1
|
Merati A, Kotian S, Acton A, Placzek W, Smithberger E, Shelton AK, Miller CR, Stern JL. Glioma Stem Cells Are Sensitized to BCL-2 Family Inhibition by Compromising Histone Deacetylases. Int J Mol Sci 2023; 24:13688. [PMID: 37761989 PMCID: PMC10530722 DOI: 10.3390/ijms241813688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GBM) remains an incurable disease with an extremely high five-year recurrence rate. We studied apoptosis in glioma stem cells (GSCs) in response to HDAC inhibition (HDACi) combined with MEK1/2 inhibition (MEKi) or BCL-2 family inhibitors. MEKi effectively combined with HDACi to suppress growth, induce cell cycle defects, and apoptosis, as well as to rescue the expression of the pro-apoptotic BH3-only proteins BIM and BMF. A RNAseq analysis of GSCs revealed that HDACi repressed the pro-survival BCL-2 family genes MCL1 and BCL-XL. We therefore replaced MEKi with BCL-2 family inhibitors and observed enhanced apoptosis. Conversely, a ligand for the cancer stem cell receptor CD44 led to reductions in BMF, BIM, and apoptosis. Our data strongly support further testing of HDACi in combination with MEKi or BCL-2 family inhibitors in glioma.
Collapse
Affiliation(s)
- Aran Merati
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Spandana Kotian
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexus Acton
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - William Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erin Smithberger
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Abigail K. Shelton
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - C. Ryan Miller
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Josh L. Stern
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Yeo AT, Shah R, Aliazis K, Pal R, Xu T, Zhang P, Rawal S, Rose CM, Varn FS, Appleman VA, Yoon J, Varma H, Gygi SP, Verhaak RG, Boussiotis VA, Charest A. Driver Mutations Dictate the Immunologic Landscape and Response to Checkpoint Immunotherapy of Glioblastoma. Cancer Immunol Res 2023; 11:629-645. [PMID: 36881002 PMCID: PMC10155040 DOI: 10.1158/2326-6066.cir-22-0655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/20/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
The composition of the tumor immune microenvironment (TIME) is considered a key determinant of patients' response to immunotherapy. The mechanisms underlying TIME formation and development over time are poorly understood. Glioblastoma (GBM) is a lethal primary brain cancer for which there are no curative treatments. GBMs are immunologically heterogeneous and impervious to checkpoint blockade immunotherapies. Utilizing clinically relevant genetic mouse models of GBM, we identified distinct immune landscapes associated with expression of EGFR wild-type and mutant EGFRvIII cancer driver mutations. Over time, accumulation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) was more pronounced in EGFRvIII-driven GBMs and was correlated with resistance to PD-1 and CTLA-4 combination checkpoint blockade immunotherapy. We determined that GBM-secreted CXCL1/2/3 and PMN-MDSC-expressed CXCR2 formed an axis regulating output of PMN-MDSCs from the bone marrow leading to systemic increase in these cells in the spleen and GBM tumor-draining lymph nodes. Pharmacologic targeting of this axis induced a systemic decrease in the numbers of PMN-MDSC, facilitated responses to PD-1 and CTLA-4 combination checkpoint blocking immunotherapy, and prolonged survival in mice bearing EGFRvIII-driven GBM. Our results uncover a relationship between cancer driver mutations, TIME composition, and sensitivity to checkpoint blockade in GBM and support the stratification of patients with GBM for checkpoint blockade therapy based on integrated genotypic and immunologic profiles.
Collapse
Affiliation(s)
- Alan T. Yeo
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Sackler School of Graduate Studies, Tufts University School of Medicine, Boston, Massachusetts
| | - Rushil Shah
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Konstantinos Aliazis
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Rinku Pal
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Tuoye Xu
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Piyan Zhang
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Shruti Rawal
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Frederick S. Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Vicky A. Appleman
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Joon Yoon
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Hemant Varma
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Roel G.W. Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Vassiliki A. Boussiotis
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Al Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Capellmann S, Sonntag R, Schüler H, Meurer SK, Gan L, Kauffmann M, Horn K, Königs-Werner H, Weiskirchen R, Liedtke C, Huber M. Transformation of primary murine peritoneal mast cells by constitutive KIT activation is accompanied by loss of Cdkn2a/Arf expression. Front Immunol 2023; 14:1154416. [PMID: 37063827 PMCID: PMC10097954 DOI: 10.3389/fimmu.2023.1154416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Mast cells (MCs) are immune cells of the myeloid lineage distributed in tissues throughout the body. Phenotypically, they are a heterogeneous group characterized by different protease repertoires stored in secretory granules and differential presence of receptors. To adequately address aspects of MC biology either primary MCs isolated from human or mouse tissue or different human MC lines, like HMC-1.1 and -1.2, or rodent MC lines like L138.8A or RBL-2H3 are frequently used. Nevertheless, cellular systems to study MC functions are very limited. We have generated a murine connective tissue-like MC line, termed PMC-306, derived from primary peritoneal MCs (PMCs), which spontaneously transformed. We analyzed PMC-306 cells regarding MC surface receptor expression, effector functions and respective signaling pathways, and found that the cells reacted very similar to primary wildtype (WT) PMCs. In this regard, stimulation with MAS-related G-protein-coupled receptor member B2 (MRGPRB2) ligands induced respective signaling and effector functions. Furthermore, PMC-306 cells revealed significantly accelerated cell cycle progression, which however was still dependent on interleukine 3 (IL-3) and stem cell factor (SCF). Phenotypically, PMC-306 cells adopted an immature connective tissue-like MCs appearance. The observation of cellular transformation was accompanied by the loss of Cdkn2a and Arf expression, which are both described as critical cell cycle regulators. The loss of Cdkn2a and Arf expression could be mimicked in primary bone marrow-derived mast cells (BMMCs) by sustained SCF supplementation strongly arguing for an involvement of KIT activation in the regulation of Cdkn2a/Arf expression. Hence, this new cell line might be a useful tool to study further aspects of PMC function and to address tumorigenic processes associated with MC leukemia.
Collapse
Affiliation(s)
- Sandro Capellmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- *Correspondence: Sandro Capellmann, ; Michael Huber,
| | - Roland Sonntag
- Department of Internal Medicine III, University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Herdit Schüler
- Institute of Human Genetics, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Steffen K. Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Lin Gan
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Marlies Kauffmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Katharina Horn
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Hiltrud Königs-Werner
- Electron Microscopy Facility, Institute of Pathology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- *Correspondence: Sandro Capellmann, ; Michael Huber,
| |
Collapse
|
4
|
Guo G, Gong K, Beckley N, Zhang Y, Yang X, Chkheidze R, Hatanpaa KJ, Garzon-Muvdi T, Koduru P, Nayab A, Jenks J, Sathe AA, Liu Y, Xing C, Wu SY, Chiang CM, Mukherjee B, Burma S, Wohlfeld B, Patel T, Mickey B, Abdullah K, Youssef M, Pan E, Gerber DE, Tian S, Sarkaria JN, McBrayer SK, Zhao D, Habib AA. EGFR ligand shifts the role of EGFR from oncogene to tumour suppressor in EGFR-amplified glioblastoma by suppressing invasion through BIN3 upregulation. Nat Cell Biol 2022; 24:1291-1305. [PMID: 35915159 PMCID: PMC9389625 DOI: 10.1038/s41556-022-00962-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/14/2022] [Indexed: 02/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a prime oncogene that is frequently amplified in glioblastomas. Here we demonstrate a new tumour-suppressive function of EGFR in EGFR-amplified glioblastomas regulated by EGFR ligands. Constitutive EGFR signalling promotes invasion via activation of a TAB1-TAK1-NF-κB-EMP1 pathway, resulting in large tumours and decreased survival in orthotopic models. Ligand-activated EGFR promotes proliferation and surprisingly suppresses invasion by upregulating BIN3, which inhibits a DOCK7-regulated Rho GTPase pathway, resulting in small hyperproliferating non-invasive tumours and improved survival. Data from The Cancer Genome Atlas reveal that in EGFR-amplified glioblastomas, a low level of EGFR ligands confers a worse prognosis, whereas a high level of EGFR ligands confers an improved prognosis. Thus, increased EGFR ligand levels shift the role of EGFR from oncogene to tumour suppressor in EGFR-amplified glioblastomas by suppressing invasion. The tumour-suppressive function of EGFR can be activated therapeutically using tofacitinib, which suppresses invasion by increasing EGFR ligand levels and upregulating BIN3.
Collapse
Affiliation(s)
- Gao Guo
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ke Gong
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, School of Basic Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Nicole Beckley
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yue Zhang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoyao Yang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rati Chkheidze
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prasad Koduru
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arifa Nayab
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer Jenks
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adwait Amod Sathe
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Liu
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shwu-Yuan Wu
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharamacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharamacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sandeep Burma
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bryan Wohlfeld
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Toral Patel
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Mickey
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kalil Abdullah
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Youssef
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward Pan
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shulan Tian
- Department of Quantitative Heath Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Samuel K McBrayer
- Department of Pediatrics and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dawen Zhao
- Departments of Biomedical Engineering and Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- VA North Texas Health Care System, Dallas, TX, USA.
| |
Collapse
|
5
|
Single-cell RNA sequencing reveals evolution of immune landscape during glioblastoma progression. Nat Immunol 2022; 23:971-984. [PMID: 35624211 PMCID: PMC9174057 DOI: 10.1038/s41590-022-01215-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/18/2022] [Indexed: 01/22/2023]
Abstract
Glioblastoma (GBM) is an incurable primary malignant brain cancer hallmarked with a substantial protumorigenic immune component. Knowledge of the GBM immune microenvironment during tumor evolution and standard of care treatments is limited. Using single-cell transcriptomics and flow cytometry, we unveiled large-scale comprehensive longitudinal changes in immune cell composition throughout tumor progression in an epidermal growth factor receptor-driven genetic mouse GBM model. We identified subsets of proinflammatory microglia in developing GBMs and anti-inflammatory macrophages and protumorigenic myeloid-derived suppressors cells in end-stage tumors, an evolution that parallels breakdown of the blood-brain barrier and extensive growth of epidermal growth factor receptor+ GBM cells. A similar relationship was found between microglia and macrophages in patient biopsies of low-grade glioma and GBM. Temozolomide decreased the accumulation of myeloid-derived suppressor cells, whereas concomitant temozolomide irradiation increased intratumoral GranzymeB+ CD8+T cells but also increased CD4+ regulatory T cells. These results provide a comprehensive and unbiased immune cellular landscape and its evolutionary changes during GBM progression.
Collapse
|
6
|
Noorani I, de la Rosa J, Choi YH, Strong A, Ponstingl H, Vijayabaskar MS, Lee J, Lee E, Richard-Londt A, Friedrich M, Furlanetto F, Fuente R, Banerjee R, Yang F, Law F, Watts C, Rad R, Vassiliou G, Kim JK, Santarius T, Brandner S, Bradley A. PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas. Genome Biol 2020; 21:181. [PMID: 32727536 PMCID: PMC7392733 DOI: 10.1186/s13059-020-02092-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Background Glioma is the most common intrinsic brain tumor and also occurs in the spinal cord. Activating EGFR mutations are common in IDH1 wild-type gliomas. However, the cooperative partners of EGFR driving gliomagenesis remain poorly understood. Results We explore EGFR-mutant glioma evolution in conditional mutant mice by whole-exome sequencing, transposon mutagenesis forward genetic screening, and transcriptomics. We show mutant EGFR is sufficient to initiate gliomagenesis in vivo, both in the brain and spinal cord. We identify significantly recurrent somatic alterations in these gliomas including mutant EGFR amplifications and Sub1, Trp53, and Tead2 loss-of-function mutations. Comprehensive functional characterization of 96 gliomas by genome-wide piggyBac insertional mutagenesis in vivo identifies 281 known and novel EGFR-cooperating driver genes, including Cdkn2a, Nf1, Spred1, and Nav3. Transcriptomics confirms transposon-mediated effects on expression of these genes. We validate the clinical relevance of new putative tumor suppressors by showing these are frequently altered in patients’ gliomas, with prognostic implications. We discover shared and distinct driver mutations in brain and spinal gliomas and confirm in vivo differential tumor suppressive effects of Pten between these tumors. Functional validation with CRISPR-Cas9-induced mutations in novel genes Tead2, Spred1, and Nav3 demonstrates heightened EGFRvIII-glioma cell proliferation. Chemogenomic analysis of mutated glioma genes reveals potential drug targets, with several investigational drugs showing efficacy in vitro. Conclusion Our work elucidates functional driver landscapes of EGFR-mutant gliomas, uncovering potential therapeutic strategies, and provides new tools for functional interrogation of gliomagenesis.
Collapse
Affiliation(s)
- Imran Noorani
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK. .,Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Jorge de la Rosa
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Yoon Ha Choi
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Hannes Ponstingl
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - M S Vijayabaskar
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jusung Lee
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Eunmin Lee
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Angela Richard-Londt
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, Mailbox 126, London, WC1N 3BG, UK
| | - Mathias Friedrich
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Federica Furlanetto
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Rocio Fuente
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Ruby Banerjee
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Fengtang Yang
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Frances Law
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Colin Watts
- Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.,Birmingham Brain Cancer Program, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Roland Rad
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - George Vassiliou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Thomas Santarius
- Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, Mailbox 126, London, WC1N 3BG, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
7
|
Guo G, Gong K, Puliyappadamba VT, Panchani N, Pan E, Mukherjee B, Damanwalla Z, Bharia S, Hatanpaa KJ, Gerber DE, Mickey BE, Patel TR, Sarkaria JN, Zhao D, Burma S, Habib AA. Efficacy of EGFR plus TNF inhibition in a preclinical model of temozolomide-resistant glioblastoma. Neuro Oncol 2019; 21:1529-1539. [PMID: 31363754 PMCID: PMC6917414 DOI: 10.1093/neuonc/noz127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary malignant adult brain tumor. Temozolomide (TMZ) is the standard of care and is most effective in GBMs that lack the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). Moreover, even initially responsive tumors develop a secondary resistance to TMZ and become untreatable. Since aberrant epidermal growth factor receptor (EGFR) signaling is widespread in GBM, EGFR inhibition has been tried in multiple clinical trials without success. We recently reported that inhibiting EGFR leads to increased secretion of tumor necrosis factor (TNF) and activation of a survival pathway in GBM. Here, we compare the efficacy of TMZ versus EGFR plus TNF inhibition in an orthotopic mouse model of GBM. METHODS We use an orthotopic model to examine the efficacy of TMZ versus EGFR plus TNF inhibition in multiple subsets of GBMs, including MGMT methylated and unmethylated primary GBMs, recurrent GBMs, and GBMs rendered experimentally resistant to TMZ. RESULTS The efficacy of the 2 treatments was similar in MGMT methylated GBMs. However, in MGMT unmethylated GBMs, a combination of EGFR plus TNF inhibition was more effective. We demonstrate that the 2 treatment approaches target distinct and non-overlapping pathways. Thus, importantly, EGFR plus TNF inhibition remains effective in TMZ-resistant recurrent GBMs and in GBMs rendered experimentally resistant to TMZ. CONCLUSION EGFR inhibition combined with a blunting of the accompanying TNF-driven adaptive response could be a viable therapeutic approach in MGMT unmethylated and recurrent EGFR-expressing GBMs.
Collapse
Affiliation(s)
- Gao Guo
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
| | - Ke Gong
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
| | | | - Nishah Panchani
- Department of Pathology, Division of Hematology-Oncology, Dallas, Texas
| | - Edward Pan
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
| | - Bipasha Mukherjee
- Department of Radiation Oncology, Division of Hematology-Oncology, Dallas, Texas
| | - Ziba Damanwalla
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
| | - Sabrina Bharia
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
- Department of Radiation Oncology, Division of Hematology-Oncology, Dallas, Texas
| | - Kimmo J Hatanpaa
- Department of Pathology, Division of Hematology-Oncology, Dallas, Texas
| | - David E Gerber
- Department of Internal Medicine, Division of Hematology-Oncology, Dallas, Texas
- Harold C. Simmons Comprehensive Cancer Center, VA North Texas Health Care System, Dallas, Texas
| | - Bruce E Mickey
- Department of Neurosurgery, VA North Texas Health Care System, Dallas, Texas
| | - Toral R Patel
- Department of Neurosurgery, VA North Texas Health Care System, Dallas, Texas
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Dawen Zhao
- Departments of Biomedical Engineering and Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sandeep Burma
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
- Department of Radiation Oncology, Division of Hematology-Oncology, Dallas, Texas
| | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
- Harold C. Simmons Comprehensive Cancer Center, VA North Texas Health Care System, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas; VA North Texas Health Care System, Dallas, Texas
| |
Collapse
|
8
|
The Genetic Architecture of Gliomagenesis-Genetic Risk Variants Linked to Specific Molecular Subtypes. Cancers (Basel) 2019; 11:cancers11122001. [PMID: 31842352 PMCID: PMC6966482 DOI: 10.3390/cancers11122001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/19/2022] Open
Abstract
Genome-wide association studies have identified 25 germline genetic loci that increase the risk of glioma. The somatic tumor molecular alterations, including IDH-mutation status and 1p/19q co-deletion, have been included into the WHO 2016 classification system for glioma. To investigate how the germline genetic risk variants correlate with the somatic molecular subtypes put forward by WHO, we performed a meta-analysis that combined findings from 330 Swedish cases and 876 controls with two other recent studies. In total, 5,103 cases and 10,915 controls were included. Three categories of associations were found. First, variants in TERT and TP53 were associated with increased risk of all glioma subtypes. Second, variants in CDKN2B-AS1, EGFR, and RTEL1 were associated with IDH-wildtype glioma. Third, variants in CCDC26 (the 8q24 locus), C2orf80 (close to IDH), LRIG1, PHLDB1, ETFA, MAML2 and ZBTB16 were associated with IDH-mutant glioma. We therefore propose three etiopathological pathways in gliomagenesis based on germline variants for future guidance of diagnosis and potential functional targets for therapies. Future prospective clinical trials of patients with suspicion of glioma diagnoses, using the genetic variants as biomarkers, are necessary to disentangle how strongly they can predict glioma diagnosis.
Collapse
|
9
|
Gyuris A, Navarrete-Perea J, Jo A, Cristea S, Zhou S, Fraser K, Wei Z, Krichevsky AM, Weissleder R, Lee H, Gygi SP, Charest A. Physical and Molecular Landscapes of Mouse Glioma Extracellular Vesicles Define Heterogeneity. Cell Rep 2019; 27:3972-3987.e6. [PMID: 31242427 PMCID: PMC6604862 DOI: 10.1016/j.celrep.2019.05.089] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/15/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer extracellular vesicles (EVs) are highly heterogeneous, which impedes our understanding of their function as intercellular communication agents and biomarkers. To deconstruct this heterogeneity, we analyzed extracellular RNAs (exRNAs) and extracellular proteins (exPTNs) from size fractionation of large, medium, and small EVs and ribonucleoprotein complexes (RNPs) from mouse glioblastoma cells by RNA sequencing and quantitative proteomics. mRNA from medium-sized EVs most closely reflects the cellular transcriptome, whereas small EV exRNA is enriched in small non-coding RNAs and RNPs contain precisely processed tRNA fragments. The exPTN composition of EVs and RNPs reveals that they are closely related by vesicle type, independent of their cellular origin, and single EV analysis reveals that small EVs are less heterogeneous in their protein content than larger ones. We provide a foundation for better understanding of segregation of macromolecules in glioma EVs through a catalog of diverse exRNAs and exPTNs.
Collapse
Affiliation(s)
- Aron Gyuris
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | - Ala Jo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Simona Cristea
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shuang Zhou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kyle Fraser
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhiyun Wei
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Initiative for RNA Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anna M Krichevsky
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Initiative for RNA Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Al Charest
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Jun HJ, Appleman VA, Wu HJ, Rose CM, Pineda JJ, Yeo AT, Delcuze B, Lee C, Gyuris A, Zhu H, Woolfenden S, Bronisz A, Nakano I, Chiocca EA, Bronson RT, Ligon KL, Sarkaria JN, Gygi SP, Michor F, Mitchison TJ, Charest A. A PDGFRα-driven mouse model of glioblastoma reveals a stathmin1-mediated mechanism of sensitivity to vinblastine. Nat Commun 2018; 9:3116. [PMID: 30082792 PMCID: PMC6078993 DOI: 10.1038/s41467-018-05036-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 05/24/2018] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain cancer that includes focal amplification of PDGFRα and for which there are no effective therapies. Herein, we report the development of a genetically engineered mouse model of GBM based on autocrine, chronic stimulation of overexpressed PDGFRα, and the analysis of GBM signaling pathways using proteomics. We discover the tubulin-binding protein Stathmin1 (STMN1) as a PDGFRα phospho-regulated target, and that this mis-regulation confers sensitivity to vinblastine (VB) cytotoxicity. Treatment of PDGFRα-positive mouse and a patient-derived xenograft (PDX) GBMs with VB in mice prolongs survival and is dependent on STMN1. Our work reveals a previously unconsidered link between PDGFRα activity and STMN1, and highlight an STMN1-dependent cytotoxic effect of VB in GBM.
Collapse
Affiliation(s)
- Hyun Jung Jun
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Vicky A Appleman
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Hua-Jun Wu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Christopher M Rose
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Javier J Pineda
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Alan T Yeo
- Sackler School of Graduate Studies, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Bethany Delcuze
- Sackler School of Graduate Studies, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Charlotte Lee
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Aron Gyuris
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Haihao Zhu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Steve Woolfenden
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Agnieszka Bronisz
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Ichiro Nakano
- Department of Neurosurgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35243, USA
| | - Ennio A Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Dana-Farber/Harvard Cancer Center, Boston, MA, 02215, USA
| | - Keith L Ligon
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Al Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
11
|
Zhou S, Appleman VA, Rose CM, Jun HJ, Yang J, Zhou Y, Bronson RT, Gygi SP, Charest A. Chronic platelet-derived growth factor receptor signaling exerts control over initiation of protein translation in glioma. Life Sci Alliance 2018; 1:e201800029. [PMID: 30456354 PMCID: PMC6238596 DOI: 10.26508/lsa.201800029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 01/23/2023] Open
Abstract
Using phospho-proteomics in a new model of malignant glioma, we reveal that clinically relevant, chronic PDGFRα signaling differs considerably from acute receptor stimulation and unveils previously unrecognized control over key elements of the translation initiation machinery. Activation of the platelet-derived growth factor receptors (PDGFRs) gives rise to some of the most important signaling pathways that regulate mammalian cellular growth, survival, proliferation, and differentiation and their misregulation is common in a variety of diseases. Herein, we present a comprehensive and detailed map of PDGFR signaling pathways assembled from literature and integrate this map in a bioinformatics protocol designed to extract meaningful information from large-scale quantitative proteomics mass spectrometry data. We demonstrate the usefulness of this approach using a new genetically engineered mouse model of PDGFRα-driven glioma. We discovered that acute PDGFRα stimulation differs considerably from chronic receptor activation in the regulation of protein translation initiation. Transient stimulation activates several key components of the translation initiation machinery, whereas the clinically relevant chronic activity of PDGFRα is associated with a significant shutdown of translational members. Our work defines a step-by-step approach to extract biologically relevant insights from global unbiased phospho-protein datasets to uncover targets for therapeutic assessment.
Collapse
Affiliation(s)
- Shuang Zhou
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Vicky A Appleman
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Hyun Jung Jun
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Juechen Yang
- Department of Computer Science, North Dakota State University, Fargo, ND, USA
| | - Yue Zhou
- Department of Statistics, North Dakota State University, Fargo, ND, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Al Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Analysis of Constitutive EGFR Signaling Regulating IRF3 Transcriptional Activity in Cancer Cells. Methods Mol Biol 2018. [PMID: 28791644 DOI: 10.1007/978-1-4939-7219-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Epidermal growth factor receptor (EGFR) plays an important role in various types of human cancers. Overexpression of EGFR leads to a constitutive tyrosine phosphorylation of multiple tyrosine residues in the EGFR. Recently, we have demonstrated that overexpressed EGFR oscillates between two distinct and mutually exclusive modes of signaling depending on the presence or absence of ligand. EGFR constitutively activates transcription factor IRF3, which results in transcription of its target genes. Addition of EGF causes a loss of IRF3 transcriptional activity and activation of canonical signaling pathways such as ERK. The mechanistic basis of this bimodal signaling appears to be the association of a distinct set of signaling proteins with EGFR in the absence or presence of ligand. In this chapter, we describe a detailed protocol for analyses of constitutive EGFR signaling with a focus on IRF3 target genes.
Collapse
|
13
|
Boussiotis VA, Charest A. Immunotherapies for malignant glioma. Oncogene 2018; 37:1121-1141. [PMID: 29242608 PMCID: PMC5828703 DOI: 10.1038/s41388-017-0024-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant primary brain cancer with a dreadful overall survival and for which treatment options are limited. Recent breakthroughs in novel immune-related treatment strategies for cancer have spurred interests in usurping the power of the patient's immune system to recognize and eliminate GBM. Here, we discuss the unique properties of GBM's tumor microenvironment, the effects of GBM standard on care therapy on tumor-associated immune cells, and review several approaches aimed at therapeutically targeting the immune system for GBM treatment. We believe that a comprehensive understanding of the intricate micro-environmental landscape of GBM will abound into the development of novel immunotherapy strategies for GBM patients.
Collapse
Affiliation(s)
- Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Alain Charest
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Ji P, Zhou X, Liu Q, Fuller GN, Phillips LM, Zhang W. Driver or passenger effects of augmented c-Myc and Cdc20 in gliomagenesis. Oncotarget 2018; 7:23521-9. [PMID: 26993778 PMCID: PMC5029644 DOI: 10.18632/oncotarget.8080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/25/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose Cdc20 and c-Myc are commonly overexpressed in a broad spectrum of cancers, including glioblastoma (GBM). Despite this clear association, whether c-Myc and Cdc20 overexpression is a driver or passenger event in gliomagenesis remains unclear. Results Both c-Myc and Cdc20 induced the proliferation of primary glial progenitor cells. c-Myc also promoted the formation of soft agar anchorage-independent colonies. In the RCAS/Ntv-a glia-specific transgenic mouse model, c-Myc increased the GBM incidence from 19.1% to 47.4% by 12 weeks of age when combined with kRas and Akt3 in Ntv-a INK4a-ARF (also known as CDKN2A)-null mice. In contrast, Cdc20 decreased the GBM incidence from 19.1% to 9.1%. Moreover, cell differentiation was modulated by c-Myc in kRas/Akt3-induced GBM on the basis of Nestin/GFAP expression (glial progenitor cell differentiation), while Cdc20 had no effect on primary glial progenitor cell differentiation. Materials and Methods We used glial progenitor cells from Ntv-a newborn mice to evaluate the role of c-Myc and Cdc20 in the proliferation and transformation of GBM in vitro and in vivo. We further determined whether c-Myc and Cdc20 have a driver or passenger role in GBM development using kRas/Akt3 signals in a RCAS/Ntv-a mouse model. Conclusions These results suggest that the driver or passenger of oncogene signaling is dependent on cellular status. c-Myc is a driver when combined with kRas/Akt3 oncogenic signals in gliomagenesis, whereas Cdc20 overexpression is a passenger. Inhibition of cell differentiation of c-Myc may be a target for anti-glioma therapy.
Collapse
Affiliation(s)
- Ping Ji
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Current affiliation: Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinhui Zhou
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qun Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Neurosurgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lynette M Phillips
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Yeo AT, Charest A. Immune Checkpoint Blockade Biology in Mouse Models of Glioblastoma. J Cell Biochem 2017; 118:2516-2527. [PMID: 28230277 PMCID: PMC5783695 DOI: 10.1002/jcb.25948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/25/2022]
Abstract
Glioblastoma Multiforme (GBM) is a highly malignant primary brain cancer that is associated with abysmal prognosis. The median survival of GBM patients is ∼15 months and there have not been any significant advance in therapies in over a decade, leaving treatment options limited. There is clearly an unmet need for GBM treatment. Immunotherapies are treatments based on usurping the power of the host's immune system to recognize and eliminate cancer cells. They have recently proven to be a successful strategy for combating a variety of cancers. Of the various types of immunotherapies, checkpoint blockade approaches have thus far produced significant clinical responses in several cancers including melanoma, non small-cell lung cancer, renal cancer, and prostate cancer. This review focuses on the biological rationale for using checkpoint blockade immunotherapeutic approaches in primary brain cancer and an up-to-date summary of current and ongoing checkpoint inhibitors-based clinical trials for malignant glioma. In addition, we expand on new concepts for further improving checkpoint blockade treatments, with a particular focus on the advantages of using genetically engineered mouse models for studies of immunotherapies in GBM. J. Cell. Biochem. 118: 2516-2527, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alan T. Yeo
- Sackler School of Graduate Studies, Tufts University School of Medicine, 136 Harrison Ave., Boston, Massachusetts 02111
- Cancer Research Institute, Beth Israel Deaconess Medical Center, 330 Brookline Ave. Boston, Massachusetts 02215
| | - Al Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, 330 Brookline Ave. Boston, Massachusetts 02215
- Department of Medicine, Division of Genetics, Harvard Medical School, 330 Brookline Ave. Boston, Massachusetts 02215
| |
Collapse
|
16
|
A TNF-JNK-Axl-ERK signaling axis mediates primary resistance to EGFR inhibition in glioblastoma. Nat Neurosci 2017; 20:1074-1084. [PMID: 28604685 PMCID: PMC5529219 DOI: 10.1038/nn.4584] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
Abstract
Aberrant EGFR signaling is widespread in cancer, making the EGFR an important target for therapy. EGFR gene amplification and mutation are common in glioblastoma (GBM), but EGFR inhibition has not been effective in treating this tumor. Here, we propose that primary resistance to EGFR inhibition in glioma cells results from a rapid compensatory response to EGFR inhibition that mediates cell survival. We show that in glioma cells expressing either EGFR wild type or the mutant EGFRvIII, EGFR inhibition triggers a rapid adaptive response driven by increased TNF secretion that leads to activation of a TNF-JNK-Axl-ERK signaling axis. Inhibition of this adaptive axis at multiple nodes renders glioma cells with primary resistance sensitive to EGFR inhibition. Our findings provide a possible explanation for the multiple failures of anti-EGFR therapy in GBM and suggest a new approach to the treatment of EGFR expressing GBM using a combination of EGFR and TNF inhibition.
Collapse
|
17
|
Shin CH, Robinson JP, Sonnen JA, Welker AE, Yu DX, VanBrocklin MW, Holmen SL. HBEGF promotes gliomagenesis in the context of Ink4a/Arf and Pten loss. Oncogene 2017; 36:4610-4618. [PMID: 28368403 PMCID: PMC5552427 DOI: 10.1038/onc.2017.83] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 12/19/2022]
Abstract
Heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) is a ligand for the epidermal growth factor receptor (EGFR), one of the most commonly amplified receptor tyrosine kinases (RTK) in glioblastoma. While HBEGF has been found to be expressed in a subset of malignant gliomas, its sufficiency for glioma initiation has not been evaluated. In this study, we demonstrate that HBEGF can initiate glioblastoma (GBM) in mice in the context of Ink4a/Arf and Pten loss, and that these tumors are similar to the classical GBM subtype observed in patients. Isogenic astrocytes from these mice showed activation not only of Egfr but also the RTK Axl in response to HBEGF stimulation. Deletion of either Egfr or Axl decreased the tumorigenic properties of HBEGF transformed cells; however only EGFR was able to rescue the phenotype in cells lacking both RTKs indicating that Egfr is required for activation of Axl in this context. Silencing of HBEGF in vivo resulted in tumor regression and significantly increased survival suggesting that HBEGF may be a clinically relevant target.
Collapse
Affiliation(s)
- C H Shin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - J P Robinson
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - J A Sonnen
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,ARUP Laboratories, Salt Lake City, UT, USA
| | - A E Welker
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA
| | - D X Yu
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - M W VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - S L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|
18
|
Späth F, Andersson U, Dahlin AM, Langseth H, Hovig E, Johannesen TB, Grankvist K, Björkblom B, Wibom C, Melin B. Pre-diagnostic serum levels of EGFR and ErbB2 and genetic glioma risk variants: a nested case-control study. Tumour Biol 2016; 37:11065-72. [PMID: 26906551 PMCID: PMC4999462 DOI: 10.1007/s13277-015-4742-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/27/2015] [Indexed: 11/29/2022] Open
Abstract
Genetic variants have been associated with the risk of developing glioma, but functional mechanisms on disease phenotypic traits remain to be investigated. One phenotypic trait of glioblastoma is the mutation and amplification of the epidermal growth factor receptor (EGFR) gene. We investigated associations between pre-diagnostic serum protein concentrations of EGFR and ErbB2, both members of the EGFR family, and future risk of glioma. Further, we studied if EGFR glioma risk variants were associated with EGFR and ErbB2 serum levels. We assessed the associations between genetic glioma risk variants and serum concentrations of EGFR and ErbB2, as measured in pre-diagnostic cohort serum samples of 593 glioma patients and 590 matched cancer-free controls. High serum EGFR and ErbB2 levels were associated with risk of developing glioblastoma (P = 0.008; OR = 1.58, 95 % CI = 1.13–2.22 and P = 0.017, OR = 1.63, 95 % CI = 1.09–2.44, respectively). High serum ErbB2 concentration was also associated with glioma risk overall (P = 0.049; OR = 1.39, 95 % CI = 1.00–1.93). Glioma risk variants were not associated with high serum protein abundance. In contrast, the EGFR risk variant rs4947986 (T) was correlated with decreased EGFR serum levels (study cohort P = 0.024 and controls P = 0.009). To our knowledge, this is the first study showing an association of EGFR and ErbB2 serum levels with glioma more than a decade before diagnosis, indicating that EGFR and ErbB2 serum proteins are important in early gliomagenesis. However, we did not find evidence that glioma risk variants were associated with high pre-diagnostic serum concentrations of EGFR and ErbB2.
Collapse
Affiliation(s)
- Florentin Späth
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden. .,Department of Oncology, Umeå University, 901 87, Umeå, Sweden.
| | - Ulrika Andersson
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden.,Department of Oncology, Umeå University, 901 87, Umeå, Sweden
| | - Anna M Dahlin
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden.,Department of Oncology, Umeå University, 901 87, Umeå, Sweden.,Computational Life Science Cluster (CLiC), Umeå University, 901 87, Umeå, Sweden
| | - Hilde Langseth
- Cancer Registry of Norway, Institute of Population-based Cancer Research, Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, University of Oslo, Oslo, Norway.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Tom Børge Johannesen
- Cancer Registry of Norway, Institute of Population-based Cancer Research, Oslo, Norway
| | - Kjell Grankvist
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 85, Umeå, Sweden
| | - Benny Björkblom
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Carl Wibom
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden.,Department of Oncology, Umeå University, 901 87, Umeå, Sweden.,Computational Life Science Cluster (CLiC), Umeå University, 901 87, Umeå, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden.,Department of Oncology, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
19
|
Swartling FJ, Čančer M, Frantz A, Weishaupt H, Persson AI. Deregulated proliferation and differentiation in brain tumors. Cell Tissue Res 2015; 359:225-54. [PMID: 25416506 PMCID: PMC4286433 DOI: 10.1007/s00441-014-2046-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/22/2014] [Indexed: 01/24/2023]
Abstract
Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment resistance, suppress tumor growth, and prevent recurrence in patients.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Matko Čančer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Aaron Frantz
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Anders I Persson
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
20
|
Constitutive and ligand-induced EGFR signalling triggers distinct and mutually exclusive downstream signalling networks. Nat Commun 2014; 5:5811. [PMID: 25503978 PMCID: PMC4268886 DOI: 10.1038/ncomms6811] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/10/2014] [Indexed: 12/25/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) overexpression plays an important oncogenic role in cancer. Regular EGFR protein levels are increased in cancer cells and the receptor then becomes constitutively active. However, downstream signals generated by constitutively activated EGFR are unknown. Here we report that the overexpressed EGFR oscillates between two distinct and mutually exclusive modes of signalling. Constitutive or non-canonical EGFR signalling activates the transcription factor IRF3 leading to expression of IFI27, IFIT1 and TRAIL. Ligand-mediated activation of EGFR switches off IRF3-dependent transcription, activates canonical extracellular signal-regulated kinase (ERK) and Akt signals, and confers sensitivity to chemotherapy and virus-induced cell death. Mechanistically, the distinct downstream signals result from a switch of EGFR-associated proteins. EGFR constitutively complexes with IRF3 and TBK1 leading to TBK1 and IRF3 phosphorylation. Addition of epidermal growth factor dissociates TBK1, IRF3 and EGFR leading to a loss of IRF3 activity, Shc-EGFR association and ERK activation. Finally, we provide evidence for non-canonical EGFR signalling in glioblastoma.
Collapse
|
21
|
Zahonero C, Sánchez-Gómez P. EGFR-dependent mechanisms in glioblastoma: towards a better therapeutic strategy. Cell Mol Life Sci 2014; 71:3465-88. [PMID: 24671641 PMCID: PMC11113227 DOI: 10.1007/s00018-014-1608-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/06/2014] [Accepted: 03/11/2014] [Indexed: 12/11/2022]
Abstract
Glioblastoma is a particularly resilient cancer, and while therapies may be able to reach the brain by crossing the blood-brain barrier, they then have to deal with a highly invasive tumor that is very resistant to DNA damage. It seems clear that in order to kill aggressive glioma cells more efficiently and with fewer side effects on normal tissue, there must be a shift from classical cytotoxic chemotherapy to more targeted therapies. Since the epidermal growth factor receptor (EGFR) is altered in almost 50% of glioblastomas, it currently represents one of the most promising therapeutic targets. In fact, it has been associated with several distinct steps in tumorigenesis, from tumor initiation to tumor growth and survival, and also with the regulation of cell migration and angiogenesis. However, inhibitors of the EGFR kinase have produced poor results with this type of cancer in clinical trials, with no clear explanation for the tumor resistance observed. Here we will review what we know about the expression and function of EGFR in cancer and in particular in gliomas. We will also evaluate which are the possible molecular and cellular escape mechanisms. As a result, we hope that this review will help improve the design of future EGFR-targeted therapies for glioblastomas.
Collapse
Affiliation(s)
- Cristina Zahonero
- Neuro-Oncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | | |
Collapse
|
22
|
Jun HJ, Bronson RT, Charest A. Inhibition of EGFR induces a c-MET-driven stem cell population in glioblastoma. Stem Cells 2014; 32:338-48. [PMID: 24115218 PMCID: PMC4442493 DOI: 10.1002/stem.1554] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/29/2013] [Accepted: 08/24/2013] [Indexed: 01/02/2023]
Abstract
Glioblastoma multiforme (GBM) is the most lethal form of primary brain tumors, characterized by highly invasive and aggressive tumors that are resistant to all current therapeutic options. GBMs are highly heterogeneous in nature and contain a small but highly tumorigenic and self-renewing population of stem or initiating cells (glioblastoma stem cells or GSCs). GSCs have been shown to contribute to tumor propagation and resistance to current therapeutic modalities. Recent studies of human GBMs have elucidated the genetic alterations common in these tumors, but much remains unknown about specific signaling pathways that regulate GSCs. Here we identify a distinct fraction of cells in a genetically engineered mouse model of EGFR-driven GBM that respond to anti-EGFR therapy by inducing high levels of c-MET expression. The MET-positive cells displayed clonogenic potential and long-term self-renewal ability in vitro and are capable of differentiating into multiple lineages. The MET-positive GBM cells are resistant to radiation and highly tumorigenic in vivo. Activation of MET signaling led to an increase in expression of the stemness transcriptional regulators Oct4, Nanog, and Klf4. Pharmacological inhibition of MET activity in GSCs prevented the activation of Oct4, Nanog, and Klf4 and potently abrogated stemness. Finally, the MET expressing cells were preferentially localized in perivascular regions of mouse tumors consistent with their function as GSCs. Together, our findings indicate that EGFR inhibition in GBM induces MET activation in GSCs, which is a functional requisite for GSCs activity and thus represents a promising therapeutic target.
Collapse
Affiliation(s)
- Hyun Jung Jun
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | | | - Al Charest
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
- Department of Neurosurgery, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
23
|
Li L, Chakraborty S, Yang CR, Hatanpaa KJ, Cipher DJ, Puliyappadamba VT, Rehman A, Jiwani AJ, Mickey B, Madden C, Raisanen J, Burma S, Saha D, Wang Z, Pingle SC, Kesari S, Boothman DA, Habib AA. An EGFR wild type-EGFRvIII-HB-EGF feed-forward loop regulates the activation of EGFRvIII. Oncogene 2013; 33:4253-64. [PMID: 24077285 DOI: 10.1038/onc.2013.400] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/12/2013] [Accepted: 08/02/2013] [Indexed: 12/27/2022]
Abstract
EGFRvIII is a key oncogene in glioblastoma (GBM). EGFRvIII results from an in-frame deletion in the extracellular domain of EGFR, does not bind ligand and is thought to be constitutively active. Although EGFRvIII dimerization is known to activate EGFRvIII, the factors that drive EGFRvIII dimerization and activation are not well understood. Here we present a new model of EGFRvIII activation and propose that oncogenic activation of EGFRvIII in glioma cells is driven by co-expressed activated EGFR wild type (EGFRwt). Increasing EGFRwt leads to a striking increase in EGFRvIII tyrosine phosphorylation and activation while silencing EGFRwt inhibits EGFRvIII activation. Both the dimerization arm and the kinase activity of EGFRwt are required for EGFRvIII activation. EGFRwt activates EGFRvIII by facilitating EGFRvIII dimerization. We have previously identified HB-EGF, a ligand for EGFRwt, as a gene induced specifically by EGFRvIII. In this study, we show that HB-EGF is induced by EGFRvIII only when EGFRwt is present. Remarkably, altering HB-EGF recapitulates the effect of EGFRwt on EGFRvIII activation. Thus, increasing HB-EGF leads to a striking increase in EGFRvIII tyrosine phosphorylation while silencing HB-EGF attenuates EGFRvIII phosphorylation, suggesting that an EGFRvIII-HB-EGF-EGFRwt feed-forward loop regulates EGFRvIII activation. Silencing EGFRwt or HB-EGF leads to a striking inhibition of EGFRvIII-induced tumorigenicity, while increasing EGFRwt or HB-EGF levels resulted in accelerated EGFRvIII-mediated oncogenicity in an orthotopic mouse model. Furthermore, we demonstrate the existence of this loop in human GBM. Thus, our data demonstrate that oncogenic activation of EGFRvIII in GBM is likely maintained by a continuous EGFRwt-EGFRvIII-HB-EGF loop, potentially an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- L Li
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - S Chakraborty
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C-R Yang
- Simmons Comprehensive Cancer Center, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - K J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D J Cipher
- College of Nursing, University of Texas at Arlington, Arlington, TX, USA
| | - V T Puliyappadamba
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A Rehman
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A J Jiwani
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - B Mickey
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C Madden
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J Raisanen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - S Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Z Wang
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - S C Pingle
- Department of Neurosciences, Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, CA, USA
| | - S Kesari
- Department of Neurosciences, Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, CA, USA
| | - D A Boothman
- Simmons Comprehensive Cancer Center, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A A Habib
- 1] Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA [2] Simmons Comprehensive Cancer Center, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA [3] VA North Texas Health Care System, Dallas, TX, USA
| |
Collapse
|
24
|
Abstract
Glioma and medulloblastoma represent the most commonly occurring malignant brain tumors in adults and in children, respectively. Recent genomic and transcriptional approaches present a complex group of diseases and delineate a number of molecular subgroups within tumors that share a common histopathology. Differences in cells of origin, regional niches, developmental timing, and genetic events all contribute to this heterogeneity. In an attempt to recapitulate the diversity of brain tumors, an increasing array of genetically engineered mouse models (GEMMs) has been developed. These models often utilize promoters and genetic drivers from normal brain development and can provide insight into specific cells from which these tumors originate. GEMMs show promise in both developmental biology and developmental therapeutics. This review describes numerous murine brain tumor models in the context of normal brain development and the potential for these animals to impact brain tumor research.
Collapse
Affiliation(s)
- Fredrik J. Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - Sanna-Maria Hede
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - William A. Weiss
- University of California, Depts. of Neurology, Pathology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, San Francisco CA 94158, USA
| |
Collapse
|