1
|
Daum S, Decristoforo L, Mousa M, Salcher S, Plattner C, Hosseinkhani B, Trajanoski Z, Wolf D, Carmeliet P, Pircher A. Unveiling the immunomodulatory dance: endothelial cells' function and their role in non-small cell lung cancer. Mol Cancer 2025; 24:21. [PMID: 39819502 PMCID: PMC11737145 DOI: 10.1186/s12943-024-02221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025] Open
Abstract
The dynamic interactions between tumor endothelial cells (TECs) and the immune microenvironment play a critical role in the progression of non-small cell lung cancer (NSCLC). In general, endothelial cells exhibit diverse immunomodulatory properties, influencing immune cell recruitment, antigen presentation, and regulation of immune checkpoint expression. Understanding the multifaceted roles of TECs as well as assigning specific functional hallmarks to various TEC phenotypes offer new avenues for targeted development of therapeutic interventions, particularly in the context of advanced immunotherapy and anti-angiogenic treatments. This review provides insights into the complex interplay between TECs and the immune system in NSCLC including discussion of potential optimized therapeutic opportunities.
Collapse
Affiliation(s)
- Sophia Daum
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Lilith Decristoforo
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Stefan Salcher
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Christina Plattner
- Institute of Bioinformatics, Biocenter Medical University Innsbruck, Innsbruck, Austria
| | - Baharak Hosseinkhani
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), VIB Center for Cancer Biology, KU Leuven, VIB, Leuven, Belgium
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Biocenter Medical University Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Peter Carmeliet
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), VIB Center for Cancer Biology, KU Leuven, VIB, Leuven, Belgium
| | - Andreas Pircher
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Jeevanandam A, Yin Z, Connolly KA, Joshi NS. Mouse Models Enable the Functional Investigation of Tertiary Lymphoid Structures in Cancer. Methods Mol Biol 2025; 2864:57-76. [PMID: 39527217 DOI: 10.1007/978-1-0716-4184-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tertiary lymphoid structures (TLSs) are organized lymphoid aggregates that form within nonlymphoid tissue, including tumors, in response to persistent inflammatory stimulation. In cancer patients, TLSs are generally associated with positive clinical outcomes. However, the cellular composition and spatial distribution of TLSs can vary depending on the underlying disease state, complicating interpretations of their prognostic significance. Murine models are indispensable for providing a deeper insight into the mechanisms involved in TLS formation and function. Studies using these models can complement current clinical efforts to characterize TLSs via genetic sequencing and histopathology of human samples. Several features of TLSs resemble that of secondary lymphoid organs (SLOs). Consequently, vascular system components and structural support elements are important for TLS formation and maintenance. Furthermore, TLSs in different tissue environments can exhibit distinct characteristics, necessitating careful consideration when selecting mouse models for study. Herein, we discuss critical aspects to consider when modeling TLSs and describe recent findings of TLS studies in the mouse lung and intestinal gut environments as examples to highlight the importance of considering tissue-specific regulatory mechanisms for TLSs. In this chapter, we also summarize the mechanistic insights derived from murine models on the formation and function of TLSs, which may translate to the future therapeutic modulation of TLS in disease.
Collapse
Affiliation(s)
- Advait Jeevanandam
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Zixi Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kelli A Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Ruddle NH. Tertiary Lymphoid Structures and Immunotherapy: Challenges and Opportunities. Methods Mol Biol 2025; 2864:299-312. [PMID: 39527229 DOI: 10.1007/978-1-0716-4184-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tertiary lymphoid structures (TLS) are accumulations of lymphoid cells that arise in ectopic sites through the process of lymphoid neogenesis in chronic inflammation in autoimmunity, microbial infections, organ rejection, aging, and cancer. Their cellular composition and function and regulation via members of the lymphotoxin (LT)/tumor necrosis factor (TNF) family resemble that of secondary lymphoid organs (SLOs). Tumor-associated (TA)-TLS can be associated with favorable clinical outcomes. Immunotherapy in the form of immune checkpoint inhibitors (ICI) has contributed to tremendous advances in cancer therapy. However, ICI are effective in only some tumors, can give rise to resistance, and can precipitate immune-related adverse events (irAEs), many of which appear to have hallmarks of autoimmunity and can resemble TLS. TA-TLS correlate with a positive response to immunotherapy, but they can also be associated with susceptibility to irAEs, suggesting that TA-TLS in combination with ICI could lead to uncontrolled autoimmunity. The tumor environment can be manipulated to ensure that, not only the number of TLS, but also their cellular composition and appropriate function allow for judicious combinations of TLS and immunotherapy that can synergize and contribute to better outcomes with a minimum of destructive irAEs. Strategies include directed delivery of lymphoneogenic cytokines and chemokines or vascular growth factors directly, via transgenes or via adenovirus vectors.
Collapse
Affiliation(s)
- Nancy H Ruddle
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
4
|
Alnaqbi H, Becker LM, Mousa M, Alshamsi F, Azzam SK, Emini Veseli B, Hymel LA, Alhosani K, Alhusain M, Mazzone M, Alsafar H, Carmeliet P. Immunomodulation by endothelial cells: prospects for cancer therapy. Trends Cancer 2024; 10:1072-1091. [PMID: 39289084 DOI: 10.1016/j.trecan.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
Growing evidence highlights the importance of tumor endothelial cells (TECs) in the tumor microenvironment (TME) for promoting tumor growth and evading immune responses. Immunomodulatory endothelial cells (IMECs) represent a distinct plastic phenotype of ECs that exerts the ability to modulate immunity in health and disease. This review discusses our current understanding of IMECs in cancer biology, scrutinizing insights from single-cell reports to compare their characteristics and function dynamics across diverse tumor types, conditions, and species. We investigate possible implications of exploiting IMECs in the context of cancer treatment, particularly examining their influence on the efficacy of existing therapies and the potential to leverage them as targets in optimizing immunotherapeutic strategies.
Collapse
Affiliation(s)
- Halima Alnaqbi
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering and Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Lisa M Becker
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Mira Mousa
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates; Department of Public Health and Epidemiology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fatima Alshamsi
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates; Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Sarah K Azzam
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Besa Emini Veseli
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Lauren A Hymel
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Khalood Alhosani
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Marwa Alhusain
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering and Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter Carmeliet
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates; Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, University of Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Matsueda S, Chen L, Li H, Yao H, Yu F. Recent clinical researches and technological development in TIL therapy. Cancer Immunol Immunother 2024; 73:232. [PMID: 39264449 PMCID: PMC11393248 DOI: 10.1007/s00262-024-03793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
Tumor-infiltrating lymphocyte (TIL) therapy represents a groundbreaking advancement in the solid cancer treatment, offering new hope to patients and their families with high response rates and long overall survival. TIL therapy involves extracting immune cells from a patient's tumor tissue, expanding them ex vivo, and infusing them back into the patient to target and eliminate cancer cells. This revolutionary approach harnesses the power of the immune system to combat cancers, ushering in a new era of T cell-based therapies along with CAR-T and TCR-therapies. In this comprehensive review, we aim to elucidate the remarkable potential of TIL therapy by delving into recent advancements in basic and clinical researches. We highlight on the evolving landscape of TIL therapy as a prominent immunotherapeutic strategy, its multifaceted applications, and the promising outcomes. Additionally, we explore the future horizons of TIL therapy, next-generation TILs, and combination therapy, to overcome the limitations and improve clinical efficacy of TIL therapy.
Collapse
Affiliation(s)
- Satoko Matsueda
- Fresh Wind Biotechnologies USA Inc, 4502 Riverstone Blvd, STE1104, Missouri City, TX, 77459, USA.
| | - Lei Chen
- Department of Neurosurgery, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Hongmei Li
- Department of Oncology, Qingdao University Medical School, Qinddao, 266003, China
| | - Hui Yao
- Fresh Wind Biotechnologies USA Inc, 4502 Riverstone Blvd, STE1104, Missouri City, TX, 77459, USA
| | - Fuli Yu
- Fresh Wind Biotechnologies USA Inc, 4502 Riverstone Blvd, STE1104, Missouri City, TX, 77459, USA
| |
Collapse
|
6
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
7
|
Jama M, Tabana Y, Barakat KH. Targeting cytotoxic lymphocyte antigen 4 (CTLA-4) in breast cancer. Eur J Med Res 2024; 29:353. [PMID: 38956700 PMCID: PMC11218087 DOI: 10.1186/s40001-024-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Breast cancer (BC) has a high mortality rate and is one of the most common malignancies in the world. Initially, BC was considered non-immunogenic, but a paradigm shift occurred with the discovery of tumor-infiltrating lymphocytes (TILs) and regulatory T cells (Tregs) in the BC tumor microenvironment. CTLA-4 (Cytotoxic T-lymphocyte-associated protein 4) immunotherapy has emerged as a treatment option for BC, but it has limitations, including suboptimal antitumor effects and toxicity. Research has demonstrated that anti-CTLA-4 combination therapies, such as Treg depletion, cancer vaccines, and modulation of the gut microbiome, are significantly more effective than CTLA-4 monoclonal antibody (mAB) monotherapy. Second-generation CTLA-4 antibodies are currently being developed to mitigate immune-related adverse events (irAEs) and augment antitumor efficacy. This review examines anti-CTLA-4 mAB in BC, both as monotherapy and in combination with other treatments, and sheds light on ongoing clinical trials, novel CTLA-4 therapeutic strategies, and potential utility of biomarkers in BC.
Collapse
Affiliation(s)
- Maryam Jama
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
8
|
Merali N, Jessel MD, Arbe-Barnes EH, Ruby Lee WY, Gismondi M, Chouari T, O'Brien JW, Patel B, Osei-Bordom D, Rockall TA, Sivakumar S, Annels N, Frampton AE. Impact of tertiary lymphoid structures on prognosis and therapeutic response in pancreatic ductal adenocarcinoma. HPB (Oxford) 2024; 26:873-894. [PMID: 38729813 DOI: 10.1016/j.hpb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is known to have a heterogeneous desmoplastic tumour microenvironment (TME) with a large number of immunosuppressive cells. Recently, high B-cell infiltration in PDAC has received growing interest as a potential therapeutic target. METHODS Our literature review summarises the characteristics of tumour-associated tertiary lymphoid structures (TLSs) and highlight the key studies exploring the clinical outcomes of TLSs in PDAC patients and the direct effect on the TME. RESULTS The location, density and maturity stages of TLSs within tumours play a key role in determining the prognosis and is a new emerging target in cancer immunotherapy. DISCUSSION TLS development is imperative to improve the prognosis of PDAC patients. In the future, studying the genetics and immune characteristics of tumour infiltrating B cells and TLSs may lead towards enhancing adaptive immunity in PDAC and designing personalised therapies.
Collapse
Affiliation(s)
- Nabeel Merali
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Edward H Arbe-Barnes
- UCL Institute of Immunity and Transplantation, The Pears Building, Pond Street, London, UK
| | - Wing Yu Ruby Lee
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Martha Gismondi
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Tarak Chouari
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - James W O'Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Bhavik Patel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Daniel Osei-Bordom
- Liver and Digestive Health, University College London, Royal Free Hospital, Pond St, London, UK
| | - Timothy A Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Adam E Frampton
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK.
| |
Collapse
|
9
|
Roland CL, Nassif Haddad EF, Keung EZ, Wang WL, Lazar AJ, Lin H, Chelvanambi M, Parra ER, Wani K, Guadagnolo BA, Bishop AJ, Burton EM, Hunt KK, Torres KE, Feig BW, Scally CP, Lewis VO, Bird JE, Ratan R, Araujo D, Zarzour MA, Patel S, Benjamin R, Conley AP, Livingston JA, Ravi V, Tawbi HA, Lin PP, Moon BS, Satcher RL, Mujtaba B, Witt RG, Traweek RS, Cope B, Lazcano R, Wu CC, Zhou X, Mohammad MM, Chu RA, Zhang J, Damania A, Sahasrabhojane P, Tate T, Callahan K, Nguyen S, Ingram D, Morey R, Crosby S, Mathew G, Duncan S, Lima CF, Blay JY, Fridman WH, Shaw K, Wistuba I, Futreal A, Ajami N, Wargo JA, Somaiah N. A randomized, non-comparative phase 2 study of neoadjuvant immune-checkpoint blockade in retroperitoneal dedifferentiated liposarcoma and extremity/truncal undifferentiated pleomorphic sarcoma. NATURE CANCER 2024; 5:625-641. [PMID: 38351182 DOI: 10.1038/s43018-024-00726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/10/2024] [Indexed: 04/30/2024]
Abstract
Based on the demonstrated clinical activity of immune-checkpoint blockade (ICB) in advanced dedifferentiated liposarcoma (DDLPS) and undifferentiated pleomorphic sarcoma (UPS), we conducted a randomized, non-comparative phase 2 trial ( NCT03307616 ) of neoadjuvant nivolumab or nivolumab/ipilimumab in patients with resectable retroperitoneal DDLPS (n = 17) and extremity/truncal UPS (+ concurrent nivolumab/radiation therapy; n = 10). The primary end point of pathologic response (percent hyalinization) was a median of 8.8% in DDLPS and 89% in UPS. Secondary end points were the changes in immune infiltrate, radiographic response, 12- and 24-month relapse-free survival and overall survival. Lower densities of regulatory T cells before treatment were associated with a major pathologic response (hyalinization > 30%). Tumor infiltration by B cells was increased following neoadjuvant treatment and was associated with overall survival in DDLPS. B cell infiltration was associated with higher densities of regulatory T cells before treatment, which was lost upon ICB treatment. Our data demonstrate that neoadjuvant ICB is associated with complex immune changes within the tumor microenvironment in DDLPS and UPS and that neoadjuvant ICB with concurrent radiotherapy has significant efficacy in UPS.
Collapse
Affiliation(s)
- Christina L Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Elise F Nassif Haddad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Centre Léon-Bérard, University Claude Bernard Lyon I, Lyon, France
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Z Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - B Ashleigh Guadagnolo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew J Bishop
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth M Burton
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly K Hunt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keila E Torres
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barry W Feig
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Scally
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerae O Lewis
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin E Bird
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ravin Ratan
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dejka Araujo
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Alexandra Zarzour
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Benjamin
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony P Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Andrew Livingston
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinod Ravi
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick P Lin
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan S Moon
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert L Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bilal Mujtaba
- Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Russell G Witt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raymond S Traweek
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandon Cope
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiao Zhou
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohammad M Mohammad
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Randy A Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashish Damania
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pranoti Sahasrabhojane
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taylor Tate
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kate Callahan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa Nguyen
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davis Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rohini Morey
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shadarra Crosby
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grace Mathew
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sheila Duncan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cibelle F Lima
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Yves Blay
- Centre Léon-Bérard, University Claude Bernard Lyon I, Lyon, France
| | - Wolf Herman Fridman
- Centre de Recherche des Cordeliers, Inserm, Université Paris-Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Kenna Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Wistuba
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadim Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Budair FM, Nomura T, Hirata M, Kabashima K. PNAd-expressing vessels characterize the dermis of CD3+ T-cell-mediated cutaneous diseases. Clin Exp Immunol 2024; 216:80-88. [PMID: 38227774 PMCID: PMC10929698 DOI: 10.1093/cei/uxae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/04/2023] [Accepted: 01/15/2024] [Indexed: 01/18/2024] Open
Abstract
T-cell recruitment to skin tissues is essential for inflammation in different cutaneous diseases; however, the mechanisms by which these T cells access the skin remain unclear. High endothelial venules expressing peripheral node address in (PNAd), an L-selectin ligand, are located in secondary lymphoid organs and are responsible for increasing T-cell influx into the lymphoid tissues. They are also found in non-lymphoid tissues during inflammation. However, their presence in different common inflammatory cutaneous diseases and their correlation with T-cell infiltration remain unclear. Herein, we explored the mechanisms underlying the access of T cells to the skin by investigating the presence of PNAd-expressing vessels in different cutaneous diseases, and its correlation with T cells' presence. Skin sections of 43 patients with different diseases were subjected to immunohistochemical and immunofluorescence staining to examine the presence of PNAd-expressing vessels in the dermis. The correlation of the percentage of these vessels in the dermis of these patients with the severity/grade of CD3+ T-cell infiltration was assessed. PNAd-expressing vessels were commonly found in the skin of patients with different inflammatory diseases. A high percentage of these vessels in the dermis was associated with increased severity of CD3+ T-cell infiltration (P < 0.05). Additionally, CD3+ T cells were found both around the PNAd-expressing vessels and within the vessel lumen. PNAd-expressing vessels in cutaneous inflammatory diseases, characterized by CD3+ T-cell infiltration, could be a crucial entry point for T cells into the skin. Thus, selective targeting of these vessels could be beneficial in cutaneous inflammatory disease treatment.
Collapse
Affiliation(s)
- Fatimah Mohammad Budair
- Department of Dermatology, King Fahd University Hospital, Alkhobar, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Development for Intractable Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Singh A, Sharma A. Lymphoid tissue inducer cells in cancer: a potential therapeutic target. Mol Cell Biochem 2023; 478:2789-2794. [PMID: 36922480 DOI: 10.1007/s11010-023-04699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023]
Abstract
Tumor cells are dynamic in nature; these cells first acquire immune surveillance and then escape from the immune system. Hence, progressed cancer cells distribute and metastasize to other organs via blood vessels as well as from the lymphatic system. Prognosis and treatment of metastatic cancer patients remain a major challenge nowadays. Till now, lots of target -based and immune checkpoint blocker therapies are used to treat disease patients. But these therapies fail to control the dissemination and metastasis of cancer. Before designing a treatment regimen for metastatic patients, understanding the mechanism of tumor cells spreading within lymph vessels remain undetermined. Construction of lymphoid structures since embryonic to adult stage are depend upon LTi. Foundation of lymph node, payer patches and TLO is initiated and regulated through these cells in any part of the body. During tumor growth, newly developed lymph node contained MDSCs and Treg cells which inhibit the immune response and promote tumor invasion and metastasis. LTi reconstituted lymph node can be used for both early and high risk detection of cancers. High and low risk of tumor growth and invasion depend upon the location and composition of immune cells within lymph nodes. However, LTi are not reported as predictive marker in cancer till date. Recent reports in cancer indicate that LTi cells are engaged in the spreading of tumor cells into a lymphatic vessel. Through this review we are trying to brief the development and role of the LTi in immune system during homeostasis and cancer.
Collapse
Affiliation(s)
- Ashu Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
12
|
Lax BM, Palmeri JR, Lutz EA, Sheen A, Stinson JA, Duhamel L, Santollani L, Kennedy A, Rothschilds AM, Spranger S, Sansom DM, Wittrup KD. Both intratumoral regulatory T cell depletion and CTLA-4 antagonism are required for maximum efficacy of anti-CTLA-4 antibodies. Proc Natl Acad Sci U S A 2023; 120:e2300895120. [PMID: 37487077 PMCID: PMC10400942 DOI: 10.1073/pnas.2300895120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Anti-CTLA-4 antibodies have successfully elicited durable tumor regression in the clinic; however, long-term benefit is limited to a subset of patients for select cancer indications. The incomplete understanding of their mechanism of action has hindered efforts at improvement, with conflicting hypotheses proposing either antagonism of the CTLA-4:B7 axis or Fc effector-mediated regulatory T cell (Treg) depletion governing efficacy. Here, we report the engineering of a nonantagonistic CTLA-4 binding domain (b1s1e2) that depletes intratumoral Tregs as an Fc fusion. Comparison of b1s1e2-Fc to 9d9, an antagonistic anti-CTLA-4 antibody, allowed for interrogation of the separate contributions of CTLA-4 antagonism and Treg depletion to efficacy. Despite equivalent levels of intratumoral Treg depletion, 9d9 achieved more long-term cures than b1s1e2-Fc in MC38 tumors, demonstrating that CTLA-4 antagonism provided additional survival benefit. Consistent with prior reports that CTLA-4 antagonism enhances priming, treatment with 9d9, but not b1s1e2-Fc, increased the percentage of activated T cells in the tumor-draining lymph node (tdLN). Treg depletion with either construct was restricted to the tumor due to insufficient surface CTLA-4 expression on Tregs in other compartments. Through intratumoral administration of diphtheria toxin in Foxp3-DTR mice, we show that depletion of both intratumoral and nodal Tregs provided even greater survival benefit than 9d9, consistent with Treg-driven restraint of priming in the tdLN. Our data demonstrate that anti-CTLA-4 therapies require both CTLA-4 antagonism and intratumoral Treg depletion for maximum efficacy-but that potential future therapies also capable of depleting nodal Tregs could show efficacy in the absence of CTLA-4 antagonism.
Collapse
Affiliation(s)
- Brianna M. Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Joseph R. Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Emi A. Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Alan Kennedy
- Institute of Immunity and Transplantation, University College London, LondonNW3 2PP, United Kingdom
| | - Adrienne M. Rothschilds
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David M. Sansom
- Institute of Immunity and Transplantation, University College London, LondonNW3 2PP, United Kingdom
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
13
|
Vella G, Hua Y, Bergers G. High endothelial venules in cancer: Regulation, function, and therapeutic implication. Cancer Cell 2023; 41:527-545. [PMID: 36827979 DOI: 10.1016/j.ccell.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
The lack of sufficient intratumoral CD8+ T lymphocytes is a significant obstacle to effective immunotherapy in cancer. High endothelial venules (HEVs) are organ-specific and specialized postcapillary venules uniquely poised to facilitate the transmigration of lymphocytes to lymph nodes (LNs) and other secondary lymphoid organs (SLOs). HEVs can also form in human and murine cancer (tumor HEVs [TU-HEVs]) and contribute to the generation of diffuse T cell-enriched aggregates or tertiary lymphoid structures (TLSs), which are commonly associated with a good prognosis. Thus, therapeutic induction of TU-HEVs may provide attractive avenues to induce and sustain the efficacy of immunotherapies by overcoming the major restriction of T cell exclusion from the tumor microenvironment. In this review, we provide current insight into the commonalities and discrepancies of HEV formation and regulation in LNs and tumors and discuss the specific function and significance of TU-HEVs in eliciting, predicting, and aiding anti-tumoral immunity.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Yichao Hua
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Zhang Q, Wu S. Tertiary lymphoid structures are critical for cancer prognosis and therapeutic response. Front Immunol 2023; 13:1063711. [PMID: 36713409 PMCID: PMC9875059 DOI: 10.3389/fimmu.2022.1063711] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregates that form at sites of chronic inflammation, including cancers, in non-lymphoid tissues. Although the formation of TLSs is similar to that of secondary lymphoid organs, the pathogenic factors leading to TLS formation in cancerous tissues and the mechanisms underlying the role of these structures in the intra-tumoral adaptive antitumor immune response are not fully understood. The presence of TLSs may impact patient prognosis and treatment outcomes. This review examines the current understanding of TLSs in cancers, including their composition and formation as well as their potential to predict prognosis and therapeutic efficacy. We also summarize strategies to induce TLS formation for cancer treatment.
Collapse
Affiliation(s)
| | - Suhui Wu
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
15
|
Devi-Marulkar P, Fastenackels S, Karapentiantz P, Goc J, Germain C, Kaplon H, Knockaert S, Olive D, Panouillot M, Validire P, Damotte D, Alifano M, Murris J, Katsahian S, Lawand M, Dieu-Nosjean MC. Regulatory T cells infiltrate the tumor-induced tertiary lymphoïd structures and are associated with poor clinical outcome in NSCLC. Commun Biol 2022; 5:1416. [PMID: 36566320 PMCID: PMC9789959 DOI: 10.1038/s42003-022-04356-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
On one hand, regulatory T cells (Tregs) play an immunosuppressive activity in most solid tumors but not all. On the other hand, the organization of tumor-infiltrating immune cells into tertiary lymphoid structures (TLS) is associated with long-term survival in most cancers. Here, we investigated the role of Tregs in the context of Non-Small Cell Lung Cancer (NSCLC)-associated TLS. We observed that Tregs show a similar immune profile in TLS and non-TLS areas. Autologous tumor-infiltrating Tregs inhibit the proliferation and cytokine secretion of CD4+ conventional T cells, a capacity which is recovered by antibodies against Cytotoxic T-Lymphocyte-Associated protein-4 (CTLA-4) and Glucocorticoid-Induced TNFR-Related protein (GITR) but not against other immune checkpoint (ICP) molecules. Tregs in the whole tumor, including in TLS, are associated with a poor outcome of NSCLC patients, and combination with TLS-dendritic cells (DCs) and CD8+ T cells allows higher overall survival discrimination. Thus, Targeting Tregs especially in TLS may represent a major challenge in order to boost anti-tumor immune responses initiated in TLS.
Collapse
Affiliation(s)
- Priyanka Devi-Marulkar
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418596.70000 0004 0639 6384Present Address: Institut Curie, Paris, France
| | - Solène Fastenackels
- grid.462844.80000 0001 2308 1657UMRS1135 Sorbonne Université, Faculté de Médecine Sorbonne Université, Paris, France ,grid.7429.80000000121866389INSERM U1135, Paris, France ,grid.463810.8Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Pierre Karapentiantz
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,Present Address: Inserm, Sorbonne Université, université Paris 13, Laboratoire d’informatique médicale et d’ingénierie des connaissances en e-santé, LIMICS, F-75006 Paris, France
| | - Jérémy Goc
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.5386.8000000041936877XPresent Address: Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology and Immunology and The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, USA
| | - Claire Germain
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,Present Address: Biomunex Pharmaceuticals, Paris, France
| | - Hélène Kaplon
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418301.f0000 0001 2163 3905Present Address: Translational Medicine Department, Institut de Recherches Internationales Servier, Suresnes, France
| | - Samantha Knockaert
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418301.f0000 0001 2163 3905Present Address: Translational Medicine Department, Institut de Recherches Internationales Servier, Suresnes, France
| | - Daniel Olive
- Inserm U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France ,grid.463833.90000 0004 0572 0656Laboratory « Immunity and Cancer », Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
| | - Marylou Panouillot
- grid.462844.80000 0001 2308 1657UMRS1135 Sorbonne Université, Faculté de Médecine Sorbonne Université, Paris, France ,grid.7429.80000000121866389INSERM U1135, Paris, France ,grid.463810.8Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Pierre Validire
- grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418120.e0000 0001 0626 5681Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Diane Damotte
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.411784.f0000 0001 0274 3893Department of Pathology, Assistance Publique-Hôpitaux de Paris (AP-HP), Cochin hospital, Paris, France
| | - Marco Alifano
- grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.50550.350000 0001 2175 4109Department of Thoracic Surgery, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Juliette Murris
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.5328.c0000 0001 2186 3954HeKA, INRIA, Paris, France ,Hôpital Européen Georges-Pompidou, Unité d’Epidémiologie et de Recherche Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Inserm, Centre d’Investigation Clinique 1418, Module Epidémiologie Clinique, Paris, France
| | - Sandrine Katsahian
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.5328.c0000 0001 2186 3954HeKA, INRIA, Paris, France ,Hôpital Européen Georges-Pompidou, Unité d’Epidémiologie et de Recherche Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Inserm, Centre d’Investigation Clinique 1418, Module Epidémiologie Clinique, Paris, France
| | - Myriam Lawand
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.462844.80000 0001 2308 1657UMRS1135 Sorbonne Université, Faculté de Médecine Sorbonne Université, Paris, France ,grid.7429.80000000121866389INSERM U1135, Paris, France ,grid.463810.8Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
16
|
Milutinovic S, Abe J, Jones E, Kelch I, Smart K, Lauder SN, Somerville M, Ware C, Godkin A, Stein JV, Bogle G, Gallimore A. Three-dimensional Imaging Reveals Immune-driven Tumor-associated High Endothelial Venules as a Key Correlate of Tumor Rejection Following Depletion of Regulatory T Cells. CANCER RESEARCH COMMUNICATIONS 2022; 2:1641-1656. [PMID: 36704666 PMCID: PMC7614106 DOI: 10.1158/2767-9764.crc-21-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
High endothelial venules (HEV) are specialized post capillary venules that recruit naïve T cells and B cells into secondary lymphoid organs (SLO) such as lymph nodes (LN). Expansion of HEV networks in SLOs occurs following immune activation to support development of an effective immune response. In this study, we used a carcinogen-induced model of fibrosarcoma to examine HEV remodeling after depletion of regulatory T cells (Treg). We used light sheet fluorescence microscopy imaging to visualize entire HEV networks, subsequently applying computational tools to enable topological mapping and extraction of numerical descriptors of the networks. While these analyses revealed profound cancer- and immune-driven alterations to HEV networks within LNs, these changes did not identify successful responses to treatment. The presence of HEV networks within tumors did however clearly distinguish responders from nonresponders. Finally, we show that a successful treatment response is dependent on coupling tumor-associated HEV (TA-HEV) development to T-cell activation implying that T-cell activation acts as the trigger for development of TA-HEVs which subsequently serve to amplify the immune response by facilitating extravasation of T cells into the tumor mass.
Collapse
Affiliation(s)
- Stefan Milutinovic
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Emma Jones
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Inken Kelch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn Smart
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sarah N. Lauder
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michelle Somerville
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Carl Ware
- Laboratory of Molecular Immunology, Sanford Burnham Prebys, La Jolla, California
| | - Andrew Godkin
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jens V. Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Gib Bogle
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Awen Gallimore
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
17
|
Rodriguez AB, Parriott G, Engelhard VH. Tumor necrosis factor receptor regulation of peripheral node addressin biosynthetic components in tumor endothelial cells. Front Immunol 2022; 13:1009306. [PMID: 36189308 PMCID: PMC9520236 DOI: 10.3389/fimmu.2022.1009306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor-associated tertiary lymphoid structures are ectopic lymphoid aggregates that have considerable morphological, cellular, and molecular similarity to secondary lymphoid organs, particularly lymph nodes. Tumor vessels expressing peripheral node addressin (PNAd) are hallmark features of these structures. Previous work from our laboratory demonstrated that PNAd is displayed on intratumoral vasculature of murine tumors, and its expression is controlled by the engagement of lymphotoxin-α3, secreted by effector CD8 T cells, with tumor necrosis factor receptors (TNFR) on tumor endothelial cells (TEC). The goals of the present work were: 1) to identify differences in expression of genes encoding the scaffolding proteins and glycosyl transferases associated with PNAd biosynthesis in TEC and lymph node blood endothelial cells (LN BEC); and 2) to determine which of these PNAd associated components are regulated by TNFR signaling. We found that the same genes encoding scaffolding proteins and glycosyl transferases were upregulated in PNAd+ LN BEC and PNAd+ TEC relative to their PNAdneg counterparts. The lower level of PNAd expression on TEC vs LN BEC was associated with relatively lower expression of these genes, particularly the carbohydrate sulfotransferase Chst4. Loss of PNAd on TEC in the absence of TNFR signaling was associated with lack of upregulation of these same genes. A small subset of PNAd+ TEC remaining in the absence of TNFR signaling showed normal upregulation of a subset of these genes, but reduced upregulation of genes encoding the scaffolding proteins podocalyxin and nepmucin, and carbohydrate sulfotransferase Chst2. Lastly, we found that checkpoint immunotherapy augmented both the fraction of TEC expressing PNAd and their surface level of this ligand. This work points to strong similarities in the regulation of PNAd expression on TEC by TNFR signaling and on LN BEC by lymphotoxin-β receptor signaling, and provides a platform for the development of novel strategies that manipulate PNAd expression on tumor vasculature as an element of cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Victor H. Engelhard
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- *Correspondence: Victor H. Engelhard,
| |
Collapse
|
18
|
Rossi A, Belmonte B, Carnevale S, Liotti A, De Rosa V, Jaillon S, Piconese S, Tripodo C. Stromal and Immune Cell Dynamics in Tumor Associated Tertiary Lymphoid Structures and Anti-Tumor Immune Responses. Front Cell Dev Biol 2022; 10:933113. [PMID: 35874810 PMCID: PMC9304551 DOI: 10.3389/fcell.2022.933113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid organs that have been observed in chronic inflammatory conditions including cancer, where they are thought to exert a positive effect on prognosis. Both immune and non-immune cells participate in the genesis of TLS by establishing complex cross-talks requiring both soluble factors and cell-to-cell contact. Several immune cell types, including T follicular helper cells (Tfh), regulatory T cells (Tregs), and myeloid cells, may accumulate in TLS, possibly promoting or inhibiting their development. In this manuscript, we propose to review the available evidence regarding specific aspects of the TLS formation in solid cancers, including 1) the role of stromal cell composition and architecture in the recruitment of specific immune subpopulations and the formation of immune cell aggregates; 2) the contribution of the myeloid compartment (macrophages and neutrophils) to the development of antibody responses and the TLS formation; 3) the immunological and metabolic mechanisms dictating recruitment, expansion and plasticity of Tregs into T follicular regulatory cells, which are potentially sensitive to immunotherapeutic strategies directed to costimulatory receptors or checkpoint molecules.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | | | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Sebastien Jaillon
- RCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: Silvia Piconese,
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
19
|
Asrir A, Tardiveau C, Coudert J, Laffont R, Blanchard L, Bellard E, Veerman K, Bettini S, Lafouresse F, Vina E, Tarroux D, Roy S, Girault I, Molinaro I, Martins F, Scoazec JY, Ortega N, Robert C, Girard JP. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy. Cancer Cell 2022; 40:318-334.e9. [PMID: 35120598 DOI: 10.1016/j.ccell.2022.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/23/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Recruitment of lymphocytes into tumors is critical for anti-tumor immunity and efficacious immunotherapy. We show in murine models that tumor-associated high endothelial venules (TA-HEVs) are major sites of lymphocyte entry into tumors at baseline and upon treatment with anti-PD-1/anti-CTLA-4 immune checkpoint blockade (ICB). TA-HEV endothelial cells (TA-HECs) derive from post-capillary venules, co-express MECA-79+ HEV sialomucins and E/P-selectins, and are associated with homing and infiltration into tumors of various T cell subsets. Intravital microscopy further shows that TA-HEVs are the main sites of lymphocyte arrest and extravasation into ICB-treated tumors. Increasing TA-HEC frequency and maturation increases the proportion of tumor-infiltrating stem-like CD8+ T cells, and ameliorates ICB efficacy. Analysis of tumor biopsies from 93 patients with metastatic melanoma reveals that TA-HEVs are predictive of better response and survival upon treatment with anti-PD-1/anti-CTLA-4 combination. These studies provide critical insights into the mechanisms governing lymphocyte trafficking in cancer immunity and immunotherapy.
Collapse
Affiliation(s)
- Assia Asrir
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Tardiveau
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Juliette Coudert
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Robin Laffont
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Krystle Veerman
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah Bettini
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fanny Lafouresse
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Estefania Vina
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dorian Tarroux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Severine Roy
- Department of Medicine, Gustave Roussy, Villejuif, France; INSERM U981, Gustave Roussy, Villejuif, France
| | - Isabelle Girault
- Department of Medicine, Gustave Roussy, Villejuif, France; INSERM U981, Gustave Roussy, Villejuif, France
| | - Irma Molinaro
- Department of Pathology, Gustave Roussy, Villejuif, France
| | - Frédéric Martins
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, UMR1048, INSERM, UPS, Toulouse, France; Plateforme Genome et Transcriptome, GeT, Genopole Toulouse, France
| | - Jean-Yves Scoazec
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Pathology, Gustave Roussy, Villejuif, France; Paris-Saclay University, Orsay, France; AMMICa, CNRS-UAR 3655 and INSERM-US23, Gustave Roussy, Villejuif, France
| | - Nathalie Ortega
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Caroline Robert
- Department of Medicine, Gustave Roussy, Villejuif, France; INSERM U981, Gustave Roussy, Villejuif, France; Paris-Saclay University, Orsay, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
20
|
Abstract
Tumor-infiltrated T cells with stem-cell-like properties are important for determining the immunotherapy response. In this issue of Cancer Cell, Asrir and colleagues show that their entry requires specialized tumor-associated endothelial cells that resemble immature and inflamed lymph node vessels and that immunotherapy enhances the recruitment capacity of these endothelial cells.
Collapse
Affiliation(s)
- Werner Held
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
| | - Sanjiv A Luther
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Pires A, Burnell S, Gallimore A. Exploiting ECM remodelling to promote immune-mediated tumour destruction. Curr Opin Immunol 2022; 74:32-38. [PMID: 34627015 DOI: 10.1016/j.coi.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy represents a significant breakthrough in cancer treatment mainly due to the ability to harness the activities of cancer-specific T cells. Despite this, most cancers remain resistant to T cell attack. Many reasons have been proposed to explain this, ranging from a lack of antigenicity through to the immunosuppressive effects of the tumour microenvironment. In this review, we examine the relationship between the immune system and a key component of the tumour microenvironment, namely the extracellular matrix (ECM). Specifically, we explore the reciprocal effects of immune cells and the tumour ECM and how the processes underpinning this relationship act to either promote or restrain tumour progression.
Collapse
Affiliation(s)
- Ana Pires
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Stephanie Burnell
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Awen Gallimore
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
22
|
Abstract
Ectopic lymphoid aggregates, termed tertiary lymphoid structures (TLSs), are formed in numerous cancer types, and, with few exceptions, their presence is associated with superior prognosis and response to immunotherapy. In spite of their presumed importance, the triggers that lead to TLS formation in cancer tissue and the contribution of these structures to intratumoral immune responses remain incompletely understood. Here, we discuss the present knowledge on TLSs in cancer, focusing on (i) the drivers of TLS formation, (ii) the function and contribution of TLSs to the antitumor immune response, and (iii) the potential of TLSs as therapeutic targets in human cancers.
Collapse
Affiliation(s)
- Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| |
Collapse
|
23
|
Liu J, Wang X, Deng Y, Yu X, Wang H, Li Z. Research Progress on the Role of Regulatory T Cell in Tumor Microenvironment in the Treatment of Breast Cancer. Front Oncol 2021; 11:766248. [PMID: 34868991 PMCID: PMC8636122 DOI: 10.3389/fonc.2021.766248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem comprised of cancer cells, stromal cells, and immune cells. Analysis of the composition of TME is essential to assess the prognosis of patients with breast cancer (BC) and the efficacy of different regimes. Treg plays a crucial role in the microenvironment of breast cancer subtypes, and its function contributes to the development and progression of BC by suppressing anti-tumor immunity directly or indirectly through multiple mechanisms. In addition, conventional treatments, such as anthracycline-based neoadjuvant chemotherapy, and neo-therapies, such as immune-checkpoint blockades, have a significant impact on the absence of Tregs in BC TME, thus gaining additional anti-tumor effect to some extent. Strikingly, Treg in BC TME revealed the predicted efficacy of some therapeutic strategies. All these results suggest that we can manipulate the abundance of Treg to achieve the ultimate effect of both conventional and novel treatments. In this review, we discuss new insights into the characteristics of Treg in BC TME, the impact of different regiments on Treg, and the possibilities of Treg as a predictive marker of efficacy for certain treatments.
Collapse
Affiliation(s)
- Jianyu Liu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuhan Deng
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Yu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongbin Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhigao Li
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
24
|
Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov 2021; 20:899-919. [PMID: 33686237 DOI: 10.1038/s41573-021-00155-y] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
The success of checkpoint inhibitors has accelerated the clinical implementation of a vast mosaic of single agents and combination immunotherapies. However, the lack of clinical translation for a number of immunotherapies as monotherapies or in combination with checkpoint inhibitors has clarified that new strategies must be employed to advance the field. The next chapter of immunotherapy should examine the immuno-oncology therapeutic failures, and consider the complexity of immune cell-cancer cell interactions to better design more effective anticancer drugs. Herein, we briefly review the history of immunotherapy and checkpoint blockade, highlighting important clinical failures. We discuss the critical aspects - beyond T cell co-receptors - of immune processes within the tumour microenvironment (TME) that may serve as avenues along which new therapeutic strategies in immuno-oncology can be forged. Emerging insights into tumour biology suggest that successful future therapeutics will focus on two key factors: rescuing T cell homing and dysfunction in the TME, and reappropriating mononuclear phagocyte function for TME inflammatory remodelling. New drugs will need to consider the complex cell networks that exist within tumours and among cancer types.
Collapse
|
25
|
Shi Y. PLAN B for immunotherapy: Promoting and leveraging anti-tumor B cell immunity. J Control Release 2021; 339:156-163. [PMID: 34563591 DOI: 10.1016/j.jconrel.2021.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022]
Abstract
Current immuno-oncology primarily focuses on adaptive cellular immunity mediated by T lymphocytes. The other important lymphocytes, B cells, are largely ignored in cancer immunotherapy. B cells are generally considered to be responsible for humoral immune response to viral and bacterial infections. The role of B cells in cancer immunity has long been under debate. Recently, increasing evidence from both preclinical and clinical research has shown that B cells can also induce potent anti-cancer immunity, via humoral and cellular immune responses. Yet it is unclear how to efficiently integrate B cell immunity in cancer immunotherapy. In the current perspective, anti-tumor immunity of B cells is discussed regarding antibody production, antigen presentation, cytokine release and contribution to intratumoral tertiary lymphoid structures. Afterwards, immunosuppressive regulatory phenotypes of B cells are summarized. Furthermore, strategies to activate and modulate B cells using nanomedicines and biomaterials are discussed. This article provides a unique perspective on "PLAN B" (promoting and leveraging anti-tumor B cell immunity) using nanomedicines and biomaterials for cancer immunotherapy. This is envisaged to form a new research direction with the potential to reach the next breakthrough in immunotherapy.
Collapse
Affiliation(s)
- Yang Shi
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen 52074, Germany.
| |
Collapse
|
26
|
Qin M, Jin Y, Pan LY. Tertiary lymphoid structure and B-cell-related pathways: A potential target in tumor immunotherapy. Oncol Lett 2021; 22:836. [PMID: 34712360 PMCID: PMC8548801 DOI: 10.3892/ol.2021.13097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 01/11/2023] Open
Abstract
The tertiary lymphoid structure (TLS), also referred to as the ectopic lymphoid structure, has recently become a focus of attention. The TLS consists of T-cell and B-cell-rich regions, as well as plasma cells, follicular helper T cells, follicular dendritic cells (FDCs), germinal centers (GCs) and high endothelial venules. TLSs can be divided into different subtypes and mature stages according to the density of FDCs and GCs. The TLS serves as an effective site in which an antitumor inflammatory response is generated through infiltrating immune cells. B-cell-related pathways, known as the CXC chemokine ligand 13/CXC chemokine receptor type 5 axis and the CC chemokine ligand (CCL)19/CCL21/CC-chemokine receptor 7 axis, play a key role in the generation and formation of TLSs. The aim of the present review was to systematically summarize updated research progress on the formation, subtypes, evaluation and B-cell-related pathways of TLSs. Furthermore, researchers have previously reported that TLSs are present in several types of solid cancers and that they are associated with survival outcomes. Therefore, studies on TLS in breast, lung, colorectal and ovarian cancers and melanoma were summarized and compared. The TLS and B-cell-related pathways require further investigation as important immune signals and promising new immunotherapy targets in the era of T-cell therapy revolution.
Collapse
Affiliation(s)
- Meng Qin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China.,Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, P.R. China
| | - Ying Jin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China.,Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, P.R. China
| | - Ling-Ya Pan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China.,Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, P.R. China
| |
Collapse
|
27
|
van de Walle T, Vaccaro A, Ramachandran M, Pietilä I, Essand M, Dimberg A. Tertiary Lymphoid Structures in the Central Nervous System: Implications for Glioblastoma. Front Immunol 2021; 12:724739. [PMID: 34539661 PMCID: PMC8442660 DOI: 10.3389/fimmu.2021.724739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most common and aggressive brain tumor, which is uniformly lethal due to its extreme invasiveness and the absence of curative therapies. Immune checkpoint inhibitors have not yet proven efficacious for glioblastoma patients, due in part to the low prevalence of tumor-reactive T cells within the tumor microenvironment. The priming of tumor antigen-directed T cells in the cervical lymph nodes is complicated by the shortage of dendritic cells and lack of appropriate lymphatic vessels within the brain parenchyma. However, recent data suggest that naive T cells may also be primed within brain tumor-associated tertiary lymphoid structures. Here, we review the current understanding of the formation of these structures within the central nervous system, and hypothesize that promotion of tertiary lymphoid structures could enhance priming of tumor antigen-targeted T cells and sensitize glioblastomas to cancer immunotherapy.
Collapse
Affiliation(s)
- Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Vella G, Guelfi S, Bergers G. High Endothelial Venules: A Vascular Perspective on Tertiary Lymphoid Structures in Cancer. Front Immunol 2021; 12:736670. [PMID: 34484246 PMCID: PMC8416033 DOI: 10.3389/fimmu.2021.736670] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
High endothelial venules (HEVs) are specialized postcapillary venules composed of cuboidal blood endothelial cells that express high levels of sulfated sialomucins to bind L-Selectin/CD62L on lymphocytes, thereby facilitating their transmigration from the blood into the lymph nodes (LN) and other secondary lymphoid organs (SLO). HEVs have also been identified in human and murine tumors in predominantly CD3+T cell-enriched areas with fewer CD20+B-cell aggregates that are reminiscent of tertiary lymphoid-like structures (TLS). While HEV/TLS areas in human tumors are predominantly associated with increased survival, tumoral HEVs (TU-HEV) in mice have shown to foster lymphocyte-enriched immune centers and boost an immune response combined with different immunotherapies. Here, we discuss the current insight into TU-HEV formation, function, and regulation in tumors and elaborate on the functional implication, opportunities, and challenges of TU-HEV formation for cancer immunotherapy.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sophie Guelfi
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Neurological Surgery, UCSF Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
29
|
Li J, Zheng M, Shimoni O, Banks WA, Bush AI, Gamble JR, Shi B. Development of Novel Therapeutics Targeting the Blood-Brain Barrier: From Barrier to Carrier. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101090. [PMID: 34085418 PMCID: PMC8373165 DOI: 10.1002/advs.202101090] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Indexed: 05/05/2023]
Abstract
The blood-brain barrier (BBB) is a highly specialized neurovascular unit, initially described as an intact barrier to prevent toxins, pathogens, and potentially harmful substances from entering the brain. An intact BBB is also critical for the maintenance of normal neuronal function. In cerebral vascular diseases and neurological disorders, the BBB can be disrupted, contributing to disease progression. While restoration of BBB integrity serves as a robust biomarker of better clinical outcomes, the restrictive nature of the intact BBB presents a major hurdle for delivery of therapeutics into the brain. Recent studies show that the BBB is actively engaged in crosstalk between neuronal and the circulatory systems, which defines another important role of the BBB: as an interfacing conduit that mediates communication between two sides of the BBB. This role has been subject to extensive investigation for brain-targeted drug delivery and shows promising results. The dual roles of the BBB make it a unique target for drug development. Here, recent developments and novel strategies to target the BBB for therapeutic purposes are reviewed, from both barrier and carrier perspectives.
Collapse
Affiliation(s)
- Jia Li
- School of PharmacyHenan UniversityKaifeng475001China
- Centre for Motor Neuron DiseaseDepartment of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie UniversitySydneyNew South Wales2109Australia
| | - Meng Zheng
- Henan‐Macquarie University Joint Center for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
| | - Olga Shimoni
- Institute for Biomedical Materials and DevicesSchool of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneySydneyNew South Wales2007Australia
| | - William A. Banks
- Geriatric Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care System and Division of Gerontology and Geriatric MedicineDepartment of MedicineUniversity of Washington School of MedicineSeattleWA98108USA
| | - Ashley I. Bush
- Melbourne Dementia Research CenterThe Florey Institute for Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoria3052Australia
| | - Jennifer R. Gamble
- Center for the EndotheliumVascular Biology ProgramCentenary InstituteThe University of SydneySydneyNew South Wales2042Australia
| | - Bingyang Shi
- School of PharmacyHenan UniversityKaifeng475001China
- Centre for Motor Neuron DiseaseDepartment of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie UniversitySydneyNew South Wales2109Australia
- Henan‐Macquarie University Joint Center for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
| |
Collapse
|
30
|
Scott EN, Gocher AM, Workman CJ, Vignali DAA. Regulatory T Cells: Barriers of Immune Infiltration Into the Tumor Microenvironment. Front Immunol 2021; 12:702726. [PMID: 34177968 PMCID: PMC8222776 DOI: 10.3389/fimmu.2021.702726] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are key immunosuppressive cells that promote tumor growth by hindering the effector immune response. Tregs utilize multiple suppressive mechanisms to inhibit pro-inflammatory responses within the tumor microenvironment (TME) by inhibition of effector function and immune cell migration, secretion of inhibitory cytokines, metabolic disruption and promotion of metastasis. In turn, Tregs are being targeted in the clinic either alone or in combination with other immunotherapies, in efforts to overcome the immunosuppressive TME and increase anti-tumor effects. However, it is now appreciated that Tregs not only suppress cells intratumorally via direct engagement, but also serve as key interactors in the peritumor, stroma, vasculature and lymphatics to limit anti-tumor immune responses prior to tumor infiltration. We will review the suppressive mechanisms that Tregs utilize to alter immune and non-immune cells outside and within the TME and discuss how these mechanisms collectively allow Tregs to create and promote a physical and biological barrier, resulting in an immune-excluded or limited tumor microenvironment.
Collapse
Affiliation(s)
- Ellen N. Scott
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angela M. Gocher
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Dario A. A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
31
|
Johansson-Percival A, Ganss R. Therapeutic Induction of Tertiary Lymphoid Structures in Cancer Through Stromal Remodeling. Front Immunol 2021; 12:674375. [PMID: 34122434 PMCID: PMC8191417 DOI: 10.3389/fimmu.2021.674375] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 01/01/2023] Open
Abstract
Improving the effectiveness of anti-cancer immunotherapy remains a major clinical challenge. Cytotoxic T cell infiltration is crucial for immune-mediated tumor rejection, however, the suppressive tumor microenvironment impedes their recruitment, activation, maturation and function. Nevertheless, solid tumors can harbor specialized lymph node vasculature and immune cell clusters that are organized into tertiary lymphoid structures (TLS). These TLS support naïve T cell infiltration and intratumoral priming. In many human cancers, their presence is a positive prognostic factor, and importantly, predictive for responsiveness to immune checkpoint blockade. Thus, therapeutic induction of TLS is an attractive concept to boost anti-cancer immunotherapy. However, our understanding of how cancer-associated TLS could be initiated is rudimentary. Exciting new reagents which induce TLS in preclinical cancer models provide mechanistic insights into the exquisite stromal orchestration of TLS formation, a process often associated with a more functional or "normalized" tumor vasculature and fueled by LIGHT/LTα/LTβ, TNFα and CC/CXC chemokine signaling. These emerging insights provide innovative opportunities to induce and shape TLS in the tumor microenvironment to improve immunotherapies.
Collapse
Affiliation(s)
- Anna Johansson-Percival
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Ruth Ganss
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
32
|
Blanchard L, Girard JP. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 2021; 24:719-753. [PMID: 33956259 PMCID: PMC8487881 DOI: 10.1007/s10456-021-09792-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.
Collapse
Affiliation(s)
- Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
33
|
Zhao Y, Ting KK, Coleman P, Qi Y, Chen J, Vadas M, Gamble J. The Tumour Vasculature as a Target to Modulate Leucocyte Trafficking. Cancers (Basel) 2021; 13:cancers13071724. [PMID: 33917287 PMCID: PMC8038724 DOI: 10.3390/cancers13071724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Tumour blood vessels, characterised by abnormal morphology and function, create an immunosuppressive tumour microenvironment via restricting the appropriate leucocyte subsets trafficking. Strategies to trigger phenotypic alteration in tumour vascular system to resemble normal vascular system, named vascular normalisation, promote effective trafficking of leucocytes into tumours through enhancing the interactions between leucocytes and endothelial cells. This review specifically demonstrates how targeting tumour blood vessels modulates the critical steps of leucocyte trafficking. Furthermore, selective regulation of leucocyte subsets trafficking in tumours can be achieved by vasculature-targeting strategies, contributing to improved immunotherapy and thereby delayed tumour progression. Abstract The effectiveness of immunotherapy against solid tumours is dependent on the appropriate leucocyte subsets trafficking and accumulating in the tumour microenvironment (TME) with recruitment occurring at the endothelium. Such recruitment involves interactions between the leucocytes and the endothelial cells (ECs) of the vessel and occurs through a series of steps including leucocyte capture, their rolling, adhesion, and intraluminal crawling, and finally leucocyte transendothelial migration across the endothelium. The tumour vasculature can curb the trafficking of leucocytes through influencing each step of the leucocyte recruitment process, ultimately producing an immunoresistant microenvironment. Modulation of the tumour vasculature by strategies such as vascular normalisation have proven to be efficient in facilitating leucocyte trafficking into tumours and enhancing immunotherapy. In this review, we discuss the underlying mechanisms of abnormal tumour vasculature and its impact on leucocyte trafficking, and potential strategies for overcoming the tumour vascular abnormalities to boost immunotherapy via increasing leucocyte recruitment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| | - Ka Ka Ting
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Paul Coleman
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Yanfei Qi
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia;
| | - Mathew Vadas
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jennifer Gamble
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| |
Collapse
|
34
|
Sobhani N, Tardiel-Cyril DR, Davtyan A, Generali D, Roudi R, Li Y. CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers (Basel) 2021; 13:1440. [PMID: 33809974 PMCID: PMC8005092 DOI: 10.3390/cancers13061440] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have obtained durable responses in many cancers, making it possible to foresee their potential in improving the health of cancer patients. However, immunotherapies are currently limited to a minority of patients and there is a need to develop a better understanding of the basic molecular mechanisms and functions of pivotal immune regulatory molecules. Immune checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and regulatory T (Treg) cells play pivotal roles in hindering the anticancer immunity. Treg cells suppress antigen-presenting cells (APCs) by depleting immune stimulating cytokines, producing immunosuppressive cytokines and constitutively expressing CTLA-4. CTLA-4 molecules bind to CD80 and CD86 with a higher affinity than CD28 and act as competitive inhibitors of CD28 in APCs. The purpose of this review is to summarize state-of-the-art understanding of the molecular mechanisms underlining CTLA-4 immune regulation and the correlation of the ICI response with CTLA-4 expression in Treg cells from preclinical and clinical studies for possibly improving CTLA-4-based immunotherapies, while highlighting the knowledge gap.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Dana Rae Tardiel-Cyril
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Aram Davtyan
- Atomwise, 717 Market St, San Francisco, CA 94103, USA;
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy;
| | - Raheleh Roudi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
35
|
Germain C, Devi-Marulkar P, Knockaert S, Biton J, Kaplon H, Letaïef L, Goc J, Seguin-Givelet A, Gossot D, Girard N, Validire P, Lefèvre M, Damotte D, Alifano M, Lemoine FM, Steele KE, Teillaud JL, Hammond SA, Dieu-Nosjean MC. Tertiary Lymphoid Structure-B Cells Narrow Regulatory T Cells Impact in Lung Cancer Patients. Front Immunol 2021; 12:626776. [PMID: 33763071 PMCID: PMC7983944 DOI: 10.3389/fimmu.2021.626776] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
The presence of tertiary lymphoid structures (TLS) in the tumor microenvironment is associated with better clinical outcome in many cancers. In non-small cell lung cancer (NSCLC), we have previously showed that a high density of B cells within TLS (TLS-B cells) is positively correlated with tumor antigen-specific antibody responses and increased intratumor CD4+ T cell clonality. Here, we investigated the relationship between the presence of TLS-B cells and CD4+ T cell profile in NSCLC patients. The expression of immune-related genes and proteins on B cells and CD4+ T cells was analyzed according to their relationship to TLS-B density in a prospective cohort of 56 NSCLC patients. We observed that tumor-infiltrating T cells showed marked differences according to TLS-B cell presence, with higher percentages of naïve, central-memory, and activated CD4+ T cells and lower percentages of both immune checkpoint (ICP)-expressing CD4+ T cells and regulatory T cells (Tregs) in the TLS-Bhigh tumors. A retrospective study of 538 untreated NSCLC patients showed that high TLS-B cell density was even able to counterbalance the deleterious impact of high Treg density on patient survival, and that TLS-Bhigh Treglow patients had the best clinical outcomes. Overall, the correlation between the density of TLS-Bhigh tumors with early differentiated, activated and non-regulatory CD4+ T cell cells suggest that B cells may play a central role in determining protective T cell responses in NSCLC patients.
Collapse
Affiliation(s)
- Claire Germain
- Sorbonne Université, UMRS 1135, Faculté de Médecine Sorbonne Université, Paris, France.,Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Priyanka Devi-Marulkar
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Samantha Knockaert
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Jérôme Biton
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Hélène Kaplon
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Laïla Letaïef
- Sorbonne Université, UMRS 1135, Faculté de Médecine Sorbonne Université, Paris, France.,Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Jérémy Goc
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Agathe Seguin-Givelet
- Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Thoracic Department, Curie-Montsouris Thorax Institute, Institut Mutualiste Montsouris, Paris, France.,Université Sorbonne Paris Nord, Sorbonne Paris Cité, Faculté de Médecine SMBH, Bobigny, France
| | - Dominique Gossot
- Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Thoracic Department, Curie-Montsouris Thorax Institute, Institut Mutualiste Montsouris, Paris, France
| | - Nicolas Girard
- Oncology Department, Curie-Montsouris Thorax Institute, Institut Curie, Paris, France
| | - Pierre Validire
- Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Marine Lefèvre
- Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Thoracic Department, Curie-Montsouris Thorax Institute, Institut Mutualiste Montsouris, Paris, France.,Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Diane Damotte
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France.,Department of Pathology, Assistance Publique-Hopitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Marco Alifano
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France.,Department of Thoracic Surgery, Assistance Publique-Hopitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - François M Lemoine
- Sorbonne Université, UMRS 1135, Faculté de Médecine Sorbonne Université, Paris, France.,Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Keith E Steele
- Oncology Translational Sciences, AstraZeneca, Gaithersburg, MD, United States
| | - Jean-Luc Teillaud
- Sorbonne Université, UMRS 1135, Faculté de Médecine Sorbonne Université, Paris, France.,Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Scott A Hammond
- Oncology Research, AstraZeneca, Gaithersburg, MD, United States
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne Université, UMRS 1135, Faculté de Médecine Sorbonne Université, Paris, France.,Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| |
Collapse
|
36
|
Milutinovic S, Abe J, Godkin A, Stein JV, Gallimore A. The Dual Role of High Endothelial Venules in Cancer Progression versus Immunity. Trends Cancer 2021; 7:214-225. [PMID: 33132107 PMCID: PMC9213382 DOI: 10.1016/j.trecan.2020.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022]
Abstract
Secondary lymphoid organs (SLOs) are important initiators and regulators of immunity. To carry out this function, the blood vasculature must deliver oxygen and nutrients and recruit circulating lymphocytes into the SLO parenchyma, where they encounter cognate antigen. High endothelial venules (HEVs) are specialised postcapillary venules that specifically serve this function and are found in all SLOs except spleen. It is becoming clear that alterations to HEV network density and/or morphology can result in immune activation or, as recently implicated, in providing an exit route for tumour cell dissemination and metastases. In this review, the structural plasticity of HEVs, the regulatory pathways underpinning this plasticity, and the relevance of these pathways to cancer progression will be discussed.
Collapse
Affiliation(s)
- Stefan Milutinovic
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Andrew Godkin
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Awen Gallimore
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
37
|
Dieu-Nosjean MC. Tumor-Associated Tertiary Lymphoid Structures: A Cancer Biomarker and a Target for Next-generation Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:51-68. [PMID: 34664233 DOI: 10.1007/978-3-030-73119-9_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The different forms of lymphoid organization that coexist in our bodies appeared at distinct time points during the evolution of the animal kingdom. Some of these forms are constitutive, either in fully dedicated organs, such as lymph nodes, or in tissue interfacing with the external environment, such as mucosal-associated lymphoid tissues. Others, known as tertiary lymphoid structures (TLS), are selectively induced in response to inflammation in any peripheral tissues and organs. In this chapter, we discuss the functional interest of each of these lymphoid organizations under different physiopathological conditions. In the context of cancer, recent findings have identified TLS formation as a hallmark of active T- and B-cell immune responses against tumors. TLS are thus a powerful prognostic factor in nearly all solid cancers, which must be taken into account along with the tumor microenvironment. The presence of TLS also predicts the response to immunotherapy including immune checkpoint blockade. With tumor-associated TLS now a key target for the next generation of immunotherapy, this chapter discusses their potential therapeutic manipulations in oncology.
Collapse
Affiliation(s)
- Marie-Caroline Dieu-Nosjean
- Sorbonne Université, UMRS1135, Paris, France. .,INSERM U1135, Paris, France. .,Laboratory "Immune Microenvironment and Immunotherapy", Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), UMRS 1135 Sorbonne Université, INSERM U1135, Faculté de Médecine Sorbonne Université, Paris, France.
| |
Collapse
|
38
|
Gulinac M, Dikov D, Lichev S, Velikova T. Current concept for tertiary lymphoid structures in urothelial carcinoma of the bladder: a literature review and our experience. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2020; 9:64-72. [PMID: 33489474 PMCID: PMC7811926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Bladder carcinoma (BC) is one of the most common malignancies of the urinary system in developed countries, with a high number of recurrences. The secondary lymphoid organs (SLO) are crucial for initiating the adaptive immune response. They are developed as a part of a genetically preprogrammed process during embryogenesis. However, SLO's organogenesis can be reduplicated de novo in other tissues by a process termed lymphoid neo-genesis, giving rise to tertiary lymphoid structures (TLS). These well-organized lymphoid structures in cancer are essential modulators of cancer immunologic response, and the histological examination of TLS gave a new strategy for cancer immunotherapy. This review explores the biological and histological characteristics of TLS in muscle non-invasive and invasive BC.
Collapse
Affiliation(s)
- Milena Gulinac
- Department of General and Clinical Pathology, Medical University of PlovdivBulgaria
| | - Dorian Dikov
- Grand Hospital de l’Este FrancilienJossigny, France
| | | | - Tsvetelina Velikova
- Department of Clinical Immunology, Medical University of Sofia, Bulgaria/University Hospital LozenetzSofia, Bulgaria
| |
Collapse
|
39
|
Pires A, Greenshields-Watson A, Jones E, Smart K, Lauder SN, Somerville M, Milutinovic S, Kendrick H, Hindley JP, French R, Smalley MJ, Watkins WJ, Andrews R, Godkin A, Gallimore A. Immune Remodeling of the Extracellular Matrix Drives Loss of Cancer Stem Cells and Tumor Rejection. Cancer Immunol Res 2020; 8:1520-1531. [PMID: 33023965 PMCID: PMC7611107 DOI: 10.1158/2326-6066.cir-20-0070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022]
Abstract
The nature of the tumor microenvironment (TME) influences the ability of tumor-specific T cells to control tumor growth. In this study, we performed an unbiased comparison of the TME of regulatory T-cell (Treg)-replete and Treg-depleted carcinogen-induced tumors, including Treg-depleted responding (regressing) and non-responding (growing) tumors. This analysis revealed an inverse relationship between extracellular matrix (ECM) and T-cell infiltrates where responding tumors were T-cell rich and ECM poor, whereas the converse was observed in non-responder tumors. For this reason, we hypothesized that the ECM acted as a barrier to successful T-cell infiltration and tumor rejection. However, further experiments revealed that this was not the case but instead showed that an effective T-cell response dramatically altered the density of ECM in the TME. Along with loss of ECM and high numbers of infiltrating T cells, responder tumors were distinguished by the development of lymphatic and blood vessel networks with specialized immune function. ECM-rich tumors exhibited a stem cell-like gene expression profile and superior tumor-initiating capacity, whereas such features were absent in responder tumors. Overall, these findings define an extended role for an effective immune response, not just in direct killing of tumor cells but in widescale remodeling of the TME to favor loss of ECM, elimination of cancer stem cells, and propagation of adaptive immunity.
Collapse
Affiliation(s)
- Ana Pires
- Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, University Hospital of Wales, Cardiff, United Kingdom.
| | - Alexander Greenshields-Watson
- Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, University Hospital of Wales, Cardiff, United Kingdom
| | - Emma Jones
- Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, University Hospital of Wales, Cardiff, United Kingdom
| | - Kathryn Smart
- Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, University Hospital of Wales, Cardiff, United Kingdom
| | - Sarah N Lauder
- Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, University Hospital of Wales, Cardiff, United Kingdom
| | - Michelle Somerville
- Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, University Hospital of Wales, Cardiff, United Kingdom
| | - Stefan Milutinovic
- Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, University Hospital of Wales, Cardiff, United Kingdom
| | - Howard Kendrick
- European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, United Kingdom
| | - James P Hindley
- Indoor Biotechnologies, Vision Court, Cardiff, United Kingdom
| | - Rhiannon French
- European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, United Kingdom
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, United Kingdom
| | - William J Watkins
- Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, University Hospital of Wales, Cardiff, United Kingdom
| | - Robert Andrews
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Andrew Godkin
- Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, University Hospital of Wales, Cardiff, United Kingdom
| | - Awen Gallimore
- Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
40
|
Manipulation of immune‒vascular crosstalk: new strategies towards cancer treatment. Acta Pharm Sin B 2020; 10:2018-2036. [PMID: 33304777 PMCID: PMC7714955 DOI: 10.1016/j.apsb.2020.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor vasculature is characterized by aberrant structure and function, resulting in immune suppressive profiles of tumor microenvironment through limiting immune cell infiltration into tumors, endogenous immune surveillance and immune cell function. Vascular normalization as a novel therapeutic strategy tends to prune some of the immature blood vessels and fortify the structure and function of the remaining vessels, thus improving immune stimulation and the efficacy of immunotherapy. Interestingly, the presence of "immune‒vascular crosstalk" enables the formation of a positive feedback loop between vascular normalization and immune reprogramming, providing the possibility to develop new cancer therapeutic strategies. The applications of nanomedicine in vascular-targeting therapy in cancer have gained increasing attention due to its specific physical and chemical properties. Here, we reviewed the recent advances of effective routes, especially nanomedicine, for normalizing tumor vasculature. We also summarized the development of enhancing nanoparticle-based anticancer drug delivery via the employment of transcytosis and mimicking immune cell extravasation. This review explores the potential to optimize nanomedicine-based therapeutic strategies as an alternative option for cancer treatment.
Collapse
|
41
|
Windsperger K, Vondra S, Lackner AI, Kunihs V, Haslinger P, Meinhardt G, Dietrich B, Dekan S, Fiala C, Knöfler M, Saleh L, Pollheimer J. Densities of decidual high endothelial venules correlate with T-cell influx in healthy pregnancies and idiopathic recurrent pregnancy losses. Hum Reprod 2020; 35:2467-2477. [PMID: 32940686 DOI: 10.1093/humrep/deaa234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Do high endothelial venules (HEVs) appear in the uterus of healthy and pathological pregnancies? SUMMARY ANSWER Our study reveals that HEVs are present in the non-pregnant endometrium and decidua parietalis (decP) but decline upon placentation in decidua basalis (decB) and are less abundant in decidual tissues from idiopathic, recurrent pregnancy losses (RPLs). WHAT IS KNOWN ALREADY RPL is associated with a compromised decidual vascular phenotype. STUDY DESIGN, SIZE, DURATION Endometrial (n = 29) and first trimester decidual (n = 86, 6-12th week of gestation) tissue samples obtained from endometrial biopsies or elective pregnancy terminations were used to determine the number of HEVs and T cells. In addition, quantification of HEVs and immune cells was performed in a cohort of decidual tissues from RPL (n = 25). PARTICIPANTS/MATERIALS, SETTING, METHODS Position and frequency of HEVs were determined in non-pregnant endometrial as well as decidual tissue sections using immunofluorescence (IF) staining with antibodies against E-selectin, intercellular adhesion molecule, von Willebrand factor, ephrin receptor B4, CD34 and a carbohydrate epitope specific to HEVs (MECA-79). Immune cell distribution and characterization was determined by antibodies recognizing CD45 and CD3 by IF staining- and flow cytometry-based analyses. Antibodies against c-c motif chemokine ligand 21 (CCL21) and lymphotoxin-beta were used in IF staining and Western blot analyses of decidual tissues. MAIN RESULTS AND THE ROLE OF CHANCE Functional HEVs are found in high numbers in the secretory endometrium and decP but decline in numbers upon placentation in decB (P ≤ 0.001). Decidua parietalis tissues contain higher levels of the HEV-maintaining factor lymphotoxin beta and decP-associated HEVs also express CCL21 (P ≤ 0.05), a potent T-cell chemoattractant. Moreover, there is a positive correlation between the numbers of decidual HEVs and the abundance of CD3+ cells in decidual tissue sections (P ≤ 0.001). In-depth analysis of a RPL tissue collection revealed a decreased decB (P ≤ 0.01) and decP (P ≤ 0.01) HEV density as well as reduced numbers of T cells in decB (P ≤ 0.05) and decP (P ≤ .001) sections when compared with age-matched healthy control samples. Using receiver-operating characteristics analyses, we found significant predictive values for the ratios of CD3/CD45 (P < 0.001) and HEVs/total vessels (P < 0.001) for the occurrence of RPL. LIMITATIONS, REASONS FOR CAUTION Analyses were performed in first trimester decidual tissues from elective terminations of pregnancy or non-pregnant endometrium samples from patients diagnosed with non-endometrial pathologies including cervical polyps, ovarian cysts and myomas. First trimester decidual tissues may include pregnancies which potentially would have developed placental disorders later in gestation. In addition, our cohort of non-pregnant endometrium may not reflect the endometrial vascular phenotype of healthy women. Finally, determination of immune cell distributions in the patient cohorts studied may be influenced by the different modes of tissue derivation. Pregnancy terminations were performed by surgical aspiration, endometrial tissues were obtained by biopsies and RPL tissues were collected after spontaneous loss of pregnancy. WIDER IMPLICATIONS OF THE FINDINGS In this study, we propose an inherent mechanism by which the endometrium and in particular the decidua control T-cell recruitment. By demonstrating reduced HEV densities and numbers of T cells in decB and decP tissues of RPL samples we further support previous findings reporting an altered vascular phenotype in early pregnancy loss. Altogether, the findings provide important information to further decipher the etiologies of unexplained RPL. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Austrian Science Fund (P31470 B30 to M.K.) and by the Austrian National Bank (17613ONB to J.P.). There are no competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Karin Windsperger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Andreas Ian Lackner
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Victoria Kunihs
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Peter Haslinger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Gudrun Meinhardt
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Bianca Dietrich
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Sabine Dekan
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Leila Saleh
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Lauder SN, Milutinovic S, Pires A, Smart K, Godkin A, Gallimore A. Using methylcholanthrene-induced fibrosarcomas to study tumor immunology. Methods Cell Biol 2020; 163:59-75. [PMID: 33785169 DOI: 10.1016/bs.mcb.2020.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mouse models of cancer are essential in furthering our understanding both of the mechanisms that drive tumor development and the immune response that develops in parallel, and also in providing a platform for testing novel anti-cancer therapies. The majority of solid tumor models available rely on the injection of existing cancer cell lines into naïve hosts which, while providing quick and reproducible model systems, typically lack the development of a tumor microenvironment that recapitulates those seen in human cancers. Administration of the carcinogen 3-methylcholanthrene (MCA), allows tumors to develop in situ, forming a tumor microenvironment with an established stroma and vasculature. This article provides a detailed set of protocols for the administration of MCA into mice and the subsequent monitoring of tumors. Protocols are also provided for some of the routinely used downstream applications that can be used for MCA tumors.
Collapse
Affiliation(s)
- S N Lauder
- Division of Infection Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - S Milutinovic
- Division of Infection Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - A Pires
- Division of Infection Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - K Smart
- Division of Infection Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - A Godkin
- Division of Infection Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - A Gallimore
- Division of Infection Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.
| |
Collapse
|
43
|
Lauder SN, Smart K, Kersemans V, Allen D, Scott J, Pires A, Milutinovic S, Somerville M, Smart S, Kinchesh P, Lopez-Guadamillas E, Hughes E, Jones E, Scurr M, Godkin A, Friedman LS, Vanhaesebroeck B, Gallimore A. Enhanced antitumor immunity through sequential targeting of PI3Kδ and LAG3. J Immunother Cancer 2020; 8:e000693. [PMID: 33093155 PMCID: PMC7583804 DOI: 10.1136/jitc-2020-000693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Despite striking successes, immunotherapies aimed at increasing cancer-specific T cell responses are unsuccessful in most patients with cancer. Inactivating regulatory T cells (Treg) by inhibiting the PI3Kδ signaling enzyme has shown promise in preclinical models of tumor immunity and is currently being tested in early phase clinical trials in solid tumors. METHODS Mice bearing 4T1 mammary tumors were orally administered a PI3Kδ inhibitor (PI-3065) daily and tumor growth, survival and T cell infiltrate were analyzed in the tumor microenvironment. A second treatment schedule comprised PI3Kδ inhibitor with anti-LAG3 antibodies administered sequentially 10 days later. RESULTS As observed in human immunotherapy trials with other agents, immunomodulation by PI3Kδ-blockade led to 4T1 tumor regressor and non-regressor mice. Tumor infiltrating T cells in regressors were metabolically fitter than those in non-regressors, with significant enrichments of antigen-specific CD8+ T cells, T cell factor 1 (TCF1)+ T cells and CD69- T cells, compatible with induction of a sustained tumor-specific T cell response. Treg numbers were significantly reduced in both regressor and non-regressor tumors compared with untreated tumors. The remaining Treg in non-regressor tumors were however significantly enriched with cells expressing the coinhibitory receptor LAG3, compared with Treg in regressor and untreated tumors. This striking difference prompted us to sequentially block PI3Kδ and LAG3. This combination enabled successful therapy of all mice, demonstrating the functional importance of LAG3 in non-regression of tumors on PI3Kδ inhibition therapy. Follow-up studies, performed using additional cancer cell lines, namely MC38 and CT26, indicated that a partial initial response to PI3Kδ inhibition is an essential prerequisite to a sequential therapeutic benefit of anti-LAG3 antibodies. CONCLUSIONS These data indicate that LAG3 is a key bottleneck to successful PI3Kδ-targeted immunotherapy and provide a rationale for combining PI3Kδ/LAG3 blockade in future clinical studies.
Collapse
Affiliation(s)
- Sarah Nicol Lauder
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Kathryn Smart
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | | | - Danny Allen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Jake Scott
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Ana Pires
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Stefan Milutinovic
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Michelle Somerville
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Sean Smart
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Paul Kinchesh
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | | | - Ellyn Hughes
- Cancer Biomarker Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Emma Jones
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Martin Scurr
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | - Andrew Godkin
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| | | | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Awen Gallimore
- Infection and Immunity, Cardiff University Department of Medicine, Cardiff, UK
| |
Collapse
|
44
|
Zhao Y, Li J, Ting KK, Chen J, Coleman P, Liu K, Wan L, Moller T, Vadas MA, Gamble JR. The VE-Cadherin/β-catenin signalling axis regulates immune cell infiltration into tumours. Cancer Lett 2020; 496:1-15. [PMID: 32991950 DOI: 10.1016/j.canlet.2020.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022]
Abstract
Vascular normalisation, the process that reverses the structural and functional abnormalities seen in tumour-associated vessels, is also accompanied by changes in leucocyte trafficking. Our previous studies have shown the normalisation effects of the agent CD5-2 which acts to stabilise VE-Cadherin leading to increased penetration of CD8+ T cells but decreased infiltration of neutrophils (CD11b+Gr1hi) into tumour parenchyma. In the present study, we demonstrate that VE-Cadherin stabilisation through CD5-2 treatment of purified endothelial cells (ECs) results in a similar leucocyte-selective regulation of transmigration, suggesting the existence of an endothelial specific intrinsic mechanism. Further, we show by RNA sequencing (RNA-seq)-based transcriptomic analysis, that treatment of ECs with CD5-2 regulates chemokines known to be involved in leucocyte transmigration, including upregulation of CCL2 and CXCL10 that facilitate CD8+ T cell transmigration. Both in vitro and in vivo mechanistic studies revealed that the increased CCL2 expression was dependent on expression of VE-Cadherin and downstream activation of the AKT/GSK3β/β-catenin/TCF4 signalling pathway. CD5-2 treatment also contributed to the reorganisation of the cytoskeleton, inducing reorganisation of stress fibres to circumferential actin, which previously has been described as associated with the stabilisation of the endothelial barrier, and amplification of the transcellular migration of CD8+ T cells. Thus, we propose that promotion of endothelial junctional integrity during vascular normalisation not only inhibits vascular leak but also resets the endothelial dependent regulation of immune cell infiltration.
Collapse
Affiliation(s)
- Yang Zhao
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, 2050, Australia
| | - Jia Li
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, 2050, Australia
| | - Ka Ka Ting
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, 2050, Australia
| | - Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute, The University of Sydney, Sydney, 2050, Australia
| | - Paul Coleman
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, 2050, Australia
| | - Ken Liu
- Liver Injury and Cancer Program, Centenary Institute, The University of Sydney, Sydney, 2050, Australia
| | - Li Wan
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, 2050, Australia
| | | | - Mathew A Vadas
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, 2050, Australia
| | - Jennifer R Gamble
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, 2050, Australia.
| |
Collapse
|
45
|
Nagl L, Horvath L, Pircher A, Wolf D. Tumor Endothelial Cells (TECs) as Potential Immune Directors of the Tumor Microenvironment - New Findings and Future Perspectives. Front Cell Dev Biol 2020; 8:766. [PMID: 32974337 PMCID: PMC7466447 DOI: 10.3389/fcell.2020.00766] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
The tumor microenvironment (TME) plays a central role in cancer development and progression. It represents a complex network of cancer cell (sub-)clones and a variety of stromal cell types. Recently, new technology platforms shed light on the cellular composition of the TME at very high resolution and identified a complex landscape of multi-lineage immune cells (e.g., T and B lymphocytes, myeloid cells, and dendritic cells), cancer associated fibroblasts (CAF) and tumor endothelial cells (TECs). A growing body of evidence suggests that metabolically, genetically and on their transcriptomic profile TECs exhibit unique phenotypic and functional characteristics when compared to normal endothelial cells (NECs). Furthermore, the functional role of TECs is multifaceted as they are not only relevant for promoting tumor angiogenesis but have also evolved as key mediators of immune regulation in the TME. Regulatory mechanisms are complex and profoundly impact peripheral immune cell trafficking into the tumor compartment by acting as major gatekeepers of cellular transmigration. Moreover, TECs are associated with T cell priming, activation and proliferation by acting as antigen-presenting cells themselves. TECs are also essential for the formation of tertiary lymphoid structures (TLS) within the tumor, which have recently been associated with treatment response to checkpoint antibody therapy. Further essential characteristics of TECs compared to NECs are their high proliferative potential as well as greatly altered gene expression profile (e.g., upregulation of pro-angiogenic, extracellular matrix remodeling, and stemness genes), which results in enhanced secretion of immunomodulatory cytokines and altered cell-surface receptors [e.g., major histocompatibility complex (MHC) and immune checkpoints]. The TEC phenotype may be rooted in an aggressive tumor micro-milieu based on cellular stress via hypoxia and reactive oxygen species (ROS). Vice versa TECs might modulate TME immunogenicity thereby fostering cancer-associated immune suppression. This review aims to elucidate the currently emergent pathophysiological aspects of TECs with a particular focus on their potential role as regulators of immune cell function in the TME. It is a main future challenge to deeply characterize the phenotypic and functional profile of TECs to illuminate their complex role within the TME. The ultimate goal is the identification of TEC-specific drug targets to improve cancer (immuno-)therapy.
Collapse
Affiliation(s)
- Laurenz Nagl
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Horvath
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pircher
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria.,Department of Oncology, Hematology, Rheumatology and Immunoncology, University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
46
|
Cui J, Zhang Q, Song Q, Wang H, Dmitriev P, Sun MY, Cao X, Wang Y, Guo L, Indig IH, Rosenblum JS, Ji C, Cao D, Yang K, Gilbert MR, Yao Y, Zhuang Z. Targeting hypoxia downstream signaling protein, CAIX, for CAR T-cell therapy against glioblastoma. Neuro Oncol 2020; 21:1436-1446. [PMID: 31276594 DOI: 10.1093/neuonc/noz117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Glioblastoma survival remains unchanged despite continuing therapeutic innovation. Herein, we aim to (i) develop chimeric antigen receptor (CAR) T cells with a specificity to a unique antigen, carbonic anhydrase IX (CAIX), which is expressed in the hypoxic microenvironment characteristic of glioblastoma, and (ii) demonstrate its efficacy with limited off-target effects. METHODS First we demonstrated expression of CAIX in patient-derived glioblastoma samples and available databases. CAR T cells were generated against CAIX and efficacy was assessed in 4 glioblastoma cell lines and 2 glioblastoma stem cell lines. Cytotoxicity of anti-CAIX CAR T cells was assessed via interferon gamma, tumor necrosis factor alpha, and interleukin-2 levels when co-cultured with tumor cells. Finally, we assessed efficacy of direct intratumoral injection of the anti-CAIX CAR T cells on an in vivo xenograft mouse model using the U251 luciferase cell line. Tumor infiltrating lymphocyte analyses were performed. RESULTS We confirm that CAIX is highly expressed in glioblastoma from patients. We demonstrate that CAIX is a suitable target for CAR T-cell therapy using anti-CAIX CAR T cells against glioblastoma in vitro and in vivo. In our mouse model, a 20% cure rate was observed without detectable systemic effects. CONCLUSIONS By establishing the specificity of CAIX under hypoxic conditions in glioblastoma and highlighting its efficacy as a target for CAR T-cell therapy, our data suggest that anti-CAIX CAR T may be a promising strategy to treat glioblastoma. Direct intratumoral injection increases anti-CAIX CAR T-cell potency while limiting its off-target effects.
Collapse
Affiliation(s)
- Jing Cui
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Qi Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Qi Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pauline Dmitriev
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mitchell Y Sun
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaoyu Cao
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yang Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Liemei Guo
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Iris H Indig
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jared S Rosenblum
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chunxia Ji
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
| | - Dongqing Cao
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
| | - Kaiyong Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Oaiscell Biotechnologies Inc, Bethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yu Yao
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Garner H, de Visser KE. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat Rev Immunol 2020; 20:483-497. [PMID: 32024984 DOI: 10.1038/s41577-019-0271-z] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Metastatic disease is responsible for approximately 90% of cancer deaths. For successful dissemination and metastasis, cancer cells must evade detection and destruction by the immune system. This process is enabled by factors secreted by the primary tumour that shape both the intratumoural microenvironment and the systemic immune landscape. Here, we review the evidence of aberrant immune cell crosstalk in metastasis formation and the role that primary tumours play in hijacking these interactions in order to enhance their metastatic potential. Moreover, we highlight the intriguing parallels between the inflammatory pathways underlying inflammatory disorders and cancer progression.
Collapse
Affiliation(s)
- Hannah Garner
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Karin E de Visser
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands. .,Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands.
| |
Collapse
|
48
|
Gloger M, Menzel L, Grau M, Vion AC, Anagnostopoulos I, Zapukhlyak M, Gerlach K, Kammertöns T, Hehlgans T, Zschummel M, Lenz G, Gerhardt H, Höpken UE, Rehm A. Lymphoma Angiogenesis Is Orchestrated by Noncanonical Signaling Pathways. Cancer Res 2020; 80:1316-1329. [PMID: 31932457 DOI: 10.1158/0008-5472.can-19-1493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/04/2019] [Accepted: 01/08/2020] [Indexed: 11/16/2022]
Abstract
Tumor-induced remodeling of the microenvironment relies on the formation of blood vessels, which go beyond the regulation of metabolism, shaping a maladapted survival niche for tumor cells. In high-grade B-cell lymphoma, angiogenesis correlates with poor prognosis, but attempts to target established proangiogenic pathways within the vascular niche have been inefficient. Here, we analyzed Myc-driven B-cell lymphoma-induced angiogenesis in mice. A few lymphoma cells were sufficient to activate the angiogenic switch in lymph nodes. A unique morphology of dense microvessels emerged without obvious tip cell guidance and reliance on blood endothelial cell (BEC) proliferation. The transcriptional response of BECs was inflammation independent. Conventional HIF1α or Notch signaling routes prevalent in solid tumors were not activated. Instead, a nonconventional hypersprouting morphology was orchestrated by lymphoma-provided VEGFC and lymphotoxin (LT). Interference with VEGF receptor-3 and LTβ receptor signaling pathways abrogated lymphoma angiogenesis, thus revealing targets to block lymphomagenesis. SIGNIFICANCE: In lymphoma, transcriptomes and morphogenic patterns of the vasculature are distinct from processes in inflammation and solid tumors. Instead, LTβR and VEGFR3 signaling gain leading roles and are targets for lymphomagenesis blockade.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/80/6/1316/F1.large.jpg.
Collapse
Affiliation(s)
- Marleen Gloger
- Translational Tumorimmunology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Lutz Menzel
- Translational Tumorimmunology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael Grau
- Department of Medicine A, and Cluster of Excellence EXC 1003, University Hospital Münster, Münster, Germany
| | - Anne-Clemence Vion
- Integrative Vascular Biology Lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Myroslav Zapukhlyak
- Department of Medicine A, and Cluster of Excellence EXC 1003, University Hospital Münster, Münster, Germany
| | - Kerstin Gerlach
- Translational Tumorimmunology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Thomas Kammertöns
- Institute of Immunology, Charité -University Medicine Berlin, Berlin, Germany
| | - Thomas Hehlgans
- Regensburg Center for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| | - Maria Zschummel
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Georg Lenz
- Department of Medicine A, and Cluster of Excellence EXC 1003, University Hospital Münster, Münster, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology Lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Uta E Höpken
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | - Armin Rehm
- Translational Tumorimmunology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
49
|
Jeucken KCM, Koning JJ, Mebius RE, Tas SW. The Role of Endothelial Cells and TNF-Receptor Superfamily Members in Lymphoid Organogenesis and Function During Health and Inflammation. Front Immunol 2019; 10:2700. [PMID: 31824495 PMCID: PMC6879661 DOI: 10.3389/fimmu.2019.02700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/04/2019] [Indexed: 01/02/2023] Open
Abstract
Lymph nodes (LNs) are crucial for the orchestration of immune responses. LN reactions depend on interactions between incoming and local immune cells, and stromal cells. To mediate these cellular interactions an organized vascular network within the LN exists. In general, the LN vasculature can be divided into two components: blood vessels, which include the specialized high endothelial venules that recruit lymphocytes from the bloodstream, and lymphatic vessels. Signaling via TNF receptor (R) superfamily (SF) members has been implicated as crucial for the development and function of LNs and the LN vasculature. In recent years the role of cell-specific signaling of TNFRSF members in different endothelial cell (EC) subsets and their roles in development and maintenance of lymphoid organs has been elucidated. Here, we discuss recent insights into EC-specific TNFRSF member signaling and highlight its importance in different EC subsets in LN organogenesis and function during health, and in lymphocyte activation and tertiary lymphoid structure formation during inflammation.
Collapse
Affiliation(s)
- Kim C M Jeucken
- Amsterdam Rheumatology and Immunology Center (ARC), Department of Rheumatology and Clinical Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center (ARC), Department of Rheumatology and Clinical Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
50
|
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 2019; 77:1745-1770. [PMID: 31690961 PMCID: PMC7190605 DOI: 10.1007/s00018-019-03351-7] [Citation(s) in RCA: 1019] [Impact Index Per Article: 169.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Tumor vascularization occurs through several distinct biological processes, which not only vary between tumor type and anatomic location, but also occur simultaneously within the same cancer tissue. These processes are orchestrated by a range of secreted factors and signaling pathways and can involve participation of non-endothelial cells, such as progenitors or cancer stem cells. Anti-angiogenic therapies using either antibodies or tyrosine kinase inhibitors have been approved to treat several types of cancer. However, the benefit of treatment has so far been modest, some patients not responding at all and others acquiring resistance. It is becoming increasingly clear that blocking tumors from accessing the circulation is not an easy task to accomplish. Tumor vessel functionality and gene expression often differ vastly when comparing different cancer subtypes, and vessel phenotype can be markedly heterogeneous within a single tumor. Here, we summarize the current understanding of cellular and molecular mechanisms involved in tumor angiogenesis and discuss challenges and opportunities associated with vascular targeting.
Collapse
Affiliation(s)
- Roberta Lugano
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Mohanraj Ramachandran
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Anna Dimberg
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|