1
|
Han J, Lee C, Jung Y. Current Evidence and Perspectives of Cluster of Differentiation 44 in the Liver's Physiology and Pathology. Int J Mol Sci 2024; 25:4749. [PMID: 38731968 PMCID: PMC11084344 DOI: 10.3390/ijms25094749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Cluster of differentiation 44 (CD44), a multi-functional cell surface receptor, has several variants and is ubiquitously expressed in various cells and tissues. CD44 is well known for its function in cell adhesion and is also involved in diverse cellular responses, such as proliferation, migration, differentiation, and activation. To date, CD44 has been extensively studied in the field of cancer biology and has been proposed as a marker for cancer stem cells. Recently, growing evidence suggests that CD44 is also relevant in non-cancer diseases. In liver disease, it has been shown that CD44 expression is significantly elevated and associated with pathogenesis by impacting cellular responses, such as metabolism, proliferation, differentiation, and activation, in different cells. However, the mechanisms underlying CD44's function in liver diseases other than liver cancer are still poorly understood. Hence, to help to expand our knowledge of the role of CD44 in liver disease and highlight the need for further research, this review provides evidence of CD44's effects on liver physiology and its involvement in the pathogenesis of liver disease, excluding cancer. In addition, we discuss the potential role of CD44 as a key regulator of cell physiology.
Collapse
Affiliation(s)
- Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea;
| | - Chanbin Lee
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea;
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| |
Collapse
|
2
|
Chen FW, Wu YL, Cheng CC, Hsiao YW, Chi JY, Hung LY, Chang CP, Lai MD, Wang JM. Inactivation of pentraxin 3 suppresses M2-like macrophage activity and immunosuppression in colon cancer. J Biomed Sci 2024; 31:10. [PMID: 38243273 PMCID: PMC10799366 DOI: 10.1186/s12929-023-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The tumor microenvironment is characterized by inflammation-like and immunosuppression situations. Although cancer-associated fibroblasts (CAFs) are among the major stromal cell types in various solid cancers, including colon cancer, the interactions between CAFs and immune cells remains largely uncharacterized. Pentraxin 3 (PTX3) is responsive to proinflammatory cytokines and modulates immunity and tissue remodeling, but its involvement in tumor progression appears to be context-dependent and is unclear. METHODS Open-access databases were utilized to examine the association of PTX3 expression and the fibroblast signature in colon cancer. Loss-of-function assays, including studies in tamoxifen-induced Ptx3 knockout mice and treatment with an anti-PTX3 neutralizing antibody (WHC-001), were conducted to assess the involvement of PTX3 in colon cancer progression as well as its immunosuppressive effect. Finally, bioinformatic analyses and in vitro assays were performed to reveal the downstream effectors and decipher the involvement of the CREB1/CEBPB axis in response to PTX3 and PTX3-induced promotion of M2 macrophage polarization. RESULTS Clinically, higher PTX3 expression was positively correlated with fibroblasts and inflammatory response signatures and associated with a poor survival outcome in colon cancer patients. Blockade of PTX3 significantly reduced stromal cell-mediated tumor development. The decrease of the M2 macrophage population and an increase of the cytotoxic CD8+ T-cell population were observed following PTX3 inactivation in allografted colon tumors. We further revealed that activation of cyclic AMP-responsive element-binding protein 1 (CREB1) mediated the PTX3-induced promotion of M2 macrophage polarization. CONCLUSIONS PTX3 contributes to stromal cell-mediated protumor immunity by increasing M2-like macrophage polarization, and inhibition of PTX3 with WHC-001 is a potential therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Feng-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Ling Wu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan
| | - Chao-Chun Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan
| | - Jhih-Ying Chi
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan
| | - Chih-Peng Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan.
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Skandalis SS. CD44 Intracellular Domain: A Long Tale of a Short Tail. Cancers (Basel) 2023; 15:5041. [PMID: 37894408 PMCID: PMC10605500 DOI: 10.3390/cancers15205041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
CD44 is a single-chain transmembrane receptor that exists in multiple forms due to alternative mRNA splicing and post-translational modifications. CD44 is the main cell surface receptor of hyaluronan as well as other extracellular matrix molecules, cytokines, and growth factors that play important roles in physiological processes (such as hematopoiesis and lymphocyte homing) and the progression of various diseases, the predominant one being cancer. Currently, CD44 is an established cancer stem cell marker in several tumors, implying a central functional role in tumor biology. The present review aims to highlight the contribution of the CD44 short cytoplasmic tail, which is devoid of any enzymatic activity, in the extraordinary functional diversity of the receptor. The interactions of CD44 with cytoskeletal proteins through specific structural motifs within its intracellular domain drives cytoskeleton rearrangements and affects the distribution of organelles and transport of molecules. Moreover, the CD44 intracellular domain specifically interacts with various cytoplasmic effectors regulating cell-trafficking machinery, signal transduction pathways, the transcriptome, and vital cell metabolic pathways. Understanding the cell type- and context-specificity of these interactions may unravel the high complexity of CD44 functions and lead to novel improved therapeutic interventions.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Inoue A, Ohnishi T, Nishikawa M, Ohtsuka Y, Kusakabe K, Yano H, Tanaka J, Kunieda T. A Narrative Review on CD44's Role in Glioblastoma Invasion, Proliferation, and Tumor Recurrence. Cancers (Basel) 2023; 15:4898. [PMID: 37835592 PMCID: PMC10572085 DOI: 10.3390/cancers15194898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
High invasiveness is a characteristic of glioblastoma (GBM), making radical resection almost impossible, and thus, resulting in a tumor with inevitable recurrence. GBM recurrence may be caused by glioma stem-like cells (GSCs) that survive many kinds of therapy. GSCs with high expression levels of CD44 are highly invasive and resistant to radio-chemotherapy. CD44 is a multifunctional molecule that promotes the invasion and proliferation of tumor cells via various signaling pathways. Among these, paired pathways reciprocally activate invasion and proliferation under different hypoxic conditions. Severe hypoxia (0.5-2.5% O2) upregulates hypoxia-inducible factor (HIF)-1α, which then activates target genes, including CD44, TGF-β, and cMET, all of which are related to tumor migration and invasion. In contrast, moderate hypoxia (2.5-5% O2) upregulates HIF-2α, which activates target genes, such as vascular endothelial growth factor (VEGF)/VEGFR2, cMYC, and cyclin D1. All these genes are related to tumor proliferation. Oxygen environments around GBM can change before and after tumor resection. Before resection, the oxygen concentration at the tumor periphery is severely hypoxic. In the reparative stage after resection, the resection cavity shows moderate hypoxia. These observations suggest that upregulated CD44 under severe hypoxia may promote the migration and invasion of tumor cells. Conversely, when tumor resection leads to moderate hypoxia, upregulated HIF-2α activates HIF-2α target genes. The phenotypic transition regulated by CD44, leading to a dichotomy between invasion and proliferation according to hypoxic conditions, may play a crucial role in GBM recurrence.
Collapse
Affiliation(s)
- Akihiro Inoue
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| | - Takanori Ohnishi
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
- Department of Neurosurgery, Advanced Brain Disease Center, Washoukai Sadamoto Hospital, 1-6-1 Takehara, Matsuyama 790-0052, Ehime, Japan
| | - Masahiro Nishikawa
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| | - Yoshihiro Ohtsuka
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| | - Kosuke Kusakabe
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicene, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (H.Y.); (J.T.)
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicene, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (H.Y.); (J.T.)
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| |
Collapse
|
5
|
Sotnikova TN, Polushkina TV, Danilova NV. [Relationship between PD-L1 expression and tumor stem cell marker CD44 as a promising basis for the development of new approaches to cancer targeted therapy]. Arkh Patol 2023; 85:70-75. [PMID: 38010641 DOI: 10.17116/patol20238506170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Immunotherapy of malignant tumors is a rapidly developing area of oncology. PD-1 is a receptor expressed by activated T-lymphocytes. As a result of its interaction with the ligand (PD-L1 or PD-L2), the activity of T-lymphocytes is inhibited and their apoptosis occurs. Drugs that inhibit the interaction of PD-1 with ligands have an immunostimulatory effect and are effective in the treatment of many types of neoplasms: melanoma, lung cancer, bladder cancer, stomach cancer, various lymphomas, etc. However, response to this treatment is observed only in a narrow cohort of patients. To increase the effectiveness of immunotherapy, combined preparations and nanoparticles are being developed and created to enhance the effect of PD-L1 inhibitors, and containing hyaluronic acid as a ligand for the CD44 protein, which is expressed in many human tumors. However, the issue of co-expression of CD44 and PD-L1 remains poorly understood. This review is devoted to describing the features of co-expression and the mechanisms of interaction between CD44 and PD-L1. Promising directions for the development of new approaches to the immunotherapy of malignant tumors are presented.
Collapse
Affiliation(s)
- T N Sotnikova
- I.V. Davydovsky City Clinical Hospital, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - T V Polushkina
- I.V. Davydovsky City Clinical Hospital, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - N V Danilova
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Cao L, Fang H, Yan D, Wu XM, Zhang J, Chang MX. CD44a functions as a regulator of p53 signaling, apoptosis and autophagy in the antibacterial immune response. Commun Biol 2022; 5:889. [PMID: 36042265 PMCID: PMC9427754 DOI: 10.1038/s42003-022-03856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
The cell adhesion molecule CD44 has been implicated in diverse biological functions including the pathological responses to infections and inflammatory diseases. The variable forms of CD44 contribute to functional variations, which are not yet defined in teleost. Here, we show that zebrafish CD44a plays a protective role in the host defense against Edwardsiella piscicida infection. Zebrafish CD44a deficiency inhibits cell growth and proliferation, impairs cell growth and death pathways, and regulates the expression levels of many genes involved in p53 signaling, apoptosis and autophagy. In addition, CD44a gene disruption in zebrafish leads to inhibition of apoptosis and induction of autophagy, with the increased susceptibility to E. piscicida infection. Furthermore, we show that zebrafish CD44a variants including CD44a_tv1 and CD44a_tv2 promote the translocation of p53 from the nucleus to the cytoplasm and interact with p53 in the cytoplasm. Mechanistically, zebrafish CD44a_tv1 mediates the beneficial effect for larvae survival infected with E. piscicida is depending on the CASP8-mediated apoptosis. However, the antibacterial effect of zebrafish CD44a_tv2 depends on the cytoplasmic p53-mediated inhibition of autophagy. Collectively, our results identify that different mechanisms regulate CD44a variants-mediated antibacterial responses.
Collapse
Affiliation(s)
- Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hong Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dong Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
7
|
CD44 Contributes to the Regulation of MDR1 Protein and Doxorubicin Chemoresistance in Osteosarcoma. Int J Mol Sci 2022; 23:ijms23158616. [PMID: 35955749 PMCID: PMC9368984 DOI: 10.3390/ijms23158616] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is the most common type of pediatric bone tumor. Despite great advances in chemotherapy during the past decades, the survival rates of osteosarcoma patients remain unsatisfactory. Drug resistance is one of the main reasons, leading to treatment failure and poor prognosis. Previous reports correlated expression of cluster of differentiation 44 (CD44) with drug resistance and poor survival of osteosarcoma patients, however the underlying mechanisms are poorly defined. Here, we investigated the role of CD44 in the regulation of drug chemoresistance, using osteosarcoma cells isolated from mice carrying a mutation of the tumor suppressor neurofibromatosis type 2 (Nf2) gene. CD44 expression was knocked-down in the cells using CRISPR/Cas9 approach. Subsequently, CD44 isoforms and mutants were re-introduced to investigate CD44-dependent processes. Sensitivity to doxorubicin was analyzed in the osteosarcoma cells with modified CD44 expression by immunoblot, colony formation- and WST-1 assay. To dissect the molecular alterations induced by deletion of Cd44, RNA sequencing was performed on Cd44-positive and Cd44-negative primary osteosarcoma tissues isolated from Nf2-mutant mice. Subsequently, expression of candidate genes was evaluated by quantitative reverse transcription PCR (qRT-PCR). Our results indicate that CD44 increases the resistance of osteosarcoma cells to doxorubicin by up-regulating the levels of multidrug resistance (MDR) 1 protein expression, and suggest the role of proteolytically released CD44 intracellular domain, and hyaluronan interactions in this process. Moreover, high throughput sequencing analysis identified differential regulation of several apoptosis-related genes in Cd44-positive and -negative primary osteosarcomas, including p53 apoptosis effector related to PMP-22 (Perp). Deletion of Cd44 in osteosarcoma cells led to doxorubicin-dependent p53 activation and a profound increase in Perp mRNA expression. Overall, our results suggest that CD44 might be an important regulator of drug resistance and suggest that targeting CD44 can sensitize osteosarcoma to standard chemotherapy.
Collapse
|
8
|
CD44 Depletion in Glioblastoma Cells Suppresses Growth and Stemness and Induces Senescence. Cancers (Basel) 2022; 14:cancers14153747. [PMID: 35954411 PMCID: PMC9367353 DOI: 10.3390/cancers14153747] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal brain tumor, characterized by enhanced proliferation and invasion, as well as increased vascularization and chemoresistance. The expression of the hyaluronan receptor CD44 has been shown to correlate with GBM progression and poor prognosis. Here, we sought to elucidate the molecular mechanisms by which CD44 promotes GBM progression by knocking out (KO) CD44, employing CRISPR/Cas9 gene editing in U251MG cells. CD44-depleted cells exhibited an impaired proliferation rate, as shown by the decreased cell numbers, decreased Ki67-positive cell nuclei, diminished phosphorylation of CREB, and increased levels of the cell cycle inhibitor p16 compared to control cells. Furthermore, the CD44 KO cells showed decreased stemness and increased senescence, which was manifested upon serum deprivation. In stem cell-like enriched spheres, RNA-sequencing analysis of U251MG cells revealed a CD44 dependence for gene signatures related to hypoxia, the glycolytic pathway, and G2 to M phase transition. Partially similar results were obtained when cells were treated with the γ-secretase inhibitor DAPT, which inhibits CD44 cleavage and therefore inhibits the release of the intracellular domain (ICD) of CD44, suggesting that certain transcriptional responses are dependent on CD44-ICD. Interestingly, the expression of molecules involved in hyaluronan synthesis, degradation, and interacting matrix proteins, as well as of platelet-derived growth factor (PDGF) isoforms and PDGF receptors, were also deregulated in CD44 KO cells. These results were confirmed by the knockdown of CD44 in another GBM cell line, U2990. Notably, downregulation of hyaluronan synthase 2 (HAS2) impaired the hypoxia-related genes and decreased the CD44 protein levels, suggesting a CD44/hyaluronan feedback circuit contributing to GBM progression.
Collapse
|
9
|
Weng X, Maxwell-Warburton S, Hasib A, Ma L, Kang L. The membrane receptor CD44: novel insights into metabolism. Trends Endocrinol Metab 2022; 33:318-332. [PMID: 35249813 DOI: 10.1016/j.tem.2022.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
CD44, a cell-surface glycoprotein, has long been studied as a cancer molecule due to its essential role in physiological activities in normal cells and pathological activities in cancer cells, such as cell proliferation, adhesion, and migration; angiogenesis; inflammation; and cytoskeleton rearrangement. Yet, recent evidence suggests a role of CD44 in metabolism, especially insulin resistance in obesity and diabetes. In line with the current concept of fibroinflammation in obesity and insulin resistance, CD44 as the main receptor of the extracellular matrix component, hyaluronan (HA), has been shown to regulate diet-induced insulin resistance in muscle and other insulin-sensitive tissues. In this review, we integrate current evidence for a role of CD44 in regulating glucose and lipid homeostasis and speculate about its involvement in the pathogenesis of chronic metabolic diseases, including obesity and diabetes. We summarize the current development of CD44-targeted therapies and discuss its potential for the use in treating metabolic diseases.
Collapse
Affiliation(s)
- Xiong Weng
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | | | - Annie Hasib
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Lifeng Ma
- School of Medicine, Xizang Minzhu University, Xianyang, Shaanxi, China
| | - Li Kang
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
10
|
Li HN, Zhang HM, Li XR, Wang J, Xu T, Li SY, Dong ML, Wang G, Cui XQ, Yang X, Wu YL, Liao XH, Du YY. MiR-205-5p/GGCT Attenuates Growth and Metastasis of Papillary Thyroid Cancer by Regulating CD44. Endocrinology 2022; 163:6537106. [PMID: 35213720 PMCID: PMC8944316 DOI: 10.1210/endocr/bqac022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/23/2022]
Abstract
Papillary thyroid cancer (PTC) remains the most common endocrine malignancy, despite marked achieves in recent decades, and the mechanisms underlying the pathogenesis and progression for PTC are incompletely elucidated. Accumulating evidence show that γ-glutamylcyclotransferase (GGCT), an enzyme participating in glutathione homeostasis and is elevated in multiple types of tumors, represents an attractive therapeutic target. Using bioinformatics, immunohistochemistry, qRT-PCR, and Western blot assays, we found that GGCT expression was upregulated in PTC and correlated with more aggressive clinicopathological characteristics and worse prognosis. GGCT knockdown inhibited the growth and metastasis ability of PTC cells both in vitro and in vivo and reduced the expression of mesenchymal markers (N-cadherin, CD44, MMP2, and MMP9) while increasing epithelial marker (E-cadherin) in PTC cells. We confirmed binding of microRNA-205-5p (miR-205-5p) on the 3'-UTR regions of GGCT by dual-luciferase reporter assay and RNA-RNA pull-down assay. Delivery of miR-205-5p reversed the pro-malignant capacity of GGCT both in vitro and in vivo. Lastly, we found that GGCT interacted with and stabilized CD44 in PTC cells by co-immunoprecipitation and immunohistochemistry assays. Our findings illustrate a novel signaling pathway, miR-205-5p/GGCT/CD44, that involves in the carcinogenesis and progression of PTC. Development of miR-205-mimics or GGCT inhibitors as potential therapeutics for PTC may have remarkable applications.
Collapse
Affiliation(s)
- Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Hui-Min Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People’s Republic of China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Jun Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People’s Republic of China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Department of Obstetrics and Gynecology, Cancer Biology research center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Shu-Yu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Meng-Lu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Xiao-Qing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Xue Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Yong-Lin Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Xing-Hua Liao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People’s Republic of China
- Correspondence: Xing-Hua Liao, Ph.D., College of Life Science and Health, Wuhan University of Science and Technology, People’s Republic of China.
| | - Ya-Ying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Correspondence: Ya-Ying Du, M.D., Ph.D., Surgeon of Department of Thyroid and Breast Surgery, Tongji Hospital, Deputy Dean for Clinical Affairs, Laboratory of Thyroid and Breast Surgery, People’s Republic of China.
| |
Collapse
|
11
|
Bishnupuri KS, Sainathan SK, Ciorba MA, Houchen CW, Dieckgraefe BK. Reg4 Interacts with CD44 to Regulate Proliferation and Stemness of Colorectal and Pancreatic Cancer Cells. Mol Cancer Res 2022; 20:387-399. [PMID: 34753802 DOI: 10.1158/1541-7786.mcr-21-0224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
Regenerating Gene 4 (Reg4) is highly upregulated in gastrointestinal (GI) malignancies including colorectal and pancreatic cancers. Numerous studies demonstrated an association between higher Reg4 expression and tumor aggressiveness, intrinsic resistance to apoptotic death, and poor outcomes from GI malignancies. However, the precise receptor and underlying signaling mechanism have remained unknown. Although we previously reported a Reg4-mediated induction of EGFR activity in colorectal cancer cells, a direct interaction between Reg4 and EGFR was not observed. This study is focused on identifying the cell surface binding partner of Reg4 and dissecting its role in colorectal cancer and pancreatic cancer growth and stem cell survival. In vitro models of human colorectal cancer and pancreatic cancer were used to evaluate the results. Results of this study find: (i) Reg4 interacts with CD44, a transmembrane protein expressed by a population of colorectal cancer and pancreatic cancer cells; (ii) Reg4 activates regulated intramembrane proteolysis of CD44 resulting in γ-secretase-mediated cleavage and release of the CD44 intracytoplasmic domain (CD44ICD) that functions as a transcriptional activator of D-type cyclins involved in the regulation of cancer cell proliferation and Klf4 and Sox2 expression involved in regulating pluripotency of cancer stem cells; and (iii) Reg4 significantly increases colorectal cancer and pancreatic cancer cell proliferation and their clonogenic potential in stem cell assays. IMPLICATIONS These results suggest that pro-proliferative and pro-stemness effects of Reg4 are mediated through γ-secretase-mediated CD44/CD44ICD signaling, hence strategies to disrupt Reg4-CD44-γ-secretase-CD44ICD signaling axis may increase cancer cell susceptibility to chemo- and radiotherapeutics.
Collapse
Affiliation(s)
- Kumar S Bishnupuri
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
- Veteran Affair St Louis Health Care System, St Louis, Missouri
| | - Satheesh K Sainathan
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
| | - Matthew A Ciorba
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
| | - Courtney W Houchen
- Section of Digestive Disease and Nutrition, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Brian K Dieckgraefe
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
- Veteran Affair St Louis Health Care System, St Louis, Missouri
| |
Collapse
|
12
|
Wu M, Ou-yang DJ, Wei B, Chen P, Shi QM, Tan HL, Huang BQ, Liu M, Qin ZE, Li N, Hu HY, Huang P, Chang S. A Prognostic Model of Differentiated Thyroid Cancer Based on Up-Regulated Glycolysis-Related Genes. Front Endocrinol (Lausanne) 2022; 13:775278. [PMID: 35528004 PMCID: PMC9072639 DOI: 10.3389/fendo.2022.775278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE This study aims to identify reliable prognostic biomarkers for differentiated thyroid cancer (DTC) based on glycolysis-related genes (GRGs), and to construct a glycolysis-related gene model for predicting the prognosis of DTC patients. METHODS We retrospectively analyzed the transcriptomic profiles and clinical parameters of 838 thyroid cancer patients from 6 public datasets. Single factor Cox proportional risk regression analysis and Least Absolute Shrinkage and Selection Operator (LASSO) were applied to screen genes related to prognosis based on 2528 GRGs. Then, an optimal prognostic model was developed as well as evaluated by Kaplan-Meier and ROC curves. In addition, the underlying molecular mechanisms in different risk subgroups were also explored via The Cancer Genome Atlas (TCGA) Pan-Cancer study. RESULTS The glycolysis risk score (GRS) outperformed conventional clinicopathological features for recurrence-free survival prediction. The GRS model identified four candidate genes (ADM, MKI67, CD44 and TYMS), and an accurate predictive model of relapse in DTC patients was established that was highly correlated with prognosis (AUC of 0.767). In vitro assays revealed that high expression of those genes increased DTC cancer cell viability and invasion. Functional enrichment analysis indicated that these signature GRGs are involved in remodelling the tumour microenvironment, which has been demonstrated in pan-cancers. Finally, we generated an integrated decision tree and nomogram based on the GRS model and clinicopathological features to optimize risk stratification (AUC of the composite model was 0.815). CONCLUSIONS The GRG signature-based predictive model may help clinicians provide a prognosis for DTC patients with a high risk of recurrence after surgery and provide further personalized treatment to decrease the chance of relapse.
Collapse
Affiliation(s)
- Min Wu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Deng-jie Ou-yang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Bo Wei
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Pei Chen
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Qi-man Shi
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Hai-long Tan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Bo-qiang Huang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Mian Liu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Zi-en Qin
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Ning Li
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Hui-yu Hu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Peng Huang, ; Shi Chang,
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Clinical Research Center for Thyroid Disease in Hunan Province, Xiangya Hospital, Changsha, China
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Xiangya Hospital, Changsha, China
- *Correspondence: Peng Huang, ; Shi Chang,
| |
Collapse
|
13
|
Hassn Mesrati M, Syafruddin SE, Mohtar MA, Syahir A. CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules 2021; 11:1850. [PMID: 34944493 PMCID: PMC8699317 DOI: 10.3390/biom11121850] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
CD44, a non-kinase cell surface transmembrane glycoprotein, has been widely implicated as a cancer stem cell (CSC) marker in several cancers. Cells overexpressing CD44 possess several CSC traits, such as self-renewal and epithelial-mesenchymal transition (EMT) capability, as well as a resistance to chemo- and radiotherapy. The CD44 gene regularly undergoes alternative splicing, resulting in the standard (CD44s) and variant (CD44v) isoforms. The interaction of such isoforms with ligands, particularly hyaluronic acid (HA), osteopontin (OPN) and matrix metalloproteinases (MMPs), drive numerous cancer-associated signalling. However, there are contradictory results regarding whether high or low CD44 expression is associated with worsening clinicopathological features, such as a higher tumour histological grade, advanced tumour stage and poorer survival rates. Nonetheless, high CD44 expression significantly contributes to enhanced tumourigenic mechanisms, such as cell proliferation, metastasis, invasion, migration and stemness; hence, CD44 is an important clinical target. This review summarises current research regarding the different CD44 isoform structures and their roles and functions in supporting tumourigenesis and discusses CD44 expression regulation, CD44-signalling pathways and interactions involved in cancer development. The clinical significance and prognostic value of CD44 and the potential of CD44 as a therapeutic target in cancer are also addressed.
Collapse
Affiliation(s)
- Malak Hassn Mesrati
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - Amir Syahir
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
14
|
Viana BPPB, Gomes AVP, Gimba ERP, Ferreira LB. Osteopontin Expression in Thyroid Cancer: Deciphering EMT-Related Molecular Mechanisms. Biomedicines 2021; 9:biomedicines9101372. [PMID: 34680488 PMCID: PMC8533224 DOI: 10.3390/biomedicines9101372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer is the most common tumor arising from the endocrine system and generally presents good prognosis. However, its aggressive subtypes are related to therapeutic resistance and early metastasis. Epithelial–mesenchymal transition (EMT) and its reverse process, the mesenchymal–epithelial transition (MET), are key events mediating cancer progression, including in thyroid cancer. The matricellular protein osteopontin (OPN) has been reported as a master regulator of EMT in many tumor types. Although high OPN expression has been described and associated with important aspects of thyroid cancer progression, there is no clear evidence regarding OPN as a regulator of EMT in thyroid cancer. Thus, taking together the known roles of OPN in the modulation of EMT in cancer and the information reporting the expression of OPN in thyroid tumor progression, this review aims at summarizing and discussing data related to EMT in thyroid cancer and its putative relation to the roles of OPN in the development of thyroid cancer. These data provide new insights into the molecular mechanisms by which OPN could potentially modulate EMT in thyroid tumors, generating evidence for future studies that may contribute to new therapeutic, prognostic and/or diagnostic tools.
Collapse
Affiliation(s)
- Bruna Prunes Pena Baroni Viana
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, 6° andar, Rio de Janeiro 20230-130, CEP, Brazil; (B.P.P.B.V.); (A.V.P.G.)
- Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro 20231-050, CEP, Brazil
| | - Amanda Vitória Pampolha Gomes
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, 6° andar, Rio de Janeiro 20230-130, CEP, Brazil; (B.P.P.B.V.); (A.V.P.G.)
- Centro de Ciências Biológicas e da Saúde, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro 20211-010, CEP, Brazil
| | - Etel Rodrigues Pereira Gimba
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, 6° andar, Rio de Janeiro 20230-130, CEP, Brazil; (B.P.P.B.V.); (A.V.P.G.)
- Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro 20231-050, CEP, Brazil
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Rua Recife 1-7, Bela Vista, Rio das Ostras 28880-000, CEP, Brazil
- Programa de Pós-Graduação em Ciências Biomédicas, Fisiologia e Farmacologia, Instituto Biomédico, Av. Prof. Hernani Melo, 101, Niterói 24210-130, CEP, Brazil
- Correspondence: (E.R.P.G.); (L.B.F.)
| | - Luciana Bueno Ferreira
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, 6° andar, Rio de Janeiro 20230-130, CEP, Brazil; (B.P.P.B.V.); (A.V.P.G.)
- Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro 20231-050, CEP, Brazil
- Correspondence: (E.R.P.G.); (L.B.F.)
| |
Collapse
|
15
|
Zhang Z, Guan B, Li Y, He Q, Li X, Zhou L. Increased phosphorylated CREB1 protein correlates with poor prognosis in clear cell renal cell carcinoma. Transl Androl Urol 2021; 10:3348-3357. [PMID: 34532259 PMCID: PMC8421817 DOI: 10.21037/tau-21-371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Abstract
Background This study aims to investigate the level of cAMP response element-binding protein 1 (phospho S133) (p-CREB1) protein in clear cell renal cell carcinoma (ccRCC) and evaluates its prognosis significance. Methods Immunohistochemistry (IHC) method was performed to detect p-CREB1 staining in 233 ccRCC patients. Three or more high-power fields per tissue section were equally captured by a Leica DMRXA microphotographic system, and average staining intensity (optical density, OD) was analyzed by Leica Qwin Standard V2.6 system. Univariate and multivariate Cox proportional regression model was performed to assess the correlation of p-CREB1 staining and clinical outcomes. Results IHC proved that the level of p-CREB1 protein was significantly higher in tumor tissues than in adjacent normal tissues, and gradually increased from normal to tumor sections. On the basis of the receiver operating characteristic curve, patients were divided into low p-CREB1 staining (OD ≤0.28) and high p-CREB1 staining subgroup (OD >0.28) according to p-CREB1 protein staining intensity of tumor cells. Multivariate analyses showed that high p-CREB1staining was an independent risk factor for cancer-specific free survival, overall survival and progression-free survival. Conclusions p-CREB1 protein is an independent prognostic biomarker for ccRCC patients.
Collapse
Affiliation(s)
- Zhongyuan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Bao Guan
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Yifan Li
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Qun He
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China.,Pathology Lab, Department of Urology, Peking University First Hospital, Beijing, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| |
Collapse
|
16
|
León-González AJ, Sáez-Martínez P, Jiménez-Vacas JM, Herrero-Aguayo V, Montero-Hidalgo AJ, Gómez-Gómez E, Madrona A, Castaño JP, Espartero JL, Gahete MD, Luque RM. Comparative Cytotoxic Activity of Hydroxytyrosol and Its Semisynthetic Lipophilic Derivatives in Prostate Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10091348. [PMID: 34572980 PMCID: PMC8464900 DOI: 10.3390/antiox10091348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 12/30/2022] Open
Abstract
A high adherence to a Mediterranean diet has been related to numerous beneficial effects in human health, including a lower incidence and mortality of prostate cancer (PCa). Olive oil is an important source of phenolic bioactive compounds, mainly hydroxytyrosol (HT), of this diet. Because of the growing interest of this compound and its derivatives as a cancer chemopreventive agent, we aimed to compare the in vitro effect of HT isolated from olive mill wastewaters and five semisynthetic alkyl ether, ester, and nitro-derivatives against prostate cancer (PCa) cell lines. The effect in cell proliferation was determined in RWPE-1, LNCaP, 22Rv1, and PC-3 cells by resazurin assay, the effect in cell migration by wound healing assay, and tumorsphere and colony formation were evaluated. The changes in key signaling pathways involved in carcinogenesis were assessed by using a phosphorylation pathway profiling array and by Western blotting. Antiproliferative effects of HT and two lipophilic derivatives [hydroxytyrosyl acetate (HT-Ac)/ethyl hydroxytyrosyl ether (HT-Et)] were significantly higher in cancerous PC-3 and 22Rv1 cells than in non-malignant RWPE-1 cells. HT/HT-Ac/HT-Et significantly reduced migration capacity in RWPE-1 and PC-3 and prostatosphere size and colony formation in 22Rv1, whereas only HT-Ac and HT-Et reduced these functional parameters in PC-3. The cytotoxic effect in 22Rv1 cells was correlated with modifications in the phosphorylation pattern of key proteins, including ERK1/2 and AKT. Consistently, HT-Ac and HT-Et decreased p-AKT levels in PC-3. In sum, our results suggest that HT and its lipophilic derivatives could be considered as potential therapeutic tools in PCa.
Collapse
Affiliation(s)
- Antonio J. León-González
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
- Correspondence: (A.J.L.-G.); (R.M.L.); Tel.: +34-957213740 (R.M.L.)
| | - Prudencio Sáez-Martínez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Juan M. Jiménez-Vacas
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Antonio J. Montero-Hidalgo
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Urology Service, HURS/IMIBIC, 14004 Cordoba, Spain
| | - Andrés Madrona
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (A.M.); (J.L.E.)
| | - Justo P. Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - José L. Espartero
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (A.M.); (J.L.E.)
| | - Manuel D. Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
- Correspondence: (A.J.L.-G.); (R.M.L.); Tel.: +34-957213740 (R.M.L.)
| |
Collapse
|
17
|
Chang SH, Chan YH, Chen WJ, Chang GJ, Lee JL, Yeh YH. Tachypacing-induced CREB/CD44 signaling contributes to the suppression of L-type calcium channel expression and the development of atrial remodeling. Heart Rhythm 2021; 18:1760-1771. [PMID: 34023501 DOI: 10.1016/j.hrthm.2021.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Atrial fibrillation (AF), a common arrhythmia in clinics, is characterized as downregulation of L-type calcium channel (LTCC) and shortening of atrial action potential duration (APD). Our prior studies have shown the association of CD44 with AF genesis. OBJECTIVE The purpose of this study was to explore the potential role of CD44 and its related signaling in tachypacing-induced downregulation of LTCC. METHODS AND RESULTS In vitro, tachypacing in atrium-derived myocytes (HL-1 cell line) induced activation (phosphorylation) of cyclic adenosine monophosphate response element-binding protein (CREB). Furthermore, tachypacing promoted an association between CREB and CD44 in HL-1 myocytes, which was documented in atrial tissues from patients with AF. Deletion and mutational analysis of the LTCC promoter along with chromatin immunoprecipitation revealed that cyclic adenosine monophosphate response element is essential for tachypacing-inhibited LTCC transcription. Tachypacing also hindered the binding of p-CREB to the promoter of LTCC. Blockade of CREB/CD44 signaling in HL-1 cells attenuated tachypacing-triggered downregulation of LTCC and shortening of APD. Atrial myocytes isolated from CD44-/- mice exhibited higher LTCC current and longer APD than did those from wild-type mice. Ex vivo, tachypacing caused less activation of CREB in CD44-/- mice than in wild-type mice. In vivo, burst atrial pacing stimulated less inducibility of AF in CREB inhibitor-treated mice than in controls. CONCLUSION Tachypacing-induced CREB/CD44 signaling contributes to the suppression of LTCC, which provides valuable information about the pathogenesis of atrial modeling and AF.
Collapse
Affiliation(s)
- Shang-Hung Chang
- Division of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Yi-Hsin Chan
- Division of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Wei-Jan Chen
- Division of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan.
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | - Jia-Lin Lee
- Institute of Molecular and Cellular Biology and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yung-Hsin Yeh
- Division of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| |
Collapse
|
18
|
TRAF4/6 Is Needed for CD44 Cleavage and Migration via RAC1 Activation. Cancers (Basel) 2021; 13:cancers13051021. [PMID: 33804427 PMCID: PMC7957764 DOI: 10.3390/cancers13051021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 01/02/2023] Open
Abstract
The hyaluronan receptor CD44 can undergo proteolytic cleavage in two steps, leading to the release of its intracellular domain; this domain is translocated to the nucleus, where it affects the transcription of target genes. We report that CD44 cleavage in A549 lung cancer cells and other cells is promoted by transforming growth factor-beta (TGFβ) in a manner that is dependent on ubiquitin ligase tumor necrosis factor receptor-associated factor 4 or 6 (TRAF4 or TRAF6, respectively). Stem-like A549 cells grown in spheres displayed increased TRAF4-dependent expression of CD44 variant isoforms, CD44 cleavage, and hyaluronan synthesis. Mechanistically, TRAF4 activated the small GTPase RAC1. CD44-dependent migration of A549 cells was inhibited by siRNA-mediated knockdown of TRAF4, which was rescued by the transfection of a constitutively active RAC1 mutant. Our findings support the notion that TRAF4/6 mediates pro-tumorigenic effects of CD44, and suggests that inhibitors of CD44 signaling via TRAF4/6 and RAC1 may be beneficial in the treatment of tumor patients.
Collapse
|
19
|
Medrano-González PA, Rivera-Ramírez O, Montaño LF, Rendón-Huerta EP. Proteolytic Processing of CD44 and Its Implications in Cancer. Stem Cells Int 2021; 2021:6667735. [PMID: 33505471 PMCID: PMC7811561 DOI: 10.1155/2021/6667735] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 01/16/2023] Open
Abstract
CD44 is a transmembrane glycoprotein expressed in several healthy and tumor tissues. Modifications in its structure contribute differently to the activity of this molecule. One modification that has provoked interest is the consecutive cleavage of the CD44 extracellular ectodomain by enzymes that belong mainly to the family of metalloproteases. This process releases biologically active substrates, via alternative splice forms of CD44, that generate CD44v3 or v6 isoforms which participate in the transcriptional regulation of genes and proteins associated to signaling pathways involved in the development of cancer. These include the protooncogene tyrosine-protein kinase Src (c-Src)/signal transducer and activator of transcription 3 (STAT3), the epithelial growth factor receptor, the estrogen receptor, Wnt/βcatenin, or Hippo signaling pathways all of which are associated to cell proliferation, differentiation, or cancer progression. Whereas CD44 still remains as a very useful prognostic cell marker in different pathologies, the main topic is that the generation of CD44 intracellular fragments assists the regulation of transcriptional proteins involved in the cell cycle, cell metabolism, and most importantly, the regulation of some stem cell-associated markers.
Collapse
Affiliation(s)
- Priscila Anhel Medrano-González
- Lab. Inmunobiología, Depto. Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edif. D, 1 piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, 04510 Mexico, Mexico
| | - Osmar Rivera-Ramírez
- Lab. Inmunobiología, Depto. Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico, Mexico
| | - Luis Felipe Montaño
- Lab. Inmunobiología, Depto. Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico, Mexico
| | - Erika P. Rendón-Huerta
- Lab. Inmunobiología, Depto. Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico, Mexico
| |
Collapse
|
20
|
Xu H, Niu M, Yuan X, Wu K, Liu A. CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol 2020; 9:36. [PMID: 33303029 PMCID: PMC7727191 DOI: 10.1186/s40164-020-00192-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
CD44, a complex transmembrane glycoprotein, exists in multiple molecular forms, including the standard isoform CD44s and CD44 variant isoforms. CD44 participates in multiple physiological processes, and aberrant expression and dysregulation of CD44 contribute to tumor initiation and progression. CD44 represents a common biomarker of cancer stem cells, and promotes epithelial-mesenchymal transition. CD44 is involved in the regulation of diverse vital signaling pathways that modulate cancer proliferation, invasion, metastasis and therapy-resistance, and it is also modulated by a variety of molecules in cancer cells. In addition, CD44 can serve as an adverse prognostic marker among cancer population. The pleiotropic roles of CD44 in carcinoma potentially offering new molecular target for therapeutic intervention. Preclinical and clinical trials for evaluating the pharmacokinetics, efficacy and drug-related toxicity of CD44 monoclonal antibody have been carried out among tumors with CD44 expression. In this review, we focus on current data relevant to CD44, and outline CD44 structure, the regulation of CD44, functional properties of CD44 in carcinogenesis and cancer progression as well as the potential CD44-targeting therapy for cancer management.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengke Niu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Exosomal lncRNA DOCK9-AS2 derived from cancer stem cell-like cells activated Wnt/β-catenin pathway to aggravate stemness, proliferation, migration, and invasion in papillary thyroid carcinoma. Cell Death Dis 2020; 11:743. [PMID: 32917852 PMCID: PMC7486896 DOI: 10.1038/s41419-020-02827-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Exosomal long non-coding RNAs (lncRNAs) are crucial factors that mediate the extracellular communication in tumor microenvironment. DOCK9 antisense RNA2 (DOCK9-AS2) is an exosomal lncRNA which has not been investigated in papillary thyroid carcinoma (PTC). Based on the result of differentially expressed lncRNAs in PTC via bioinformatics databases, we discovered that DOCK9-AS2 was upregulated in PTC, and presented elevation in plasma exosomes of PTC patients. Functionally, DOCK9-AS2 knockdown reduced proliferation, migration, invasion, epithelial-to-mesenchymal (EMT) and stemness in PTC cells. PTC-CSCs transmitted exosomal DOCK9-AS2 to improve stemness of PTC cells. Mechanistically, DOCK9-AS2 interacted with SP1 to induce catenin beta 1 (CTNNB1) transcription and sponged microRNA-1972 (miR-1972) to upregulate CTNNB1, thereby activating Wnt/β-catenin pathway in PTC cells. In conclusion, PTC-CSCs-derived exosomal lncRNA DOCK9-AS2 activated Wnt/β-catenin pathway to aggravate PTC progression, indicating that DOCK9-AS2 was a potential target for therapies in PTC.
Collapse
|
22
|
Wang L, Nie Q, Gao M, Yang L, Xiang JW, Xiao Y, Liu FY, Gong XD, Fu JL, Wang Y, Nguyen QD, Liu Y, Liu M, Li DWC. The transcription factor CREB acts as an important regulator mediating oxidative stress-induced apoptosis by suppressing αB-crystallin expression. Aging (Albany NY) 2020; 12:13594-13617. [PMID: 32554860 PMCID: PMC7377838 DOI: 10.18632/aging.103474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/03/2020] [Indexed: 12/17/2022]
Abstract
The general transcription factor, CREB has been shown to play an essential role in promoting cell proliferation, neuronal survival and synaptic plasticity in the nervous system. However, its function in stress response remains to be elusive. In the present study, we demonstrated that CREB plays a major role in mediating stress response. In both rat lens organ culture and mouse lens epithelial cells (MLECs), CREB promotes oxidative stress-induced apoptosis. To confirm that CREB is a major player mediating the above stress response, we established stable lines of MLECs stably expressing CREB and found that they are also very sensitive to oxidative stress-induced apoptosis. To define the underlying mechanism, RNAseq analysis was conducted. It was found that CREB significantly suppressed expression of the αB-crystallin gene to sensitize CREB-expressing cells undergoing oxidative stress-induced apoptosis. CREB knockdown via CRISPR/CAS9 technology led to upregulation of αB-crystallin and enhanced resistance against oxidative stress-induced apoptosis. Moreover, overexpression of exogenous human αB-crystallin can restore the resistance against oxidative stress-induced apoptosis. Finally, we provided first evidence that CREB directly regulates αB-crystallin gene. Together, our results demonstrate that CREB is an important transcription factor mediating stress response, and it promotes oxidative stress-induced apoptosis by suppressing αB-crystallin expression.
Collapse
Affiliation(s)
- Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Meng Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Medical College, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94303, USA
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Fang-Yuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Xiao-Dong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Quan Dong Nguyen
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94303, USA
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| |
Collapse
|
23
|
Steinbichler TB, Savic D, Dudás J, Kvitsaridze I, Skvortsov S, Riechelmann H, Skvortsova II. Cancer stem cells and their unique role in metastatic spread. Semin Cancer Biol 2020; 60:148-156. [PMID: 31521746 DOI: 10.1016/j.semcancer.2019.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Cancer stem cells (CSC) possess abilities generally associated with embryonic or adult stem cells, especially self-renewal and differentiation, but also dormancy and cellular plasticity that allow adaption to new environmental circumstances. These abilities are ideal prerequisites for the successful establishment of metastasis. This review highlights the role of CSCs in every step of the metastatic cascade from cancer cell invasion into blood vessels, survival in the blood stream, attachment and extravasation as well as colonization of the host organ and subsequent establishment of distant macrometastasis.
Collapse
Affiliation(s)
| | - Dragana Savic
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - József Dudás
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irma Kvitsaridze
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria.
| |
Collapse
|
24
|
Kong T, Ahn R, Yang K, Zhu X, Fu Z, Morin G, Bramley R, Cliffe NC, Xue Y, Kuasne H, Li Q, Jung S, Gonzalez AV, Camilleri-Broet S, Guiot MC, Park M, Ursini-Siegel J, Huang S. CD44 Promotes PD-L1 Expression and Its Tumor-Intrinsic Function in Breast and Lung Cancers. Cancer Res 2019; 80:444-457. [PMID: 31722999 DOI: 10.1158/0008-5472.can-19-1108] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/18/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022]
Abstract
The PD-L1 (CD274) immune-checkpoint ligand is often upregulated in cancers to inhibit T cells and elicit immunosuppression. Independent of this activity, PD-L1 has recently been shown to also exert a cancer cell-intrinsic function promoting tumorigenesis. Here, we establish this tumor-intrinsic role of PD-L1 in triple-negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC). Using FACS-assisted shRNA screens, we identified the cell-surface adhesion receptor CD44 as a key positive regulator of PD-L1 expression in these cancers. Mechanistically, CD44 activated PD-L1 transcription in part through its cleaved intracytoplasmic domain (ICD), which bound to a regulatory region of the PD-L1 locus containing a consensus CD44-ICD binding site. Supporting this genetic interaction, CD44 positively correlated with PD-L1 expression at the mRNA and protein levels in primary tumor samples of TNBC and NSCLC patients. These data provide a novel basis for CD44 as a critical therapeutic target to suppress PD-L1 tumor-intrinsic function. SIGNIFICANCE: CD44 is a potential target to suppress PD-L1 function in TNBC. This finding has the potential to open a new area of therapy for TNBC.
Collapse
Affiliation(s)
- Tim Kong
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Ryuhjin Ahn
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada.,Department of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Kangning Yang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Xianbing Zhu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Zheng Fu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Geneviève Morin
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Rachel Bramley
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Nikki C Cliffe
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Yibo Xue
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Hellen Kuasne
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Qinghao Li
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Sungmi Jung
- Department of Pathology, Glen Site, McGill University Health Centre Montreal, Quebec, Canada
| | - Anne V Gonzalez
- Department of Medicine, Division of Respiratory Medicine, McGill University Health Centre, Montreal Chest Institute, Montreal, Quebec, Canada
| | - Sophie Camilleri-Broet
- Department of Pathology, Glen Site, McGill University Health Centre Montreal, Quebec, Canada
| | - Marie-Christine Guiot
- Departments of Pathology, Montreal Neurological Hospital/Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada. .,Lady Davis Institute for Medical Research, Montréal, Quebec, Canada.,Department of Experimental Medicine, McGill University, Montréal, Quebec, Canada.,Department of Oncology, McGill University, Montréal, Quebec, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada. .,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Heldin P, Kolliopoulos C, Lin CY, Heldin CH. Involvement of hyaluronan and CD44 in cancer and viral infections. Cell Signal 2019; 65:109427. [PMID: 31654718 DOI: 10.1016/j.cellsig.2019.109427] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
Hyaluronan and its major receptor CD44 are ubiquitously distributed. They have important structural as well as signaling roles, regulating tissue homeostasis, and their expression levels are tightly regulated. In addition to signaling initiated by the interaction of the intracellular domain of CD44 with cytoplasmic signaling molecules, CD44 has important roles as a co-receptor for different types of receptors of growth factors and cytokines. Dysregulation of hyaluronan-CD44 interactions is seen in diseases, such as inflammation and cancer. In the present communication, we discuss the mechanism of hyaluronan-induced signaling via CD44, as well as the involvement of hyaluronan-engaged CD44 in malignancies and in viral infections.
Collapse
Affiliation(s)
- Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden.
| | - Constantinos Kolliopoulos
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Chun-Yu Lin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University Department of Surgery, Uppsala University, Sweden; Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
26
|
Lee YJ, Ch'ng TH. RIP at the Synapse and the Role of Intracellular Domains in Neurons. Neuromolecular Med 2019; 22:1-24. [PMID: 31346933 DOI: 10.1007/s12017-019-08556-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Regulated intramembrane proteolysis (RIP) occurs in a cell when transmembrane proteins are cleaved by intramembrane proteases such as secretases to generate soluble protein fragments in the extracellular environment and the cytosol. In the cytosol, these soluble intracellular domains (ICDs) have local functions near the site of cleavage or in many cases, translocate to the nucleus to modulate gene expression. While the mechanism of RIP is relatively well studied, the fate and function of ICDs for most substrate proteins remain poorly characterized. In neurons, RIP occurs in various subcellular compartments including at the synapse. In this review, we summarize current research on RIP in neurons, focusing specifically on synaptic proteins where the presence and function of the ICDs have been reported. We also briefly discuss activity-driven processing of RIP substrates at the synapse and the cellular machinery that support long-distance transport of ICDs from the synapse to the nucleus. Finally, we describe future challenges in this field of research in the context of understanding the contribution of ICDs in neuronal function.
Collapse
Affiliation(s)
- Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore.,Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore, Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
27
|
Oikawa N, Walter J. Presenilins and γ-Secretase in Membrane Proteostasis. Cells 2019; 8:cells8030209. [PMID: 30823664 PMCID: PMC6468700 DOI: 10.3390/cells8030209] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
The presenilin (PS) proteins exert a crucial role in the pathogenesis of Alzheimer disease (AD) by mediating the intramembranous cleavage of amyloid precursor protein (APP) and the generation of amyloid β-protein (Aβ). The two homologous proteins PS1 and PS2 represent the catalytic subunits of distinct γ-secretase complexes that mediate a variety of cellular processes, including membrane protein metabolism, signal transduction, and cell differentiation. While the intramembrane cleavage of select proteins by γ-secretase is critical in the regulation of intracellular signaling pathways, the plethora of identified protein substrates could also indicate an important role of these enzyme complexes in membrane protein homeostasis. In line with this notion, PS proteins and/or γ-secretase has also been implicated in autophagy, a fundamental process for the maintenance of cellular functions and homeostasis. Dysfunction in the clearance of proteins in the lysosome and during autophagy has been shown to contribute to neurodegeneration. This review summarizes the recent knowledge about the role of PS proteins and γ-secretase in membrane protein metabolism and trafficking, and the functional relation to lysosomal activity and autophagy.
Collapse
Affiliation(s)
- Naoto Oikawa
- Department of Neurology, University of Bonn, 53127 Bonn, Germany.
| | - Jochen Walter
- Department of Neurology, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
28
|
Schultz K, Grieger (Lindner) C, Li Y, Urbánek P, Ruschel A, Minnich K, Bruder D, Gereke M, Sechi A, Herrlich P. Gamma secretase dependent release of the CD44 cytoplasmic tail upregulates IFI16 in cd44-/- tumor cells, MEFs and macrophages. PLoS One 2018; 13:e0207358. [PMID: 30540779 PMCID: PMC6291121 DOI: 10.1371/journal.pone.0207358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023] Open
Abstract
The adhesion molecule and co-receptor of receptor tyrosine kinases, CD44, is expressed in all cells of the immune system, but also in numerous non-immune cells. CD44 plays roles in the cellular response to different pathogens. The molecular actions of CD44 during these processes are by and large still unknown. The CD44 molecule undergoes a sequential proteolytic cleavage which leads to the release of a soluble intracellular domain (CD44-ICD). Previous reports had shown that the CD44-ICD is taken up into the nucleus where it enhances transcription of specific target genes. By RNA profiling we identified a CD44-dependent transcriptional increase of interferon-responsive genes, among them IFI16. IFI16 is important in the innate immune response. It senses and binds pathogenic DNA and, together with cGAS, activates the cGAS-cGAMP-STING pathway and induces the expression of genes relevant for the response, e.g. IFN-β. Our results show that the enhancement of IFI16 expression depended on CD44 cleavage. A CD44-negative tumor cell line, embryonic fibroblasts and bone marrow-derived macrophages from cd44-/- mice were reduced in their response to IFN-γ, to viral DNA fragments and to Listeria monocytogenes infection. We could rescue the deficiency of CD44 negative RPM-MC cells and cd44-/- MEFs by expressing only the soluble CD44-ICD in the absence of any other CD44 domain. Expression of the CD44-ICD carrying a mutation that prevented the uptake into the nucleus, could not rescue the absence of CD44. This molecular aspect of regulation by CD44 may explain part of the immune phenotypes of mice with cd44 gene disruption.
Collapse
Affiliation(s)
- Kristin Schultz
- Helmholtz Centre for Infection Research, Immune Regulation Group, Braunschweig, Germany
- Otto-von-Guericke-University Magdeburg, Institute of Medical Microbiology, Infection Prevention and Control, Magdeburg, Germany
| | | | - Yong Li
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Pavel Urbánek
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Anne Ruschel
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Kerstin Minnich
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Dunja Bruder
- Helmholtz Centre for Infection Research, Immune Regulation Group, Braunschweig, Germany
- Otto-von-Guericke-University Magdeburg, Institute of Medical Microbiology, Infection Prevention and Control, Magdeburg, Germany
| | - Marcus Gereke
- Helmholtz Centre for Infection Research, Immune Regulation Group, Braunschweig, Germany
- Otto-von-Guericke-University Magdeburg, Institute of Medical Microbiology, Infection Prevention and Control, Magdeburg, Germany
| | - Antonio Sechi
- Institute of Biomedical Engineering, Dept. of Cell Biology, Aachen, Germany
| | - Peter Herrlich
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
- * E-mail:
| |
Collapse
|
29
|
Ouhtit A, Rizeq B, Saleh HA, Rahman MM, Zayed H. Novel CD44-downstream signaling pathways mediating breast tumor invasion. Int J Biol Sci 2018; 14:1782-1790. [PMID: 30443182 PMCID: PMC6231220 DOI: 10.7150/ijbs.23586] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/04/2018] [Indexed: 01/06/2023] Open
Abstract
CD44, also known as homing cell adhesion molecule is a multi-structural cell molecule involved in cell-cell and cell-extracellular matrix communications. CD44 regulates a number of central signaling pathways, including PI3K/AKT, Rho GTPases and the Ras-MAPK pathways, but also acts as a growth/arrest sensor, and inhibitor of angiogenesis and invasion, in response to signals from the microenvironment. The function of CD44 has been very controversial since it acts as both, a suppressor and a promoter of tumor growth and progression. To address this discrepancy, we have previously established CD44-inducible system both in vitro and in vivo. Next, using microarray analysis, we have identified and validated Survivin, Cortactin and TGF-β2 as novel CD44-downstream target genes, and characterized their signaling pathways underpinning CD44-promoted breast cancer (BC) cell invasion. This report aims to update the literature by adding and discussing the impact of these novel three signaling pathways to better understand the CD44-signaling pathways involved in BC tumor cell invasion.
Collapse
Affiliation(s)
- Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| | - Balsam Rizeq
- Department of Biological and Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Haissam Abou Saleh
- Department of Biological and Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| | - Md Mizanur Rahman
- Department of Biological and Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
30
|
Ayroldi E, Petrillo MG, Marchetti MC, Cannarile L, Ronchetti S, Ricci E, Cari L, Avenia N, Moretti S, Puxeddu E, Riccardi C. Long glucocorticoid-induced leucine zipper regulates human thyroid cancer cell proliferation. Cell Death Dis 2018; 9:305. [PMID: 29467389 PMCID: PMC5833869 DOI: 10.1038/s41419-018-0346-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Long glucocorticoid-induced leucine zipper (L-GILZ) has recently been implicated in cancer cell proliferation. Here, we investigated its role in human thyroid cancer cells. L-GILZ protein was highly expressed in well-differentiated cancer cells from thyroid cancer patients and differentiated thyroid cancer cell lines, but poorly expressed in anaplastic tumors. A fusion protein containing L-GILZ, when overexpressed in an L-GILZ-deficient 8505C cell line derived from undifferentiated human thyroid cancer tissue, inhibited cellular proliferation in vitro. In addition, when this protein was injected into nude mice, in which cells from line 8505C had been transplanted, xenograft growth was reduced. Since the mitogen-activated protein kinase (MAPK) pathway is frequently hyperactivated in thyroid cancer cells as a result of the BRAFV600E or Ras mutation, we sought to further investigate the role of L-GILZ in the MAPK pathway. To this end, we analyzed L-GILZ expression and function in cells treated with MAPK inhibitors. We used 8505C cells, which have the BRAFV600E mutation, or the CAL-62 cell line, which harbors a Ras mutation. The cells were treated with the BRAF-specific drug vemurafenib (PLX4032) or the MEK1/2 inhibitor, U0126, respectively. Treatment with these agents inhibited MAPK activation, reduced cell proliferation, and upregulated L-GILZ expression. L-GILZ silencing reversed the antiproliferative activity of the MAPK inhibitors, consistent with an antiproliferative role. Treatment with MAPK inhibitors led to the phosphorylation of the cAMP/response element-binding protein (CREB), and active CREB bound to the L-GILZ promoter, contributing to its transcription. We suggest that the CREB signaling pathway, frequently deregulated in thyroid tumors, is involved in L-GILZ upregulation and that L-GILZ regulates thyroid cancer cell proliferation, which may have potential in cancer treatment.
Collapse
Affiliation(s)
- Emira Ayroldi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy.
| | - Maria Grazia Petrillo
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy.,Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Maria Cristina Marchetti
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Lorenza Cannarile
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Simona Ronchetti
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Erika Ricci
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Luigi Cari
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Nicola Avenia
- Department of Surgical and Biomedical Sciences, Medical School, University of Perugia, Perugia, Italy
| | - Sonia Moretti
- Department of Medicine, Section of Endocrinology, Medical School, University of Perugia, Perugia, Italy
| | - Efisio Puxeddu
- Department of Medicine, Section of Endocrinology, Medical School, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
31
|
Wang Z, Zhao K, Hackert T, Zöller M. CD44/CD44v6 a Reliable Companion in Cancer-Initiating Cell Maintenance and Tumor Progression. Front Cell Dev Biol 2018; 6:97. [PMID: 30211160 PMCID: PMC6122270 DOI: 10.3389/fcell.2018.00097] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the leading cause of cancer death, tumor progression proceeding through emigration from the primary tumor, gaining access to the circulation, leaving the circulation, settling in distant organs and growing in the foreign environment. The capacity of a tumor to metastasize relies on a small subpopulation of cells in the primary tumor, so called cancer-initiating cells (CIC). CIC are characterized by sets of markers, mostly membrane anchored adhesion molecules, CD44v6 being the most frequently recovered marker. Knockdown and knockout models accompanied by loss of tumor progression despite unaltered primary tumor growth unraveled that these markers are indispensable for CIC. The unexpected contribution of marker molecules to CIC-related activities prompted research on underlying molecular mechanisms. This review outlines the contribution of CD44, particularly CD44v6 to CIC activities. A first focus is given to the impact of CD44/CD44v6 to inherent CIC features, including the crosstalk with the niche, apoptosis-resistance, and epithelial mesenchymal transition. Following the steps of the metastatic cascade, we report on supporting activities of CD44/CD44v6 in migration and invasion. These CD44/CD44v6 activities rely on the association with membrane-integrated and cytosolic signaling molecules and proteases and transcriptional regulation. They are not restricted to, but most pronounced in CIC and are tightly regulated by feedback loops. Finally, we discuss on the engagement of CD44/CD44v6 in exosome biogenesis, loading and delivery. exosomes being the main acteurs in the long-distance crosstalk of CIC with the host. In brief, by supporting the communication with the niche and promoting apoptosis resistance CD44/CD44v6 plays an important role in CIC maintenance. The multifaceted interplay between CD44/CD44v6, signal transducing molecules and proteases facilitates the metastasizing tumor cell journey through the body. By its engagement in exosome biogenesis CD44/CD44v6 contributes to disseminated tumor cell settlement and growth in distant organs. Thus, CD44/CD44v6 likely is the most central CIC biomarker.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Kun Zhao
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Thilo Hackert
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
- *Correspondence: Margot Zöller
| |
Collapse
|
32
|
Han SA, Jang JH, Won KY, Lim SJ, Song JY. Prognostic value of putative cancer stem cell markers (CD24, CD44, CD133, and ALDH1) in human papillary thyroid carcinoma. Pathol Res Pract 2017; 213:956-963. [PMID: 28687160 DOI: 10.1016/j.prp.2017.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 04/17/2017] [Accepted: 05/03/2017] [Indexed: 01/06/2023]
Abstract
We hypothesized that cancer stem cells (CSCs) are responsible for the poor outcome and aggressive clinicopathological factors. We surveyed the expression of selected CSC markers that are specifically expressed in thyroid papillary carcinoma (PTC). A total of 80 patients with PTC from 2011 to 2012 were enrolled. We selected CD24, CD44, CD133, and dehydrogenase 1 (ALDH1), as they have been suggested to be candidate CSC markers. Expression of these markers was investigated by immunohistochemical (IHC) staining. IHC staining for CD24, CD44, CD133 and ALDH1 was evaluated according to staining intensity and proportion. The intensity and proportion scores were multiplied together for a total score, which was either 0-2 (negative) or 3-7 (positive). IHC for CD133 in PTC was positive in 49 (61.3%) patients, and CD24 was positive in 28 (35.0%). Seventy-eight (97.5%) patients were CD44 positive and 79 (98.8%) were ALDH1 positive. When we assessed the relationship between CSC markers and clinicopathological factors in PTC, CD24 expression was inversely correlated with multifocality (p=0.045; odds ratio [OR], 0.370; 95% confidence interval [CI], 0.138-0.991) and CD44 expression was significantly correlated with a BRAF mutation (p=0.001; OR, 7.091; 95% CI, 4.101-12.262). However, CD133 and ALDH1 were not associated with any of the clinicopathological parameters. CD24 expression was inversely correlated with multifocality, and CD44 expression was significantly correlated with a BRAF mutation. Therefore, CD24 and CD44 are related to clinicopathological aggressive features and important for determining surgical extent in patients with PTC.
Collapse
Affiliation(s)
- Sang-Ah Han
- Department of surgery, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jae Hoon Jang
- Graduate School, Department of Medicine, Kyung Hee University, Korea
| | - Kyu Yeoun Won
- Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sung-Jig Lim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jeong-Yoon Song
- Department of surgery, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea.
| |
Collapse
|
33
|
Băetu M, Dobrescu R. NOVEL MARKERS FOR EARLY DIAGNOSIS AND PROGNOSTIC CLASSIFICATION IN MEDULLARY THYROID CARCINOMA. ACTA ENDOCRINOLOGICA-BUCHAREST 2017; 13:519-522. [PMID: 31149228 DOI: 10.4183/aeb.2017.519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Medullary thyroid carcinoma is a neuroendocrine tumour of the parafollicular C cells of the thyroid gland. It is an aggressive tumor that can be cured only by complete resection of the thyroid tumour and any local and regional metastases. Thus, the discovery of novel diagnostic and prognostic markers is very important for early diagnosis and correct management, in order for the survival rates to rise. New research has emphasized the potential role of various genes, serum and immunohistochemical markers, as well as potential targets for therapeutic agents. The calcium stimulated calcitonin test has been recently reintroduced in clinical practice, and current medullary thyroid carcinoma guidelines encourage laboratories to set their own criteria defining reference ranges for elevated serum basal and stimulated calcitonin levels.
Collapse
Affiliation(s)
- M Băetu
- "C. I. Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - R Dobrescu
- "C. I. Parhon" National Institute of Endocrinology, Bucharest, Romania
| |
Collapse
|
34
|
Ablation of CD44 induces glycolysis-to-oxidative phosphorylation transition via modulation of the c-Src–Akt–LKB1–AMPKα pathway. Biochem J 2016; 473:3013-30. [DOI: 10.1042/bcj20160613] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/25/2016] [Indexed: 01/16/2023]
Abstract
Cluster of differentiation 44 (CD44) is a transmembrane glycoprotein that has been identified as a cancer stem cell marker in various cancer cells. Although many studies have focused on CD44 as a cancer stem cell marker, its effect on cancer cell metabolism remains unclear. To investigate the role of CD44 on cancer cell metabolism, we established CD44 knock-down cells via retroviral delivery of shRNA against CD44 in human breast cancer cells. Silencing of CD44 decreased the glycolytic phenotype of cancer cells, affecting glucose uptake, ATP production, and lactate production. We also found that ablation of the CD44-induced lactate dehydrogenase (LDH) isoenzyme results in a shift to LDH1 due to LDHA down-regulation and LDHB up-regulation, implying the importance of LDH isoenzyme modulation on cancer metabolism. The expression of glycolysis-related proteins including hypoxia inducible factor-1α (HIF-1α) and LDHA was decreased by CD44 silencing. These effects were due to the up-regulation of liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK)α activity by reduction in c-Src and Akt activity in CD44 knock-down cells. Finally, induction of LKB1/AMPKα activity blocked the expression of HIF-1α and its target gene, LDHA. Inversely, LDHB expression was repressed by HIF-1α. Collectively, these results indicate that the CD44 silencing-induced metabolic shift is mediated by the regulation of c-Src/Akt/LKB1/AMPKα/HIF-1α signaling in human breast cancer cells.
Collapse
|
35
|
Heiler S, Wang Z, Zöller M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J Gastroenterol 2016; 22:5971-6007. [PMID: 27468191 PMCID: PMC4948278 DOI: 10.3748/wjg.v22.i26.5971] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX.
Collapse
|
36
|
Bi Y, Meng Y, Wu H, Cui Q, Luo Y, Xue X. Expression of the potential cancer stem cell markers CD133 and CD44 in medullary thyroid carcinoma: A ten-year follow-up and prognostic analysis. J Surg Oncol 2016; 113:144-51. [PMID: 26799258 DOI: 10.1002/jso.24124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES To investigate the expression profiles of cancer stem cells (CSCs) markers CD133 and CD44 in a cohort of medullary thyroid carcinoma (MTC) patients, and their prognostic values during 10-year follow-up. METHODS MTC samples were obtained for H&E and immunohistochemical analysis. Survival analysis was performed using Kaplan-Meier method and log-rank test. RESULTS Both the CD133 and CD44 positives were higher in MTC than control. High expression of CD133 and CD44 was positively correlated with capsule invasion and each other, and their co-expression was significantly correlated with capsule invasion, tissue invasion, and metastases at surgery. Tumor size, capsular invasion, tissue invasion, metastases at surgery, surgical plan, lymph node metastases, TNM stage, CD133, and CD44 were prognostic factors for overall survival (OS) and/or disease free survival (DFS). Both the CD133 and CD44 were unfavorable prognostic predictors for OS (P = 0.046, P = 0.03), while only CD44 was a significant predictor for DFS (P = 0.017). OS rate in CD133/CD44 co-expression group was significantly lower than that in non-co-expression group (χ(2) = 8.44, P = 0.004). CONCLUSION Our study suggested the high expression of CD133 and CD44 in the MTC, and CD133 and CD44 expressions were correlated with capsule invasion and with OS. CD133 and/or CD44 may be prognostic factors for OS and/or DFS in our MTC patients.
Collapse
Affiliation(s)
- Yalan Bi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunxiao Meng
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quancai Cui
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yufeng Luo
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Xue
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Nagayama Y, Shimamura M, Mitsutake N. Cancer Stem Cells in the Thyroid. Front Endocrinol (Lausanne) 2016; 7:20. [PMID: 26973599 PMCID: PMC4770029 DOI: 10.3389/fendo.2016.00020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/15/2016] [Indexed: 11/16/2022] Open
Abstract
The cancer stem cell (CSC) model posits that CSCs are a small, biologically distinct subpopulation of cancer cells in each tumor that have self-renewal and multi-lineage potential, and are critical for cancer initiation, metastasis, recurrence, and therapy-resistance. Numerous studies have linked CSCs to thyroid biology, but the candidate markers and signal transduction pathways that drive thyroid CSC growth are controversial, the origin(s) of thyroid CSCs remain elusive, and it is unclear whether thyroid CSC biology is consistent with the original hierarchical CSC model or the more recent dynamic CSC model. Here, we critically review the thyroid CSC literature with an emphasis on research that confirmed the presence of thyroid CSCs by in vitro sphere formation or in vivo tumor formation assays with dispersed cells from thyroid cancer tissues or bona fide thyroid cancer cell lines. Future perspectives of thyroid CSC research are also discussed.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- *Correspondence: Yuji Nagayama,
| | - Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
38
|
AbdElazeem MA, El-Sayed M. The pattern of CD44 and matrix metalloproteinase 9 expression is a useful predictor of ulcerative colitis–associated dysplasia and neoplasia. Ann Diagn Pathol 2015; 19:369-74. [DOI: 10.1016/j.anndiagpath.2015.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/13/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023]
|
39
|
Nam K, Oh S, Lee KM, Yoo SA, Shin I. CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell Signal 2015; 27:1882-94. [PMID: 25979842 DOI: 10.1016/j.cellsig.2015.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
CD44 was recently identified as a cancer initiation marker on the cell membrane. The cytoplasmic tail of CD44 is known to bind ERM (ezrin, radixin, moesin) proteins, cytoskeletal proteins like ankyrin, and the non-receptor tyrosine kinase c-Src. CD44 transmits its oncogenic signaling via c-Src and its downstream effectors. To investigate the role of CD44 in breast cancer cells, we generated CD44 knock-down cells via retroviral delivery of shRNA against CD44. We found that silencing of CD44 decreased the proliferation, migration, and invasion of breast cancer cells. The expression and activity of cell migration-related proteins, including c-Src, paxillin, and FAK were decreased by CD44 silencing. We also found that the c-Jun protein level was negatively regulated via induction of a GSK-3β-dependent degradation pathway in CD44 knock-down cells. The expression level of Sp1, a target gene product of c-Jun, was also decreased in these cells. Finally, CD44 knock-down suppressed both mRNA and protein levels of c-Src and its downstream MAPK pathway as a result of down-regulation of Sp1 as a transcription factor for c-Src. Collectively, these results indicate that biological changes induced by CD44 silencing are mediated by cumulative down-regulation of c-Jun, Sp1, and c-Src in human breast cancer cells.
Collapse
Affiliation(s)
- KeeSoo Nam
- Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Sunhwa Oh
- Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Kyung-min Lee
- Deparment of Hematology/Oncology, Vanderbilt University, Nashville, TN 37209, USA
| | - Seung-ah Yoo
- Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea; Natural Science Institute, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
40
|
Cieply B, Koontz C, Frisch SM. CD44S-hyaluronan interactions protect cells resulting from EMT against anoikis. Matrix Biol 2015; 48:55-65. [PMID: 25937513 PMCID: PMC4851163 DOI: 10.1016/j.matbio.2015.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 02/08/2023]
Abstract
The detachment of normal epithelial cells from matrix triggers an apoptotic response known as anoikis, during homeostatic turnover. Metastatic tumor cells evade anoikis, by mechanisms that are only partly characterized. In particular, the epithelial–mesenchymal transition (EMT) in a subset of invasive tumor cells confers anoikis-resistance. In some cases, EMT up-regulates the cancer stem cell marker CD44S and the enzyme hyaluronic acid synthase-2 (HAS2). CD44S is the major receptor for hyaluronan in the extracellular matrix. Herein, we demonstrate that CD44S, unlike the CD44E isoform expressed in normal epithelial cells, contributes to the protection against anoikis. This protection requires the interaction of CD44S with hyaluronan (HA). CD44S–HA interaction is proposed to play an important role in tumor metastasis through enhanced cell survival under detached conditions.
Collapse
Affiliation(s)
- Benjamin Cieply
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, United States.
| | - Colton Koontz
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, United States
| | - Steven M Frisch
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
41
|
Guan H, Liang W, Liu J, Wei G, Li H, Xiu L, Xiao H, Li Y. Transmembrane protease serine 4 promotes thyroid cancer proliferation via CREB phosphorylation. Thyroid 2015; 25:85-94. [PMID: 25244400 PMCID: PMC4290798 DOI: 10.1089/thy.2014.0155] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Transmembrane protease serine 4 (TMPRSS4), one of the type II transmembrane serine proteases (TTSPs), is elevated in various cancers and is associated with multiple malignant phenotypes. However, the expression pattern and biologic significance of TMPRSS4 in thyroid cancer are largely unknown. In this study, we investigated the expression of TMPRSS4 in thyroid cancer and assessed the pro-proliferative role of TMPRSS4 in thyroid cancer. METHODS Immunohistochemistry and real-time reverse transcription-polymerase chain reaction (RT-PCR) assays were performed to assess the expression of TMPRSS4 in thyroid cancer. We evaluated in vitro cell proliferation using MTT, colony formation, anchorage-independent growth, flow cytometry analysis, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays. Western blot, real-time RT-PCR, and luciferase assays were conducted to reveal the underlying mechanisms. RESULTS TMPRSS4 is overexpressed in thyroid cancer and is associated with the grade of malignancy. Depletion of TMPRSS4 in thyroid cancer cells significantly suppressed proliferation. Moreover, the proliferation of thyroid cancer cells with TMPRSS4 overexpression was significantly enhanced. We also show that cyclic adenosine monophosphate response element-binding protein (CREB)-cyclin D1 signaling mediates, at least partially, the role of TMPRSS4 in thyroid cancer cell proliferation. CONCLUSIONS TMPRSS4 is overexpressed in thyroid cancer and TMPRSS4-CREB signaling is needed to sustain thyroid cancer cell proliferation.
Collapse
Affiliation(s)
- Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Pietras A, Katz AM, Ekström EJ, Wee B, Halliday JJ, Pitter KL, Werbeck JL, Amankulor NM, Huse JT, Holland EC. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 2014; 14:357-69. [PMID: 24607407 DOI: 10.1016/j.stem.2014.01.005] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/05/2013] [Accepted: 01/08/2014] [Indexed: 12/14/2022]
Abstract
Stem-like glioma cells reside within a perivascular niche and display hallmark radiation resistance. An understanding of the mechanisms underlying these properties will be vital for the development of effective therapies. Here, we show that the stem cell marker CD44 promotes cancer stem cell phenotypes and radiation resistance. In a mouse model of glioma, Cd44(-/-) and Cd44(+/-) animals showed improved survival compared to controls. The CD44 ligand osteopontin shared a perivascular expression pattern with CD44 and promoted glioma stem cell-like phenotypes. These effects were mediated via the γ-secretase-regulated intracellular domain of CD44, which promoted aggressive glioma growth in vivo and stem cell-like phenotypes via CBP/p300-dependent enhancement of HIF-2α activity. In human glioblastoma multiforme, expression of CD44 correlated with hypoxia-induced gene signatures and poor survival. Altogether, these data suggest that in the glioma perivascular niche, osteopontin promotes stem cell-like properties and radiation resistance in adjacent tumor cells via activation of CD44 signaling.
Collapse
Affiliation(s)
- Alexander Pietras
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Alvord Brain Tumor Center, University of Washington, Seattle, WA 98104, USA; Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA; Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Amanda M Katz
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA; Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Elin J Ekström
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Boyoung Wee
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA; Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - John J Halliday
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA; Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Kenneth L Pitter
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA; Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Jillian L Werbeck
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA; Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Nduka M Amankulor
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jason T Huse
- Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA; Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Alvord Brain Tumor Center, University of Washington, Seattle, WA 98104, USA.
| |
Collapse
|
43
|
Prochazka L, Tesarik R, Turanek J. Regulation of alternative splicing of CD44 in cancer. Cell Signal 2014; 26:2234-9. [PMID: 25025570 DOI: 10.1016/j.cellsig.2014.07.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 02/07/2023]
Abstract
CD44 is a hyaluronan binding cell surface signal transducing receptor that influences motility, cell survival and proliferation as well as the formation of tumor microenvironment. CD44 contains two variable regions encoded by variable exons. Alternative splicing, which is often deregulated in cancer, can produce various isoforms of CD44 with properties that may have different tissue specific effects and therefore even diverse effects on cancer progression. This review summarizes and puts together all major regulators of alternative splicing of CD44 in cancer that have been documented so far and that have an experimentally proved effect on CD44 isoform switching. It is important to better understand the mechanisms of alternative splicing of CD44, where all the variability of CD44 originates, to be able to explain the isoform switching and occurrence of variant isoforms of CD44 (CD44v) in cancer.
Collapse
Affiliation(s)
- Lubomir Prochazka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic.
| | - Radek Tesarik
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Jaroslav Turanek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
44
|
Ma R, Minsky N, Morshed SA, Davies TF. Stemness in human thyroid cancers and derived cell lines: the role of asymmetrically dividing cancer stem cells resistant to chemotherapy. J Clin Endocrinol Metab 2014; 99:E400-9. [PMID: 24823711 PMCID: PMC3942234 DOI: 10.1210/jc.2013-3545] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT Cancer stem cells (CSCs) have the ability to self-renew through symmetric and asymmetric cell division. CSCs may arise from mutations within an embryonic stem cell/progenitor cell population or via epithelial-mesenchymal transition (EMT), and recent advances in the study of thyroid stem cells have led to a growing recognition of the likely central importance of CSCs in thyroid tumorigenesis. OBJECTIVE The objectives of this study were to establish the presence of a stem cell population in human thyroid tumors and to identify, isolate, and characterize CSCs in thyroid cancer cell lines. RESULTS 1) Human thyroid cancers (n = 10) and thyroid cancer cell lines (n = 6) contained a stem cell population as evidenced by pluripotent stem cell gene expression. 2) Pulse-chase experiments with thyroid cancer cells identified a label-retaining cell population, a primary characteristic of CSCs, which at mitosis divided their DNA both symmetrically and asymmetrically and included a population of cells expressing the progenitor marker, stage-specific embryonic antigen 1 (SSEA-1). 3) Cells positive for SSEA-1 expressed additional stem cell markers including Oct4, Sox2, and Nanog were confirmed as CSCs by their tumor-initiating properties in vivo, their resistance to chemotherapy, and their multipotent capability. 4) SSEA-1-positive cells showed enhanced vimentin expression and decreased E-cadherin expression, indicating their likely derivation via EMT. CONCLUSIONS Cellular diversity in thyroid cancer occurs through both symmetric and asymmetric cell division, and SSEA-1-positive cells are one form of CSCs that appear to have arisen via EMT and may be the source of malignant thyroid tumor formation. This would suggest that thyroid cancer CSCs were the result of thyroid cancer transformation rather than the source.
Collapse
Affiliation(s)
- Risheng Ma
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, and the James J. Peters VA Medical Center, New York, New York 10468
| | | | | | | |
Collapse
|
45
|
Gao YJ, Li B, Wu XY, Cui J, Han JK. Thyroid tumor-initiating cells: increasing evidence and opportunities for anticancer therapy (review). Oncol Rep 2014; 31:1035-42. [PMID: 24424445 PMCID: PMC3926673 DOI: 10.3892/or.2014.2978] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/30/2013] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence supports the notion that thyroid cancer is initiated by tumor-initiating cells (TICs) (commonly known as cancer stem cells), which are thought to play a crucial role in malignant progression, therapeutic resistance and recurrence. Thyroid TICs have been isolated and identified using specific biomarkers (such as CD133), the side population, sphere formation and aldehyde dehydrogenase activity assays. Although their characteristics remain largely unknown, TICs provide an attractive cellular mechanism to explain therapeutic refractoriness. Efforts are currently being directed toward the identification of therapeutic strategies that could target these cells. The present review discusses the cellular origins of TICs and the main approaches used to isolate and identify thyroid TICs, with a focus on the remaining challenges and opportunities for anticancer therapy.
Collapse
Affiliation(s)
- Yong-Ju Gao
- Department of Nuclear Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bo Li
- Department of Nuclear Medicine, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Xin-Yu Wu
- Department of Nuclear Medicine, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Jing Cui
- Department of Nuclear Medicine, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Jian-Kui Han
- Department of Nuclear Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
46
|
Hu F, Meng Y, Gou L, Zhang X. Analysis of promoters and CREB/AP-1 binding sites of the human TMEM174 gene. Exp Ther Med 2013; 6:1290-1294. [PMID: 24223660 PMCID: PMC3820833 DOI: 10.3892/etm.2013.1275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 08/01/2013] [Indexed: 11/16/2022] Open
Abstract
Transmembrane protein 174 (TMEM174) is a type III transmembrane protein with no clear signal peptide. The N and C terminals are located inside the cell. Our previous study demonstrated high expression of TMEM174 in the kidney and its potential involvement in renal cancer based on its capacity to stimulate cell proliferation. However, the mechanism by which TMEM174 promotes proliferation at the transcriptional level remains to be elucidated. In the present study, the TMEM174 promoter region was amplified from whole blood DNA. Six different regions of the regulatory sequences of the TMEM174 promoter region including ~2.5 kb of the upstream region were cloned into the dual luciferase expression vector pGL3-basic. Comparison of the activity of these fragments in dual luciferase reporter assays revealed higher levels of activity for the fragments spanning −186 to +674, −700 to +674, −1,000 to +674 and −2,500 to +1 bp. Lower levels of activity were detected for the fragments spanning −466 to +674 and −890 to +674 bp. The highest activity was detected for the fragment spanning −186 to +674 bp. Electrophoretic mobility shift assay (EMSA) was performed to determine effective transcription factor binding sites. Specific binding of the cyclic-AMP response element binding (CREB) within the TMEM174 gene promoter region was demonstrated, although binding of the activator protein-1 (AP-1) was also detected in this region. In conclusion, these results suggest that the core promoter region of the human TMEM174 gene is located within the region spanning −186 to +674 bp and that the transcription factors CREB and AP-1 are involved in the transcriptional regulation of this gene.
Collapse
Affiliation(s)
- Fen Hu
- College of Life Sciences, Hebei United University, Tangshan, Hebei 063000
| | | | | | | |
Collapse
|
47
|
Tang Y, Herr G, Johnson W, Resnik E, Aho J. Induction and analysis of epithelial to mesenchymal transition. J Vis Exp 2013. [PMID: 24022340 DOI: 10.3791/50478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) is essential for proper morphogenesis during development. Misregulation of this process has been implicated as a key event in fibrosis and the progression of carcinomas to a metastatic state. Understanding the processes that underlie EMT is imperative for the early diagnosis and clinical control of these disease states. Reliable induction of EMT in vitro is a useful tool for drug discovery as well as to identify common gene expression signatures for diagnostic purposes. Here we demonstrate a straightforward method for the induction of EMT in a variety of cell types. Methods for the analysis of cells pre- and post-EMT induction by immunocytochemistry are also included. Additionally, we demonstrate the effectiveness of this method through antibody-based array analysis and migration/invasion assays.
Collapse
Affiliation(s)
- Yixin Tang
- Antibody Development Department, R&D Systems, Inc
| | | | | | | | | |
Collapse
|
48
|
Ouhtit A, Madani S, Gupta I, Shanmuganathan S, Abdraboh ME, Al-Riyami H, Al-Farsi YM, Raj MH. TGF-β2: A Novel Target of CD44-Promoted Breast Cancer Invasion. J Cancer 2013; 4:566-72. [PMID: 23983821 PMCID: PMC3753531 DOI: 10.7150/jca.6638] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/18/2013] [Indexed: 01/23/2023] Open
Abstract
We have developed a tetracycline (tet)-off regulated expression of CD44s gene in the breast cancer (BC) cell line MCF-7 (B5 clone) and identified TGF-β2 (Transforming Growth Factor beta-2; 3 fold induction) as a potential CD44-downstream transcriptional target by microarray analysis. To further validate this finding, the same RNA samples, used for microarray analysis and their corresponding protein lysates, collected from the BC cell line MCF-7-B5, were examined for CD44 expression in the presence of HA. Our results showed that TGF-β2 mRNA levels were significantly elevated following the removal of tetracycline at 18, 24, and 48 h post-HA stimulation compared to the parental cells. Furthermore, the TGF-β2 precursor protein increased in a time-dependent pattern upon HA-stimulation and in the absence of tetracycline. More interestingly, inhibition of CD44 gene by RNAi method decreased TGF-β2 expression upon HA-stimulation, and subsequently inhibited BC cell invasion in vitro. In addition to identifying TGF-β2 as a target for HA/CD44 signaling, this data suggests that ATF/CREB might be a potential transcription factor linking HA/CD44 activation to TGF-β2 transcription and additional experiments are required for a better understanding of the molecular mechanisms underpinning the novel function of the CD44/ TGF-β2 signaling pathway in breast cancer metastasis.
Collapse
|
49
|
Zeng Y, Wodzenski D, Gao D, Shiraishi T, Terada N, Li Y, Vander Griend DJ, Luo J, Kong C, Getzenberg RH, Kulkarni P. Stress-response protein RBM3 attenuates the stem-like properties of prostate cancer cells by interfering with CD44 variant splicing. Cancer Res 2013; 73:4123-33. [PMID: 23667174 DOI: 10.1158/0008-5472.can-12-1343] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stress-response pathways play an important role in cancer. The cold-inducible RNA-binding protein RBM3 is upregulated in several types of cancer, including prostate cancer, but its pathogenic contributions are undetermined. RBM3 is expressed at low basal levels in human fetal prostate or in CD133(+) prostate epithelial cells (PrEC), compared with the adult prostate or CD133-PrEC, and RBM3 is downregulated in cells cultured in soft agar or exposed to stress. Notably, RBM3 overexpression in prostate cancer cells attenuated their stem cell-like properties in vitro as well as their tumorigenic potential in vivo. Interestingly, either overexpressing RBM3 or culturing cells at 32°C suppressed RNA splicing of the CD44 variant v8-v10 and increased expression of the standard CD44 (CD44s) isoform. Conversely, silencing RBM3 or culturing cells in soft agar (under conditions that enrich for stem cell-like cells) increased the ratio of CD44v8-v10 to CD44s mRNA. Mechanistic investigations showed that elevating CD44v8-v10 interfered with MMP9-mediated cleavage of CD44s and suppressed expression of cyclin D1, whereas siRNA-mediated silencing of CD44v8-v10 impaired the ability of prostate cancer cells to form colonies in soft agar. Together, these findings suggested that RBM3 contributed to stem cell-like character in prostate cancer by inhibiting CD44v8-v10 splicing. Our work uncovers a hitherto unappreciated role of RBM3 in linking stress-regulated RNA splicing to tumorigenesis, with potential prognostic and therapeutic implications in prostate cancer.
Collapse
Affiliation(s)
- Yu Zeng
- The James Buchanan Brady Urological Institute, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Williams K, Motiani K, Giridhar PV, Kasper S. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Exp Biol Med (Maywood) 2013; 238:324-38. [PMID: 23598979 PMCID: PMC11037417 DOI: 10.1177/1535370213480714] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The stem cell niche provides a regulatory microenvironment for cells as diverse as totipotent embryonic stem cells to cancer stem cells (CSCs) which exhibit stem cell-like characteristics and have the capability of regenerating the bulk of tumor cells while maintaining self-renewal potential. The transmembrane glycoprotein CD44 is a common component of the stem cell niche and exists as a standard isoform (CD44s) and a range of variant isoforms (CD44v) generated though alternative splicing. CD44 modulates signal transduction through post-translational modifications as well as interactions with hyaluronan, extracellular matrix molecules and growth factors and their cognate receptor tyrosine kinases. While the function of CD44 in hematopoietic stem cells has been studied in considerable detail, our knowledge of CD44 function in tissue-derived stem cell niches remains limited. Here we review CD44s and CD44v in both hematopoietic and tissue-derived stem cell niches, focusing on their roles in regulating stem cell behavior including self-renewal and differentiation in addition to cell-matrix interactions and signal transduction during cell migration and tumor progression. Determining the role of CD44 and CD44v in normal stem cell, CSC and (pre)metastatic niches and elucidating their unique functions could provide tools and therapeutic strategies for treating diseases as diverse as fibrosis during injury repair to cancer progression.
Collapse
Affiliation(s)
- Karin Williams
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| | - Karan Motiani
- Division of Urology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| | | | - Susan Kasper
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|