear expulsion products in human patients with breast, bladder and lung cancer and a nuclear expulsion signature correlated with poor prognosis. Collectively, our study demonstrates how apoptotic cell death can enhance the metastatic outgrowth of neighboring live tumor cells.
Collapse
Affiliation(s)
- Woo-Yong Park
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin M Gray
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ronald J Holewinski
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jae Young So
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Christine Hollander
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maxwell Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven D Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Li Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Yi YW. Therapeutic Implications of the Drug Resistance Conferred by Extracellular Vesicles Derived from Triple-Negative Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24043704. [PMID: 36835116 PMCID: PMC9960576 DOI: 10.3390/ijms24043704] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Anticancer drug resistance is a significant impediment in current cancer treatment. Extracellular vesicles (EVs) derived from cancer cells were recently acknowledged as a critical mechanism of drug resistance, tumor progression, and metastasis. EVs are enveloped vesicles comprising a lipid bilayer that transfers various cargo, including proteins, nucleic acids, lipids, and metabolites, from an originating cell to a recipient cell. Investigating the mechanisms whereby EVs confer drug resistance is still in the early stages. In this review, I analyze the roles of EVs derived from triple-negative breast cancer cells (TNBC-EVs) in anticancer drug resistance and discuss strategies to overcome TNBC-EV-mediated drug resistance.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
17
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Cang W, Wu A, Gu L, Wang W, Tian Q, Zheng Z, Qiu L. Erastin enhances metastatic potential of ferroptosis-resistant ovarian cancer cells by M2 polarization through STAT3/IL-8 axis. Int Immunopharmacol 2022; 113:109422. [PMID: 36410184 DOI: 10.1016/j.intimp.2022.109422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
Erastin is a small molecule identified in chemical screen that is capable of inducing ferropotosis. There is collective evidence proving that erastin-induced ferroptosis exhibits anti-tumor potential within diverse caners, such as ovarian cancer (OC). However, most OC cells show relative resistance to ferroptosis induced by erastin. M2-polarized tumor-associated macrophages (TAMs) have an important effect on the OC tumor microenvironment (TME), which makes M2 polarization a noticeable part in the context of OC therapy. The immunomodulatory effects of erastin on ferroptosis-resistant OC cells remain poorly understood. Here, we found that low concentration of erastin greatly promoted ferroptosis-resistant OC cell invasion and migration via STAT3-mediated M2 polarization of macrophages. As revealed by in-vitro experimental results, erastin significantly increased metastases of ferroptosis-resistant OC, and the percentage of M2 macrophage infiltration was also raised after erastin treatment. Furthermore, erastin augmented IL-8 production of macrophages, and pharmacological blockage of IL-8 partially abrogated the stimulatory effect of erastin on ferroptosis-resistant OC cells. This study demonstrates a new mechanism undering the tumor-promoting activity of erastin and has implications for the STAT3/IL-8 axis as a potential target for ferroptosis-resistant OC cells to improve overall anti-tumor efficacy.
Collapse
Affiliation(s)
- Wei Cang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Anyue Wu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Liying Gu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Wenjing Wang
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Qi Tian
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Zhong Zheng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Lihua Qiu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, China.
| |
Collapse
|
19
|
Antineoplastic agents in chemotherapy facilitating tumor growth and angiogenesis in the interval administrations. Life Sci 2022; 310:121089. [DOI: 10.1016/j.lfs.2022.121089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
|
20
|
Focus on organoids: cooperation and interconnection with extracellular vesicles - Is this the future of in vitro modeling? Semin Cancer Biol 2022; 86:367-381. [PMID: 34896267 DOI: 10.1016/j.semcancer.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 01/27/2023]
Abstract
Organoids are simplified in vitro model systems of organs that are used for modeling tissue development and disease, drug screening, cell therapy, and personalized medicine. Despite considerable success in the design of organoids, challenges remain in achieving real-life applications. Organoids serve as unique and organized groups of micro physiological systems that are capable of self-renewal and self-organization. Moreover, they exhibit similar organ functionality(ies) as that of tissue(s) of origin. Organoids can be designed from adult stem cells, induced pluripotent stem cells, or embryonic stem cells. They consist of most of the important cell types of the desired tissue/organ along with the topology and cell-cell interactions that are highly similar to those of an in vivo tissue/organ. Organoids have gained interest in human biomedical research, as they demonstrate high promise for use in basic, translational, and applied research. As in vitro models, organoids offer significant opportunities for reducing the reliance and use of experimental animals. In this review, we will provide an overview of organoids, as well as those intercellular communications mediated by extracellular vesicles (EVs), and discuss the importance of organoids in modeling a tumor immune microenvironment (TIME). Organoids can also be exploited to develop a better understanding of intercellular communications mediated by EVs. Also, organoids are useful in mimicking TIME, thereby offering a better-controlled environment for studying various associated biological processes and immune cell types involved in tumor immunity, such as T-cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, among others.
Collapse
|
21
|
Li T, Akinade T, Zhou J, Wang H, Tong Q, He S, Rinebold E, Valencia Salazar LE, Bhansali D, Zhong Y, Ruan J, Du J, Dalerba P, Leong KW. Therapeutic Nanocarriers Inhibit Chemotherapy-Induced Breast Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203949. [PMID: 36220339 PMCID: PMC9685442 DOI: 10.1002/advs.202203949] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/04/2022] [Indexed: 05/09/2023]
Abstract
Chemotherapy, although effective against primary tumors, may promote metastasis by causing the release of proinflammatory factors from damaged cells. Here, polymeric nanoparticles that deliver chemotherapeutics and scavenge proinflammatory factors simultaneously to inhibit chemotherapy-induced breast cancer metastasis are developed. The cationic nanoparticles can adsorb cell-free nucleic acids (cfNAs) based on charge-charge interaction, which downregulates the expression of Toll-like receptors and then reduces the secretion of inflammatory cytokines. Through in vitro structural optimization, cationic polyamidoamine (PAMAM) dendrimers modified with drug-binding dodecyl groups and diethylethanolamine surface groups (PAMAM-G3-C125 -DEEA20 ) exhibit the most desirable combination of nanoparticle size (≈140 nm), drug loading, cytotoxicity, cfNA binding, and anti-inflammatory activity. In the mouse models of breast cancer metastasis, paclitaxel-loaded nanoparticles reduce serum levels of cfNAs and inflammatory cytokines compared with paclitaxel treatment alone and inhibit both primary tumor growth and tumor metastasis. Additionally, no significant side effects are detected in the serum or major organs. These results provide a strategy to deliver chemotherapeutics to primary tumors while reducing the prometastatic effects of chemotherapy.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Tolulope Akinade
- Graduate Program in Cellular, Molecular and Biomedical StudiesVagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNY10027USA
| | - Jie Zhou
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Department of Breast OncologyAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou510095P. R. China
| | - Hongxia Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Qisong Tong
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou511442P. R. China
| | - Siyu He
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Emily Rinebold
- Department of Pathology & Cell BiologyDepartment of Medicine (Division of Digestive and Liver Diseases)Herbert Irving Comprehensive Cancer Center (HICCC) and Columbia Stem Cell Initiative (CSCI)Columbia UniversityNew YorkNY10032USA
- Department of Surgery (Division of Colorectal Surgery)Columbia University Medical CenterNew YorkNY10032USA
| | - Luis E. Valencia Salazar
- Department of Pathology & Cell BiologyDepartment of Medicine (Division of Digestive and Liver Diseases)Herbert Irving Comprehensive Cancer Center (HICCC) and Columbia Stem Cell Initiative (CSCI)Columbia UniversityNew YorkNY10032USA
| | - Divya Bhansali
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Yiling Zhong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jing Ruan
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jinzhi Du
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou511442P. R. China
| | - Piero Dalerba
- Department of Pathology & Cell BiologyDepartment of Medicine (Division of Digestive and Liver Diseases)Herbert Irving Comprehensive Cancer Center (HICCC) and Columbia Stem Cell Initiative (CSCI)Columbia UniversityNew YorkNY10032USA
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Department of Systems BiologyColumbia University Medical CenterNew YorkNY10032USA
| |
Collapse
|
22
|
Wang W, Fu C, Lin M, Lu Y, Lian S, Xie X, Zhou G, Li W, Zhang Y, Jia L, Zhong C, Huang M. Fucoxanthin prevents breast cancer metastasis by interrupting circulating tumor cells adhesion and transendothelial migration. Front Pharmacol 2022; 13:960375. [PMID: 36160416 PMCID: PMC9500434 DOI: 10.3389/fphar.2022.960375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the leading cause of cancer-related death and a critical challenge in improving cancer treatment today. Circulating tumor cells (CTCs) adhesion to and across the vascular endothelium are critical steps in the establishment of micrometastatic foci away from the primary tumor. Therefore, we believe that interrupting CTCs adhesion to endothelium and transendothelial migration may efficiently prevent cancer metastasis. Fucoxanthin (Fx) is an algal carotenoid widely distributed in brown algae, macroalgae, and diatoms. Previous studies have found that Fx has various pharmacological activities, including antidiabetic, antioxidant, anti-inflammatory, anti-obesity, antimalarial, anticancer, and so on. However, it remains unclear whether Fx has a preventive effect on cancer metastasis. Here, we found that Fx interrupts breast cancer cells MCF-7 adhesion to endothelium and transendothelial migration, thus inhibiting CTCs-based pulmonary metastasis in vivo. The hetero-adhesion assay showed that Fx significantly inhibited the expression of inflammatory factor-induced cell adhesion molecules (CAMs) and the resulting adhesion between MCF-7 cells and endothelial cells. The wound-healing and transwell assays showed that Fx significantly inhibited the motility, invasion, and transendothelial migration abilities of MCF-7 cells. However, the same concentration of Fx did not significantly alter the cell viability, cell cycle, apoptosis, and ROS of breast cancer cells, thus excluding the possibility that Fx inhibits MCF-7 cell adhesion and transendothelial migration through cytotoxicity. Mechanistically, Fx inhibits the expression of CAMs on endothelial cells by inhibiting the NF-кB signaling pathway by down-regulating the phosphorylation level of IKK-α/β, IкB-α, and NF-кB p65. Fx inhibits transendothelial migration of MCF-7 cells by inhibiting Epithelial-to-mesenchymal transition (EMT), PI3K/AKT, and FAK/Paxillin signaling pathways. Moreover, we demonstrated that Fx significantly inhibits the formation of lung micrometastatic foci in immunocompetent syngeneic mouse breast cancer metastasis models. We also showed that Fx enhances antitumor immune responses by substantially increasing the subsets of cytotoxic T lymphocytes in the peripheral immune system. This new finding provides a basis for the application of Fx in cancer metastatic chemoprevention and suggests that interruption of the CTCs adhesion to endothelium and transendothelial migration may serve as a new avenue for cancer metastatic chemoprevention.
Collapse
Affiliation(s)
- Weiyu Wang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Chengbin Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Breast Surgery Institute, Fujian Medical University, Fuzhou, China
| | - Mengting Lin
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Yusheng Lu
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- *Correspondence: Yusheng Lu, ; Chunlian Zhong, ; Mingqing Huang,
| | - Shu Lian
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Xiaodong Xie
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Guiyu Zhou
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Wulin Li
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yiping Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Lee Jia
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Chunlian Zhong
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- *Correspondence: Yusheng Lu, ; Chunlian Zhong, ; Mingqing Huang,
| | - Mingqing Huang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- *Correspondence: Yusheng Lu, ; Chunlian Zhong, ; Mingqing Huang,
| |
Collapse
|
23
|
Guarin JR, Fatherree JP, Oudin MJ. Chemotherapy treatment induces pro-invasive changes in liver ECM composition. Matrix Biol 2022; 112:20-38. [PMID: 35940338 PMCID: PMC10690958 DOI: 10.1016/j.matbio.2022.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 10/16/2022]
Abstract
Metastasis accounts for 90% of cancer-related deaths, yet the mechanisms by which cancer cells colonize secondary organs remain poorly understood. For breast cancer patients, metastasis to the liver is associated with poor prognosis and a median survival of 6 months. Standard of care is chemotherapy, but recurrence occurs in 30% of patients. Systemic chemotherapy has been shown to induce hepatotoxicity and fibrosis, but how chemotherapy impacts the composition of the liver extracellular matrix (ECM) remains unknown. Individual ECM proteins drive tumor cell proliferation and invasion, features that are essential for metastatic outgrowth in the liver. First, we find that the ECM of livers isolated from chemotherapy-treated MMTV-PyMT mice increases the invasion, but not proliferation, of metastatic breast cancer cells. Proteomic analysis of the liver ECM identified Collagen V to be more abundant in paclitaxel-treated livers. We show that Collagen V increases cancer cell invasion via α1β1 integrins and MAPK signaling, while also increasing the alignment of Collagen I, which has been associated with increased invasion. Treatment with obtustatin, an inhibitor specific to α1β1 integrins, inhibits tumor cell invasion in decellularized ECM from paclitaxel-treated livers. Overall, we show chemotherapy treatment alters the liver microenvironment, priming it as a pro-metastatic niche for cancer metastasis.
Collapse
Affiliation(s)
- Justinne R Guarin
- Department of Biomedical Engineering, Tufts University, Room 134, 200 College Ave, Medford, MA 20155, United States
| | - Jackson P Fatherree
- Department of Biomedical Engineering, Tufts University, Room 134, 200 College Ave, Medford, MA 20155, United States
| | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, Room 134, 200 College Ave, Medford, MA 20155, United States.
| |
Collapse
|
24
|
Bylapudi B, Thakur S, Nihla A, Subash A, Arakeri G, Rao VU. The potential role of immunity in the development of early distant metastases in locoregionally treated oral squamous cell carcinoma. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
26
|
Tumour invasion and dissemination. Biochem Soc Trans 2022; 50:1245-1257. [PMID: 35713387 PMCID: PMC9246329 DOI: 10.1042/bst20220452] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Activating invasion and metastasis are one of the primary hallmarks of cancer, the latter representing the leading cause of death in cancer patients. Whilst many advances in this area have been made in recent years, the process of cancer dissemination and the underlying mechanisms governing invasion are still poorly understood. Cancer cells exhibit multiple invasion strategies, including switching between modes of invasion and plasticity in response to therapies, surgical interventions and environmental stimuli. The ability of cancer cells to switch migratory modes and their inherent plasticity highlights the critical challenge preventing the successful design of cancer and anti-metastatic therapies. This mini-review presents current knowledge on the critical models of tumour invasion and dissemination. We also discuss the current issues surrounding current treatments and arising therapeutic opportunities. We propose that the establishment of novel approaches to study the key biological mechanisms underlying the metastatic cascade is critical in finding novel targets that could ultimately lead to complete inhibition of cancer cell invasion and dissemination.
Collapse
|
27
|
Zong L, Cheng G, Zhao J, Zhuang X, Zheng Z, Liu Z, Song F. Inhibitory Effect of Ursolic Acid on the Migration and Invasion of Doxorubicin-Resistant Breast Cancer. Molecules 2022; 27:1282. [PMID: 35209071 PMCID: PMC8879026 DOI: 10.3390/molecules27041282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cause of death in most breast cancer patients is disease metastasis and the occurrence of multidrug resistance (MDR). Ornithine decarboxylase (ODC), which is involved into multiple pathways, is closely related to carcinogenesis and development. Ursolic acid (UA), a natural triterpenoid compound, has been shown to reverse the MDR characteristics of tumor cells. However, the effect of UA on the invasion and metastasis of tumor cells with MDR is not known. Therefore, we investigated the effects of UA on invasion and metastasis, ODC-related polyamine metabolism, and MAPK-Erk-VEGF/MMP-9 signaling pathways in a doxorubicin-resistant breast cancer cell (MCF-7/ADR) model. The obtained results showed that UA significantly inhibited the adhesion and migration of MCF-7/ADR cells, and had higher affinities with key active cavity residues of ODC compared to the known inhibitor di-fluoro-methyl-ornithine (DFMO). UA could downregulate ODC, phosphorylated Erk (P-Erk), VEGF, and matrix metalloproteinase-9 (MMP-9) activity. Meanwhile, UA significantly reduced the content of metabolites of the polyamine metabolism. Furthermore, UA increased the intracellular accumulation of Dox in MCF-7/ADR cells. Taken together, UA can inhibit against tumor progression during the treatment of breast cancer with Dox, and possibly modulate the Erk-VEGF/MMP-9 signaling pathways and polyamine metabolism by targeting ODC to exert these effects.
Collapse
Affiliation(s)
- Li Zong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Guorong Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingwu Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
28
|
Volmer L, Koch A, Matovina S, Dannehl D, Weiss M, Welker G, Hahn M, Engler T, Wallwiener M, Walter CB, Oberlechner E, Brucker SY, Pantel K, Hartkopf A. Neoadjuvant Chemotherapy of Patients with Early Breast Cancer Is Associated with Increased Detection of Disseminated Tumor Cells in the Bone Marrow. Cancers (Basel) 2022; 14:cancers14030635. [PMID: 35158902 PMCID: PMC8833450 DOI: 10.3390/cancers14030635] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Disseminated tumor cells (DTCs) present in the bone marrow of breast cancer patients are an indicator of minimal residual disease and micrometastatic spread. These cells can already be found at the earliest disease stages and are associated with poorer outcomes. In preclinical models, neoadjuvant chemotherapy was shown to promote micrometastatic spread. The aim of this large single-center retrospective study was to compare the frequency and prognostic significance of DTC detection between patients treated with neoadjuvant chemotherapy and treatment-naive patients. Abstract Preclinical data suggest that neoadjuvant chemotherapy (NAT) may promote micrometastatic spread. We aimed to compare the detection rate and prognostic relevance of disseminated tumor cells (DTCs) from the bone marrow (BM) of patients with early-stage breast cancer (EBC) after NAT with that of therapy-naive EBC patients. DTCs were identified from BM samples, collected during primary surgery. Patients who received NAT were compared to patients who received chemotherapy after surgery. In total, 809 patients were analyzed. After NAT, 45.4% of patients were DTC-positive as compared to 19.9% of patients in the adjuvant chemotherapy group (p < 0.001). When sampled in patients who had undergone NAT, the detection of DTCs in the BM was significantly increased (OR: 3.1; 95% confidence interval (CI): 2.1–4.4; p < 0.001). After NAT, DTC-positive patients with ≥2 DTCs per 1.5 × 106 mononuclear cells in their BM had an impaired disease-free survival (HR: 4.8, 95% CI: 0.9–26.6; p = 0.050) and overall survival (HR: 4.2; 95% CI: 1.4–12.7; p = 0.005). The higher rate of DTC-positive patients after NAT as compared to a treatment-naive comparable control cohort suggests that NAT supports tumor cell dissemination into the bone marrow. DTC positivity in BM predicted relapse in various distant organs, implying that tumor cell dissemination was not restricted to the bone marrow.
Collapse
Affiliation(s)
- Léa Volmer
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
- Correspondence: ; Tel./Fax: +49-7071-29-82211
| | - André Koch
- Research Institute for Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (A.K.); (G.W.)
| | - Sabine Matovina
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Dominik Dannehl
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Martin Weiss
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Ganna Welker
- Research Institute for Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (A.K.); (G.W.)
| | - Markus Hahn
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Tobias Engler
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Markus Wallwiener
- Department of Gynecology and Obstetrics, University Medical Center Heidelberg, 69120 Heidelberg, Germany;
| | - Christina Barbara Walter
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Ernst Oberlechner
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Sara Yvonne Brucker
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Andreas Hartkopf
- Department of Women’s Health, University Medical Center Tübingen, 72076 Tübingen, Germany; (S.M.); (D.D.); (M.W.); (M.H.); (T.E.); (C.B.W.); (E.O.); (S.Y.B.); (A.H.)
| |
Collapse
|
29
|
Ibragimova M, Tsyganov M, Deryusheva I, Slonimskaya E, Litviakov N. Stem gene expression in breast tumors during chemotherapy: Connection with the main clinical and morphological factors and the disease outcome. J Cancer Res Ther 2022; 18:89-95. [DOI: 10.4103/jcrt.jcrt_1331_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Yang F, Hu Y, Shao L, Zhuang J, Huo Q, He S, Chen S, Wang J, Xie N. SIRT7 interacts with TEK (TIE2) to promote adriamycin induced metastasis in breast cancer. Cell Oncol (Dordr) 2021; 44:1405-1424. [PMID: 34797559 DOI: 10.1007/s13402-021-00649-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Emerging evidence suggests that cytotoxic therapy may promote drug resistance and metastasis while inhibiting the growth of primary tumors. As yet, however, the underlying mechanisms remain unclear. Here, we aimed to investigate the pro-metastatic effects of adriamycin (ADR) therapy on breast cancer cells and to investigate the mechanisms underlying these effects. METHODS Differentially expressed genes between MCF-7 and ADR-resistant MCF-7 breast cancer cells were identified using high-throughput RNA-seq and differential gene expression analyses. In vitro transwell and scratch wound-healing assays, and an in vivo spontaneous metastasis model were used to study the metastatic potential of the breast cancer cells. The relationship between SIRT7 and TEK expression was studied using promoter activity, electrophoretic mobility shift (EMSA), CHIP-qPCR and Co-IP assays. RESULTS Using transcriptome sequencing, we identified two key genes (SIRT7 and TEK) that might contribute to the pro-metastatic effect of ADR on breast cancer cells. SIRT7 acted as a negative regulator for TEK by inducing deacetylation of H3K18 at the TEK promoter. Through transcription factor prediction and double fluorescence experiments, we found that EST-1 could bind to the TEK promoter. Knockdown of EST-1 removed the transcriptional inhibition of TEK that was mediated by up-regulation of SIRT7. Co-IP showed that SIRT7 interacts directly with EST-1 in breast cancer cells, indicating that SIRT7 may induce H3K18 deacetylation at the TEK promoter region by directly binding to EST-1. In vitro and in vivo results showed that overexpression of SIRT7 or inhibition of TIE2 significantly reduced ADR-dependent breast cancer cell invasion/metastasis. CONCLUSION Our findings suggest that ADR therapy may accelerate breast cancer metastasis in a SIRT7/TEK(TIE2) dependent manner.
Collapse
Affiliation(s)
- Fan Yang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, People's Republic of China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo Institute of Life and Health Industry, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China
| | - Ye Hu
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, People's Republic of China
- Department of Blood Purification Center, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Centeral Hospital), Hengyang, Hunan, People's Republic of China
| | - Ling Shao
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, People's Republic of China
| | - Jialang Zhuang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, People's Republic of China
| | - Qin Huo
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, People's Republic of China
| | - Shengnan He
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, People's Republic of China
| | - Siqi Chen
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, People's Republic of China
| | - Juan Wang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, People's Republic of China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, People's Republic of China.
| |
Collapse
|
31
|
Middleton JD, Sivakumar S, Hai T. Chemotherapy-Induced Changes in the Lung Microenvironment: The Role of MMP-2 in Facilitating Intravascular Arrest of Breast Cancer Cells. Int J Mol Sci 2021; 22:10280. [PMID: 34638621 PMCID: PMC8508901 DOI: 10.3390/ijms221910280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/18/2022] Open
Abstract
Previously, we showed that mice treated with cyclophosphamide (CTX) 4 days before intravenous injection of breast cancer cells had more cancer cells in the lung at 3 h after cancer injection than control counterparts without CTX. At 4 days after its injection, CTX is already excreted from the mice, allowing this pre-treatment design to reveal how CTX may modify the lung environment to indirectly affect cancer cells. In this study, we tested the hypothesis that the increase in cancer cell abundance at 3 h by CTX is due to an increase in the adhesiveness of vascular wall for cancer cells. Our data from protein array analysis and inhibition approach combined with in vitro and in vivo assays support the following two-prong mechanism. (1) CTX increases vascular permeability, resulting in the exposure of the basement membrane (BM). (2) CTX increases the level of matrix metalloproteinase-2 (MMP-2) in mouse serum, which remodels the BM and is functionally important for CTX to increase cancer abundance at this early stage. The combined effect of these two processes is the increased accessibility of critical protein domains in the BM, resulting in higher vascular adhesiveness for cancer cells to adhere. The critical protein domains in the vascular microenvironment are RGD and YISGR domains, whose known binding partners on cancer cells are integrin dimers and laminin receptor, respectively.
Collapse
Affiliation(s)
- Justin D. Middleton
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (S.S.)
- Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
| | - Subhakeertana Sivakumar
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (S.S.)
| | - Tsonwin Hai
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (S.S.)
- Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Zhu H, Liu X. Advances of Tumorigenesis, Diagnosis at Early Stage, and Cellular Immunotherapy in Gastrointestinal Malignancies. Front Oncol 2021; 11:666340. [PMID: 34434889 PMCID: PMC8381364 DOI: 10.3389/fonc.2021.666340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Globally, in 2018, 4.8 million new patients have a diagnosis of gastrointestinal (GI) cancers, while 3.4 million people died of such disorders. GI malignancies are tightly relevant to 26% of the world-wide cancer incidence and occupies 35% of all cancer-associated deaths. In this article, we principally investigated molecular and cellular mechanisms of tumorigenesis in five major GI cancers occurring at esophagus, stomach, liver, pancreas, and colorectal region that illustrate high morbidity in Eastern and Western countries. Moreover, through this investigation, we not only emphasize importance of the tumor microenvironment in development and treatment of malignant tumors but also identify significance of M2PK, miRNAs, ctDNAs, circRNAs, and CTCs in early detection of GI cancers, as well as systematically evaluate contribution of personalized precision medicine including cellular immunotherapy, new antigen and vaccine therapy, and oncolytic virotherapy in treatment of GI cancers.
Collapse
Affiliation(s)
- Haipeng Zhu
- Precision and Personalized Cancer Treatment Center, Division of Cancer Diagnosis & Therapy, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China.,Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical College, Xinxiang, China
| | - Xiaojun Liu
- Division of Cellular & Biomedical Science, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China
| |
Collapse
|
33
|
Middleton JD, Fehlman J, Sivakumar S, Stover DG, Hai T. Stress-Inducible Gene Atf3 Dictates a Dichotomous Macrophage Activity in Chemotherapy-Enhanced Lung Colonization. Int J Mol Sci 2021; 22:ijms22147356. [PMID: 34298975 PMCID: PMC8304704 DOI: 10.3390/ijms22147356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 01/17/2023] Open
Abstract
Previously, we showed that chemotherapy paradoxically exacerbated cancer cell colonization at the secondary site in a manner dependent on Atf3, a stress-inducible gene, in the non-cancer host cells. Here, we present evidence that this phenotype is established at an early stage of colonization within days of cancer cell arrival. Using mouse breast cancer models, we showed that, in the wild-type (WT) lung, cyclophosphamide (CTX) increased the ability of the lung to retain cancer cells in the vascular bed. Although CTX did not change the WT lung to affect cancer cell extravasation or proliferation, it changed the lung macrophage to be pro-cancer, protecting cancer cells from death. This, combined with the initial increase in cell retention, resulted in higher lung colonization in CTX-treated than control-treated mice. In the Atf3 knockout (KO) lung, CTX also increased the ability of lung to retain cancer cells. However, the CTX-treated KO macrophage was highly cytotoxic to cancer cells, resulting in no increase in lung colonization-despite the initial increase in cell retention. In summary, the status of Atf3 dictates the dichotomous activity of macrophage: pro-cancer for CTX-treated WT macrophage but anti-cancer for the KO counterpart. This dichotomy provides a mechanistic explanation for CTX to exacerbate lung colonization in the WT but not Atf3 KO lung.
Collapse
MESH Headings
- Activating Transcription Factor 3/physiology
- Animals
- Antimicrobial Cationic Peptides/biosynthesis
- Antimicrobial Cationic Peptides/genetics
- Cell Line, Tumor
- Cyclophosphamide/pharmacology
- Cyclophosphamide/toxicity
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Reporter
- Genotype
- Humans
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Macrophage Activation
- Macrophages/physiology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Mice, Transgenic
- Neoadjuvant Therapy/adverse effects
- Neoplasm Metastasis/genetics
- Neoplasm Metastasis/physiopathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasm Transplantation/methods
- Neoplastic Stem Cells/pathology
- Stress, Physiological/genetics
- Transendothelial and Transepithelial Migration
- Tumor Microenvironment
- Tumor-Associated Macrophages/drug effects
- Tumor-Associated Macrophages/physiology
- Cathelicidins
Collapse
Affiliation(s)
- Justin D. Middleton
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (J.F.); (S.S.)
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
| | - Jared Fehlman
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (J.F.); (S.S.)
| | - Subhakeertana Sivakumar
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (J.F.); (S.S.)
| | - Daniel G. Stover
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, OH 43210, USA;
| | - Tsonwin Hai
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (J.F.); (S.S.)
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
34
|
Español A, Salem A, Sanchez Y, Sales ME. Breast cancer: Muscarinic receptors as new targets for tumor therapy. World J Clin Oncol 2021; 12:404-428. [PMID: 34189066 PMCID: PMC8223712 DOI: 10.5306/wjco.v12.i6.404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
The development of breast cancer is a complex process that involves the participation of different factors. Several authors have demonstrated the overexpression of muscarinic acetylcholine receptors (mAChRs) in different tumor tissues and their role in the modulation of tumor biology, positioning them as therapeutic targets in cancer. The conventional treatment for breast cancer involves surgery, radiotherapy, and/or chemotherapy. The latter presents disadvantages such as limited specificity, the appearance of resistance to treatment and other side effects. To prevent these side effects, several schedules of drug administration, like metronomic therapy, have been developed. Metronomic therapy is a type of chemotherapy in which one or more drugs are administered at low concentrations repetitively. Recently, two chemotherapeutic agents usually used to treat breast cancer have been considered able to activate mAChRs. The combination of low concentrations of these chemotherapeutic agents with muscarinic agonists could be a useful option to be applied in breast cancer treatment, since this combination not only reduces tumor cell survival without affecting normal cells, but also decreases pathological neo-angiogenesis, the expression of drug extrusion proteins and the cancer stem cell fraction. In this review, we focus on the previous evidences that have positioned mAChRs as relevant therapeutic targets in breast cancer and analyze the effects of administering muscarinic agonists in combination with conventional chemotherapeutic agents in a metronomic schedule.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - María Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
35
|
Life after Cell Death-Survival and Survivorship Following Chemotherapy. Cancers (Basel) 2021; 13:cancers13122942. [PMID: 34208331 PMCID: PMC8231100 DOI: 10.3390/cancers13122942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Treatment of aggressive cancers often relies on chemotherapy. This treatment has improved survival rates, but while effective at killing cancer cells, inevitably it also kills or alters the function of others. While many of the known effects are transient and resolve after treatment, as survival rates increase, so does our understanding of the long-term health costs that accompany cancer survivors. Here we provide an overview of common long-term morbidities known to be caused by conventional chemotherapy, including the risk of relapse, but more importantly, the cost of quality of life experienced, especially by those who have cancer in early life. We aim to highlight the importance of the development of targeted therapies to replace the use of conventional chemotherapy, but also that of treating the patients along with the disease to enable not only longer but also healthier life after cancer. Abstract To prevent cancer cells replacing and outnumbering their functional somatic counterparts, the most effective solution is their removal. Classical treatments rely on surgical excision, chemical or physical damage to the cancer cells by conventional interventions such as chemo- and radiotherapy, to eliminate or reduce tumour burden. Cancer treatment has in the last two decades seen the advent of increasingly sophisticated therapeutic regimens aimed at selectively targeting cancer cells whilst sparing the remaining cells from severe loss of viability or function. These include small molecule inhibitors, monoclonal antibodies and a myriad of compounds that affect metabolism, angiogenesis or immunotherapy. Our increased knowledge of specific cancer types, stratified diagnoses, genetic and molecular profiling, and more refined treatment practices have improved overall survival in a significant number of patients. Increased survival, however, has also increased the incidence of associated challenges of chemotherapy-induced morbidity, with some pathologies developing several years after termination of treatment. Long-term care of cancer survivors must therefore become a focus in itself, such that along with prolonging life expectancy, treatments allow for improved quality of life.
Collapse
|
36
|
Bertolini G, Cancila V, Milione M, Lo Russo G, Fortunato O, Zaffaroni N, Tortoreto M, Centonze G, Chiodoni C, Facchinetti F, Pollaci G, Taiè G, Giovinazzo F, Moro M, Camisaschi C, De Toma A, D'Alterio C, Pastorino U, Tripodo C, Scala S, Sozzi G, Roz L. A novel CXCR4 antagonist counteracts paradoxical generation of cisplatin-induced pro-metastatic niches in lung cancer. Mol Ther 2021; 29:2963-2978. [PMID: 34023505 PMCID: PMC8530918 DOI: 10.1016/j.ymthe.2021.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/11/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapy remains widely used in advanced non-small cell lung cancer (NSCLC) despite experimental evidence of its potential to induce long-term detrimental effects, including the promotion of pro-metastatic microenvironments. In this study, we investigated the interconnected pathways underlying the promotion of cisplatin-induced metastases. In tumor-free mice, cisplatin treatment resulted in an expansion in the bone marrow of CCR2+CXCR4+Ly6Chigh inflammatory monocytes (IMs) and an increase in lung levels of stromal SDF-1, the CXCR4 ligand. In experimental lung metastasis assays, cisplatin-induced IMs promoted the extravasation of tumor cells and the expansion of CD133+CXCR4+ metastasis-initiating cells (MICs). Peptide R, a novel CXCR4 inhibitor designed as an SDF-1 mimetic peptide, prevented cisplatin-induced IM expansion, the recruitment of IMs into the lungs, and the promotion of metastasis. At the primary tumor site, cisplatin treatment reduced tumor size while simultaneously inducing tumor release of SDF-1, MIC expansion, and recruitment of pro-invasive CXCR4+ macrophages. Co-recruitment of MICs and CCR2+CXCR4+ IMs to distant SDF-1-enriched sites also promoted spontaneous metastases that were prevented by CXCR4 blockade. In clinical specimens from NSCLC patients SDF-1 levels were found to be higher in platinum-treated samples and related to a worse clinical outcome. Our findings reveal that activation of the CXCR4/SDF-1 axis specifically mediates the pro-metastatic effects of cisplatin and suggest CXCR4 blockade as a possible novel combination strategy to control metastatic disease.
Collapse
Affiliation(s)
- Giulia Bertolini
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Massimo Milione
- 1st Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Lo Russo
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Orazio Fortunato
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Facchinetti
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuliana Pollaci
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Taiè
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Giovinazzo
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Moro
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Camisaschi
- Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro De Toma
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Crescenzo D'Alterio
- Functional Genomics, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale," Naples, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Stefania Scala
- Functional Genomics, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale," Naples, Italy.
| | - Gabriella Sozzi
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
37
|
Amplifications of Stemness Gene Loci-New Markers for the Determination of the Need for Neoadjuvant Chemotherapy for Patients with Breast Cancer. A Prospective Study. J Pers Med 2021; 11:jpm11050397. [PMID: 34064798 PMCID: PMC8151881 DOI: 10.3390/jpm11050397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022] Open
Abstract
In this prospective study, a new strategy for the prescription of neoadjuvant chemotherapy (NAC) was prospectively tested and depended on the presence of stemness gene amplifications in the tumor before treatment, which in our early studies showed a connection with metastasis. The study included 92 patients with grade IIA–IIIB luminal B breast cancer. Patients underwent a biopsy before treatment, and with the use of a CytoScan HD Array microarray (Affymetrix, Santa Clara, CA, USA), the presence of stemness gene amplifications (3q, 5p, 6p, 7q, 8q, 13q, 9p, 9q, 10p, 10q21.1, 16p, 18chr, 19p) in the tumor was determined. In group 1 (n = 41), in the presence of two or more amplifications, patients were prescribed a personalized NAC regimen. In group 2 (n = 21), if there was no amplification of stemness genes in the tumor, then patients were not prescribed NAC, and treatment began with surgery. Group 3 (n = 30) served as a historical control. The frequency of an objective response to NAC in groups 1 and 3 was 79%. Nonmetastatic survival was found in 100% of patients in group 2, who did not undergo NAC. In patients in group 1, the frequency of metastasis was 10% (4/41). At the same time, in patients in group 3, who received NAC, the rate of metastasis was 47% (14/30). The differences between group 1 and group 3 and between group 2 and group 3 were statistically significant, both by Fisher’s criterion and a log-rank test. The appointment of NAC was most feasible in patients with clones with stemness gene amplifications in the primary tumor, while in the absence of amplifications, preoperative chemotherapy led to a sharp decrease in metastasis-free survival. This strategy of NAC prescription allowed us to achieve 93% metastatic survival in patients with breast cancer.
Collapse
|
38
|
Asiry S, Kim G, Filippou PS, Sanchez LR, Entenberg D, Marks DK, Oktay MH, Karagiannis GS. The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy. Front Immunol 2021; 12:654877. [PMID: 33927723 PMCID: PMC8076861 DOI: 10.3389/fimmu.2021.654877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer immunotherapy has resulted in unpreceded survival benefits to subsets of oncology patients, accumulating evidence from preclinical animal models suggests that the immunosuppressive tumor microenvironment remains a detrimental factor limiting benefit for many patient subgroups. Recent efforts on lymphocyte-mediated immunotherapies are primarily focused on eliminating cancer foci at primary and metastatic sites, but few studies have investigated the impact of these therapies on the highly complex process of cancer cell dissemination. The metastatic cascade involves the directional streaming of invasive/migratory tumor cells toward specialized blood vessel intravasation gateways, called TMEM doorways, to the peripheral circulation. Importantly, this process occurs under the auspices of a specialized tumor microenvironment, herewith referred to as "Dissemination Trajectory", which is supported by an ample array of tumor-associated macrophages (TAMs), skewed towards an M2-like polarization spectrum, and which is also vital for providing microenvironmental cues for cancer cell invasion, migration and stemness. Based on pre-existing evidence from preclinical animal models, this article outlines the hypothesis that dissemination trajectories do not only support the metastatic cascade, but also embody immunosuppressive niches, capable of providing transient and localized immunosubversion cues to the migratory/invasive cancer cell subpopulation while in the act of departing from a primary tumor. So long as these dissemination trajectories function as "immune deserts", the migratory tumor cell subpopulation remains efficient in evading immunological destruction and seeding metastatic sites, despite administration of cancer immunotherapy and/or other cytotoxic treatments. A deeper understanding of the molecular and cellular composition, as well as the signaling circuitries governing the function of these dissemination trajectories will further our overall understanding on TAM-mediated immunosuppression and will be paramount for the development of new therapeutic strategies for the advancement of optimal cancer chemotherapies, immunotherapies, and targeted therapies.
Collapse
Affiliation(s)
- Saeed Asiry
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Gina Kim
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Panagiota S. Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - Douglas K. Marks
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY, United States
| | - Maja H. Oktay
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - George S. Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
39
|
Li Y, Zhou X, Liu J, Yuan X, He Q. Therapeutic Potentials and Mechanisms of Artemisinin and its Derivatives for Tumorigenesis and Metastasis. Anticancer Agents Med Chem 2021; 20:520-535. [PMID: 31958040 DOI: 10.2174/1871520620666200120100252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tumor recurrence and metastasis are still leading causes of cancer mortality worldwide. The influence of traditional treatment strategies against metastatic tumors may still be limited. To search for novel and powerful agents against tumors has become a major research focus. In this study, Artemisinin (ARM), a natural compound isolated from herbs, Artemisia annua L., proceeding from drug repurposing methods, attracts more attention due to its good efficacy and tolerance in antimalarial practices, as well as newly confirmed anticancer activity. METHODS We have searched and reviewed the literatures about ARM and its derivatives (ARMs) for cancer using keywords "artemisinin" until May 2019. RESULTS In preclinical studies, ARMs can induce cell cycle arrest and cell death by apoptosis etc., to inhibit the progression of tumors, and suppress EMT and angiogenesis to inhibit the metastasis of tumors. Notably, the complex relationships of ARMs and autophagy are worth exploring. Inspired by the limitations of its antimalarial applications and the mechanical studies of artemisinin and cancer, people are also committed to develop safer and more potent ARM-based modified compounds (ARMs) or combination therapy, such as artemisinin dimers/ trimers, artemisinin-derived hybrids. Some clinical trials support artemisinins as promising candidates for cancer therapy. CONCLUSION ARMs show potent therapeutic potentials against carcinoma including metastatic tumors. Novel compounds derived from artemisinin and relevant combination therapies are supposed to be promising treatment strategies for tumors, as the important future research directions.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaoyan Zhou
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiali Liu
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaohong Yuan
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qian He
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
40
|
An Y, Yang Q. Tumor-associated macrophage-targeted therapeutics in ovarian cancer. Int J Cancer 2020; 149:21-30. [PMID: 33231290 DOI: 10.1002/ijc.33408] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023]
Abstract
Ovarian cancer is one of the most common gynecological malignancies. The tumor microenvironment plays an important role in regulating the progression of ovarian cancer. Macrophages, which are important immune cells in the tumor microenvironment, participate in the regulation of various biological behaviors and influence the prognosis of ovarian cancer. A large number of studies have targeted macrophages for the treatment of ovarian cancer. In addition, macrophages also play a regulatory role by interacting with other immune cells, including T cells and mesothelial cells, in the ovarian cancer microenvironment. In this review, we discuss the progress made in macrophage-targeted therapy for ovarian cancer. Although there are still several challenges in using this treatment, targeted macrophage therapy is still a promising treatment for ovarian cancer.
Collapse
Affiliation(s)
- Yuanyuan An
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qing Yang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
41
|
The Dichotomous Role of Bone Marrow Derived Cells in the Chemotherapy-Treated Tumor Microenvironment. J Clin Med 2020; 9:jcm9123912. [PMID: 33276524 PMCID: PMC7761629 DOI: 10.3390/jcm9123912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Bone marrow derived cells (BMDCs) play a wide variety of pro- and anti-tumorigenic roles in the tumor microenvironment (TME) and in the metastatic process. In response to chemotherapy, the anti-tumorigenic function of BMDCs can be enhanced due to chemotherapy-induced immunogenic cell death. However, in recent years, a growing body of evidence suggests that chemotherapy or other anti-cancer drugs can also facilitate a pro-tumorigenic function in BMDCs. This includes elevated angiogenesis, tumor cell proliferation and pro-tumorigenic immune modulation, ultimately contributing to therapy resistance. Such effects do not only contribute to the re-growth of primary tumors but can also support metastasis. Thus, the delicate balance of BMDC activities in the TME is violated following tumor perturbation, further requiring a better understanding of the complex crosstalk between tumor cells and BMDCs. In this review, we discuss the different types of BMDCs that reside in the TME and their activities in tumors following chemotherapy, with a major focus on their pro-tumorigenic role. We also cover aspects of rationally designed combination treatments that target or manipulate specific BMDC types to improve therapy outcomes.
Collapse
|
42
|
Wills CA, Liu X, Chen L, Zhao Y, Dower CM, Sundstrom J, Wang HG. Chemotherapy-Induced Upregulation of Small Extracellular Vesicle-Associated PTX3 Accelerates Breast Cancer Metastasis. Cancer Res 2020; 81:452-463. [PMID: 33115808 DOI: 10.1158/0008-5472.can-20-1976] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
Although neoadjuvant chemotherapy is a standard component of breast cancer treatment, recent evidence suggests that chemotherapeutic drugs can promote metastasis through poorly defined mechanisms. Here we utilize xenograft mouse models of triple-negative breast cancer to explore the importance of chemotherapy-induced tumor-derived small extracellular vesicles (sEV) in metastasis. Doxorubicin (DXR) enhanced tumor cell sEV secretion to accelerate pulmonary metastasis by priming the premetastatic niche. Proteomic analysis and CRISPR/Cas9 gene editing identified the inflammatory glycoprotein PTX3 enriched in DXR-elicited sEV as a critical regulator of chemotherapy-induced metastasis. Both genetic inhibition of sEV secretion from primary tumors and pharmacologic inhibition of sEV uptake in secondary organs suppressed metastasis following chemotherapy. Taken together, this research uncovers a mechanism of chemotherapy-mediated metastasis by which drug-induced upregulation of sEV secretion and PTX3 protein cargo primes the premetastatic niche and suggests that inhibition of either sEV uptake in secondary organs or secretion from primary tumor cells may be promising therapeutic strategies to suppress metastasis. SIGNIFICANCE: These findings show that chemotherapy-induced small extracellular vesicles accelerate breast cancer metastasis, and targeted inhibition of tumor-derived vesicles may be a promising therapeutic strategy to improve the efficacy of chemotherapy treatment.
Collapse
Affiliation(s)
- Carson A Wills
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Xiaoming Liu
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Longgui Chen
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Yuanjun Zhao
- Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Christopher M Dower
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jeffrey Sundstrom
- Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
43
|
Qorri B, Harless W, Szewczuk MR. Novel Molecular Mechanism of Aspirin and Celecoxib Targeting Mammalian Neuraminidase-1 Impedes Epidermal Growth Factor Receptor Signaling Axis and Induces Apoptosis in Pancreatic Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4149-4167. [PMID: 33116404 PMCID: PMC7550724 DOI: 10.2147/dddt.s264122] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Background Aspirin (acetylsalicylic acid) and celecoxib have been used as potential anti-cancer therapies. Aspirin exerts its therapeutic effect in both cyclooxygenase (COX)-dependent and -independent pathways to reduce tumor growth and disable tumorigenesis. Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, reduces factors that cause inflammation and pain. The question is whether aspirin and celecoxib have other molecular targets of equal or more therapeutic efficacy with significant anti-cancer preventive benefits. Aim Here, we propose that aspirin and celecoxib exert their anti-cancer effects by targeting and inhibiting mammalian neuraminidase-1 (Neu-1). Neu-1 has been reported to regulate the activation of several receptor tyrosine kinases (RTKs) and TOLL-like receptors and their downstream signaling pathways. Neu-1 in complex with matrix metalloproteinase-9 (MMP-9) and G protein-coupled receptors (GPCRs) has been reported to be tethered to RTKs at the ectodomain. Materials and Methods The WST-1 cell viability assay, Caspase 3/7 assay, and Annexin V assay were used to evaluate the cell viability and detect apoptotic and necrotic cells following treatment in MiaPaCa-2, PANC-1 and the gemcitabine-resistant PANC-1 variant (PANC-1 GemR) cells. Microscopic imaging, lectin cytochemistry, and flow cytometry were used to detect levels of α-2,3 sialic acid. Epidermal growth factor (EGF)-stimulated live cell sialidase assays and neuraminidase assays were used to detect Neu-1 activity. Immunocytochemistry was used to detect levels of EGFR and phosphorylated EGFR (pEGFR) following treatment. Results For the first time, aspirin and celecoxib were shown to significantly inhibit Neu-1 sialidase activity in a dose- and time-dependent manner following stimulation with EGF. Aspirin blocked Neu-1 desialylation of α-2,3-sialic acid expression following 30 min stimulation with EGF. Aspirin and celecoxib significantly and dose-dependently inhibited isolated neuraminidase (Clostridium perfringens) activity on fluorogenic substrate 2ʹ-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (4-MUNANA). Aspirin inhibited phosphorylation of the EGFR in EGF-stimulated cells. Aspirin dose- and time-dependently induced CellEvent caspase-3/7+ cells as well as apoptosis and necrosis on PANC-1 cells. Conclusion These findings signify a novel multimodality mechanism(s) of action for aspirin and celecoxib, specifically targeting and inhibiting Neu-1 activity, regulating EGF-induced growth receptor activation and inducing apoptosis and necrosis in a dose- and time-dependent manner. Repurposing aspirin and celecoxib as anti-cancer agents may also upend other critical targets involved in multistage tumorigenesis regulated by mammalian neuraminidase-1. Significance These findings may be the missing link connecting the anti-cancer efficacy of NSAIDs to the role of glycosylation in inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
44
|
Ophiopogonin D suppresses TGF-β1-mediated metastatic behavior of MDA-MB-231 breast carcinoma cells via regulating ITGB1/FAK/Src/AKT/β-catenin/MMP-9 signaling axis. Toxicol In Vitro 2020; 69:104973. [PMID: 32818624 DOI: 10.1016/j.tiv.2020.104973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Ophiopogonin D, a steroidal glycoside extracted from the Traditional Chinese Medicine Ophiopogon japonicus, shows anti-tumor property in several lines of cancers; however, its effect on triple-negative breast cancer (TNBC) has not been investigated. In this study, the anti-metastatic effect of Ophiopogonin D in TNBC cells as well as the underlying mechanism in such process was explored. Ophiopogonin D dose-dependently decreased cell proliferation of MDA-MB-231 cells. Meanwhile, Ophiopogonin D significantly inhibited TGF-β1-induced metastatic behavior of MDA-MB-231 cells, including EMT, anoikis resistance as well as migration and invasion, via suppressing MMP-9 activity. Mechanically, Ophiopogonin D achieved its effect through efficiently abolishing ITGB1 expression, thus reducing the phosphorylation of FAK, Src and AKT, as well as upregulating nuclear β-catenin. ITGB1 overexpression partly recovered Ophiopogonin D's inhibitory effect on metastatic behavior via activating MMP-9. These results demonstrated that Ophiopogonin D could suppress TGF-β1-mediated metastatic behavior of MDA-MB-231 cells by regulating ITGB1/FAK/Src/AKT/β-catenin/MMP-9 signaling axis, which might provide new insight for the control of TNBC metastasis.
Collapse
|
45
|
Quantum Leap from Gold and Silver to Aluminum Nanoplasmonics for Enhanced Biomedical Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124210] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanotechnology has been used in many biosensing and medical applications, in the form of noble metal (gold and silver) nanoparticles and nanostructured substrates. However, the translational clinical and industrial applications still need improvements of the efficiency, selectivity, cost, toxicity, reproducibility, and morphological control at the nanoscale level. In this review, we highlight the recent progress that has been made in the replacement of expensive gold and silver metals with the less expensive aluminum. In addition to low cost, other advantages of the aluminum plasmonic nanostructures include a broad spectral range from deep UV to near IR, providing additional signal enhancement and treatment mechanisms. New synergistic treatments of bacterial infections, cancer, and coronaviruses are envisioned. Coupling with gain media and quantum optical effects improve the performance of the aluminum nanostructures beyond gold and silver.
Collapse
|
46
|
Chen YF, Shih PC, Kuo HM, Yang SN, Lin YY, Chen WF, Tzou SJ, Liu HT, Chen NF. TP3, an antimicrobial peptide, inhibits infiltration and motility of glioblastoma cells via modulating the tumor microenvironment. Cancer Med 2020; 9:3918-3931. [PMID: 32266797 PMCID: PMC7286473 DOI: 10.1002/cam4.3005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a cancer of the central nervous system with limited therapeutic outcomes. Infiltrating cancer cells are the contributing factor to high GBM malignancy. The intracranial brain cancer cell infiltration is a complex cascade involving adhesion, migration, and invasion. An arsenal of natural products has been under exploration to overcome GBM malignancy. This study applied the antimicrobial peptide tilapia piscidin 3 (TP3) to GBM8401, U87MG, and T98G cells. The cellular assays and microscopic observations showed that TP3 significantly attenuated cell adhesion, migration, and invasion. A live‐cell video clip showed the inhibition of filopodia protrusions and cell attachment. Probing at the molecular levels showed that the proteolytic activities (from secretion), the mRNA and protein expression levels of matrix metalloproteinases‐2 and ‐9 were attenuated. This result strongly evidenced that both invasion and metastasis were inhibited, although metastatic GBM is rare. Furthermore, the protein expression levels of cell‐mobilization regulators focal adhesion kinase and paxillin were decreased. Similar effects were observed in small GTPase (RAS), phosphorylated protein kinase B (AKT) and MAP kinases such as extracellular signal‐regulated kinases (ERK), JNK, and p38. Overall, TP3 showed promising activities to prevent cell infiltration and metastasis through modulating the tumor microenvironment balance, suggesting that TP3 merits further development for use in GBM treatments.
Collapse
Affiliation(s)
- Ying-Fa Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Po-Chang Shih
- UCL School of Pharmacy, University College London, London, UK.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - San-Nan Yang
- Department of Internal Medicine, E-DA Hospital and College of Medicine, I-SHOU University, Kaohsiung, Taiwan
| | - Yen-You Lin
- Department of Orthopedic Surgery, Ping-Tung Christian Hospital, Pingtung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurosurgery, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Shiow-Jyu Tzou
- Department of Nursing, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Nan-Fu Chen
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan.,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
47
|
Shigeta K, Datta M, Hato T, Kitahara S, Chen IX, Matsui A, Kikuchi H, Mamessier E, Aoki S, Ramjiawan RR, Ochiai H, Bardeesy N, Huang P, Cobbold M, Zhu AX, Jain RK, Duda DG. Dual Programmed Death Receptor-1 and Vascular Endothelial Growth Factor Receptor-2 Blockade Promotes Vascular Normalization and Enhances Antitumor Immune Responses in Hepatocellular Carcinoma. Hepatology 2020; 71:1247-1261. [PMID: 31378984 PMCID: PMC7000304 DOI: 10.1002/hep.30889] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Activation of the antitumor immune response using programmed death receptor-1 (PD-1) blockade showed benefit only in a fraction of patients with hepatocellular carcinoma (HCC). Combining PD-1 blockade with antiangiogenesis has shown promise in substantially increasing the fraction of patients with HCC who respond to treatment, but the mechanism of this interaction is unknown. APPROACH AND RESULTS We recapitulated these clinical outcomes using orthotopic-grafted or induced-murine models of HCC. Specific blockade of vascular endothelial receptor 2 (VEGFR-2) using a murine antibody significantly delayed primary tumor growth but failed to prolong survival, while anti-PD-1 antibody treatment alone conferred a minor survival advantage in one model. However, dual anti-PD-1/VEGFR-2 therapy significantly inhibited primary tumor growth and doubled survival in both models. Combination therapy reprogrammed the immune microenvironment by increasing cluster of differentiation 8-positive (CD8+ ) cytotoxic T cell infiltration and activation, shifting the M1/M2 ratio of tumor-associated macrophages and reducing T regulatory cell (Treg) and chemokine (C-C motif) receptor 2-positive monocyte infiltration in HCC tissue. In these models, VEGFR-2 was selectively expressed in tumor endothelial cells. Using spheroid cultures of HCC tissue, we found that PD-ligand 1 expression in HCC cells was induced in a paracrine manner upon anti-VEGFR-2 blockade in endothelial cells in part through interferon-gamma expression. Moreover, we found that VEGFR-2 blockade increased PD-1 expression in tumor-infiltrating CD4+ cells. We also found that under anti-PD-1 therapy, CD4+ cells promote normalized vessel formation in the face of antiangiogenic therapy with anti-VEGFR-2 antibody. CONCLUSIONS We show that dual anti-PD-1/VEGFR-2 therapy has a durable vessel fortification effect in HCC and can overcome treatment resistance to either treatment alone and increase overall survival in both anti-PD-1 therapy-resistant and anti-PD-1 therapy-responsive HCC models.
Collapse
Affiliation(s)
- Kohei Shigeta
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
- Department of Thoracic Surgery, Saitama Medical Center,
Saitama, Japan
| | - Meenal Datta
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
| | - Tai Hato
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
- Department of Surgery, Keio University School of Medicine,
Tokyo, Japan
| | - Shuji Kitahara
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
- Department of Anatomy and Developmental Biology, Tokyo
Women’s Medical University, Tokyo, Japan
| | - Ivy X. Chen
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
| | - Aya Matsui
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
| | - Hiroto Kikuchi
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
| | - Emilie Mamessier
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
- Department of Molecular Oncology, Cancer Research Center,
Marseille, France
| | - Shuichi Aoki
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
- Department of Surgery, Tohoku University Graduate School of
Medicine, Miyagi, Japan
| | - Rakesh R. Ramjiawan
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
- Angiogenesis Laboratory, Cancer Center Amsterdam,
Department of Medical Oncology, VU University Medical Center, Amsterdam, The
Netherlands
| | - Hiroki Ochiai
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
- Department of Surgery, National Cancer Institute Central
Hospital, Tokyo, Japan
| | - Nabeel Bardeesy
- Department of Medicine, Massachusetts General Hospital, MA,
USA
| | - Peigen Huang
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
| | - Mark Cobbold
- Department of Medicine, Massachusetts General Hospital, MA,
USA
| | - Andrew X. Zhu
- Department of Medicine, Massachusetts General Hospital, MA,
USA
| | - Rakesh K. Jain
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
| | - Dan G. Duda
- Edwin. L. Steele Laboratories for Tumor Biology, Department
of Radiation Oncology, Massachusetts General Hospital, MA, USA
| |
Collapse
|
48
|
Gauging the Impact of Cancer Treatment Modalities on Circulating Tumor Cells (CTCs). Cancers (Basel) 2020; 12:cancers12030743. [PMID: 32245166 PMCID: PMC7140032 DOI: 10.3390/cancers12030743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
The metastatic cascade consists of multiple complex steps, but the belief that it is a linear process is diminishing. In order to metastasize, cells must enter the blood vessels or body cavities (depending on the cancer type) via active or passive mechanisms. Once in the bloodstream and/or lymphatics, these cancer cells are now termed circulating tumor cells (CTCs). CTC numbers as well as CTC clusters have been used as a prognostic marker with higher numbers of CTCs and/or CTC clusters correlating with an unfavorable prognosis. However, we have very limited knowledge about CTC biology, including which of these cells are ultimately responsible for overt metastatic growth, but due to the fact that higher numbers of CTCs correlate with a worse prognosis; it would seem appropriate to either limit CTCs and/or their dissemination. Here, we will discuss the different cancer treatments which may inadvertently promote the mobilization of CTCs and potential CTC therapies to decrease metastasis.
Collapse
|
49
|
Jiang MJ, Gu DN, Dai JJ, Huang Q, Tian L. Dark Side of Cytotoxic Therapy: Chemoradiation-Induced Cell Death and Tumor Repopulation. Trends Cancer 2020; 6:419-431. [PMID: 32348737 DOI: 10.1016/j.trecan.2020.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Accelerated tumor repopulation following chemoradiation is often observed in the clinic, but the underlying mechanisms remain unclear. In recent years, dying cells caused by chemoradiation have attracted much attention, and they may manifest diverse forms of cell death and release complex factors and thus orchestrate tumor repopulation cascades. Dying cells potentiate the survival of residual living tumor cells, remodel the tumor microenvironment, boost cell proliferation, and accelerate cancer cell metastasis. Moreover, dying cells also mediate the side effects of chemoradiation. These findings suggest more caution when weighing the benefits of cytotoxic therapy and the need to accordingly develop new strategies for cancer treatment.
Collapse
Affiliation(s)
- Ming-Jie Jiang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Dian-Na Gu
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Juan-Juan Dai
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ling Tian
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
50
|
D’Alterio C, Scala S, Sozzi G, Roz L, Bertolini G. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin Cancer Biol 2020; 60:351-361. [DOI: 10.1016/j.semcancer.2019.08.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
|