1
|
Khella CA, Franciosa L, Rodirguez-Rodriguez L, Rajkarnikar R, Mythreye K, Gatza ML. HCK Promotes High-Grade Serous Ovarian Cancer Tumorigenesis through CD44 and NOTCH3 Signaling. Mol Cancer Res 2023; 21:1037-1049. [PMID: 37342066 DOI: 10.1158/1541-7786.mcr-22-0496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/05/2022] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is a highly aggressive and lethal subtype of ovarian cancer. While most patients initially respond to standard-of-care treatment, the majority will eventually relapse and succumb to their disease. Despite significant advances in our understanding of this disease, the mechanisms that govern the distinctions between HGSOC with good and poor prognosis remain unclear. In this study, we implemented a proteogenomic approach to analyze gene expression, proteomic and phosphoproteomic profiles of HGSOC tumor samples to identify molecular pathways that distinguish HGSOC tumors relative to clinical outcome. Our analyses identify significant upregulation of hematopoietic cell kinase (HCK) expression and signaling in poor prognostic HGSOC patient samples. Analyses of independent gene expression datasets and IHC of patient samples confirmed increased HCK signaling in tumors relative to normal fallopian or ovarian samples and demonstrated aberrant expression in tumor epithelial cells. Consistent with the association between HCK expression and tumor aggressiveness in patient samples, in vitro phenotypic studies showed that HCK can, in part, promote cell proliferation, colony formation, and invasive capacity of cell lines. Mechanistically, HCK mediates these phenotypes, partly through CD44 and NOTCH3-dependent signaling, and inhibiting CD44 or NOTCH3 activity, either genetically or through gamma-secretase inhibitors, can revert HCK-driven phenotypes. IMPLICATIONS Collectively, these studies establish that HCK acts as an oncogenic driver of HGSOC through aberrant activation of CD44 and NOTCH3 signaling and identifies this network as a potential therapeutic opportunity in a subset of patients with aggressive and recurrent HGSOC.
Collapse
Affiliation(s)
- Christen A Khella
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- School of Graduate Studies, Rutgers University, New Brunswick, New Jersey
| | | | | | - Resha Rajkarnikar
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama, Birmingham, Alabama
| | - Karthikeyan Mythreye
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama, Birmingham, Alabama
| | - Michael L Gatza
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
2
|
Vaicekauskaitė I, Dabkevičienė D, Šimienė J, Žilovič D, Čiurlienė R, Jarmalaitė S, Sabaliauskaitė R. ARID1A, NOTCH and WNT Signature in Gynaecological Tumours. Int J Mol Sci 2023; 24:ijms24065854. [PMID: 36982928 PMCID: PMC10057440 DOI: 10.3390/ijms24065854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Ovarian cancer (OC) is among the deadliest gynaecologic malignancies in the world. The majority of OC patients are diagnosed at an advanced stage, with high-grade serous OC (HGSOC). The lack of specific symptoms and suitable screening strategies lead to short progression-free survival times in HGSOC patients. The chromatin-remodelling, WNT and NOTCH pathways are some of the most dysregulated in OC; thus their gene mutations and expression profile could serve as diagnostic or prognostic OC biomarkers. Our pilot study investigated mRNA expression of the SWI/SNF chromatin-remodelling complex gene ARID1A, NOTCH receptors, WNT pathway genes CTNNB1 and FBXW7 mRNA expression in two OC cell cultures as well as 51 gynaecologic tumour tissues. A four-gene panel consisting of ARID1A, CTNNB1, FBXW7 and PPP2R1A was used to investigate mutations in gynaecologic tumour tissue. All seven analysed genes were found to be significantly downregulated in OC when compared with non-malignant gynaecologic tumour tissues. NOTCH3 was also downregulated in SKOV3 cells when compared to A2780. Fifteen mutations were found in 25.5% (13/51) of the tissue samples. ARID1A predicted mutations were the most prevalent with alterations detected in 19% (6/32) HGSOC and 67% (6/9) of other OC cases. Thus, ARID1A and NOTCH/WNT-pathway-related changes could be useful diagnostic biomarkers in OC.
Collapse
Affiliation(s)
- Ieva Vaicekauskaitė
- National Cancer Institute, LT-08660 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-08412 Vilnius, Lithuania
| | - Daiva Dabkevičienė
- National Cancer Institute, LT-08660 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-08412 Vilnius, Lithuania
| | - Julija Šimienė
- National Cancer Institute, LT-08660 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-08412 Vilnius, Lithuania
| | - Diana Žilovič
- National Cancer Institute, LT-08660 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-08412 Vilnius, Lithuania
| | | | - Sonata Jarmalaitė
- National Cancer Institute, LT-08660 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-08412 Vilnius, Lithuania
| | | |
Collapse
|
3
|
Kim EP, Kim CY, Heo MY, Kim SW, Kim GA. MicroRNA Expression Variation in Female Dog ( Canis familiaris) Reproductive Organs with Age and Presence of Uteropathy. Animals (Basel) 2022; 12:ani12233352. [PMID: 36496873 PMCID: PMC9740207 DOI: 10.3390/ani12233352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
While aging is associated with microRNA (miRNA) expression, little is known about its role in the aging of dog reproductive organs. We examined miRNA expression in ovaries, oviducts, and uteri from young and old dogs and dogs with uteropathy to elucidate miRNA's role in aging. The ovaries, oviducts, and uteri of 18 dogs (Canis familiaris)-young (8.5 ± 1.9 months old), old (78.2 ± 29.0 months old), and those with uteropathy (104.4 ± 15.1 months old)-were collected for miRNA expression examination. Total RNA samples were extracted, reverse-transcribed to cDNA, and real-time PCR analysis was also performed. In ovaries, miR-708 and miR-151 levels were significantly higher in old dogs than in young dogs, and only let-7a, let-7b, let-7c, miR125b, and miR26a were significantly upregulated in dogs with uteropathy. In the oviducts and uteri of old dogs, miR-140, miR-30d, miR-23a, miR-10a, miR-125a, miR-221, and miR-29a were upregulated. Realtime quantitative PCR revealed that targeted mRNA was similarly regulated to miRNA. These results suggest that miRNAs of reproductive organs in dogs may be biological markers for aging and reproductive diseases and could be used for mediating aging.
Collapse
Affiliation(s)
- Eun Pyo Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Chae Young Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Young Heo
- Department of Biomedical Laboratory Science, School of Healthcare Science, Eulji University, Uijeongbu 34824, Republic of Korea
| | - Sang Wha Kim
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 08826, Republic of Korea
| | - Geon A. Kim
- Department of Biomedical Laboratory Science, School of Healthcare Science, Eulji University, Uijeongbu 34824, Republic of Korea
- Correspondence:
| |
Collapse
|
4
|
Chen W, Zhang Y, Li R, Huang W, Wei X, Zeng D, Liang Y, Zeng Y, Chen M, Zhang L, Gao W, Zhu Y, Li Y, Zhang G. Notch3 Transactivates Glycogen Synthase Kinase-3-Beta and Inhibits Epithelial-to-Mesenchymal Transition in Breast Cancer Cells. Cells 2022; 11:cells11182872. [PMID: 36139447 PMCID: PMC9497076 DOI: 10.3390/cells11182872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023] Open
Abstract
As a critical transformational process in the attributes of epithelial cells, epithelial-to-mesenchymal transition (EMT) is involved in tumor invasion, metastasis, and resistance to treatment, which contributes to the ultimate death of some patients with breast cancer. Glycogen synthase kinase-3-beta (GSK3β) is thought to be an EMT suppressor that down-regulates the protein, snail, a zinc finger transcription inhibitor, and regulates E-cadherin expression and the Wnt signaling pathway. Our previous studies have shown that Notch3 also inhibits EMT in breast cancer. In mammary gland cells, GSK3β physically bound and phosphorylated the intracellular domain of two Notch paralogs: N1ICD was positively regulated, but N2ICD was negatively regulated; however, the relationship between Notch3, GSK3β, and EMT in breast cancer is still unclear and crosstalk between Notch3 and GSK3β has not been widely investigated. In this study, we revealed that Notch3 was an essential antagonist of EMT in breast cancer cells by transcriptionally upregulating GSK3β. In breast cancer, MCF-7 and MDA-MB-231 cell lines, the silencing of Notch3 reduced GSK3β expression, which is sufficient to induce EMT. Conversely, ectopic Notch3 expression re-activated GSK3β and E-cadherin. Mechanistically, Notch3 can bind to the GSK3β promoter directly and activate GSK3β transcription. In human breast cancer samples, Notch3 expression is positively associated with GSK3β (r = 0.416, p = 0.001); moreover, high expressions of Notch3 and GSK3β mRNA are correlated to better relapse-free survival in all breast cancer patients via analysis in "the Kaplan-Meier plotter" database. In summary, our preliminary results suggested that Notch3 might inhibit EMT by trans-activating GSK3β in breast cancer cells. The suppression of Notch3 expression may contribute to EMT by transcriptionally downregulating GSK3β in breast cancer.
Collapse
Affiliation(s)
- Weiling Chen
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, No. 2000 Xiang’an East Road, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, No. 2000 Xiang’an East Road, Xiamen 361101, China
| | - Yongqu Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, No. 2000 Xiang’an East Road, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, No. 2000 Xiang’an East Road, Xiamen 361101, China
| | - Ronghui Li
- Department of Medical Oncology, Xiang’an Hospital of Xiamen University, No. 2000 Xiang’an East Road, Xiamen 361101, China
| | - Wenhe Huang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, No. 2000 Xiang’an East Road, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, No. 2000 Xiang’an East Road, Xiamen 361101, China
| | - Xiaolong Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515041, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515041, China
| | - Yuanke Liang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou 515041, China
| | - Yunzhu Zeng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515041, China
| | - Min Chen
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, No. 2000 Xiang’an East Road, Xiamen 361101, China
| | - Lixin Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, No. 2000 Xiang’an East Road, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, No. 2000 Xiang’an East Road, Xiamen 361101, China
| | - Wenliang Gao
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, No. 2000 Xiang’an East Road, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, No. 2000 Xiang’an East Road, Xiamen 361101, China
| | - Yuanyuan Zhu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, No. 2000 Xiang’an East Road, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, No. 2000 Xiang’an East Road, Xiamen 361101, China
| | - Yaochen Li
- Department of Central Lab, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515041, China
- Correspondence: (Y.L.); (G.Z.)
| | - Guojun Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, No. 2000 Xiang’an East Road, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, No. 2000 Xiang’an East Road, Xiamen 361101, China
- Correspondence: (Y.L.); (G.Z.)
| |
Collapse
|
5
|
Mukherjee S, Sakpal A, Mehrotra M, Phadte P, Rekhi B, Ray P. Homo and Heterotypic Cellular Cross-Talk in Epithelial Ovarian Cancer Impart Pro-Tumorigenic Properties through Differential Activation of the Notch3 Pathway. Cancers (Basel) 2022; 14:3365. [PMID: 35884426 PMCID: PMC9319742 DOI: 10.3390/cancers14143365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
An active fluidic microenvironment governs peritoneal metastasis in epithelial ovarian cancer (EOC), but its critical functional/molecular cues are not fully understood. Utilizing co-culture models of NIH3T3 cells (differentially overexpressing Jagged1) and SKOV3 cells expressing a Notch3 luciferase reporter-sensor (SNFT), we showed that incremental expression of Jagged1 led to proportional Notch3 activation in SNFT. With no basal luciferase activity, this system efficiently recorded dose-dependent Notch3 activation by rh-Jag1 peptide and the non-appearance of such induction in co-culture with NIH3T3Δjag1 cells indicates its sensitivity and specificity. Similar Notch3 modulation was shown for the first time in co-cultures with HGSOC patients' ascites-derived cancer-associated fibroblasts and Jagged1-expressing EOC cell lines. NIH3T3J1-A and OVCAR3 co-cultured SNFT cells showed maximum proliferation, invasion, and cisplatin resistance among all the heterotypic/homotypic cellular partners. VEGFA and CDKN1A are the two most upregulated genes identified across co-cultures by the gene profiler array. Co-culture induced VEGFA secretion from SNFT cells which also reduced cancer stem cell differentiation in platinum-resistant A2780 cells. rh-Jag1-peptide promoted enhanced nuclear-cytoplasmic p21 expression. Additionally, metastatic HGSOC tumors had higher VEGFA than corresponding primary tumors. This study thus demonstrates the tumoral and non-tumoral cell-mediated differential Notch3 activation imparting its tumorigenic effects through two critical molecular regulators, VEGFA and p21, during EOC progression.
Collapse
Affiliation(s)
- Souvik Mukherjee
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
| | - Asmita Sakpal
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
| | - Megha Mehrotra
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
| | - Pratham Phadte
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
| | - Bharat Rekhi
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
- Tata Memorial Hospital, Dr. E Borges Road, Parel, Mumbai 400012, India
| | - Pritha Ray
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
| |
Collapse
|
6
|
Wang Y, Huang Z, Li B, Liu L, Huang C. The Emerging Roles and Therapeutic Implications of Epigenetic Modifications in Ovarian Cancer. Front Endocrinol (Lausanne) 2022; 13:863541. [PMID: 35620395 PMCID: PMC9127157 DOI: 10.3389/fendo.2022.863541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/30/2022] [Indexed: 11/15/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecologic malignancies globally. In spite of positive responses to initial therapy, the overall survival rates of OC patients remain poor due to the development of drug resistance and consequent cancer recurrence. Indeed, intensive studies have been conducted to unravel the molecular mechanisms underlying OC therapeutic resistance. Besides, emerging evidence suggests a crucial role for epigenetic modifications, namely, DNA methylation, histone modifications, and non-coding RNA regulation, in the drug resistance of OC. These epigenetic modifications contribute to chemoresistance through various mechanisms, namely, upregulating the expression of multidrug resistance proteins (MRPs), remodeling of the tumor microenvironment, and deregulated immune response. Therefore, an in-depth understanding of the role of epigenetic mechanisms in clinical therapeutic resistance may improve the outcome of OC patients. In this review, we will discuss the epigenetic regulation of OC drug resistance and propose the potential clinical implications of epigenetic therapies to prevent or reverse OC drug resistance, which may inspire novel treatment options by targeting resistance mechanisms for drug-resistant OC patients.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lin Liu
- Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- *Correspondence: Lin Liu, ; Canhua Huang,
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- *Correspondence: Lin Liu, ; Canhua Huang,
| |
Collapse
|
7
|
Plant-Derived Chinese Medicine Monomers on Ovarian Cancer via the Wnt/ β-Catenin Signaling Pathway: Review of Mechanisms and Prospects. JOURNAL OF ONCOLOGY 2021; 2021:6852867. [PMID: 34912456 PMCID: PMC8668291 DOI: 10.1155/2021/6852867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Ovarian cancer (OC) is a common malignant tumor of the female reproductive system and has a high morbidity and mortality rate. The progression and metastasis of OC are complex and involve multiple signaling pathways. The Wnt/β-catenin signaling pathway is closely related to OC, and therefore blocking the activation of the Wnt/β-catenin signaling directly or inhibiting related genes, and molecular targets is of great value in treating OC. Toxicities such as myelotoxicity, cardiotoxicity, genotoxicity, and vasospasm are the major side effects for common anticancer drugs and are well documented. There is, therefore, a need to develop new, effective, safer, and more affordable anticancer drugs from alternative sources. In recent years, plant-derived Chinese medicine monomers have drawn increasing attention due to their high safety, low toxicity, minimal side effects, and antitumor effects. Plant-derived Chinese medicine monomers are effective against multiple targets and can regulate the growth, proliferation, apoptosis, invasion, and migration of OC as well as reverse drug resistance by regulating the Wnt/β-catenin signaling pathway. In this review, we summarize and provide mechanisms and prospects for the use of plant-derived Chinese medicines for the prevention and treatment of OC.
Collapse
|
8
|
Drumond-Bock AL, Bieniasz M. The role of distinct BRD4 isoforms and their contribution to high-grade serous ovarian carcinoma pathogenesis. Mol Cancer 2021; 20:145. [PMID: 34758842 PMCID: PMC8579545 DOI: 10.1186/s12943-021-01424-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most aggressive type of ovarian cancer, often diagnosed at advanced stages. Molecularly, HGSOC shows high degree of genomic instability associated with large number of genetic alterations. BRD4 is the 4th most amplified gene in HGSOC, which correlates with poor patients' prognosis. BRD4 is constitutively expressed and generates two proteins, BRD4 long (BRD4-L) and BRD4 short (BRD4-S). Both isoforms contain bromodomains that bind to lysine-acetylated histones. Amongst other functions, BRD4 participates in chromatin organization, acetylation of histones, transcriptional control and DNA damage repair. In cancer patients with amplified BRD4, the increased activity of BRD4 is associated with higher expression of oncogenes, such as MYC, NOTCH3 and NRG1. BRD4-driven oncogenes promote increased tumor cells proliferation, genetic instability, epithelial-mesenchymal transition, metastasis and chemoresistance. Ablation of BRD4 activity can be successfully achieved with bromodomain inhibitors (BETi) and degraders, and it has been applied in pre-clinical and clinical settings. Inhibition of BRD4 function has an effective anti-cancer effect, reducing tumor growth whether ablated by single agents or in combination with other drugs. When combined with standard chemotherapy, BETi are capable of sensitizing highly resistant ovarian cancer cell lines to platinum drugs. Despite the evidence that BRD4 amplification in ovarian cancer contributes to poor patient prognosis, little is known about the specific mechanisms by which BRD4 drives tumor progression. In addition, newly emerging data revealed that BRD4 isoforms exhibit contradicting functions in cancer. Therefore, it is paramount to expand studies elucidating distinct roles of BRD4-L and BRD4-S in HGSOC, which has important implications on development of therapeutic approaches targeting BRD4.
Collapse
Affiliation(s)
- Ana Luiza Drumond-Bock
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Magdalena Bieniasz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
9
|
Wu Y, Huang J, Ivan C, Sun Y, Ma S, Mangala LS, Fellman BM, Urbauer DL, Jennings NB, Ram P, Coleman RL, Hu W, Sood AK. MEK inhibition overcomes resistance to EphA2-targeted therapy in uterine cancer. Gynecol Oncol 2021; 163:181-190. [PMID: 34391578 DOI: 10.1016/j.ygyno.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Our pilot clinical study of EphA2 inhibitor (dasatinib) plus paclitaxel and carboplatin showed interesting clinical activity in endometrial cancer with manageable toxicity. However, the underlying mechanisms of dasatinib resistance in uterine cancer are unknown. Here, we investigated potential mechanisms underlying resistance to EphA2 inhibitors in uterine cancer and examined the anti-tumor activity of EphA2 inhibitors alone and in combination with a MEK inhibitor. METHODS We evaluated the antitumor activity of EphA2 inhibitors plus a MEK inhibitor using in vitro and in vivo orthotopic models of uterine cancer. RESULTS EphA2 inhibitor induced MAPK in dasatinib-resistant uterine cancer cells (HEC-1A and Ishikawa) and BRAF/CRAF heterodimerization in HEC-1A cells. EphA2 inhibitor and trametinib significantly increased apoptosis in cancer cells resistant to EphA2 inhibitors compared with controls (p < 0.01). An in vivo study with the orthotopic HEC-1A model showed significantly greater antitumor response to combination treatment compared with dasatinib alone (p < 0.01). Combination treatment increased EphrinA1 and BIM along with decreased pMAPK, Jagged 1, and c-MYC expression in dasatinib-resistant cells. In addition, Spearman analysis using the TCGA data revealed that upregulation of EphA2 was significantly correlated with JAG1, MYC, NOTCH1, NOTCH3 and HES1 expression (p < 0.001, r = 0.25-0.43). Specifically, MAP3K15 and the NOTCH family genes were significantly related to poor clinical outcome in patients with uterine cancer. CONCLUSIONS These findings indicate that the MAPK pathway is activated in dasatinib-resistant uterine cancer cells and that EphrinA1-mediated MEK inhibition overcomes dasatinib resistance. Dual targeting of both EphA2 and MEK, combined with chemotherapy, should be considered for future clinical development.
Collapse
Affiliation(s)
- Yutuan Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jie Huang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Yunjie Sun
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Bryan M Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Diana L Urbauer
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Nicholas B Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Prahlad Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| |
Collapse
|
10
|
Patankar JV, Müller TM, Kantham S, Acera MG, Mascia F, Scheibe K, Mahapatro M, Heichler C, Yu Y, Li W, Ruder B, Günther C, Leppkes M, Mathew MJ, Wirtz S, Neufert C, Kühl AA, Paquette J, Jacobson K, Atreya R, Zundler S, Neurath MF, Young RN, Becker C. E-type prostanoid receptor 4 drives resolution of intestinal inflammation by blocking epithelial necroptosis. Nat Cell Biol 2021; 23:796-807. [PMID: 34239062 DOI: 10.1038/s41556-021-00708-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/06/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases present with elevated levels of intestinal epithelial cell (IEC) death, which compromises the gut barrier, activating immune cells and triggering more IEC death. The endogenous signals that prevent IEC death and break this vicious cycle, allowing resolution of intestinal inflammation, remain largely unknown. Here we show that prostaglandin E2 signalling via the E-type prostanoid receptor 4 (EP4) on IECs represses epithelial necroptosis and induces resolution of colitis. We found that EP4 expression correlates with an improved IBD outcome and that EP4 activation induces a transcriptional signature consistent with resolution of intestinal inflammation. We further show that dysregulated necroptosis prevents resolution, and EP4 agonism suppresses necroptosis in human and mouse IECs. Mechanistically, EP4 signalling on IECs converges on receptor-interacting protein kinase 1 to suppress tumour necrosis factor-induced activation and membrane translocation of the necroptosis effector mixed-lineage kinase domain-like pseudokinase. In summary, our study indicates that EP4 promotes the resolution of colitis by suppressing IEC necroptosis.
Collapse
Affiliation(s)
- Jay V Patankar
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Tanja M Müller
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Srinivas Kantham
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Miguel Gonzalez Acera
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Fabrizio Mascia
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Kristina Scheibe
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christina Heichler
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Yuqiang Yu
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Barbara Ruder
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Mano J Mathew
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
- Allianstic Research Laboratory, EFREI Paris, Villejuif, France
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, iPATH.Berlin, Berlin, Germany
| | - Jay Paquette
- Centre for Drug Research and Development, Vancouver, BC, Canada
- adMare BioInnovations, Vancouver, British Columbia, Canada
| | - Kevan Jacobson
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Raja Atreya
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Robert N Young
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
11
|
Leung SOA, Konstantinopoulos PA. Advances in the treatment of platinum resistant epithelial ovarian cancer: an update on standard and experimental therapies. Expert Opin Investig Drugs 2021; 30:695-707. [PMID: 34082614 DOI: 10.1080/13543784.2021.1939305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Platinum-resistant ovarian cancer (PROC) is broadly defined as disease recurrence within 6 months of completing platinum-based chemotherapy, either in the primary or recurrent setting. Although there is significant heterogeneity, PROC is generally associated with poor outcomes and low response rates to standard chemotherapy. There have been novel developments in therapeutics for PROC based on biomarkers and a more nuanced understanding of DNA repair and immunologic pathways.Areas covered: This review provides a summary of standard of care and experimental therapies for patients with PROC. Recent advances in our understanding of the DNA damage response and immunobiology of ovarian cancer have paved the way for single agent and combinatorial strategies involving PARP inhibitors, cell cycle checkpoint inhibitors, and immune checkpoint inhibitors to overcome PARP resistance, capitalize on high replication stress, and promote effective anti-tumor immunity, respectively. Furthermore, novel agents including antibody drug conjugates, bispecific antibodies, and recombinant fusion proteins show promise as experimental treatment options.Expert opinion: Standard and experimental treatment options available to patients with PROC have expanded. Testing for BRCA status, tumor mutational burden, and mismatch repair deficiency is recommended to guide therapy. Clinical trial participation is strongly encouraged with a focus on biomarker-driven trials targeting specific patient populations. Novel approaches such as ADCs, bispecific antibodies, targeting the GAS6/AXL and Notch pathways, and oncolytic virotherapy show considerable promise as emerging therapies.
Collapse
Affiliation(s)
- Shuk On Annie Leung
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, US
| | | |
Collapse
|
12
|
Xiu M, Wang Y, Li B, Wang X, Xiao F, Chen S, Zhang L, Zhou B, Hua F. The Role of Notch3 Signaling in Cancer Stemness and Chemoresistance: Molecular Mechanisms and Targeting Strategies. Front Mol Biosci 2021; 8:694141. [PMID: 34195229 PMCID: PMC8237348 DOI: 10.3389/fmolb.2021.694141] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Aberrant Notch signaling profoundly affects cancer progression. Especially the Notch3 receptor was found to be dysregulated in cancer, where its expression is correlated with worse clinicopathological features and poor prognosis. The activation of Notch3 signaling is closely related to the activation of cancer stem cells (CSCs), a small subpopulation in cancer that is responsible for cancer progression. In addition, Notch3 signaling also contributes to tumor chemoresistance against several drugs, including doxorubicin, platinum, taxane, epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitors (TKIs) and gemcitabine, through complex mechanisms. In this review, we mainly focus on discussing the molecular mechanisms by which Notch3 modulates cancer stemness and chemoresistance, as well as other cancer behaviors including metastasis and angiogenesis. What’s more, we propose potential treatment strategies to block Notch3 signaling, such as non-coding RNAs, antibodies and antibody-drug conjugates, providing a comprehensive reference for research on precise targeted cancer therapy.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yongbo Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Baoli Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
13
|
Liu Y, Luo Y, Cai M, Shen P, Li J, Chen H, Bao W, Zhu Y. Anti-angiogenic therapy in ovarian cancer: current situation & prospects. Indian J Med Res 2021; 154:680-690. [PMID: 35532586 PMCID: PMC9210530 DOI: 10.4103/ijmr.ijmr_1160_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Indexed: 11/04/2022] Open
Abstract
Ovarian cancer (OC) is one of five leading causes of cancer related death among women worldwide. Although treatment has been improving, the survival rate has barely improved over the past 30 years. The fatality rate is due to asymptomatic early signs and the lack of long-term effective treatment strategies for advanced disease. Angiogenesis is an important process in tumour growth and metastasis and is the creation of new blood vessels from existing blood vessels. It is a dynamic and complex process involving various molecular regulatory pathways and multiple mechanisms. The inhibition of angiogenesis has become a recognized therapeutic strategy for many solid tumours. While benefits in progression-free survival have been observed, the OS is far from satisfactory for OC patients who receive antiangiogenic therapy. In this article, the present research status of angiogenesis in OC was reviewed and the reasons for poor antiangiogenic therapeutic effects was explored with the aim to identify potential therapeutic targets that may improve the effect of antiangiogenic therapies.
Collapse
Affiliation(s)
- Yinping Liu
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Luo
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meiling Cai
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijun Shen
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hailin Chen
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Bao
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaping Zhu
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Abstract
A type of evolutionarily conserved, noncoding, small, endogenous, single-stranded RNA, miRNAs are widely distributed in eukaryotes, where they participate in various biological processes as critical regulatory molecules. miR-1299 has mainly been investigated in cancers. miR-1299 is a tumor suppressor that regulates the expression of its target genes, activating or inhibiting the transcription of genes regulating biological activities including cell proliferation, migration, survival and programmed cell death. miR-1299 has become a hotspot in research of disease mechanisms and biomarkers; elucidation of the regulatory roles of miR-1299 in tumorigenesis, proliferation, apoptosis, invasion, migration and angiogenesis may provide a new perspective for understanding its biological functions as a tumor suppressor. As key regulatory molecules, microRNAs participate in various biological processes and have become a widespread research focus. This article discusses how the microRNA miR-1299 plays a role as a tumor suppressor and participates in the regulation of tumor pathogenesis. We provide an overview of the role of miR-1299 in tumor diseases and discuss the pathogenesis and regulation mechanisms of miR-1299 in different specific cancers.
Collapse
Affiliation(s)
- Deng Kaiyuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Huang Lijuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Sun Xueyuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Zang Yunhui
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| |
Collapse
|
15
|
Noh K, Bach DH, Choi HJ, Kim MS, Wu SY, Pradeep S, Ivan C, Cho MS, Bayraktar E, Rodriguez-Aguayo C, Dasari SK, Stur E, Mangala LS, Lopez-Berestein G, Sood AK. The hidden role of paxillin: localization to nucleus promotes tumor angiogenesis. Oncogene 2021; 40:384-395. [PMID: 33149280 PMCID: PMC8275353 DOI: 10.1038/s41388-020-01517-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
Paxillin (PXN), a key component of the focal adhesion complex, has been associated with cancer progression, but the underlying mechanisms are poorly understood. The purpose of this study was to elucidate mechanisms by which PXN affects cancer growth and progression, which we addressed using cancer patient data, cell lines, and orthotopic mouse models. We demonstrated a previously unrecognized mechanism whereby nuclear PXN enhances angiogenesis by transcriptionally regulating SRC expression. SRC, in turn, increases PLAT expression through NF-ĸB activation; PLAT promotes angiogenesis via LRP1 in endothelial cells. PXN silencing in ovarian cancer mouse models reduced angiogenesis, tumor growth, and metastasis. These findings provide a new understanding of the role of PXN in regulating tumor angiogenesis and growth.
Collapse
Affiliation(s)
- Kyunghee Noh
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Duc-Hiep Bach
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hyun-Jin Choi
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Obstetrics and Gynecology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Mark S Kim
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cristina Ivan
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min-Soon Cho
- Department of Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Santosh K Dasari
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Manasa P, Sidhanth C, Krishnapriya S, Vasudevan S, Ganesan TS. Oncogenes in high grade serous adenocarcinoma of the ovary. Genes Cancer 2020; 11:122-136. [PMID: 33488950 PMCID: PMC7805537 DOI: 10.18632/genesandcancer.206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
High grade serous ovarian cancer is characterized by relatively few mutations occurring at low frequency, except in TP53. However other genetic aberrations such as copy number variation alter numerous oncogenes and tumor suppressor genes. Oncogenes are positive regulators of tumorigenesis and play a critical role in cancer cell growth, proliferation, and survival. Accumulating evidence suggests that they are crucial for the development and the progression of high grade serous ovarian carcinoma (HGSOC). Though many oncogenes have been identified, no successful inhibitors targeting these molecules and their associated pathways are available. This review discusses oncogenes that have been identified recently in HGSOC using different screening strategies. All the genes discussed in this review have been functionally characterized both in vitro and in vivo and some of them are able to transform immortalized ovarian surface epithelial and fallopian tube cells upon overexpression. However, it is necessary to delineate the molecular pathways affected by these oncogenes for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Pacharla Manasa
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Chirukandath Sidhanth
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Syama Krishnapriya
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Sekar Vasudevan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| |
Collapse
|
17
|
Canté-Barrett K, Holtzer L, van Ooijen H, Hagelaar R, Cordo’ V, Verhaegh W, van de Stolpe A, Meijerink JPP. A Molecular Test for Quantifying Functional Notch Signaling Pathway Activity in Human Cancer. Cancers (Basel) 2020; 12:cancers12113142. [PMID: 33120947 PMCID: PMC7692325 DOI: 10.3390/cancers12113142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The Notch signal transduction pathway is important for various physiological processes, including immune responses, and plays a role in many diseases, for example cancer. We have developed a new assay to quantitatively measure Notch pathway activity, and we validated it using data from various human cancer cell lines. The assay can be applied across different cell types, and offers numerous possibilities to explore the contribution of the Notch pathway to tumor formation and the stratification of cancer patients. We assessed Notch pathway activity in a cohort of T cell acute lymphoblastic leukemia (T-ALL) patient samples, and found that the pathway activity score more accurately reflects Notch pathway activity than a prediction on the basis of NOTCH1 mutations alone. Finally, we found that patients with low Notch pathway activity had a significantly shorter event-free survival compared to patients who had T-ALL cells with higher activity. Abstract Background: The Notch signal transduction pathway is pivotal for various physiological processes, including immune responses, and has been implicated in the pathogenesis of many diseases. The effectiveness of various targeted Notch pathway inhibitors may vary due to variabilities in Notch pathway activity among individual patients. The quantitative measurement of Notch pathway activity is therefore essential to identify patients who could benefit from targeted treatment. Methods: We here describe a new assay that infers a quantitative Notch pathway activity score from the mRNA levels of generally conserved direct NOTCH target genes. Following the calibration and biological validation of our Notch pathway activity model over a wide spectrum of human cancer types, we assessed Notch pathway activity in a cohort of T-ALL patient samples and related it to biological and clinical parameters, including outcome. Results: We developed an assay using 18 select direct target genes and high-grade serous ovarian cancer for calibration. For validation, seven independent human datasets (mostly cancer series) were used to quantify Notch activity in agreement with expectations. For T-ALL, the median Notch pathway activity was highest for samples with strong NOTCH1-activating mutations, and T-ALL patients of the TLX subtype generally had the highest levels of Notch pathway activity. We observed a significant relationship between ICN1 levels and the absence/presence of NOTCH1-activating mutations with Notch pathway activity scores. Patients with the lowest Notch activity scores had the shortest event-free survival compared to other patients. Conclusions: High Notch pathway activity was not limited to T-ALL samples harboring strong NOTCH1 mutations, including juxtamembrane domain mutations or hetero-dimerization combined with PEST-domain or FBXW7 mutations, indicating that additional mechanisms may activate Notch signaling. The measured Notch pathway activity was related to intracellular NOTCH levels, indicating that the pathway activity score more accurately reflects Notch pathway activity than when it is predicted on the basis of NOTCH1 mutations. Importantly, patients with low Notch pathway activity had a significantly shorter event-free survival compared to patients showing higher activity.
Collapse
Affiliation(s)
- Kirsten Canté-Barrett
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
| | - Laurent Holtzer
- Philips Molecular Pathway Dx, Royal Philips, 5656 AE Eindhoven, The Netherlands; (L.H.); (A.v.d.S.)
| | - Henk van Ooijen
- Philips Research, Royal Philips, 5656 AE Eindhoven, The Netherlands; (H.v.O.); (W.V.)
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
| | - Valentina Cordo’
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
| | - Wim Verhaegh
- Philips Research, Royal Philips, 5656 AE Eindhoven, The Netherlands; (H.v.O.); (W.V.)
| | - Anja van de Stolpe
- Philips Molecular Pathway Dx, Royal Philips, 5656 AE Eindhoven, The Netherlands; (L.H.); (A.v.d.S.)
| | - Jules P. P. Meijerink
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
- Correspondence: ; Tel.: +31-6-15064275
| |
Collapse
|
18
|
Pei Y, Li K, Lou X, Wu Y, Dong X, Wang W, Li N, Zhang D, Cui W. miR‑1299/NOTCH3/TUG1 feedback loop contributes to the malignant proliferation of ovarian cancer. Oncol Rep 2020; 44:438-448. [PMID: 32468036 PMCID: PMC7336509 DOI: 10.3892/or.2020.7623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/29/2020] [Indexed: 12/22/2022] Open
Abstract
Recent studies have revealed the oncogenic role of notch reporter 3 (NOTCH3) in ovarian cancer (OC). However, the possible regulators and mechanisms underlying notch receptor 3 (NOTCH3)‑mediated behaviors in OC remain to be completely investigated. In the present study, we aimed to identify regulators of NOTCH3 and their interactions underlying the pathogenesis of OC. Bioinformatics analysis and luciferase reporter assay were used to identify potential regulatory miRNAs and lncRNAs of NOTCH3 in OC. Several in vivo and in vitro assays were performed to evaluate their effects on the proliferative ability mediated by NOTCH3. We identified microRNA‑1299 (miR‑1299) as a novel negative regulator of NOTCH3. miR‑1299 was downregulated in OC and was found to be considerably correlated with tumor differentiation. Upregulation of miR‑1299 inhibited cell proliferation, colony formation, and 5‑ethynyl‑2'‑deoxyuridine (EdU) incorporation, as well as induced cell cycle arrest in the G0G1 phase in OC cells. Overexpression of miR‑1299 in xenograft mouse models suppressed tumor growth in vivo. The lncRNA taurine upregulated gene 1 (TUG1), acting as a sponge of miR‑1299, was found to upregulate NOTCH3 expression and promote cell proliferation in OC through the competing endogenous RNA mechanism. In addition, TUG1 was found to be a potential downstream target of NOTCH3, forming a miR‑1299/NOTCH3/TUG1 feedback loop in the development of OC. Collectively, our findings improve the understanding of NOTCH3‑mediated regulation in OC pathogenesis and facilitate the development of miRNA‑ and lncRNA‑directed diagnostics and therapeutics against this disease.
Collapse
Affiliation(s)
- Yuqing Pei
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Kexin Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiaoying Lou
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yue Wu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xin Dong
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wenpeng Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Donghong Zhang
- Center for Molecular and Translational Medicine, Research Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Wei Cui
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
- Correspondence to: Professor Wei Cui, State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli Road, Chaoyang, Beijing 100021, P.R. China, E-mail:
| |
Collapse
|
19
|
The oncogenic role of Jagged1/Notch signaling in cancer. Biomed Pharmacother 2020; 129:110416. [PMID: 32593969 DOI: 10.1016/j.biopha.2020.110416] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrant activation of Notch signaling plays an oncogenic role in cancer development. Jagged1 (JAG1) is an important Notch ligand that triggers Notch signaling through cell-cell interactions. JAG1 overexpression has been reported in many different types of cancer and correlates with a poor clinical prognosis. JAG1/Notch signaling controls oncogenic processes in different cell types and cellular contexts. Furthermore, JAG1/Notch signaling cascades activate a number of oncogenic factors that regulate cellular functions such as proliferation, metastasis, drug-resistance, and angiogenesis. To suppress the severe toxicity of pan-Notch inhibitors, JAG1 is attracting increasing attention as a source of therapeutic targets for cancers. In this review, the oncogenic role of JAG1/Notch signaling in cancer is discussed, as well as implications of strategies to inhibit JAG1/Notch signaling activity.
Collapse
|
20
|
Notch3 signaling promotes tumor cell adhesion and progression in a murine epithelial ovarian cancer model. PLoS One 2020; 15:e0233962. [PMID: 32525899 PMCID: PMC7289394 DOI: 10.1371/journal.pone.0233962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/15/2020] [Indexed: 11/26/2022] Open
Abstract
High grade serous ovarian cancer (HGSC) is the most common and deadly type of ovarian cancer, largely due to difficulties in early diagnosis and rapid metastasis throughout the peritoneal cavity. Previous studies have shown that expression of Notch3 correlates with worse prognosis and increased tumorigenic cell behaviors in HGSC. We investigated the mechanistic role of Notch3 in a model of metastatic ovarian cancer using the murine ovarian surface epithelial cell line, ID8 IP2. Notch3 was activated in ID8 IP2 cells via expression of the Notch3 intracellular domain (Notch3IC). Notch3IC ID8 IP2 cells injected intraperitoneally caused accelerated ascites and reduced survival compared to control ID8 IP2, particularly in early stages of disease. We interrogated downstream targets of Notch3IC in ID8 IP2 cells by RNA sequencing and found significant induction of genes that encode adhesion and extracellular matrix proteins. Notch3IC ID8 IP2 showed increased expression of ITGA1 mRNA and cell-surface protein. Notch3IC-mediated increase of ITGA1 was also seen in two human ovarian cancer cells. Notch3IC ID8 IP2 cells showed increased adhesion to collagens I and IV in vitro. We propose that Notch3 activation in ovarian cancer cells causes increased adherence to collagen-rich peritoneal surfaces. Thus, the correlation between increased Notch3 signaling and poor prognosis may be influenced by increased metastasis of HGSC via increased adherence of disseminating cells to new metastatic sites in the peritoneum.
Collapse
|
21
|
Notch3 signalling and vascular remodelling in pulmonary arterial hypertension. Clin Sci (Lond) 2020; 133:2481-2498. [PMID: 31868216 PMCID: PMC6928565 DOI: 10.1042/cs20190835] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Notch signalling is critically involved in vascular morphogenesis and function. Four Notch isoforms (Notch1–4) regulating diverse cellular processes have been identified. Of these, Notch3 is expressed almost exclusively in vascular smooth muscle cells (VSMCs), where it is critically involved in vascular development and differentiation. Under pathological conditions, Notch3 regulates VSMC switching between the contractile and synthetic phenotypes. Abnormal Notch3 signalling plays an important role in vascular remodelling, a hallmark of several cardiovascular diseases, including pulmonary arterial hypertension (PAH). Because of the importance of Notch3 in VSMC (de)differentiation, Notch3 has been implicated in the pathophysiology of pulmonary vascular remodelling in PAH. Here we review the current literature on the role of Notch in VSMC function with a focus on Notch3 signalling in pulmonary artery VSMCs, and discuss potential implications in pulmonary artery remodelling in PAH.
Collapse
|
22
|
Zuber E, Schweitzer D, Allen D, Parte S, Kakar SS. Stem Cells in Ovarian Cancer and Potential Therapies. PROCEEDINGS OF STEM CELL RESEARCH AND ONCOGENESIS 2020; 8:e1001. [PMID: 32776013 PMCID: PMC7413600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Elena Zuber
- Department of Physiology, University of Louisville, Louisville, KY40202
| | - Diana Schweitzer
- Department of Physiology, University of Louisville, Louisville, KY40202
| | - Dominick Allen
- Department of Physiology, University of Louisville, Louisville, KY40202
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska, Omaha, NE-68198-5870
| | - Sham S. Kakar
- Department of Physiology, University of Louisville, Louisville, KY40202
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| |
Collapse
|
23
|
Fang CH, Lin YT, Liang CM, Liang SM. A novel c-Kit/phospho-prohibitin axis enhances ovarian cancer stemness and chemoresistance via Notch3-PBX1 and β-catenin-ABCG2 signaling. J Biomed Sci 2020; 27:42. [PMID: 32169072 PMCID: PMC7071647 DOI: 10.1186/s12929-020-00638-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Background The underlying mechanism involved in ovarian cancer stemness and chemoresistance remains largely unknown. Here, we explored whether the regulation of c-Kit and plasma membrane prohibitin (PHB) affects ovarian cancer stemness and chemotherapy resistance. Methods Mass spectrum analysis and an in vitro kinase assay were conducted to examine the phosphorylation of PHB at tyrosine 259 by c-Kit. The in vitro effects of c-Kit on membrane raft-PHB in ovarian cancer were determined using tissue microarray (TMA)-based immunofluorescence, western blotting, immunoprecipitation, colony and spheroid formation, cell migration and cell viability assays. In vivo tumor initiation and carboplatin treatment were conducted in nude mice. Results We found that c-Kit and PHB colocalized in the raft domain and were positively correlated in human ovarian serous carcinoma. c-Kit interacted with PHB and facilitated the phosphorylation of PHB at tyrosine 259 (phospho-PHBY259) in the membrane raft to enhance ovarian cancer cell motility. The generation of SKOV3GL-G4, a metastatic phenotype of SKOV3 green fluorescent protein and luciferase (GL) ovarian cancer cells, in xenograft murine ascites showed a correlation between metastatic potential and stem cell characteristics, as indicated by the expression of c-Kit, Notch3, Oct4, Nanog and SOX2. Further study revealed that after activation by c-Kit, raft-phospho-PHBY259 interacted with Notch3 to stabilize Notch3 and increase the downstream target PBX1. Downregulation of raft-phospho-PHBY259 increased the protein degradation of Notch3 through a lysosomal pathway and inhibited the β-catenin—ABCG2 signaling pathway. Moreover, raft-phospho-PHBY259 played an important role in ovarian cancer stemness and tumorigenicity as well as resistance to platinum drug treatment in vitro and in vivo. Conclusions These findings thus reveal a hitherto unreported interrelationship between c-Kit and PHB as well as the effects of raft-phospho-PHBY259 on ovarian cancer stemness and tumorigenicity mediated by the Notch3 and β-catenin signaling pathways. Targeting the c-Kit/raft-phospho-PHBY259 axis may provide a new therapeutic strategy for treating patients with ovarian cancer.
Collapse
Affiliation(s)
- Chia-Hsun Fang
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Rd, Sec. 2, Taipei, 11529, Taiwan.,Institute of Biotechnology, National Taiwan University, 4F, No. 81, Chang-Xing St, Taipei, 10672, Taiwan
| | - Yi-Te Lin
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Rd, Sec. 2, Taipei, 11529, Taiwan
| | - Chi-Ming Liang
- Genomics Research Center, Academia Sinica, 128 Academia Rd, Sec. 2, Taipei, 11529, Taiwan
| | - Shu-Mei Liang
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Rd, Sec. 2, Taipei, 11529, Taiwan. .,Institute of Biotechnology, National Taiwan University, 4F, No. 81, Chang-Xing St, Taipei, 10672, Taiwan.
| |
Collapse
|
24
|
Wheeler LJ, Watson ZL, Qamar L, Yamamoto TM, Sawyer BT, Sullivan KD, Khanal S, Joshi M, Ferchaud-Roucher V, Smith H, Vanderlinden LA, Brubaker SW, Caino CM, Kim H, Espinosa JM, Richer JK, Bitler BG. Multi-Omic Approaches Identify Metabolic and Autophagy Regulators Important in Ovarian Cancer Dissemination. iScience 2019; 19:474-491. [PMID: 31437751 PMCID: PMC6710300 DOI: 10.1016/j.isci.2019.07.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/24/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
High-grade serous ovarian cancers (HGSOCs) arise from exfoliation of transformed cells from the fallopian tube, indicating that survival in suspension, and potentially escape from anoikis, is required for dissemination. We report here the results of a multi-omic study to identify drivers of anoikis escape, including transcriptomic analysis, global non-targeted metabolomics, and a genome-wide CRISPR/Cas9 knockout (GeCKO) screen of HGSOC cells cultured in adherent and suspension settings. Our combined approach identified known pathways, including NOTCH signaling, as well as novel regulators of anoikis escape. Newly identified genes include effectors of fatty acid metabolism, ACADVL and ECHDC2, and an autophagy regulator, ULK1. Knockdown of these genes significantly inhibited suspension growth of HGSOC cells, and the metabolic profile confirmed the role of fatty acid metabolism in survival in suspension. Integration of our datasets identified an anoikis-escape gene signature that predicts overall survival in many carcinomas.
Collapse
Affiliation(s)
- Lindsay J Wheeler
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zachary L Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 E. 19(th) Avenue, MS 8613, Aurora, CO 80045, USA
| | - Lubna Qamar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 E. 19(th) Avenue, MS 8613, Aurora, CO 80045, USA
| | - Tomomi M Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 E. 19(th) Avenue, MS 8613, Aurora, CO 80045, USA
| | - Brandon T Sawyer
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kelly D Sullivan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Santosh Khanal
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Veronique Ferchaud-Roucher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Harry Smith
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lauren A Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sky W Brubaker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cecilia M Caino
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hyunmin Kim
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 E. 19(th) Avenue, MS 8613, Aurora, CO 80045, USA.
| |
Collapse
|
25
|
Aghamiri S, Mehrjardi KF, Shabani S, Keshavarz-Fathi M, Kargar S, Rezaei N. Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine (Lond) 2019; 14:2083-2100. [PMID: 31368405 DOI: 10.2217/nnm-2018-0379] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is one of the most common causes of mortality throughout the world. Unfortunately, chemotherapy has failed to cure advanced cancers developing multidrug resistance (MDR). Moreover, it has critical side effects because of nonspecific toxicity. Thanks to specific silencing of oncogenes and MDR-associated genes, nano-siRNA drugs can be a great help address the limitations of chemotherapy. Here, we review the current advances in nanoparticle-mediated siRNA delivery strategies such as polymeric- and lipid-based systems, rigid nanoparticles and nanoparticles coupled to specific ligand systems. Nanoparticle-based codelivery of anticancer drugs and siRNA targeting various mechanisms of MDR is a cutting-edge strategy for ovarian cancer therapy, which is completely discussed in this review.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19839-63113, Iran
| | - Keyvan Fallah Mehrjardi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran
| | - Sasan Shabani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran.,Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Saeed Kargar
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 1419733151, Iran
| |
Collapse
|
26
|
Jia D, Underwood J, Xu Q, Xie Q. NOTCH2/NOTCH3/DLL3/MAML1/ADAM17 signaling network is associated with ovarian cancer. Oncol Lett 2019; 17:4914-4920. [PMID: 31186700 PMCID: PMC6507302 DOI: 10.3892/ol.2019.10170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is well-known for its role in regulating cell self-renewal and differentiation. Within the cancer research field, it has been identified that dysregulated Notch signaling is involved directly with various types of cancer. Although Notch signaling is generally considered as oncogenic, it sometimes acts as a tumor suppressor, highlighting the complexity of the role of Notch in cancer. A number of studies have associated Notch signaling components with ovarian cancer, but the underlying molecular mechanisms are not well-elucidated. In the present study, the roles of main components of Notch signaling in ovarian cancer were systematically analyzed through large data portals, including Prediction of Clinical Outcomes from Genomic Profiles, Gene Expression across Normal and Tumor tissue, CSIOVDB, Broad Institute Cancer Cell Line Encyclopedia and cBioPortal. Upregulated expression of proteins in the Notch signaling pathway components in ovarian cancer was identified to be generally associated with poor overall and disease-free survival time, and more advanced cancer stages. In addition, Notch components were enriched in ovarian cancer tissues and cell lines. These results led to a proposed neurogenic locus notch homolog protein (NOTCH)2/NOTCH3/Delta-like protein 3/Mastermind-like protein 1/a disintegrin and metalloproteinase domain-containing protein 17 network. Anticancer drugs, developed to target this network, may have high specificity in treating Notch-associated ovarian cancer.
Collapse
Affiliation(s)
- Dongyu Jia
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA.,Key Laboratory for Biorheological Science and Technology of The Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P.R. China
| | - Jesse Underwood
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| | - Qiuping Xu
- Morphism Institute, Seattle, WA 98117, USA
| | - Qian Xie
- Morphism Institute, Seattle, WA 98117, USA
| |
Collapse
|
27
|
Villar-Prados A, Wu SY, Court KA, Ma S, LaFargue C, Chowdhury MA, Engelhardt MI, Ivan C, Ram PT, Wang Y, Baggerly K, Rodriguez-Aguayo C, Lopez-Berestein G, Ming-Yang S, Maloney DJ, Yoshioka M, Strovel JW, Roszik J, Sood AK. Predicting Novel Therapies and Targets: Regulation of Notch3 by the Bromodomain Protein BRD4. Mol Cancer Ther 2019; 18:421-436. [PMID: 30420565 PMCID: PMC6363833 DOI: 10.1158/1535-7163.mct-18-0365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/24/2018] [Accepted: 11/06/2018] [Indexed: 11/16/2022]
Abstract
Systematic approaches for accurate repurposing of targeted therapies are needed. We developed and aimed to biologically validate our therapy predicting tool (TPT) for the repurposing of targeted therapies for specific tumor types by testing the role of Bromodomain and Extra-Terminal motif inhibitors (BETi) in inhibiting BRD4 function and downregulating Notch3 signaling in ovarian cancer.Utilizing established ovarian cancer preclinical models, we carried out in vitro and in vivo studies with clinically relevant BETis to determine their therapeutic effect and impact on Notch3 signaling.Treatment with BETis or siRNA-mediated BRD4 knockdown resulted in decreased cell viability, reduced cell proliferation, and increased cell apoptosis in vitro. In vivo studies with orthotopic mouse models demonstrated that treatment with BETi decreased tumor growth. In addition, knockdown of BRD4 with doxycycline-inducible shRNA increased survival up to 50% (P < 0.001). Treatment with either BETis or BRD4 siRNA decreased Notch3 expression both in vitro and in vivo BRD4 inhibition also decreased the expression of NOTCH3 targets, including HES1 Chromatin immunoprecipitation revealed that BRD4 was present at the NOTCH3 promoter.Our findings provide biological validation for the TPT by demonstrating that BETis can be an effective therapeutic agent for ovarian cancer by downregulating Notch3 expression.The TPT could rapidly identify candidate drugs for ovarian or other cancers along with novel companion biomarkers.
Collapse
Affiliation(s)
- Alejandro Villar-Prados
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Sherry Y Wu
- School of Biomedical Sciences, University of Queensland, Queensland, Australia
| | - Karem A Court
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher LaFargue
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mamur A Chowdhury
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Margaret I Engelhardt
- John P. and Kathrine G. McGovern Medical School, The University of Texas, Houston, Texas
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prahlad T Ram
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shyh Ming-Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - David J Maloney
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | | | | | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
28
|
Delta-like 1 homologue promotes tumorigenesis and epithelial-mesenchymal transition of ovarian high-grade serous carcinoma through activation of Notch signaling. Oncogene 2019; 38:3201-3215. [PMID: 30626939 DOI: 10.1038/s41388-018-0658-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/26/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023]
Abstract
Ovarian carcinoma is the most lethal type of gynecologic malignancies. Alterations of Notch pathway are prevalent in ovarian carcinogenesis. This study investigated the expression profile and function of delta-like 1 homolog (DLK1), a non-canonical Notch ligand, during ovarian carcinogenesis. Tissue microarray (TMA) consisting of surgically resected samples from 221 patients with ovarian carcinoma was constructed for DLK1 expression. DLK1 overexpression or knockdown was achieved by adenovirus gene delivery to evaluate the effect of DLK1 on the oncogenic behaviors in ovarian cancer cells and in xenografted tumors. TMA analysis revealed that elevated DLK1 expression was correlated with stages, lymph node metastasis and E-cadherin downregulation. Despite no influence on survival among ovarian carcinoma patients, DLK1 overexpression was specially associated with overall survival and progression free survival in high-grade serous carcinoma (HGSC) patients, constituting an independent prognostic factor for these patients. By adenovirus gene delivery, it was found modulation of cellular DLK1 level regulated the tumorigenic behaviors and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Immunohistochemical analysis further showed that DLK1 overexpression resulted in escalated proliferation, angiogenesis, EMT and Notch activities. Application of recombinant DLK1 extracellular domain (rDLK1-EC) recapitulated the tumorigenic behaviors of DLK1 in ovarian cancer cells. By using neutralizing antibody or pharmaceutical inhibitor, blockade of Notch signaling attenuated the tumorigenic behaviors evoked by DLK1 overexpression. The present study indicates that DLK1 overexpression participates in ovarian carcinogenesis through Notch activation and EMT induction. Moreover, DLK1 may constitute a novel diagnostic biomarker and therapeutic target for HGSC.
Collapse
|
29
|
Xu Y, Zhang Q, Miao C, Dongol S, Li Y, Jin C, Dong R, Li Y, Yang X, Kong B. CCNG1 (Cyclin G1) regulation by mutant-P53 via induction of Notch3 expression promotes high-grade serous ovarian cancer (HGSOC) tumorigenesis and progression. Cancer Med 2018; 8:351-362. [PMID: 30565428 PMCID: PMC6346265 DOI: 10.1002/cam4.1812] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
TP53 mutation is considerably common in advanced high-grade serous ovarian cancer (HGSOC) and significantly associated with a poor prognosis. In this study, we investigated the role of Cyclin G1 (CCNG1), a target gene of wild-type TP53 (P53wt), in HGSOC and the possible regulatory mechanism between TP53 mutant (P53mt) and CCNG1 in the progression of HGSOC. High expression level of CCNG1 was found in 61.3% of HGSOC tissues and only 18.2% in fimbriae of fallopian tubes. Additionally, overexpression of CCNG1 was significantly associated with a shorter overall survival (P < 0.0001) and progression-free survival (P < 0.0004) in HGSOC patients. In vitro, CCNG1 promoted both tumor cell motility by inducing epithelial-mesenchymal transition (EMT) and resistance to cisplatin (CDDP). In vivo, knockdown expression of CCNG1 inhibited cancer metastasis. Furthermore, P53mt increased the expression of CCNG1 by regulating Notch3 expression, and a positive correlation between CCNG1 and Notch3 protein expression was observed by Immunohistochemistry (IHC) (r = 0.39, P: 0.01528). In conclusion, the activation of P53mt-Notch3-CCNG1 pathway was responsible for tumor progression to advanced disease with correlation with worse prognosis in patients with HGSOC. These data suggest a possible molecular mechanism of disease and highlights CCNG1's potential role as a therapeutic target in HGSOC.
Collapse
Affiliation(s)
- Ying Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Chunying Miao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Samina Dongol
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Yinuo Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Chenjuan Jin
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Ruifeng Dong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| |
Collapse
|
30
|
Pazos MC, Sequeira G, Bocchicchio S, May M, Abramovich D, Parborell F, Tesone M, Irusta G. PDGFB as a vascular normalization agent in an ovarian cancer model treated with a gamma-secretase inhibitor. J Cell Physiol 2018; 233:5949-5961. [PMID: 29266203 DOI: 10.1002/jcp.26404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Ovarian cancer is the fifth leading cause of cancer-related deaths in women. In the past 20 years, the canonical types of drugs used to treat ovarian cancer have not been replaced and the survival rates have not changed. These facts show the clear need to find new therapeutic strategies for this illness. Thus, the aim of the present study was to investigate the effect of a gamma-secretase inhibitor (DAPT) in combination with the Platelet-derived growth factor B (PDGFB) on an ovarian cancer xenograft model. To achieve this goal, we analyzed the effect of the administration of DAPT alone and the co-administration of DAPT and recombinant PDGFB on parameters associated with tumor growth and angiogenesis in an orthotopic experimental model of ovarian cancer. We observed that the dose of DAPT used was ineffective to reduce ovarian tumor growth, but showed anticancer activity when co-administered with recombinant PDGFB. The administration of PDGFB alone normalized tumor vasculature by increasing periendothelial coverage and vascular functionality. Interestingly, this effect exerted by PDGFB was also observed in the presence of DAPT. Our findings suggest that PDGFB is able to improve tumor vascularity and allows the anticancer action of DAPT in the tumor. We propose that this therapeutic strategy could be a new tool for ovarian cancer treatment and deserves further studies.
Collapse
Affiliation(s)
- Maria C Pazos
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - Gonzalo Sequeira
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - Sebastian Bocchicchio
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - Maria May
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - Marta Tesone
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - Griselda Irusta
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| |
Collapse
|
31
|
Aburjania Z, Jang S, Whitt J, Jaskula-Stzul R, Chen H, Rose JB. The Role of Notch3 in Cancer. Oncologist 2018; 23:900-911. [PMID: 29622701 PMCID: PMC6156186 DOI: 10.1634/theoncologist.2017-0677] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
The Notch family is a highly conserved gene group that regulates cell-cell interaction, embryogenesis, and tissue commitment. This review article focuses on the third Notch family subtype, Notch3. Regulation via Notch3 signaling was first implicated in vasculogenesis. However, more recent findings suggest that Notch3 signaling may play an important role in oncogenesis, tumor maintenance, and resistance to chemotherapy. Its role is mainly oncogenic, although in some cancers it appears to be tumor suppressive. Despite the wealth of published literature, it remains relatively underexplored and requires further research to shed more light on its role in cancer development, determine its tissue-specific function, and elaborate novel treatment strategies. Herein we summarize the role of Notch3 in cancer, possible mechanisms of its action, and current cancer treatment strategies targeting Notch3 signaling. IMPLICATIONS FOR PRACTICE The Notch family is a highly conserved gene group that regulates cell-cell interaction, embryogenesis, and tissue commitment. This review summarizes the existing data on the third subtype of the Notch family, Notch3. The role of Notch3 in different types of cancers is discussed, as well as implications of its modification and new strategies to affect Notch3 signaling activity.
Collapse
Affiliation(s)
- Zviadi Aburjania
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samuel Jang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason Whitt
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Renata Jaskula-Stzul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - J Bart Rose
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
32
|
Prognostic roles of Notch receptor mRNA expression in human ovarian cancer. Oncotarget 2018; 8:32731-32740. [PMID: 28415574 PMCID: PMC5464823 DOI: 10.18632/oncotarget.16387] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
Aberrant activation of Notch signaling pathway has been correlated with high grade ovarian carcinoma and carcinogenesis. However, the predictive and prognostic values of Notch signaling pathway in ovarian cancer patients remains unclear. We utilize “The Kaplan-Meier plotter” (KM plotter) background database to access the prognostic values including overall survival (OS), progression-free survival (PFS), as well as post-progression survival (PPS) of four Notch receptor mRNA expression in ovarian cancer patients. Notch1 mRNA high expression was not correlated with OS, PFS and PPS for all ovarian cancer patients, but significantly correlated with poor PFS in TP53 wild type and favorite PFS in TP53 mutation type ovarian cancer patients. Notch2 mRNA high expression was significantly correlated with poor PFS for all ovarian cancer patients, especially in grade II patients. Notch3 mRNA high expression was significantly correlated with favorite PFS for all ovarian cancer patients. Notch4 mRNA high expression was significantly correlated with favorite OS, but not PFS and PPS for all ovarian cancer patients. The results strongly support that there are distinct prognostic values of four Notch receptor mRNA expression in ovarian cancer patients.
Collapse
|
33
|
Krepler C, Xiao M, Samanta M, Vultur A, Chen HY, Brafford P, Reyes-Uribe PI, Halloran M, Chen T, He X, Hristova D, Liu Q, Samatar AA, Davies MA, Nathanson KL, Fukunaga-Kalabis M, Herlyn M, Villanueva J. Targeting Notch enhances the efficacy of ERK inhibitors in BRAF-V600E melanoma. Oncotarget 2018; 7:71211-71222. [PMID: 27655717 PMCID: PMC5342073 DOI: 10.18632/oncotarget.12078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
The discovery of activating BRAF mutations in approximately 50% of melanomas has led to the development of MAPK pathway inhibitors, which have transformed melanoma therapy. However, not all BRAF-V600E melanomas respond to MAPK inhibition. Therefore, it is important to understand why tumors with the same oncogenic driver have variable responses to MAPK inhibitors. Here, we show that concurrent loss of PTEN and activation of the Notch pathway is associated with poor response to the ERK inhibitor SCH772984, and that co-inhibition of Notch and ERK decreased viability in BRAF-V600E melanomas. Additionally, patients with low PTEN and Notch activation had significantly shorter progression free survival when treated with BRAF inhibitors. Our studies provide a rationale to further develop combination strategies with Notch antagonists to maximize the efficacy of MAPK inhibition in melanoma. Our findings should prompt the evaluation of combinations co-targeting MAPK/ERK and Notch as a strategy to improve current therapies and warrant further evaluation of co-occurrence of aberrant PTEN and Notch activation as predictive markers of response to therapy.
Collapse
Affiliation(s)
- Clemens Krepler
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Min Xiao
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Minu Samanta
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Adina Vultur
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Hsin-Yi Chen
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Patricia Brafford
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | | | - Molly Halloran
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Thomas Chen
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Xu He
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Denitsa Hristova
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Qin Liu
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Ahmed A Samatar
- Discovery Oncology Merck Research Laboratories, Boston, MA, USA
| | - Michael A Davies
- Melanoma Medical Oncology and Systems Biology University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine L Nathanson
- Division of Medical Genetics and The Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia PA, USA
| | | | - Meenhard Herlyn
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | - Jessie Villanueva
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| |
Collapse
|
34
|
Xu Y, Miao C, Jin C, Qiu C, Li Y, Sun X, Gao M, Lu N, Kong B. SUSD2 promotes cancer metastasis and confers cisplatin resistance in high grade serous ovarian cancer. Exp Cell Res 2018; 363:160-170. [DOI: 10.1016/j.yexcr.2017.12.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/26/2017] [Accepted: 12/29/2017] [Indexed: 01/27/2023]
|
35
|
Bellavia D, Checquolo S, Palermo R, Screpanti I. The Notch3 Receptor and Its Intracellular Signaling-Dependent Oncogenic Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:205-222. [PMID: 30030828 DOI: 10.1007/978-3-319-89512-3_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During evolution, gene duplication of the Notch receptor suggests a progressive functional diversification. The Notch3 receptor displays a number of structural differences with respect to Notch1 and Notch2, most of which have been reported in the transmembrane and in the intracellular regions, mainly localized in the negative regulatory region (NRR) and trans-activation domain (TAD). Targeted deletion of Notch3 does not result in embryonic lethality, which is in line with its highly restricted tissue expression pattern. Importantly, deregulated Notch3 expression and/or activation, often results in disrupted cell differentiation and/or pathological development, most notably in oncogenesis in different cell contexts. Mechanistically this is due to Notch3-related genetic alterations or epigenetic or posttranslational control mechanisms. In this chapter we discuss the possible relationships between the structural differences and the pathological role of Notch3 in the control of mouse and human cancers. In future, targeting the unique features of Notch3-oncogenic mechanisms could be exploited to develop anticancer therapeutics.
Collapse
Affiliation(s)
- Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
36
|
Identification of small molecules uncoupling the Notch::Jagged interaction through an integrated high-throughput screening. PLoS One 2017; 12:e0182640. [PMID: 29099834 PMCID: PMC5669421 DOI: 10.1371/journal.pone.0182640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/22/2017] [Indexed: 01/01/2023] Open
Abstract
Notch signaling plays an important role in several cellular functions including growth, differentiation, cell fate determination and stemness. Increased Notch activity has been linked to several types of cancers. Activation of Notch signaling is triggered by the interaction of Notch receptors (Notch1-4) with 5 different ligands (Jagged1-2 and Dll1-3-4) expressed on the neighbouring cells. Currently, indirect approaches to inhibit Notch signalling are based on the inhibition of the key step of Notch activation catalyzed by the γ-Secretase and thereby affect several different γ-Secretase substrates; conversely direct strategies get advantage of antibody-based drugs. The evidence that Jagged-mediated Notch activation plays a key role in cancer cell biology and the interplay with the surrounding microenvironment prompted us to develop a strategy to directly inhibit Notch activation by uncoupling its interaction with the Jagged, using an unprecedented approach based on small molecules. We set-up a screening strategy based on: protein::protein docking of crystallographic structures of Notch1 with Jagged1; comparative modelling of the Notch2:Jagged2 complex, based on the Notch1::Jagged1 complex; in silico high-throughput screening directed to Notch2 interaction surface of a virtual chemical library containing a large variety of molecules commercially available. The predicted pharmacological activity of the selected compounds was validated in vitro by a gene reporter and a viability assay. This approach led to the successful identification of two candidates with different anti-proliferative potency and efficacy. This represents the first step towards the rational identification of candidate molecules for the development of entirely novel drugs directed to inhibit Notch signaling in cancer.
Collapse
|
37
|
Inder S, O'Rourke S, McDermott N, Manecksha R, Finn S, Lynch T, Marignol L. The Notch-3 receptor: A molecular switch to tumorigenesis? Cancer Treat Rev 2017; 60:69-76. [PMID: 28889086 DOI: 10.1016/j.ctrv.2017.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 01/03/2023]
Abstract
The Notch pathway is a highly conserved pathway increasingly implicated with the progression of human cancers. Of the four existing receptors associated with the pathway, the deregulation in the expression of the Notch-3 receptor is associated with more aggressive disease and poor prognosis. Selective targeting of this receptor has the potential to enhance current anti-cancer treatments. Molecular profiling strategies are increasingly incorporated into clinical decision making. This review aims to evaluate the clinical potential of Notch-3 within this new era of personalised medicine.
Collapse
Affiliation(s)
- Shakeel Inder
- Translational Radiobiology and Molecular Oncology, Applied Radiation Therapy Trinity, Trinity College Dublin, Dublin, Ireland; Department of Urology, St James's Hospital, Dublin, Ireland
| | - Sinead O'Rourke
- Translational Radiobiology and Molecular Oncology, Applied Radiation Therapy Trinity, Trinity College Dublin, Dublin, Ireland
| | - Niamh McDermott
- Translational Radiobiology and Molecular Oncology, Applied Radiation Therapy Trinity, Trinity College Dublin, Dublin, Ireland
| | | | - Stephen Finn
- Department of Histopathology, St James's Hospital, Dublin, Ireland
| | - Thomas Lynch
- Department of Urology, St James's Hospital, Dublin, Ireland
| | - Laure Marignol
- Translational Radiobiology and Molecular Oncology, Applied Radiation Therapy Trinity, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
38
|
Xue S, He L, Zhang X, Zhou J, Li F, Wang X. Expression of Jagged1/Notch3 Signaling Pathway and their Relationship with the Tumor Angiogenesis in TNBC. Arch Med Res 2017. [PMID: 28625320 DOI: 10.1016/j.arcmed.2017.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Jagged1/Notch3 signaling pathway plays a key role in angiogenesis of breast cancer, but little is known in TNBC. This study was designed to investigate the expression of Jagged1/Notch3 mRNA and protein in TNBC, analyze their correlations with clinicopathological characteristics and prognosis. Moreover, the interrelationship among Jagged1/Notch3 and VEGF was initially evaluated. METHODS Jagged1/Notch3 mRNA and protein expression levels were determined by Q-RT-PCR and Western blotting. Additionally, Immunohistochemistry for Jagged1/Notch3 was detected by Ventana platform, VEGF and CD34 was performed using the EnVision/HRP technique. RESULTS mRNA transcriptionof Jagged1/Notch3 was in accord with protein expression. TNBC patients with positive Jagged1 expression had poorer DFS (p = 0.008) and OS (p = 0.004). Jagged1 expression was independent predictors of OS (p = 0.038). The expression of VEGF was positively correlative to MVD (p = 0.018), MVD was significantly associated with Jagged1 (p <0.0001) and Notch3 (p <0.0001). The expression of Jagged1/Notch3 has no correlation with VEGF, only in positive VEGF expression of TNBC patients Jagged1/Notch3 had influence on DFS and OS (p <0.05). CONCLUSION Jagged1/Notch3 was -expressed at both the mRNA and protein levels, Jagged1 served as an independent predictor of poor prognosis. We speculate that there is a cross-talk between Jagged1/Notch3 and VEGF in TNBC angiogenesis. Jagged1/Notch3 is expected to be an important signaling pathway for TNBC progression and a potential target for TNBC neovascularization therapy.
Collapse
Affiliation(s)
- Siliang Xue
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lang He
- Cancer Center, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Xiao Zhang
- Department of Breast Surgery, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Jin Zhou
- Department of Chemotherapy, Sichuan Cancer Hospital, Chengdu, Sichuan, China
| | - Fanghua Li
- Department of Pathology, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Xiaoshan Wang
- Cancer Center, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
39
|
Vanorny DA, Mayo KE. The role of Notch signaling in the mammalian ovary. Reproduction 2017; 153:R187-R204. [PMID: 28283672 DOI: 10.1530/rep-16-0689] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022]
Abstract
The Notch pathway is a contact-dependent, or juxtacrine, signaling system that is conserved in metazoan organisms and is important in many developmental processes. Recent investigations have demonstrated that the Notch pathway is active in both the embryonic and postnatal ovary and plays important roles in events including follicle assembly and growth, meiotic maturation, ovarian vasculogenesis and steroid hormone production. In mice, disruption of the Notch pathway results in ovarian pathologies affecting meiotic spindle assembly, follicle histogenesis, granulosa cell proliferation and survival, corpora luteal function and ovarian neovascularization. These aberrations result in abnormal folliculogenesis and reduced fertility. The knowledge of the cellular interactions facilitated by the Notch pathway is an important area for continuing research, and future studies are expected to enhance our understanding of ovarian function and provide critical insights for improving reproductive health. This review focuses on the expression of Notch pathway components in the ovary, and on the multiple functions of Notch signaling in follicle assembly, maturation and development. We focus on the mouse, where genetic investigations are possible, and relate this information to the human ovary.
Collapse
Affiliation(s)
- Dallas A Vanorny
- Department of Molecular Biosciences and Center for Reproductive ScienceNorthwestern University, Evanston, Illinois, USA
| | - Kelly E Mayo
- Department of Molecular Biosciences and Center for Reproductive ScienceNorthwestern University, Evanston, Illinois, USA
| |
Collapse
|
40
|
Chen Y, Xu M, Guo Y, Tu K, Wu W, Wang J, Tong X, Wu W, Qi L, Shi D. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle. NANOTECHNOLOGY 2017; 28:025101. [PMID: 27906685 DOI: 10.1088/0957-4484/28/2/025101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Efficient delivery of small interfering RNAs (siRNAs) to the targeted cells has remained a significant challenge in clinical applications. In the present study, we developed a novel aptamer-siRNA chimera delivery system mediated by cationic Au-Fe3O4 nanoparticles (NPs). The chimera constructed by VEGF RNA aptamer and Notch3 siRNA was bonded with heterogeneous Au-Fe3O4 nanoparticles by electrostatic interaction. The obtained complex exhibited much higher silencing efficiency against Notch3 gene compared with chimera alone and lipofectamine-siRNA complex, and improved the antitumor effects of the loaded chimera. Moreover, the efficient delivery of the chimera by Au-Fe3O4 NPs could reverse multi-drug resistance (MDR) of ovarian cancer cells against the chemotherapeutic drug cisplatin, indicating its potential capability for future targeted cancer therapy while overcoming MDR.
Collapse
Affiliation(s)
- Yao Chen
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai 200065, People's Republic of China. Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing 210011, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dou XW, Liang YK, Lin HY, Wei XL, Zhang YQ, Bai JW, Chen CF, Chen M, Du CW, Li YC, Tian J, Man K, Zhang GJ. Notch3 Maintains Luminal Phenotype and Suppresses Tumorigenesis and Metastasis of Breast Cancer via Trans-Activating Estrogen Receptor-α. Theranostics 2017; 7:4041-4056. [PMID: 29109797 PMCID: PMC5667424 DOI: 10.7150/thno.19989] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/11/2017] [Indexed: 02/05/2023] Open
Abstract
The luminal A phenotype is the most common breast cancer subtype and is characterized by estrogen receptor α expression (ERα). Identification of the key regulator that governs the luminal phenotype of breast cancer will clarify the pathogenic mechanism and provide novel therapeutic strategies for this subtype of cancer. ERα signaling pathway sustains the epithelial phenotype and inhibits the epithelial-mesenchymal transition (EMT) of breast cancer. In this study, we demonstrate that Notch3 positively associates with ERα in both breast cancer cell lines and human breast cancer tissues. We found that overexpression of Notch3 intra-cellular domain, a Notch3 active form (N3ICD), in ERα negative breast cancer cells re-activated ERα, while knock-down of Notch3 reduced ERα transcript and proteins, with alteration of down-stream genes, suggesting its ability to regulate ERα. Mechanistically, our results show that Notch3 specifically binds to the CSL binding element of the ERα promoter and activates ERα expression. Moreover, Notch3 suppressed EMT, while suppression of Notch3 promoted EMT in cellular assay. Overexpressing N3ICD in triple-negative breast cancer suppressed tumorigenesis and metastasis in vivo. Conversely, depletion of Notch3 in luminal breast cancer promoted metastasis in vivo. Furthermore, Notch3 transcripts were significantly associated with prolonged relapse-free survival in breast cancer, in particular in ERα positive breast cancer patients. Our observations demonstrate that Notch3 governs the luminal phenotype via trans-activating ERα expression in breast cancer. These findings delineate the role of a Notch3/ERα axis in maintaining the luminal phenotype and inhibiting tumorigenesis and metastasis in breast cancer, providing a novel strategy to re-sensitize ERα negative or low-expressing breast cancers to hormone therapy.
Collapse
Affiliation(s)
- Xiao-Wei Dou
- The Breast Center, the Cancer Hospital of Shantou University Medical College (SUMC), China
- ChangJiang Scholar's Laboratory, the Cancer Hospital of Shantou University Medical College (SUMC), China
| | - Yuan-Ke Liang
- The Breast Center, the Cancer Hospital of Shantou University Medical College (SUMC), China
- ChangJiang Scholar's Laboratory, the Cancer Hospital of Shantou University Medical College (SUMC), China
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Hao-Yu Lin
- The Breast Center, the Cancer Hospital of Shantou University Medical College (SUMC), China
- ChangJiang Scholar's Laboratory, the Cancer Hospital of Shantou University Medical College (SUMC), China
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of SUMC
| | - Xiao-Long Wei
- The Breast Center, the Cancer Hospital of Shantou University Medical College (SUMC), China
- ChangJiang Scholar's Laboratory, the Cancer Hospital of Shantou University Medical College (SUMC), China
- Department of Pathology, the Cancer Hospital of Shantou University Medical College (SUMC), China
| | - Yong-Qu Zhang
- The Breast Center, the Cancer Hospital of Shantou University Medical College (SUMC), China
- ChangJiang Scholar's Laboratory, the Cancer Hospital of Shantou University Medical College (SUMC), China
| | - Jing-Wen Bai
- The Breast Center, the Cancer Hospital of Shantou University Medical College (SUMC), China
- ChangJiang Scholar's Laboratory, the Cancer Hospital of Shantou University Medical College (SUMC), China
| | - Chun-Fa Chen
- The Breast Center, the Cancer Hospital of Shantou University Medical College (SUMC), China
- ChangJiang Scholar's Laboratory, the Cancer Hospital of Shantou University Medical College (SUMC), China
| | - Min Chen
- ChangJiang Scholar's Laboratory, the Cancer Hospital of Shantou University Medical College (SUMC), China
| | - Cai-Wen Du
- Department of Breast Medical Oncology, the Cancer Hospital of Shantou University Medical College (SUMC), China
| | - Yao-Chen Li
- The Breast Center, the Cancer Hospital of Shantou University Medical College (SUMC), China
- ChangJiang Scholar's Laboratory, the Cancer Hospital of Shantou University Medical College (SUMC), China
| | - Jie Tian
- Institute of Automation, Chinese Academy of Science, China
| | - Kwan Man
- Department of Surgery, Hong Kong University Li Ka-Tsing faculty of Medicine, Hong Kong, China
| | - Guo-Jun Zhang
- The Breast Center, the Cancer Hospital of Shantou University Medical College (SUMC), China
- ChangJiang Scholar's Laboratory, the Cancer Hospital of Shantou University Medical College (SUMC), China
- ✉ Corresponding author: Guo-Jun Zhang, MD, PhD. Tel.: +86(754)88556826; E-mail:
| |
Collapse
|
42
|
Zhou J, Jain S, Azad AK, Xu X, Yu HC, Xu Z, Godbout R, Fu Y. Notch and TGFβ form a positive regulatory loop and regulate EMT in epithelial ovarian cancer cells. Cell Signal 2016; 28:838-49. [PMID: 27075926 DOI: 10.1016/j.cellsig.2016.03.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 02/05/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays a critical role in the progression of epithelial ovarian cancer (EOC). However, the mechanisms that regulate EMT in EOC are not fully understood. Here, we report that activation of Notch1 induces EMT in EOC cells as evidenced by downregulation of E-cadherin and cytokeratins, upregulation of Slug and Snail, as well as morphological changes. Interestingly, activation of Notch1 increases TGFβ/Smad signaling by upregulating the expression of TGFβ and TGFβ type 1 receptor. Time course experiments demonstrate that inhibition of Notch by DAPT (a γ-secretase inhibitor) decreases TGFβ-induced phosphorylation of receptor Smads at late, but not at early, timepoints. These results suggest that Notch activation plays a role in sustaining TGFβ/Smad signaling in EOC cells. Furthermore, inhibition of Notch by DAPT decreases TGFβ induction of Slug and repression of E-cadherin and knockdown of Notch1 decreases TGFβ-induced repression of E-cadherin, indicating that Notch is required, at least in part, for TGFβ-induced EMT in EOC cells. On the other hand, TGFβ treatment increases the expression of Notch ligand Jagged1 and Notch target gene HES1 in EOC cells. Functionally, the combination of Notch1 activation and TGFβ treatment is more potent in promoting motility and migration of EOC cells than either stimulation alone. Taken together, our results indicate that Notch and TGFβ form a reciprocal positive regulatory loop and cooperatively regulate EMT and promote EOC cell motility and migration.
Collapse
Affiliation(s)
- Jiesi Zhou
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; The first affiliated hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Saket Jain
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Abul K Azad
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xia Xu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hai Chuan Yu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zhihua Xu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Roseline Godbout
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
43
|
Overexpression of Notch3 and pS6 Is Associated with Poor Prognosis in Human Ovarian Epithelial Cancer. Mediators Inflamm 2016; 2016:5953498. [PMID: 27445438 PMCID: PMC4944072 DOI: 10.1155/2016/5953498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/12/2016] [Indexed: 11/18/2022] Open
Abstract
Notch3 and pS6 play important roles in tumor angiogenesis. To assess the expression of Notch3 and pS6 in Chinese ovarian epithelial cancer patients, a ten-year follow-up study was performed in ovarian epithelial cancer tissues from 120 specimens of human ovarian epithelial cancer, 30 specimens from benign ovarian tumors, and 30 samples from healthy ovaries by immunohistochemistry. The results indicate that the expression of Notch3 and pS6 was higher in ovarian epithelial cancer than in normal ovary tissues and in benign ovarian tumor tissues (p < 0.01). In tumor tissues, Notch3 expression and pS6 expression were negatively associated with age (p > 0.05) but positively associated with clinical stage, pathological grading, histologic type, lymph node metastasis, and ascites (p < 0.05 or p < 0.01). A follow-up survey of 64 patients with ovarian epithelial cancer showed that patients with high Notch3 and pS6 expression had a shorter survival time (p < 0.01), in which the clinical stage (p < 0.05) and Notch3 expression (p < 0.01) played important roles. In conclusion, Notch3 and pS6 are significantly related to ovarian epithelial cancer development and prognosis, and their combination represents a potential biomarker and therapeutic target in ovarian tumor angiogenesis.
Collapse
|
44
|
Lv JY, Hu TY, Wang RY, Zhu JM, Wang G. Deciphering the anti-angiogenic effect of endostatin/cyclophosphamide to normalize tumor micrangium through notch signaling pathway in colon cancer. World J Surg Oncol 2016; 14:10. [PMID: 26762567 PMCID: PMC4712526 DOI: 10.1186/s12957-015-0761-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/30/2015] [Indexed: 12/26/2022] Open
Abstract
Background The invasion of colon cancer is associated with the tumor angiogenesis. Endostatin is an important anti-angiogenic agent, and the additive effect of endostatin with a chemotherapeutic agent, cyclophosphamide, on micrangium has not been established. Methods Male BALB/c strain nude mice were injected with human colorectal carcinoma cells (HCT-116). The mice were divided into four groups (n = 15, each group) and were treated with different concentrations of endostatin (15, 10, and 5 mg/kg/day), cyclophosphamide (20, 10, and 5 mg/kg/day), and combination of endostatin/cyclophosphamide (15 + 20, 15 + 10, and 15 + 5 mg/kg/day). The tumor inhibition rate was evaluated, followed by the quantification of messenger ribonucleic acid (mRNA) and protein expression of notch signaling components NOTCH-1, NOTCH-3, NOTCH-4, JAG-1, DLL-4, Hes-1, and Hey-1 using quantitative polymerase chain reaction (qPCR). The protein expression of NOTCH-3, JAG-1, and DLL-4 was confirmed using western blotting. Microvessel density (MVD) was evaluated to detect micrangium following the treatment. Results The endostatin/cyclophosphamide-treated samples exhibited an additive effect on the tumor inhibition rate and the microvessel count. NOTCH-1, NOTCH-3, NOTCH-4, JAG-1, Hes-1, and Hey-1 expression levels were highly correlated and downregulated in the treated samples, whereas DLL-4 expression was upregulated that accounted for its anti-angiogenic property. Conclusions The combination treatment of colon cancer with endostatin and a chemotherapeutic agent, cyclophosphamide proves to be an efficient therapeutic strategy to inhibit the rapid vasculature formation confirmed by the differential expression of notch signaling components.
Collapse
Affiliation(s)
- Jin-Yan Lv
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Jie Fang Street,Zhongshan District, Dalian, Liaoning, 116001, Peoples' Republic of China.
| | - Tai-Yuan Hu
- Library, Liaoning University of International Business and Economics, Dalian, Liaoning, 116001, Peoples' Republic of China.
| | - Ruo-Yu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Jie Fang Street,Zhongshan District, Dalian, Liaoning, 116001, Peoples' Republic of China.
| | - Jin-Ming Zhu
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Jie Fang Street,Zhongshan District, Dalian, Liaoning, 116001, Peoples' Republic of China.
| | - Gang Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Jie Fang Street,Zhongshan District, Dalian, Liaoning, 116001, Peoples' Republic of China.
| |
Collapse
|
45
|
Notch pathway promotes ovarian cancer growth and migration via CXCR4/SDF1α chemokine system. Int J Biochem Cell Biol 2015; 66:134-40. [DOI: 10.1016/j.biocel.2015.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 02/02/2023]
|
46
|
Zou X, Levy-Cohen G, Blank M. Molecular functions of NEDD4 E3 ubiquitin ligases in cancer. Biochim Biophys Acta Rev Cancer 2015; 1856:91-106. [DOI: 10.1016/j.bbcan.2015.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/12/2015] [Accepted: 06/23/2015] [Indexed: 02/08/2023]
|
47
|
Verbeke LPC, Van den Eynden J, Fierro AC, Demeester P, Fostier J, Marchal K. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration. PLoS One 2015. [PMID: 26217958 PMCID: PMC4517887 DOI: 10.1371/journal.pone.0133503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The study of cancer, a highly heterogeneous disease with different causes and clinical outcomes, requires a multi-angle approach and the collection of large multi-omics datasets that, ideally, should be analyzed simultaneously. We present a new pathway relevance ranking method that is able to prioritize pathways according to the information contained in any combination of tumor related omics datasets. Key to the method is the conversion of all available data into a single comprehensive network representation containing not only genes but also individual patient samples. Additionally, all data are linked through a network of previously identified molecular interactions. We demonstrate the performance of the new method by applying it to breast and ovarian cancer datasets from The Cancer Genome Atlas. By integrating gene expression, copy number, mutation and methylation data, the method's potential to identify key pathways involved in breast cancer development shared by different molecular subtypes is illustrated. Interestingly, certain pathways were ranked equally important for different subtypes, even when the underlying (epi)-genetic disturbances were diverse. Next to prioritizing universally high-scoring pathways, the pathway ranking method was able to identify subtype-specific pathways. Often the score of a pathway could not be motivated by a single mutation, copy number or methylation alteration, but rather by a combination of genetic and epi-genetic disturbances, stressing the need for a network-based data integration approach. The analysis of ovarian tumors, as a function of survival-based subtypes, demonstrated the method's ability to correctly identify key pathways, irrespective of tumor subtype. A differential analysis of survival-based subtypes revealed several pathways with higher importance for the bad-outcome patient group than for the good-outcome patient group. Many of the pathways exhibiting higher importance for the bad-outcome patient group could be related to ovarian tumor proliferation and survival.
Collapse
Affiliation(s)
- Lieven P. C. Verbeke
- Department of Information Technology, Ghent University—iMinds, Ghent, Belgium
- * E-mail: (LPCV); (JF); (KM)
| | - Jimmy Van den Eynden
- Department of Information Technology, Ghent University—iMinds, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Ana Carolina Fierro
- Department of Information Technology, Ghent University—iMinds, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Piet Demeester
- Department of Information Technology, Ghent University—iMinds, Ghent, Belgium
| | - Jan Fostier
- Department of Information Technology, Ghent University—iMinds, Ghent, Belgium
- * E-mail: (LPCV); (JF); (KM)
| | - Kathleen Marchal
- Department of Information Technology, Ghent University—iMinds, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- * E-mail: (LPCV); (JF); (KM)
| |
Collapse
|
48
|
Graybill W, Sood AK, Monk BJ, Coleman RL. State of the science: Emerging therapeutic strategies for targeting angiogenesis in ovarian cancer. Gynecol Oncol 2015; 138:223-6. [PMID: 26166806 DOI: 10.1016/j.ygyno.2015.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Whitney Graybill
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical University of South Carolina, Charleston, SC, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bradley J Monk
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Creighton University, Phoenix, AZ, United States
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
49
|
Thanapprapasr D, Previs RA, Hu W, Ivan C, Armaiz-Pena GN, Dorniak PL, Hansen JM, Rupaimoole R, Huang J, Dalton HJ, Ali-Fehmi R, Coleman RL, Sood AK. PTEN Expression as a Predictor of Response to Focal Adhesion Kinase Inhibition in Uterine Cancer. Mol Cancer Ther 2015; 14:1466-1475. [PMID: 25833835 DOI: 10.1158/1535-7163.mct-14-1077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/23/2015] [Indexed: 11/16/2022]
Abstract
PTEN is known to be frequently mutated in uterine cancer and also dephosphorylates FAK. Here, we examined the impact of PTEN alterations on the response to treatment with a FAK inhibitor (GSK2256098). In vitro and in vivo therapeutic experiments were carried out using PTEN-mutated and PTEN-wild-type models of uterine cancer alone and in combination with chemotherapy. Treatment with GSK2256098 resulted in greater inhibition of pFAK(Y397) in PTEN-mutated (Ishikawa) than in PTEN-wild-type (Hec1A) cells. Ishikawa cells were more sensitive to GSK2256098 than the treated Hec1A cells. Ishikawa cells were transfected with a wild-type PTEN construct and pFAK(Y397) expression was unchanged after treatment with GSK2256098. Decreased cell viability and enhanced sensitivity to chemotherapy (paclitaxel and topotecan) in combination with GSK2256098 was observed in Ishikawa cells as compared with Hec1a cells. In the Ishikawa orthoptopic murine model, treatment with GSK2256098 resulted in lower tumor weights and fewer metastases than mice inoculated with Hec1A cells. Tumors treated with GSK2256098 had lower microvessel density (CD31), less cellular proliferation (Ki67), and higher apoptosis (TUNEL) rates in the Ishikawa model when compared with the Hec1a model. From a large cohort of evaluable patients, increased FAK and pFAK(Y397) expression levels were significantly related to poor overall survival. Moreover, PTEN levels were inversely related to pFAK(Y397) expression. These preclinical data demonstrate that PTEN-mutated uterine cancer responds better to FAK inhibition than does PTEN wild-type cancer. Therefore, PTEN could be a biomarker for predicting response to FAK-targeted therapy during clinical development.
Collapse
Affiliation(s)
- Duangmani Thanapprapasr
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rebecca A Previs
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guillermo N Armaiz-Pena
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Piotr L Dorniak
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jean M Hansen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jie Huang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather J Dalton
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rouba Ali-Fehmi
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
50
|
Diaz-Padilla I, Wilson MK, Clarke BA, Hirte HW, Welch SA, Mackay HJ, Biagi JJ, Reedijk M, Weberpals JI, Fleming GF, Wang L, Liu G, Zhou C, Blattler C, Ivy SP, Oza AM. A phase II study of single-agent RO4929097, a gamma-secretase inhibitor of Notch signaling, in patients with recurrent platinum-resistant epithelial ovarian cancer: A study of the Princess Margaret, Chicago and California phase II consortia. Gynecol Oncol 2015; 137:216-22. [PMID: 25769658 DOI: 10.1016/j.ygyno.2015.03.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/04/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE A phase II study was performed to evaluate the efficacy and safety of single-agent RO4929097 (a gamma-secretase inhibitor) in patients with recurrent platinum-resistant ovarian cancer. EXPERIMENTAL DESIGN Women with progressive platinum-resistant ovarian cancer treated with ≤2 chemotherapy regimens for recurrent disease were enrolled in this trial. Patients received oral RO4929097 at 20 mg once daily, 3 days on/4 days off each week in a three week cycle. The primary endpoint was progression-free survival (PFS) rate at the end of 4 cycles. Secondary objectives included assessment of the safety of RO4929097 and exploration of molecular correlates of outcome in archival tumor tissue and serum. RESULTS Of 45 patients enrolled, 40 were evaluable for response. Thirty-seven (82%) patients had high-grade ovarian cancer. No objective responses were observed. Fifteen patients (33%) had stable disease as their best response, with a median duration of 3.1 months. The median PFS for the whole group was 1.3 months (1.2-2.5). Treatment was generally well tolerated with 10% of patients discontinuing treatment due to an adverse event. In high grade serous ovarian cancer patients, the median PFS trended higher when the expression of intracellular Notch (NICD) protein by immunohistochemistry was high versus low (3.3 versus 1.3 months, p=0.09). No clear relationship between circulating angiogenic factors and PFS was found despite a suggestion of an improved outcome with higher baseline VEGFA levels. CONCLUSIONS RO4929097 has insufficient activity as a single-agent in platinum-resistant ovarian cancer to warrant further study as monotherapy. Future studies are needed to explore the potential for cohort enrichment using NICD expression.
Collapse
Affiliation(s)
- Ivan Diaz-Padilla
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Michelle K Wilson
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Blaise A Clarke
- Department of Laboratory Medicine, University of Toronto, Toronto, Canada
| | - Hal W Hirte
- Division of Medical Oncology, Juravinski Cancer Centre, Hamilton, Ontario, Canada
| | - Stephen A Welch
- Division of Medical Oncology, London Regional Cancer Program, London, Ontario, Canada
| | - Helen J Mackay
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Jim J Biagi
- Department of Oncology, Cancer Centre of Southeastern Ontario, Kingston, Ontario, Canada
| | - Michael Reedijk
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Johanne I Weberpals
- Division of Gynecologic Oncology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Gini F Fleming
- The University of Chicago Medical Center, Chicago, IL, USA
| | - Lisa Wang
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Geoffrey Liu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Chen Zhou
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Chantale Blattler
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - S Percy Ivy
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, Investigational Drug Branch, Rockville, MD, USA
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| |
Collapse
|