1
|
Kovale L, Singh MK, Kim J, Ha J. Role of Autophagy and AMPK in Cancer Stem Cells: Therapeutic Opportunities and Obstacles in Cancer. Int J Mol Sci 2024; 25:8647. [PMID: 39201332 PMCID: PMC11354724 DOI: 10.3390/ijms25168647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Cancer stem cells represent a resilient subset within the tumor microenvironment capable of differentiation, regeneration, and resistance to chemotherapeutic agents, often using dormancy as a shield. Their unique properties, including drug resistance and metastatic potential, pose challenges for effective targeting. These cells exploit certain metabolic processes for their maintenance and survival. One of these processes is autophagy, which generally helps in energy homeostasis but when hijacked by CSCs can help maintain their stemness. Thus, it is often referred as an Achilles heel in CSCs, as certain cancers tend to depend on autophagy for survival. Autophagy, while crucial for maintaining stemness in cancer stem cells (CSCs), can also serve as a vulnerability in certain contexts, making it a complex target for therapy. Regulators of autophagy like AMPK (5' adenosine monophosphate-activated protein kinase) also play a crucial role in maintaining CSCs stemness by helping CSCs in metabolic reprogramming in harsh environments. The purpose of this review is to elucidate the interplay between autophagy and AMPK in CSCs, highlighting the challenges in targeting autophagy and discussing therapeutic strategies to overcome these limitations. This review focuses on previous research on autophagy and its regulators in cancer biology, particularly in CSCs, addresses the remaining unanswered questions, and potential targets for therapy are also brought to attention.
Collapse
Affiliation(s)
- Lochana Kovale
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| |
Collapse
|
2
|
Dong X, Xue H, Mo F, Lin YY, Lin D, Wong NK, Sun Y, Wilkinson S, Ku AT, Hao J, Ci X, Wu R, Haegert A, Silver R, Taplin ME, Balk SP, Alumkal JJ, Sowalsky AG, Gleave M, Collins C, Wang Y. Modeling Androgen Deprivation Therapy-Induced Prostate Cancer Dormancy and Its Clinical Implications. Mol Cancer Res 2022; 20:782-793. [PMID: 35082166 PMCID: PMC9234014 DOI: 10.1158/1541-7786.mcr-21-1037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022]
Abstract
Treatment-induced tumor dormancy is a state in cancer progression where residual disease is present but remains asymptomatic. Dormant cancer cells are treatment-resistant and responsible for cancer recurrence and metastasis. Prostate cancer treated with androgen-deprivation therapy (ADT) often enters a dormant state. ADT-induced prostate cancer dormancy remains poorly understood due to the challenge in acquiring clinical dormant prostate cancer cells and the lack of representative models. In this study, we aimed to develop clinically relevant models for studying ADT-induced prostate cancer dormancy. Dormant prostate cancer models were established by castrating mice bearing patient-derived xenografts (PDX) of hormonal naïve or sensitive prostate cancer. Dormancy status and tumor relapse were monitored and evaluated. Paired pre- and postcastration (dormant) PDX tissues were subjected to morphologic and transcriptome profiling analyses. As a result, we established eleven ADT-induced dormant prostate cancer models that closely mimicked the clinical courses of ADT-treated prostate cancer. We identified two ADT-induced dormancy subtypes that differed in morphology, gene expression, and relapse rates. We discovered transcriptomic differences in precastration PDXs that predisposed the dormancy response to ADT. We further developed a dormancy subtype-based, predisposed gene signature that was significantly associated with ADT response in hormonal naïve prostate cancer and clinical outcome in castration-resistant prostate cancer treated with ADT or androgen-receptor pathway inhibitors. IMPLICATIONS We have established highly clinically relevant PDXs of ADT-induced dormant prostate cancer and identified two dormancy subtypes, leading to the development of a novel predicative gene signature that allows robust risk stratification of patients with prostate cancer to ADT or androgen-receptor pathway inhibitors.
Collapse
Affiliation(s)
- Xin Dong
- Department of Experimental Therapeutics, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fan Mo
- Vancouver Prostate Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zheijiang, China
- Hangzhou AI-Force Therapeutics, Hangzhou, Zhejiang, China
| | - Yen-yi Lin
- Vancouver Prostate Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nelson K.Y. Wong
- Department of Experimental Therapeutics, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Yingqiang Sun
- Hangzhou AI-Force Therapeutics, Hangzhou, Zhejiang, China
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland
| | - Anson T. Ku
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland
| | - Jun Hao
- Department of Experimental Therapeutics, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xinpei Ci
- Department of Experimental Therapeutics, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Anne Haegert
- Vancouver Prostate Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rebecca Silver
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Steven P. Balk
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Joshi J. Alumkal
- Division of Hematology and Oncology, Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Adam G. Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland
| | - Martin Gleave
- Vancouver Prostate Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin Collins
- Vancouver Prostate Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Sistigu A, Musella M, Galassi C, Vitale I, De Maria R. Tuning Cancer Fate: Tumor Microenvironment's Role in Cancer Stem Cell Quiescence and Reawakening. Front Immunol 2020; 11:2166. [PMID: 33193295 PMCID: PMC7609361 DOI: 10.3389/fimmu.2020.02166] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cell dormancy is a common feature of human tumors and represents a major clinical barrier to the long-term efficacy of anticancer therapies. Dormant cancer cells, either in primary tumors or disseminated in secondary organs, may reawaken and relapse into a more aggressive disease. The mechanisms underpinning dormancy entry and exit strongly resemble those governing cancer cell stemness and include intrinsic and contextual cues. Cellular and molecular components of the tumor microenvironment persistently interact with cancer cells. This dialog is highly dynamic, as it evolves over time and space, strongly cooperates with intrinsic cell nets, and governs cancer cell features (like quiescence and stemness) and fate (survival and outgrowth). Therefore, there is a need for deeper insight into the biology of dormant cancer (stem) cells and the mechanisms regulating the equilibrium quiescence-versus-proliferation are vital in our pursuit of new therapeutic opportunities to prevent cancer from recurring. Here, we review and discuss microenvironmental regulations of cancer dormancy and its parallels with cancer stemness, and offer insights into the therapeutic strategies adopted to prevent a lethal recurrence, by either eradicating resident dormant cancer (stem) cells or maintaining them in a dormant state.
Collapse
Affiliation(s)
- Antonella Sistigu
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Martina Musella
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Galassi
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo (TO), Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| |
Collapse
|
4
|
Talukdar S, Bhoopathi P, Emdad L, Das S, Sarkar D, Fisher PB. Dormancy and cancer stem cells: An enigma for cancer therapeutic targeting. Adv Cancer Res 2019; 141:43-84. [PMID: 30691685 DOI: 10.1016/bs.acr.2018.12.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dormancy occurs when cells remain viable but stop proliferating. When most of a cancer population undergoes this phenomenon, the result is called tumor dormancy, and when a single cancer cell undergoes this process, it is termed quiescence. Cancer stem cells (CSCs) share several overlapping characteristics and signaling pathways with dormant cancer cells, including therapy resistance, and an ability to metastasize and evade the immune system. Cancer cells can be broadly grouped into dormancy-competent CSCs (DCCs), cancer-repopulating cells (CRCs), dormancy-incompetent CSCs and disseminated tumor cells (DTCs). The settings in which cancer cells exploit the dormancy phase to survive and adapt are: (i) primary cancer dormancy; (ii) metastatic dormancy; (iii) therapy-induced dormancy; and (iv) immunologic dormancy. Dormancy, therapy resistance and plasticity of CSCs are fundamentally interconnected processes mediated through mechanisms involving reversible genetic alterations. Niches including metastatic, bone marrow, and perivascular are known to harbor dormant cancer cells. Mechanisms of dormancy induction are complex and multi-factorial and can involve angiogenic switching, addictive oncogene inhibition, immunoediting, anoikis, therapy, autophagy, senescence, epigenetic, and biophysical regulation. Therapy can have opposing effects on cancer cells with respect to dormancy; some therapies can induce dormancy, while others can reactivate dormant cells. There is a lack of consensus relative to the value of therapy-induced dormancy, i.e., some researchers view dormancy induction as a beneficial strategy as it can lead to metastasis inhibition, while others argue that reactivating dormant cancer cells and then eliminating them through therapy are a better approach. More focused investigations of intrinsic cell kinetics and environmental dynamics that promote and maintain cancer cells in a dormant state, and the long-term consequences of dormancy are critical for improving current therapeutic treatment outcomes.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
5
|
Norton KA, Wallace T, Pandey NB, Popel AS. An agent-based model of triple-negative breast cancer: the interplay between chemokine receptor CCR5 expression, cancer stem cells, and hypoxia. BMC SYSTEMS BIOLOGY 2017; 11:68. [PMID: 28693495 PMCID: PMC5504656 DOI: 10.1186/s12918-017-0445-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/30/2017] [Indexed: 12/19/2022]
Abstract
Background Triple-negative breast cancer lacks estrogen, progesterone, and HER2 receptors and is thus not possible to treat with targeted therapies for these receptors. Therefore, a greater understanding of triple-negative breast cancer is necessary for the treatment of this cancer type. In previous work from our laboratory, we found that chemokine ligand-receptor CCL5-CCR5 axis is important for the metastasis of human triple-negative breast cancer cell MDA-MB-231 to the lymph nodes and lungs, in a mouse xenograft model. We collected relevant experimental data from our and other laboratories for numbers of cancer stem cells, numbers of CCR5+ cells, and cell migration rates for different breast cancer cell lines and different experimental conditions. Results Using these experimental data we developed an in silico agent-based model of triple-negative breast cancer that considers surface receptor CCR5-high and CCR5-low cells and breast cancer stem cells, to predict the tumor growth rate and spatio-temporal distribution of cells in primary tumors. We find that high cancer stem cell percentages greatly increase tumor growth. We find that anti-stem cell treatment decreases tumor growth but may not lead to dormancy unless all stem cells get eliminated. We further find that hypoxia increases overall tumor growth and treatment with a CCR5 inhibitor maraviroc slightly decreases overall tumor growth. We also characterize 3D shapes of solid and invasive tumors using several shape metrics. Conclusions Breast cancer stem cells and CCR5+ cells affect the overall growth and morphology of breast tumors. In silico drug treatments demonstrate limited efficacy of incomplete inhibition of cancer stem cells after which tumor growth recurs, and CCR5 inhibition causes only a slight reduction in tumor growth. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0445-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kerri-Ann Norton
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Travis Wallace
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Niranjan B Pandey
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
6
|
Jeanquartier F, Jean-Quartier C, Cemernek D, Holzinger A. In silico modeling for tumor growth visualization. BMC SYSTEMS BIOLOGY 2016; 10:59. [PMID: 27503052 PMCID: PMC4977902 DOI: 10.1186/s12918-016-0318-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cancer is a complex disease. Fundamental cellular based studies as well as modeling provides insight into cancer biology and strategies to treatment of the disease. In silico models complement in vivo models. Research on tumor growth involves a plethora of models each emphasizing isolated aspects of benign and malignant neoplasms. Biologists and clinical scientists are often overwhelmed by the mathematical background knowledge necessary to grasp and to apply a model to their own research. RESULTS We aim to provide a comprehensive and expandable simulation tool to visualizing tumor growth. This novel Web-based application offers the advantage of a user-friendly graphical interface with several manipulable input variables to correlate different aspects of tumor growth. By refining model parameters we highlight the significance of heterogeneous intercellular interactions on tumor progression. Within this paper we present the implementation of the Cellular Potts Model graphically presented through Cytoscape.js within a Web application. The tool is available under the MIT license at https://github.com/davcem/cpm-cytoscape and http://styx.cgv.tugraz.at:8080/cpm-cytoscape/ . CONCLUSION In-silico methods overcome the lack of wet experimental possibilities and as dry method succeed in terms of reduction, refinement and replacement of animal experimentation, also known as the 3R principles. Our visualization approach to simulation allows for more flexible usage and easy extension to facilitate understanding and gain novel insight. We believe that biomedical research in general and research on tumor growth in particular will benefit from the systems biology perspective.
Collapse
Affiliation(s)
- Fleur Jeanquartier
- Holzinger Group, Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036, AT, Graz, Austria
| | - Claire Jean-Quartier
- Holzinger Group, Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036, AT, Graz, Austria
| | - David Cemernek
- Holzinger Group, Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036, AT, Graz, Austria
| | - Andreas Holzinger
- Holzinger Group, Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036, AT, Graz, Austria. .,Institute of Information Systems and Computer Media, Graz University of Technology, Inffeldgasse 16c, Graz, 8010, AT, Austria.
| |
Collapse
|
7
|
Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, Onuchic JN, Levine H. Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front Oncol 2015; 5:155. [PMID: 26258068 PMCID: PMC4507461 DOI: 10.3389/fonc.2015.00155] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
Transitions between epithelial and mesenchymal phenotypes – the epithelial to mesenchymal transition (EMT) and its reverse the mesenchymal to epithelial transition (MET) – are hallmarks of cancer metastasis. While transitioning between the epithelial and mesenchymal phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) (i.e., partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial (e.g., adhesion) and mesenchymal (e.g., migration) properties, thereby allowing them to move collectively as clusters. If these clusters reach the bloodstream intact, they can give rise to clusters of circulating tumor cells (CTCs), as have often been seen experimentally. Here, we review the operating principles of the core regulatory network for EMT/MET that acts as a “three-way” switch giving rise to three distinct phenotypes – E, M and hybrid E/M – and present a theoretical framework that can elucidate the role of many other players in regulating epithelial plasticity. Furthermore, we highlight recent studies on partial EMT and its association with drug resistance and tumor-initiating potential; and discuss how cell–cell communication between cells in a partial EMT phenotype can enable the formation of clusters of CTCs. These clusters can be more apoptosis-resistant and have more tumor-initiating potential than singly moving CTCs with a wholly mesenchymal (complete EMT) phenotype. Also, more such clusters can be formed under inflammatory conditions that are often generated by various therapies. Finally, we discuss the multiple advantages that the partial EMT or hybrid E/M phenotype have as compared to a complete EMT phenotype and argue that these collectively migrating cells are the primary “bad actors” of metastasis.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Bioengineering, Rice University , Houston, TX , USA
| | - Marcelo Boareto
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Institute of Physics, University of São Paulo , São Paulo , Brazil
| | - Bin Huang
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Chemistry, Rice University , Houston, TX , USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Graduate Program in Systems, Synthetic and Physical Biology, Rice University , Houston, TX , USA
| | - Mingyang Lu
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; School of Physics and Astronomy, and The Sagol School of Neuroscience, Tel-Aviv University , Tel-Aviv , Israel ; Department of Biosciences, Rice University , Houston, TX , USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Chemistry, Rice University , Houston, TX , USA ; Department of Physics and Astronomy, Rice University , Houston, TX , USA ; Department of Biosciences, Rice University , Houston, TX , USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Bioengineering, Rice University , Houston, TX , USA ; Department of Physics and Astronomy, Rice University , Houston, TX , USA ; Department of Biosciences, Rice University , Houston, TX , USA
| |
Collapse
|
8
|
Kimura H, Matsui Y, Ishikawa A, Nakajima T, Yoshino M, Sakairi Y. Randomized controlled phase III trial of adjuvant chemo-immunotherapy with activated killer T cells and dendritic cells in patients with resected primary lung cancer. Cancer Immunol Immunother 2014; 64:51-9. [PMID: 25262164 PMCID: PMC4282697 DOI: 10.1007/s00262-014-1613-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
Purpose We conducted a phase III randomized controlled trial (RCT) to investigate the efficacy of postsurgical adjuvant immunotherapy combined with chemotherapy. The immunotherapy targets were residual micrometastases and clones resistant to chemotherapy. Patients and methods Between April 2007 and July 2012, 103 postsurgical non-small cell lung cancer patients were randomly assigned to receive either chemo-immunotherapy (group A) or chemotherapy (group B). The immunotherapy consisted of the adoptive transfer of autologous activated killer T cells and dendritic cells obtained from the lung cancer patients’ own regional lymph nodes. Results The 2-year overall survival rates in groups A and B were 93.4 and 66.0 %, and the 5-year rates were 81.4 and 48.3 %, respectively. The differences were statistically significantly better in group A. The hazard ratio (HR) was 0.229 (p = 0.0013). The 2- and 5-year recurrence-free survival rates were 68.5, 41.4 and 56.8, 26.2 % in groups A and B, respectively. Those differences were also statistically significant (log-rank test p = 0.0020). The HR was 0.423 (p = 0.0027) in favor of group A. As for adverse reactions to immunotherapy, of a total of 762 courses, 52 (6.8 %) were accompanied with chills and shivering, and 47 (6.2 %), with fever (>38 °C). Conclusions Immunotherapy has the potential to improve the postsurgical prognosis of lung cancer patients, but a large-scale multi-institutional RCT is awaited for further confirmation of this study. Electronic supplementary material The online version of this article (doi:10.1007/s00262-014-1613-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hideki Kimura
- Division of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan,
| | | | | | | | | | | |
Collapse
|
9
|
Zhang P, Brusic V. Mathematical modeling for novel cancer drug discovery and development. Expert Opin Drug Discov 2014; 9:1133-50. [PMID: 25062617 DOI: 10.1517/17460441.2014.941351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Mathematical modeling enables: the in silico classification of cancers, the prediction of disease outcomes, optimization of therapy, identification of promising drug targets and prediction of resistance to anticancer drugs. In silico pre-screened drug targets can be validated by a small number of carefully selected experiments. AREAS COVERED This review discusses the basics of mathematical modeling in cancer drug discovery and development. The topics include in silico discovery of novel molecular drug targets, optimization of immunotherapies, personalized medicine and guiding preclinical and clinical trials. Breast cancer has been used to demonstrate the applications of mathematical modeling in cancer diagnostics, the identification of high-risk population, cancer screening strategies, prediction of tumor growth and guiding cancer treatment. EXPERT OPINION Mathematical models are the key components of the toolkit used in the fight against cancer. The combinatorial complexity of new drugs discovery is enormous, making systematic drug discovery, by experimentation, alone difficult if not impossible. The biggest challenges include seamless integration of growing data, information and knowledge, and making them available for a multiplicity of analyses. Mathematical models are essential for bringing cancer drug discovery into the era of Omics, Big Data and personalized medicine.
Collapse
Affiliation(s)
- Ping Zhang
- CSIRO Computational Informatics , Marsfield, NSW , Australia
| | | |
Collapse
|
10
|
Coghlin C, Murray GI. The role of gene regulatory networks in promoting cancer progression and metastasis. Future Oncol 2014; 10:735-48. [DOI: 10.2217/fon.13.264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT: The majority of deaths owing to cancer are ultimately caused by metastatic disease. However, most research, to date, has focused on the molecular features of cancers at their primary sites rather than on understanding disseminated malignancy in its systemic form. The dynamic nature of metastatic malignancy and its behavior as a co-ordinated systemic disease require a cancer progression paradigm that is integrative and can incorporate both the proximate causes of cancer and the broader ultimate causes in an evolutionary and developmental context. The study of robust cellular attractor states that arise directly from the architectural patterns contained within gene regulatory networks is proposed as a conceptual framework through which many of the other disparate models of cancer metastasis can be more clearly viewed and, ultimately, unified, thus providing a new conceptual framework in which to understand cancer progression and metastasis.
Collapse
Affiliation(s)
- Caroline Coghlin
- Department of Pathology, Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, UK
| | - Graeme I Murray
- Pathology, Division of Applied Medicine, School of Medicine & Dentistry, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
11
|
Wilkie KP, Hahnfeldt P. Mathematical models of immune-induced cancer dormancy and the emergence of immune evasion. Interface Focus 2014; 3:20130010. [PMID: 24511375 DOI: 10.1098/rsfs.2013.0010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer dormancy, a state in which cancer cells persist in a host without significant growth, is a natural forestallment of progression to manifest disease and is thus of great clinical interest. Experimental work in mice suggests that in immune-induced dormancy, the longer a cancer remains dormant in a host, the more resistant the cancer cells become to cytotoxic T-cell-mediated killing. In this work, mathematical models are used to analyse the possible causative mechanisms of cancer escape from immune-induced dormancy. Using a data-driven approach, both decaying efficacy in immune predation and immune recruitment are analysed with results suggesting that decline in recruitment is a stronger determinant of escape than increased resistance to predation. Using a mechanistic approach, the existence of an immune-resistant cancer cell subpopulation is considered, and the effects on cancer dormancy and potential immunoediting mechanisms of cancer escape are analysed and discussed. The immunoediting mechanism assumes that the immune system selectively prunes the cancer of immune-sensitive cells, which is shown to cause an initially heterogeneous population to become a more homogeneous, and more resistant, population. The fact that this selection may result in the appearance of decreasing efficacy in T-cell cytotoxic effect with time in dormancy is also demonstrated. This work suggests that through actions that temporarily delay cancer growth through the targeted removal of immune-sensitive subpopulations, the immune response may actually progress the cancer to a more aggressive state.
Collapse
Affiliation(s)
- Kathleen P Wilkie
- Center of Cancer Systems Biology, GRI, Saint Elizabeth's Medical Center , Tufts University School of Medicine , 736 Cambridge Street, CBR1, Boston, MA 02135 USA
| | - Philip Hahnfeldt
- Center of Cancer Systems Biology, GRI, Saint Elizabeth's Medical Center , Tufts University School of Medicine , 736 Cambridge Street, CBR1, Boston, MA 02135 USA
| |
Collapse
|
12
|
Du G, Zhao B, Zhang Y, Sun T, Liu W, Li J, Liu Y, Wang Y, Li H, Hou X. Hypothermia activates adipose tissue to promote malignant lung cancer progression. PLoS One 2013; 8:e72044. [PMID: 24015203 PMCID: PMC3754995 DOI: 10.1371/journal.pone.0072044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/03/2013] [Indexed: 12/29/2022] Open
Abstract
Microenvironment has been increasingly recognized as a critical regulator of cancer progression. In this study, we identified early changes in the microenvironment that contribute to malignant progression. Exposure of human bronchial epithelial cells (BEAS-2B) to methylnitrosourea (MNU) caused a reduction in cell toxicity and an increase in clonogenic capacity when the temperature was lowered from 37°C to 28°C. Hypothermia-incubated adipocyte media promoted proliferation in A549 cells. Although a hypothermic environment could increase urethane-induced tumor counts and Lewis lung cancer (LLC) metastasis in lungs of three breeds of mice, an increase in tumor size could be discerned only in obese mice housed in hypothermia. Similarly, coinjections using differentiated adipocytes and A549 cells promoted tumor development in athymic nude mice when adipocytes were cultured at 28°C. Conversely, fat removal suppressed tumor growth in obese C57BL/6 mice inoculated with LLC cells. Further studies show hypothermia promotes a MNU-induced epithelial-mesenchymal transition (EMT) and protects the tumor cell against immune control by TGF-β1 upregulation. We also found that activated adipocytes trigger tumor cell proliferation by increasing either TNF-α or VEGF levels. These results suggest that hypothermia activates adipocytes to stimulate tumor boost and play critical determinant roles in malignant progression.
Collapse
Affiliation(s)
- Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan, China
- * E-mail:
| | - Bei Zhao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan, China
| | - Yaping Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan, China
| | - Ting Sun
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan, China
| | - Weijie Liu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan, China
| | - Jiahuan Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan, China
| | - Yinghui Liu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan, China
| | - Yingying Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan, China
| | - Hong Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan, China
| | - Xidong Hou
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan, China
| |
Collapse
|
13
|
Medina MÁ. Systems biology for molecular life sciences and its impact in biomedicine. Cell Mol Life Sci 2013; 70:1035-53. [PMID: 22903296 PMCID: PMC11113420 DOI: 10.1007/s00018-012-1109-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 01/02/2023]
Abstract
Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.
Collapse
Affiliation(s)
- Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, University of Málaga, Malaga, Spain.
| |
Collapse
|
14
|
Prehn RT, Prehn LM. A new kink in an old theory of carcinogenesis. Theor Biol Med Model 2013; 10:12. [PMID: 23414486 PMCID: PMC3598505 DOI: 10.1186/1742-4682-10-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/12/2013] [Indexed: 12/11/2022] Open
Abstract
According to Berenblum’s two-stage hypothesis, the first stage in carcinogenesis is the production of benign premalignant lesions. Between this initiation stage and the formation of a malignant tumor there is often a long lag phase. We propose that this lag is caused by the delay in the formation of a new and rare tumor-specific antigen, which induces an immune response that stimulates tumor growth. Such tumor-specific antigens could arise as a result of a mutator-like phenotype, which is supposedly present in the benign initial stage of carcinogenesis. According to this hypothesis, the first stage lesion provides a weakly mutagenic environment conducive to the formation of the new antigen(s). If no such new antigens appear so there is no consequent immune response, it is argued that carcinogenesis would seldom if ever ensue.
Collapse
Affiliation(s)
- Richmond T Prehn
- Department of Pathology, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|