1
|
Liu Z, Wu B, Shi X, Zhou J, Huang H, Li Z, Yang M. Immune profiling of premalignant lesions in patients with Peutz-Jeghers syndrome. United European Gastroenterol J 2024. [PMID: 39174496 DOI: 10.1002/ueg2.12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Peutz-Jeghers syndrome (PJS), is a rare autosomal dominant hereditary disease characterized by an elevated risk of various cancers. Serine/Threonine Kinase 11 (STK11) gene is a major tumor suppressor crucial for immune evasion with and beyond tumorigenic cells. It has garnered increasing attention in the realm of oncology treatment, particularly in the context of immunotherapy development. OBJECTIVE This study aimed to assess the suitability of polyps obtained from individuals with PJS, resulting from germline STK11 deficiency, for immunotherapy. Additionally, we seek to identify potential shared mechanisms related to immune evasion between PJS polyps and cancers. To achieve this, we examined PJS polyps alongside familial adenomatous polyposis (FAP) and sporadic polyps. METHODS Polyps were compared among themselves and with either the paracancerous tissues or colon cancers. Pathological and gene expression profiling approaches were employed to characterize infiltrating immune cells and assess the expression of immune checkpoint genes. RESULTS Our findings revealed that PJS polyps exhibited a closer resemblance to cancer tissues than other polyps in terms of their immune microenvironment. Notably, PJS polyps displayed heightened expression of the immune checkpoint gene CD80 and an accumulation of myeloid cells, particularly myeloid-derived suppressor cells (MDSCs). CONCLUSION The findings suggest an immunobiological foundation for the increased cancer susceptibility in PJS patients, paving the way for potential immune therapy applications in this population. Furthermore, utilizing PJS as a model may facilitate the exploration of immune evasion mechanisms, benefiting both PJS and cancer patients.
Collapse
Affiliation(s)
- Zhongyue Liu
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boda Wu
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junfeng Zhou
- Endoscopic Medical Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Huang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mei Yang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Liu YG, Peng HR, Ren RW, Zhao P, Zhao LJ. CD11b maintains West Nile virus replication through modulation of immune response in human neuroblastoma cells. Virol J 2024; 21:158. [PMID: 39004752 PMCID: PMC11247799 DOI: 10.1186/s12985-024-02427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) is a rapidly spreading mosquito-borne virus accounted for neuroinvasive diseases. An insight into WNV-host factors interaction is necessary for development of therapeutic approaches against WNV infection. CD11b has key biological functions and been identified as a therapeutic target for several human diseases. The purpose of this study was to determine whether CD11b was implicated in WNV infection. METHODS SH-SY5Y cells with and without MEK1/2 inhibitor U0126 or AKT inhibitor MK-2206 treatment were infected with WNV. CD11b mRNA levels were assessed by real-time PCR. WNV replication and expression of stress (ATF6 and CHOP), pro-inflammatory (TNF-α), and antiviral (IFN-α, IFN-β, and IFN-γ) factors were evaluated in WNV-infected SH-SY5Y cells with CD11b siRNA transfection. Cell viability was determined by MTS assay. RESULTS CD11b mRNA expression was remarkably up-regulated by WNV in a time-dependent manner. U0126 but not MK-2206 treatment reduced the CD11b induction by WNV. CD11b knockdown significantly decreased WNV replication and protected the infected cells. CD11b knockdown markedly increased TNF-α, IFN-α, IFN-β, and IFN-γ mRNA expression induced by WNV. ATF6 mRNA expression was reduced upon CD11b knockdown following WNV infection. CONCLUSION These results demonstrate that CD11b is involved in maintaining WNV replication and modulating inflammatory as well as antiviral immune response, highlighting the potential of CD11b as a target for therapeutics for WNV infection.
Collapse
Affiliation(s)
- Yan-Gang Liu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 800 Xiang-Yin Road, Shanghai, 200433, China
| | - Hao-Ran Peng
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 800 Xiang-Yin Road, Shanghai, 200433, China
| | - Rui-Wen Ren
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou, China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 800 Xiang-Yin Road, Shanghai, 200433, China.
| | - Lan-Juan Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 800 Xiang-Yin Road, Shanghai, 200433, China.
| |
Collapse
|
3
|
Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22:316. [PMID: 36229883 PMCID: PMC9558410 DOI: 10.1186/s12935-022-02736-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent digestive cancers, ranking the 2nd cause of cancer-related fatality worldwide. The worldwide burden of CRC is predicted to rise by 60% by 2030. Environmental factors drive, first, inflammation and hence, cancer incidence increase. Main The Notch-signaling system is an evolutionarily conserved cascade, has role in the biological normal developmental processes as well as malignancies. Long non-coding RNAs (LncRNAs) have become major contributors in the advancement of cancer by serving as signal pathways regulators. They can control gene expression through post-translational changes, interactions with micro-RNAs or down-stream effector proteins. Recent emerging evidence has emphasized the role of lncRNAs in controlling Notch-signaling activity, regulating development of several cancers including CRC. Conclusion Notch-associated lncRNAs might be useful prognostic biomarkers or promising potential therapeutic targets for CRC treatment. Therefore, here-in we will focus on the role of “Notch-associated lncRNAs in CRC” highlighting “the impact of Notch-associated lncRNAs as player for cancer induction and/or progression.” Graphical Abstract ![]()
Collapse
Affiliation(s)
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
4
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 348] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
5
|
Context Matters: NOTCH Signatures and Pathway in Cancer Progression and Metastasis. Cells 2021; 10:cells10010094. [PMID: 33430387 PMCID: PMC7827494 DOI: 10.3390/cells10010094] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway is a critical player in embryogenesis but also plays various roles in tumorigenesis, with both tumor suppressor and oncogenic activities. Mutations, deletions, amplifications, or over-expression of Notch receptors, ligands, and a growing list of downstream Notch-activated genes have by now been described for most human cancer types. Yet, it often remains unclear what may be the functional impact of these changes for tumor biology, initiation, and progression, for cancer therapy, and for personalized medicine. Emerging data indicate that Notch signaling can also contribute to increased aggressive properties such as invasion, tumor heterogeneity, angiogenesis, or tumor cell dormancy within solid cancer tissues; especially in epithelial cancers, which are in the center of this review. Notch further supports the “stemness” of cancer cells and helps define the stem cell niche for their long-term survival, by integrating the interaction between cancer cells and the cells of the tumor microenvironment (TME). The complexity of Notch crosstalk with other signaling pathways and its roles in cell fate and trans-differentiation processes such as epithelial-to-mesenchymal transition (EMT) point to this pathway as a decisive player that may tip the balance between tumor suppression and promotion, differentiation and invasion. Here we not only review the literature, but also explore genomic databases with a specific focus on Notch signatures, and how they relate to different stages in tumor development. Altered Notch signaling hereby plays a key role for tumor cell survival and coping with a broad spectrum of vital issues, contributing to failed therapies, poor patient outcome, and loss of lives.
Collapse
|
6
|
Database Mining of Genes of Prognostic Value for the Prostate Adenocarcinoma Microenvironment Using the Cancer Gene Atlas. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5019793. [PMID: 32509861 PMCID: PMC7251429 DOI: 10.1155/2020/5019793] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
Background Prostate adenocarcinoma (PRAD) is a common malignant tumor in elderly men. Our research uses The Cancer Gene Atlas (TCGA) database to find potential related genes for predicting the prognosis of patients with PRAD. Methods We downloaded gene expression profiles and clinical sample information from TCGA for 490 patients with PRAD (patient age: 41-78 years). We calculated stromal and immune scores using the ESTIMATE algorithm to predict the level of stromal and immune cell infiltration. We categorized patients with PRAD in TCGA into high and low score arrays according to their median immune/stromal scores and identified differentially expressed genes (DEGs) that were significantly correlated with the prognosis of PRAD. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. The association between DEGs and overall survival was investigated by weighted Kaplan–Meier survival analysis and multivariate analysis. Furthermore, the protein-protein interaction network (PPI) of DEGs was constructed using the STRING tool. Finally, the hub genes were identified by analyzing the degree of association of PPI networks. Results We found that 8 individual DEGs, C6, S100A12, MLC1, PAX5, C7, FAM162B, CAMK1G, and TCEAL5, were significantly predictive of favorable overall survival and one DEG, EPYC, was associated with poor overall survival. GO and KEGG pathway analyses revealed that the DEGs were associated with immune responses. Moreover, 30 hub genes were obtained using the PPI network of DEGs: ITGAM, CD4, CD3E, IL-10, LCP2, ITGB2, ZAP-70, C3, CCL19, CXCL13, CXCL9, BTK, CCL21, CD247, CD28, CD3D, FCER1G, PTPRC, TYROBP, CCR5, ITK, CCL13, CCR1, CCR2, CD79B, CYBB, IL2RG, JAK3, PLCG2, and CD19. These prominent nodes had the most associations with other genes, indicating that they might play crucial roles in the prognosis of PRAD. Conclusions We extracted a list of genes associated with the prostate adenocarcinoma microenvironment, which might contribute to the prediction and interpretation of PRAD prognosis.
Collapse
|
7
|
The Vicious Cross-Talk between Tumor Cells with an EMT Phenotype and Cells of the Immune System. Cells 2019; 8:cells8050460. [PMID: 31096701 PMCID: PMC6562673 DOI: 10.3390/cells8050460] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023] Open
Abstract
Carcinoma cells that undergo an epithelial-mesenchymal transition (EMT) and display a predominantly mesenchymal phenotype (hereafter EMT tumor cells) are associated with immune exclusion and immune deviation in the tumor microenvironment (TME). A large body of evidence has shown that EMT tumor cells and immune cells can reciprocally influence each other, with EMT cells promoting immune exclusion and deviation and immune cells promoting, under certain circumstances, the induction of EMT in tumor cells. This cross-talk between EMT tumor cells and immune cells can occur both between EMT tumor cells and cells of either the native or adaptive immune system. In this article, we review this evidence and the functional consequences of it. We also discuss some recent evidence showing that tumor cells and cells of the immune system respond to similar stimuli, activate the expression of partially overlapping gene sets, and acquire, at least in part, identical functionalities such as migration and invasion. The possible significance of these symmetrical changes in the cross-talk between EMT tumor cells and immune cells is addressed. Eventually, we also discuss possible therapeutic opportunities that may derive from disrupting this cross-talk.
Collapse
|
8
|
Sai B, Xiang J. Disseminated tumour cells in bone marrow are the source of cancer relapse after therapy. J Cell Mol Med 2018; 22:5776-5786. [PMID: 30255991 PMCID: PMC6237612 DOI: 10.1111/jcmm.13867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that cancer cells spread much earlier than was previously believed. Recent technological advances have greatly improved the detection methods of circulating tumour cells (CTCs), suggesting that the dissemination of cancer cells into the circulation occurs randomly. Most CTCs die in circulation as a result of shear stress and/or anoikis. However, the persistence of disseminated tumour cells (DTCs) in the bone marrow is the result of interaction of DTCs with bone marrow microenvironment. DTCs in the bone marrow undergo successive clonal expansions and a parallel progression that leads to new variants. Compared to the CTCs, DTCs in the bone marrow have a unique signature, which displayed dormant, mesenchymal phenotype and osteoblast-like or osteoclast-like phenotype. The persistence of DTCs in the bone marrow is always related to minimal residual diseases (MRDs). This review outlines the difference between CTCs and DTCs in the bone marrow and describes how this difference affects the clinical values of CTCs and DTCs, such as metastasis and recurrence. We suggest that DTCs remaining in the bone marrow after therapy can be used as a superior marker in comparison with CTCs to define patients with an unfavourable prognosis and may therefore be a potential prognostic factor and therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Buqing Sai
- Hunan Cancer HospitalThe Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South UniversityChangshaHunanChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Juanjuan Xiang
- Hunan Cancer HospitalThe Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South UniversityChangshaHunanChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerChangshaHunanChina
| |
Collapse
|
9
|
Lao Y, Li Q, Li N, Liu H, Liu K, Jiang G, Wei N, Wang C, Wang Y, Wu J. Long noncoding RNA ENST00000455974 plays an oncogenic role through up-regulating JAG2 in human DNA mismatch repair-proficient colon cancer. Biochem Biophys Res Commun 2018; 508:339-347. [PMID: 30473216 DOI: 10.1016/j.bbrc.2018.11.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 02/09/2023]
Abstract
DNA mismatch repair-proficient colon cancer is the most common type of colon cancer, but its initiation and progression are still unknown. Our previous study has revealed that a long noncoding RNA (lncRNA) ENST00000455974 was significantly associated with TNM stage and distant metastasis in patients with DNA mismatch repair-proficient (pMMR) colon cancer (CC). Here, firstly, we observed that ENST00000455974 was gradual increased across colon normal-adenoma-carcinoma-metastasis sequence by quantitative real-time PCR. Secondly, ENST00000455974 showed a better sensitivity and specificity than CEA and CA19-9 in the diagnosis of pMMR CC by drawing the receiver operating characteristic (ROC) curve. Thirdly, a higher level of ENST00000455974 was associated with a poorer patient survival. Furthermore, Knockdown of ENST00000455974 led to reduced proliferation and migration of colon cancer cells. Mechanistically, ENST00000455974 was mainly located in the nucleus of colon cancer cells and it promoted the growth and metastasis of pMMR CC cells through up-regulating JAG2.
Collapse
Affiliation(s)
- Yueqiong Lao
- Department of Gastroenterology, Peking University Ninth School of Clinical Medicine, Beijing, 100038, China
| | - Qian Li
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Nanshan Li
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Hong Liu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Kuiliang Liu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Guojun Jiang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Nan Wei
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Canghai Wang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yadan Wang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jing Wu
- Department of Gastroenterology, Peking University Ninth School of Clinical Medicine, Beijing, 100038, China; Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
10
|
Parajuli P, Mittal S. Picture of glioma stem cells has become a Notch brighter. Stem Cell Investig 2018; 5:42. [PMID: 30596082 DOI: 10.21037/sci.2018.11.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/09/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Prahlad Parajuli
- Department of Neurosurgery, Wayne State University School of Medicine & Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University School of Medicine & Karmanos Cancer Institute, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Meurette O, Mehlen P. Notch Signaling in the Tumor Microenvironment. Cancer Cell 2018; 34:536-548. [PMID: 30146333 DOI: 10.1016/j.ccell.2018.07.009] [Citation(s) in RCA: 414] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/30/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
The Notch signaling pathway regulates many aspects of cancer biology. Most attention has been given to its role in the transformed cell. However, it is now clear that cancer progression and metastasis depend on the bidirectional interactions between cancer cells and their environment, forming the tumor microenvironment (TME). These interactions are mediated and constantly evolve through paracrine and juxtacrine signaling. In this review, we discuss how Notch signaling takes an important part in regulating the crosstalk between the different compartments of the TME. We also address the consequences of the Notch-TME involvement from a therapeutic perspective.
Collapse
Affiliation(s)
- Olivier Meurette
- Apoptosis, Cancer and Development Laboratory- Equipe Labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe Labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
12
|
Yang Q, Bavi P, Wang JY, Roehrl MH. Immuno-proteomic discovery of tumor tissue autoantigens identifies olfactomedin 4, CD11b, and integrin alpha-2 as markers of colorectal cancer with liver metastases. J Proteomics 2017; 168:53-65. [DOI: 10.1016/j.jprot.2017.06.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/03/2017] [Accepted: 06/26/2017] [Indexed: 11/29/2022]
|
13
|
Ingthorsson S, Briem E, Bergthorsson JT, Gudjonsson T. Epithelial Plasticity During Human Breast Morphogenesis and Cancer Progression. J Mammary Gland Biol Neoplasia 2016; 21:139-148. [PMID: 27815674 PMCID: PMC5159441 DOI: 10.1007/s10911-016-9366-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/23/2016] [Indexed: 01/05/2023] Open
Abstract
Understanding the complex events leading to formation of an epithelial-based organ such as the breast requires a detailed insight into the crosstalk between epithelial and stromal compartments. These interactions occur both through heterotypic cellular interactions and between cells and matrix components. While in vivo models may partially capture these complex interactions, there is a need for in- vitro models to study these events. In this review we discuss cell-cell interactions in breast development focusing on the stem cell niche and branching morphogenesis. Given the recent understanding that the basic developmental events underlying branching morphogenesis are closely related to pathways important to cancer progression, i.e. epithelial plasticity and epithelial to mesenchymal transition (EMT), we will also discuss aspects relevant to cancer progression. In cancer, the adoption of mesenchymal phenotype by the malignant cells allows stromal invasion and subsequent intravasation to blood- or lymphatic vessels, a route that is a prerequisite for metastasis. A number of publications have demonstrated that tumor initiating cells, sometimes referred to as cancer stem cells adapt an EMT phenotype that renders them more resistant to apoptosis and drug therapy. The mechanism behind this phenomenon is currently unknown but this may partially explain relapse in breast cancer patients. Increased understanding of branching morphogenesis in the breast gland and the regulation of EMT and its reverse process mesenchymal to epithelial transition (MET) may hold the keys for future development of methods/drugs that neutralize the invading properties of cancer cells.
Collapse
Affiliation(s)
- Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Jon Thor Bergthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
- Department of Laboratory Hematology, Landspitali, University Hospital, Reykjavík, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.
- Department of Laboratory Hematology, Landspitali, University Hospital, Reykjavík, Iceland.
| |
Collapse
|
14
|
Kasashima H, Yashiro M, Nakamae H, Kitayama K, Masuda G, Kinoshita H, Fukuoka T, Hasegawa T, Nakane T, Hino M, Hirakawa K, Ohira M. CXCL1-Chemokine (C-X-C Motif) Receptor 2 Signaling Stimulates the Recruitment of Bone Marrow-Derived Mesenchymal Cells into Diffuse-Type Gastric Cancer Stroma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3028-3039. [PMID: 27742059 DOI: 10.1016/j.ajpath.2016.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/11/2016] [Accepted: 07/08/2016] [Indexed: 12/29/2022]
Abstract
Tumor stromal cells play a critical role in the progression of diffuse-type gastric cancer (DGC). The aim of this study was to clarify where tumor stromal cells originate from and which factor(s) recruits them into the tumor stroma. Immunodeficient mice with bone marrow transplantation from the cytomegalovirus enhancer/chicken β-actin promoter-enhanced green fluorescent protein mice were used for the in vivo experiments. An in vitro study analyzed the chemotaxis-stimulating factor from DGC cells using bone marrow-derived mesenchymal cells (BM-MCs). The influences of chemokine (C-X-C motif) receptor 2 (CXCR2) inhibitor on the migration of BM-MCs were examined both in vitro and in vivo. BM-MCs frequently migrated into stroma of DGC in vivo. The number of migrating BM-MCs was increased by conditioned medium from DGC cells. CXCL1 from DGC cells stimulated the chemoattractant ability of BM-MCs. Both anti-CXCL1 antibody and CXCR2 inhibitor decreased the migration of BM-MCs, stimulated by DGC cells. A CXCR2 inhibitor, SB225002, reduced the recruitment of BM-MCs into the tumor microenvironment in vivo, decreasing tumor size and lymph node metastasis, and prolonging the survival of gastric tumor-bearing mice. These findings suggested that most tumor stromal cells in DGC might originate from BM-MCs. CXCL1 from DGC cells stimulates the recruitment of BM-MCs into tumor stroma via CXCR2 signaling of BM-MCs. Inhibition of BM-MC recruitment via the CXCL1-CXCR2 axis appears a promising therapy for DGC.
Collapse
Affiliation(s)
- Hiroaki Kasashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan; Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Hirohisa Nakamae
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kisyu Kitayama
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Go Masuda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Haruhito Kinoshita
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsunari Fukuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Hasegawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiko Nakane
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
15
|
Bai J, Adriani G, Dang TM, Tu TY, Penny HXL, Wong SC, Kamm RD, Thiery JP. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Oncotarget 2016; 6:25295-307. [PMID: 26231039 PMCID: PMC4694832 DOI: 10.18632/oncotarget.4716] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/17/2015] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated macrophages (TAMs) can constitute up to 50% of the tumor mass and have strong implications in tumor progression and metastasis. Macrophages are plastic and can polarize to various subtypes that differ in terms of surface receptor expression as well as cytokine and chemokine production and effector function. Conventionally, macrophages are grouped into two major subtypes: the classically activated M1 macrophages and the alternatively activated M2 macrophages. M1 macrophages are pro-inflammatory, promote T helper (Th) 1 responses, and show tumoricidal activity, whereas M2 macrophages contribute to tissue repair and promote Th2 responses. Herein, we present a microfluidic system integrating tumor cell aggregates and subtypes of human monocyte-derived macrophages in a three-dimensional hydrogel scaffold, in close co-culture with an endothelial monolayer to create an in vitro tumor microenvironment. This platform was utilized to study the role of individual subtypes of macrophages (M0, M1, M2a, M2b and M2c) in human lung adenocarcinoma (A549) aggregate dispersion, as a representation of epithelial-mesenchymal transition (EMT). A significant difference was observed when M2a macrophages were in direct contact with or separated from A549 aggregates, suggesting a possible mechanism for proximity-induced, contact-dependent dissemination via ICAM-1 and integrin β2 interactions. Indeed, M2a macrophages tended to infiltrate and release cells from carcinoma cell aggregates. These findings may help in the development of immunotherapies based on enhancing the tumor-suppressive properties of TAMs.
Collapse
Affiliation(s)
- Jing Bai
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 138602, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Giulia Adriani
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 138602, Singapore
| | - Truong-Minh Dang
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore
| | - Ting-Yuan Tu
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 138602, Singapore
| | - Hwei-Xian Leong Penny
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore
| | - Siew-Cheng Wong
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore
| | - Roger D Kamm
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 138602, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jean-Paul Thiery
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 138602, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,Institute of Molecular and Cell Biology, Proteos, 138673, Singapore
| |
Collapse
|
16
|
Peripheral myeloid-derived suppressor and T regulatory PD-1 positive cells predict response to neoadjuvant short-course radiotherapy in rectal cancer patients. Oncotarget 2016; 6:8261-70. [PMID: 25823653 PMCID: PMC4480750 DOI: 10.18632/oncotarget.3014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/31/2014] [Indexed: 12/13/2022] Open
Abstract
Short-course preoperative radiotherapy (SC-RT) followed by total mesorectal excision (TME) is one therapeutic option for locally advanced rectal cancer (LARC) patients. Since radio-induced DNA damage may affect tumor immunogenicity, Myeloid-derived suppressor cells (MDSCs) and T regulatory cells (Tregs) were evaluated in 13 patients undergoing SC-RT and TME for LARC. Peripheral Granulocytic-MDSCs (G-MDSC) [LIN−/HLA-DR−/CD11b+/CD14−/CD15+/CD33+], Monocytic (M-MDSC) [CD14+/HLA-DR−/lowCD11b+/CD33+] and Tregs [CD4+/CD25hi+/FOXP3+- CTLA-4/PD1] basal value was significantly higher in LARC patients compared to healthy donors (HD). Peripheral MDSC and Tregs were evaluated at time 0 (T0), after 2 and 5 weeks (T2-T5) from radiotherapy; before surgery (T8) and 6–12 months after surgery (T9, T10). G-MDSC decreased at T5 and further at T8 while M-MDSC cells decreased at T5; Tregs reached the lowest value at T5. LARC poor responder patients displayed a major decrease in M-MDSC after SC-RT and an increase of Treg-PD-1. In this pilot study MDSCs and Tregs decrease during the SC-RT treatment could represent a biomarker of response in LARC patients. Further studies are needed to confirm that the deepest M-MDSC reduction and increase in Treg-PD1 cells within 5–8 weeks from the beginning of treatment could discriminate LARC patients poor responding to SC-RT.
Collapse
|
17
|
Dhawan A, von Bonin M, Bray LJ, Freudenberg U, Pishali Bejestani E, Werner C, Hofbauer LC, Wobus M, Bornhäuser M. Functional Interference in the Bone Marrow Microenvironment by Disseminated Breast Cancer Cells. Stem Cells 2016; 34:2224-35. [PMID: 27090603 DOI: 10.1002/stem.2384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/01/2016] [Accepted: 03/14/2016] [Indexed: 01/14/2023]
Abstract
Skeletal metastasis of breast cancer is associated with a poor prognosis and significant morbidity. Investigations in other solid tumors have revealed an impairment in hematopoietic function upon bone marrow invasion. However, the interaction between disseminated breast cancer cells and the bone marrow microenvironment which harbors them has not been addressed comprehensively. Employing advanced co-culture assays, proteomic studies, organotypic models as well as in vivo xenotransplant models, we define the consequences of this interaction on the stromal compartment of bone marrow, affected molecular pathways and subsequent effects on the hematopoietic stem and progenitor cells (HSPCs). The results showed a basic fibroblast growth factor (bFGF)-mediated, synergistic increase in proliferation of breast cancer cells and mesenchymal stromal cells (MSCs) in co-culture. The stromal induction was associated with elevated phosphoinositide-3 kinase (PI3K) signaling in the stroma, which coupled with elevated bFGF levels resulted in increased migration of breast cancer cells towards the MSCs. The perturbed cytokine profile in the stroma led to reduction in the osteogenic differentiation of MSCs via downregulation of platelet-derived growth factor-BB (PDGF-BB). Long term co-cultures of breast cancer cells, HSPCs, MSCs and in vivo studies in NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl) /SzJ (NSG) mice showed a reduced support for HSPCs in the altered niche. The resultant non- conducive phenotype of the niche for HSPC support emphasizes the importance of the affected molecular pathways in the stroma as clinical targets. These findings can be a platform for further development of therapeutic strategies aiming at the blockade of bone marrow support to disseminated breast cancer cells. Stem Cells 2016;34:2224-2235.
Collapse
Affiliation(s)
- Abhishek Dhawan
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Malte von Bonin
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany.,German Consortium for Translational Cancer Research (DKTK), partner site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura J Bray
- Institute of Biofunctional Polymer Materials, Leibniz Institute for Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany.,Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Uwe Freudenberg
- Institute of Biofunctional Polymer Materials, Leibniz Institute for Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Elham Pishali Bejestani
- German Consortium for Translational Cancer Research (DKTK), partner site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Werner
- Institute of Biofunctional Polymer Materials, Leibniz Institute for Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Lorenz C Hofbauer
- German Consortium for Translational Cancer Research (DKTK), partner site, Dresden, Germany.,Department of Internal Medicine III, University Clinic, Dresden, Germany
| | - Manja Wobus
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Martin Bornhäuser
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany.,German Consortium for Translational Cancer Research (DKTK), partner site, Dresden, Germany
| |
Collapse
|
18
|
Vellinga TT, den Uil S, Rinkes IHB, Marvin D, Ponsioen B, Alvarez-Varela A, Fatrai S, Scheele C, Zwijnenburg DA, Snippert H, Vermeulen L, Medema JP, Stockmann HB, Koster J, Fijneman RJA, de Rooij J, Kranenburg O. Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. Oncogene 2016; 35:5263-5271. [PMID: 26996663 DOI: 10.1038/onc.2016.60] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/16/2022]
Abstract
Gene expression-based classification systems have identified an aggressive colon cancer subtype with mesenchymal features, possibly reflecting epithelial-to-mesenchymal transition (EMT) of tumor cells. However, stromal fibroblasts contribute extensively to the mesenchymal phenotype of aggressive colon tumors, challenging the notion of tumor EMT. To separately study the neoplastic and stromal compartments of colon tumors, we have generated a stroma gene filter (SGF). Comparative analysis of stromahigh and stromalow tumors shows that the neoplastic cells in stromahigh tumors express specific EMT drivers (ZEB2, TWIST1, TWIST2) and that 98% of differentially expressed genes are strongly correlated with them. Analysis of differential gene expression between mesenchymal and epithelial cancer cell lines revealed that hepatocyte nuclear factor 4α (HNF4α), a transcriptional activator of intestinal (epithelial) differentiation, and its target genes are highly expressed in epithelial cancer cell lines. However, mesenchymal-type cancer cell lines expressed only part of the mesenchymal genes expressed by tumor-derived neoplastic cells, suggesting that external cues were lacking. We found that collagen-I dominates the extracellular matrix in aggressive colon cancer. Mimicking the tumor microenvironment by replacing laminin-rich Matrigel with collagen-I was sufficient to induce tumor-specific mesenchymal gene expression, suppression of HNF4α and its target genes, and collective tumor cell invasion of patient-derived colon tumor organoids. The data connect collagen-rich stroma to mesenchymal gene expression in neoplastic cells and to collective tumor cell invasion. Targeting the tumor-collagen interface may therefore be explored as a novel strategy in the treatment of aggressive colon cancer.
Collapse
Affiliation(s)
- T T Vellinga
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S den Uil
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Surgery, Spaarne Gasthuis, Haarlem, The Netherlands
| | - I H B Rinkes
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D Marvin
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B Ponsioen
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Alvarez-Varela
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Fatrai
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Scheele
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D A Zwijnenburg
- Department of Oncogenomics, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - H Snippert
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L Vermeulen
- Center of Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - J P Medema
- Center of Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - H B Stockmann
- Department of Surgery, Spaarne Gasthuis, Haarlem, The Netherlands
| | - J Koster
- Center of Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - R J A Fijneman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J de Rooij
- Department of Surgery, Spaarne Gasthuis, Haarlem, The Netherlands
| | - O Kranenburg
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
Wang F, Zhao LJ. Cell lineage tracing in study of epithelial-to-mesenchymal transition during hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2015; 23:3235-3240. [DOI: 10.11569/wcjd.v23.i20.3235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is the common pathologic process of chronic liver injury. Early studies mostly used immunohistochemistry to assess the role of epithelial-to-mesenchymal transition (EMT) in human or animal liver repair, and several types of liver cells including hepatocytes, cholangiocytes, hepatic stellate cells (HSCs) and liver progenitor cells have been shown to undergo EMT during hepatic fibrosis. However, this technique has several flaws. In recent years, with the rapid development of genetic engineering, especially the application of the recombinant enzyme Cre/loxP system, cell lineage tracing is becoming a popular and powerful tool to overcome the limitations of immunostaining for identifying EMT during hepatic fibrosis. Since this technique genetically labels cells, the marker will be present in any progeny of the labeled cells. Many groups have generated different lineages of double transgenic (DTG) mice and utilized different models of hepatic injury to investigate whether EMT contributes to hepatic injury or not. The purpose of this article is to summarize evidence, which is obtained using lineage cell tracing, for and against the possibility that EMT is involved in hepatic fibrosis.
Collapse
|
20
|
Bone marrow-derived stromal cells are associated with gastric cancer progression. Br J Cancer 2015; 113:443-52. [PMID: 26125445 PMCID: PMC4522640 DOI: 10.1038/bjc.2015.236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/23/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022] Open
Abstract
Background: The aim of this study was to clarify the role of bone marrow-derived stromal cells (BM-SCs) expressing CD271 in the development of gastric cancer. Methods: The effect of human BM-SCs on the proliferation and motility of six gastric cancer cell lines, OCUM-2M, OCUM-2MD3, OCUM-12, KATO-III, NUGC-3, and MKN-74, was examined. CD271 expression levels in BM-SCs were analysed by flow cytometry. We also generated a gastric tumour model by orthotopic inoculation of OCUM-2MLN cells in mice that had received transplantation of bone marrow from the CAG-EGFP mice. The correlation between the clinicopathological features of 279 primary gastric carcinomas and CD271 expression in tumour stroma was examined by immunohistochemistry. Results: Numerous BM-SCs infiltrated the gastric tumour microenvironment; CD271 expression was found in ∼25% of BM-SCs. Conditioned medium from BM-SCs significantly increased the proliferation of gastric cancer cell lines. Furthermore, conditioned medium from gastric cancer cells significantly increased the number of BM-SCs, whereas migration of OCUM-12 and NUGC-3 cells was significantly increased by conditioned medium from BM-SCs. CD271 expression in stromal cells was significantly associated with macroscopic type-4 cancers, diffuse-type tumours, and tumour invasion depth. The overall survival of patients (n=279) with CD271-positive stromal cells was significantly worse compared with that of patients with CD271-negative stromal cells. This is the first report of the significance of BM-SCs in gastric cancer progression. Conclusions: Bone marrow-derived stromal cells might have an important role in gastric cancer progression, and CD271-positive BM-SCs might be a useful prognostic factor for gastric cancer patients.
Collapse
|
21
|
Noh H, Hu J, Wang X, Xia X, Satelli A, Li S. Immune checkpoint regulator PD-L1 expression on tumor cells by contacting CD11b positive bone marrow derived stromal cells. Cell Commun Signal 2015; 13:14. [PMID: 25889536 PMCID: PMC4353689 DOI: 10.1186/s12964-015-0093-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/12/2015] [Indexed: 12/22/2022] Open
Abstract
Background Expression of programmed cell death ligand 1 (PD-L1) is an important process by which tumor cells suppress antitumor immunity in the tumor microenvironment. Bone marrow (BM)–derived immune cells are an important component of the tumor microenvironment. However, the link between PD-L1 induction on tumor cells and communication with BM cells is unknown. Results This study demonstrates that BM cells have a direct effect in inducing PD-L1 expression on tumor cells, which contributes to the tumor cells’ drug resistance. This novel discovery was revealed using a co-incubation system with BM cells and tumor cells. BM cells from wild-type C57BL6 mice and the immune-deficient mouse strains B-cell−/−, CD28−/−, perforin−/−, and Rag2−/− but not CD11b−/− dramatically increased the expression of tumor cell surface PD-L1. This PD-L1 induction was dependent on CD11b-positive BM cells through direct contact with tumor cells. Furthermore, p38 signaling was activated in tumor cells after co-incubation with BM cells, whereas the expression of PD-L1 was remarkably decreased after co-culture of cells treated with a p38 inhibitor. The increase in PD-L1 induced by BM cell co-culture protected tumor cells from drug-induced apoptosis. Conclusions PD-L1 expression is increased on tumor cells by direct contact with BM-derived CD11b-positive cells through the p38 signaling pathway. PD-L1 may play an important role in drug resistance, which often causes failure of the antitumor response. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0093-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hyangsoon Noh
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Jiemiao Hu
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Xiaohong Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Xueqing Xia
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Arun Satelli
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Shulin Li
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Hu Y, Su H, Li X, Guo G, Cheng L, Qin R, Qing G, Liu H. The NOTCH ligand JAGGED2 promotes pancreatic cancer metastasis independent of NOTCH signaling activation. Mol Cancer Ther 2014; 14:289-97. [PMID: 25351917 DOI: 10.1158/1535-7163.mct-14-0501] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal disease with a high rate of metastasis. Numerous signaling events have been implicated in the molecular pathogenesis of this neoplasm. Aberrantly high expression of JAGGED2, one of the NOTCH ligands, often occurs in human PDAC. However, what role JAGGED2 plays in the disease development and whether JAGGED2 executes its function through activating NOTCH signaling remain to be determined. We report here that JAGGED2 plays a critical role in promoting PDAC metastasis in vitro and in vivo. Depletion of JAGGED2, but not its homolog JAGGED1, profoundly inhibited both migration and invasion without influencing cell proliferation. Furthermore, reconstitution of JAGGED2 expression rescued the migratory defect. Surprisingly, neither pharmacologic nor genetic inhibition of NOTCH downstream signaling resulted in obvious defect in metastasis. Instead, depletion of NOTCH1 expression per se gave rise to migratory defects similar to JAGGED2 ablation. Moreover, blockade of ligand-receptor interaction by a specific JAGGED2-Fc fusion protein dramatically inhibited PDAC cell migration, suggesting that tumor metastasis relies on physical interactions of JAGGED2-NOTCH1 but not Notch downstream signaling activation. Taken together, our data reveal a novel role of NOTCH in regulation of PDAC metastasis, and identify JAGGED2 as a critical mediator in this event. These findings also provide rationale for developing small molecules or biologic agents targeting JAGGED2 for therapeutic intervention.
Collapse
Affiliation(s)
- Yufeng Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Hexiu Su
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Guoli Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Ling Cheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Guoliang Qing
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Hudan Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China.
| |
Collapse
|
23
|
Xie G, Diehl AM. Evidence for and against epithelial-to-mesenchymal transition in the liver. Am J Physiol Gastrointest Liver Physiol 2013; 305:G881-90. [PMID: 24157970 PMCID: PMC3882441 DOI: 10.1152/ajpgi.00289.2013] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The outcome of liver injury is determined by the success of repair. Liver repair involves replacement of damaged liver tissue with healthy liver epithelial cells (including both hepatocytes and cholangiocytes) and reconstruction of normal liver structure and function. Current dogma posits that replication of surviving mature hepatocytes and cholangiocytes drives the regeneration of liver epithelium after injury, whereas failure of liver repair commonly leads to fibrosis, a scarring condition in which hepatic stellate cells, the main liver-resident mesenchymal cells, play the major role. The present review discusses other mechanisms that might be responsible for the regeneration of new liver epithelial cells and outgrowth of matrix-producing mesenchymal cells during hepatic injury. This theory proposes that, during liver injury, some epithelial cells undergo epithelial-to-mesenchymal transition (EMT), acquire myofibroblastic phenotypes/features, and contribute to fibrogenesis, whereas certain mesenchymal cells (namely hepatic stellate cells and stellate cell-derived myofibroblasts) undergo mesenchymal-to-epithelial transition (MET), revert to epithelial cells, and ultimately differentiate into either hepatocytes or cholangiocytes. Although this theory is highly controversial, it suggests that the balance between EMT and MET modulates the outcome of liver injury. This review summarizes recent advances that support or refute the concept that certain types of liver cells are capable of phenotype transition (i.e., EMT and MET) during both culture conditions and chronic liver injury.
Collapse
Affiliation(s)
- Guanhua Xie
- Division of Gastroenterology, Duke Univ., Snyderman Bldg., Suite 1073, 595 LaSalle St., Durham, NC 27710.
| | | |
Collapse
|
24
|
Seliger B, Massa C. The dark side of dendritic cells: development and exploitation of tolerogenic activity that favor tumor outgrowth and immune escape. Front Immunol 2013; 4:419. [PMID: 24348482 PMCID: PMC3845009 DOI: 10.3389/fimmu.2013.00419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/17/2013] [Indexed: 01/27/2023] Open
Abstract
Dendritic cells (DC) play a central role in the regulation of the immune responses by providing the information needed to decide between tolerance, ignorance, or active responses. For this reason different therapies aim at manipulating DC to obtain the desired response, such as enhanced cell-mediated toxicity against tumor and infected cells or the induction of tolerance in autoimmunity and transplantation. In the last decade studies performed in these settings have started to identify (some) molecules/factors involved in the acquisition of a tolerogenic DC phenotype as well as the underlying mechanisms of their regulatory function on different immune cell populations.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg , Halle (Saale) , Germany
| | - Chiara Massa
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg , Halle (Saale) , Germany
| |
Collapse
|