1
|
Khattab S, El Sorady M, El-Ghandour A, Visani G, Piccaluga PP. Hematopoietic and leukemic stem cells homeostasis: the role of bone marrow niche. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1027-1055. [PMID: 39351440 PMCID: PMC11438561 DOI: 10.37349/etat.2024.00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/01/2024] [Indexed: 10/04/2024] Open
Abstract
The bone marrow microenvironment (BMM) has highly specialized anatomical characteristics that provide a sanctuary place for hematopoietic stem cells (HSCs) that allow appropriate proliferation, maintenance, and self-renewal capacity. Several cell types contribute to the constitution and function of the bone marrow niche. Interestingly, uncovering the secrets of BMM and its interaction with HSCs in health paved the road for research aiming at better understanding the concept of leukemic stem cells (LSCs) and their altered niche. In fact, they share many signals that are responsible for interactions between LSCs and the bone marrow niche, due to several biological similarities between LSCs and HSCs. On the other hand, LSCs differ from HSCs in their abnormal activation of important signaling pathways that regulate survival, proliferation, drug resistance, invasion, and spread. Targeting these altered niches can help in better treatment choices for hematological malignancies and bone marrow disorders in general and acute myeloid leukemia (AML) in particular. Moreover, targeting those niches may help in decreasing the emergence of drug resistance and lower the relapse rate. In this article, the authors reviewed the most recent literature on bone marrow niches and their relations with either normal HSCs and AML cells/LSC, by focusing on pathogenetic and therapeutic implications.
Collapse
Affiliation(s)
- Shaimaa Khattab
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
- Medical Research Institute, Hematology department, Alexandria University, Alexandria 21561, Egypt
| | - Manal El Sorady
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria 5310002, Egypt
| | - Ashraf El-Ghandour
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria 5310002, Egypt
| | - Giuseppe Visani
- Hematology and Stem Cell Transplant Center, Azienda Ospedaliera Marche Nord, 61121 Pesaro, Italy
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
| |
Collapse
|
2
|
Chiaverini L, Tolbatov I, Marrone A, Marzo T, Biver T, La Mendola D. Unveiling the mechanism of activation of the Te(IV) prodrug AS101. New chemical insights towards a better understanding of its medicinal properties. J Inorg Biochem 2024; 256:112567. [PMID: 38669911 DOI: 10.1016/j.jinorgbio.2024.112567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
AS101 (Ammonium trichloro (dioxoethylene-O,O') tellurate) is an important hypervalent Te-based prodrug. Recently, we started a systematic investigation on AS101 with the aim to correlate its promising biological effects as a potent immunomodulator drug with multiple medicinal applications and its specific chemical properties. To date, a substantial agreement on the rapid conversion of the initial AS101 species into the corresponding TeOCl3- anion does exist, and this latter species is reputed as the pharmacologically active one. However, we realized that TeOCl3- could quickly undergo further steps of conversion in an aqueous medium, eventually producing the TeO2 species. Using a mixed experimental and theoretical investigation approach, we characterized the conversion process leading to TeO2 occurring both in pure water and in reference buffers at physiological-like pH. Our findings may offer a valuable "chemical tool" for a better description, interpretation -and optimization- of the mechanism of action of AS101 and Te-based compounds. This might be a starting point for improved AS101-based medicinal application.
Collapse
Affiliation(s)
- Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Iogann Tolbatov
- Department of Physics and Astronomy, University of Padova, via F. Marzolo 8, 35131 Padova, Italy
| | - Alessandro Marrone
- Department of Pharmacy, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy
| |
Collapse
|
3
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022; 24:563. [PMID: 36614005 PMCID: PMC9820412 DOI: 10.3390/ijms24010563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the bone marrow niche has become a promising new source of potential therapeutic targets, particularly for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvironment in AML development and progression, and as a source of novel therapeutic targets for AML. The main focus of this review is on drugs that modulate/target this bone marrow microenvironment and have been examined in in vivo models or clinically.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa F. Lincz
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| |
Collapse
|
4
|
Chiaverini L, Marzo T, La Mendola D. AS101: An overview on a leading tellurium-based prodrug. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Zhang J, Qi L, Wang T, An J, Zhou B, Fang Y, Liu Y, Shan M, Hong D, Wu D, Xu Y, Liu T. FEV Maintains Homing and Expansion by Activating ITGA4 Transcription in Primary and Relapsed AML. Front Oncol 2022; 12:890346. [PMID: 35875066 PMCID: PMC9300928 DOI: 10.3389/fonc.2022.890346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy that recurs in approximately 50% of cases. Elevated homing and uncontrolled expansion are characteristics of AML cells. Here, we identified that Fifth Ewing Variant (FEV) regulates the homing and expansion of AML cells. We found that FEV was re-expressed in 30% of primary AML samples and in almost all relapsed AML samples, and FEV expression levels were significantly higher in relapsed samples compared to primary samples. Interference of FEV expression in AML cell lines delayed leukemic progression and suppressed homing and proliferation. Moreover, FEV directly activated integrin subunit alpha 4 (ITGA4) transcription in a dose-dependent manner. Inhibition of integrin α4 activity with natalizumab (NZM) reduced the migration and colony-forming abilities of blasts and leukemic-initiating cells (LICs) in both primary and relapsed AML. Thus, our study suggested that FEV maintains the homing and expansion of AML cells by activating ITGA4 transcription and that targeting ITGA4 inhibits the colony-forming and migration capacities of blasts and LICs. Thus, these findings suggested that the FEV-ITGA4 axis may be a therapeutic target for both primary and relapsed AML.
Collapse
Affiliation(s)
- Jubin Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijuan Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tanzhen Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jingnan An
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Biqi Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yanglan Fang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yujie Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meng Shan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dengli Hong
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| | - Tianhui Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| |
Collapse
|
6
|
Chiaverini L, Cirri D, Tolbatov I, Corsi F, Piano I, Marrone A, Pratesi A, Marzo T, La Mendola D. Medicinal Hypervalent Tellurium Prodrugs Bearing Different Ligands: A Comparative Study of the Chemical Profiles of AS101 and Its Halido Replaced Analogues. Int J Mol Sci 2022; 23:ijms23147505. [PMID: 35886853 PMCID: PMC9317073 DOI: 10.3390/ijms23147505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Ammonium trichloro (dioxoethylene-O,O′) tellurate (AS101) is a potent immunomodulator prodrug that, in recent years, entered various clinical trials and was tested for a variety of potential therapeutic applications. It has been demonstrated that AS101 quickly activates in aqueous milieu, producing TeOCl3−, which likely represents the pharmacologically active species. Here we report on the study of the activation process of AS101 and of two its analogues. After the synthesis and characterization of AS101 and its derivatives, we have carried out a comparative study through a combined experimental and computational analysis. Based on the obtained results, we describe here, for the first time, the detailed reaction that AS101 and its bromido- and iodido-replaced analogues undergo in presence of water, allowing the conversion of the original molecule to the likely true pharmacophore. Interestingly, moving down in the halogens’ group we observed a higher tendency to react, attributable to the ligands’ effect. The chemical and mechanistic implications of these meaningful differences are discussed.
Collapse
Affiliation(s)
- Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy; (D.C.); (A.P.)
| | - Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- Correspondence: (I.T.); (T.M.)
| | - Francesca Corsi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy; (D.C.); (A.P.)
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
- Correspondence: (I.T.); (T.M.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
| |
Collapse
|
7
|
Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resist Updat 2022; 63:100844. [DOI: 10.1016/j.drup.2022.100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Gyan E, Pigneux A, Hunault M, Peterlin P, Carré M, Bay JO, Bonmati C, Gallego-Hernanz MP, Lioure B, Bertrand P, Vallet N, Ternant D, Darrouzain F, Picou F, Béné MC, Récher C, Hérault O. Adjunction of a fish oil emulsion to cytarabine and daunorubicin induction chemotherapy in high-risk AML. Sci Rep 2022; 12:9748. [PMID: 35697729 PMCID: PMC9192636 DOI: 10.1038/s41598-022-13626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
The treatment of acute myeloid leukemia (AML) with unfavorable cytogenetics treatment remains a challenge. We previously established that ex vivo exposure of AML blasts to eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or fish oil emulsion (FO) induces Nrf2 pathway activation, metabolic switch, and cell death. The FILO group launched a pilot clinical study to evaluate the feasibility, safety, and efficacy of the adjunction of a commercial FO emulsion to 3 + 7 in untreated AML with unfavorable cytogenetics. The primary objective was complete response (CR). Thirty patients were included. FO administration raised the plasma levels of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids (p < 0.001). The pharmacokinetics of cytarabine and daunorubicin were unaffected. A historical comparison to the LAM2001 trial (Lioure et al. Blood 2012) found a higher frequency of grade 3 serious adverse events, with no drug-related unexpected toxicity. The CR rate was 77%, and the partial response (PR) 10%, not significantly superior to that of the previous study (CR 72%, PR 1%). RT-qPCR analysis of Nrf2 target genes and antioxidant enzymes did not show a significant in vivo response. Overall, FO emulsion adjunction to 3 + 7 is feasible. An improvement in CR was not shown in this cohort of high-risk patients. The present data does not support the use of FO in adjunction with 3 + 7 in high-risk AML patients. ClinicalTrials.gov identifier: NCT01999413.
Collapse
Affiliation(s)
- Emmanuel Gyan
- Service d'Hématologie et Thérapie Cellulaire, Centre Hospitalier Universitaire de Tours, Hôpital Bretonneau, Bâtiment Kaplan, 2, boulevard Tonnellé, 37044, Tours Cedex 09, France. .,ERL CNRS 7001, Leukemic Niche and Redox Metabolism (LNOx), Faculté de Médecine, Université de Tours, Tours, France. .,Centre d'Investigation Clinique, INSERM U1415, Centre Hospitalier Universitaire, Tours, France.
| | - Arnaud Pigneux
- Clinique d'Hématologie, Université de Bordeaux, Hôpital Haut-Levêque, Pessac, France
| | - Mathilde Hunault
- Service des Maladies du Sang, FHU GOAL, CRCINA, INSERM Angers, Centre Hospitalier Universitaire, Tours, France
| | - Pierre Peterlin
- Service d'Hématologie, Centre Hospitalier Universitaire, Nantes, France
| | - Martin Carré
- Service d'Hématologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Jacques-Olivier Bay
- Service d'Hématologie, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Caroline Bonmati
- Service d'Hématologie, Centre Hospitalier Universitaire, Nancy, France
| | | | - Bruno Lioure
- Service d'Hématologie, Centre Hospitalier Universitaire, Strasbourg, France
| | - Philippe Bertrand
- Laboratoire de Biostatistiques, Faculté de Médecine, Université de Tours, Tours, France
| | - Nicolas Vallet
- Service d'Hématologie et Thérapie Cellulaire, Centre Hospitalier Universitaire de Tours, Hôpital Bretonneau, Bâtiment Kaplan, 2, boulevard Tonnellé, 37044, Tours Cedex 09, France.,ERL CNRS 7001, Leukemic Niche and Redox Metabolism (LNOx), Faculté de Médecine, Université de Tours, Tours, France
| | - David Ternant
- Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Universitaire, Tours, France
| | | | - Frédéric Picou
- ERL CNRS 7001, Leukemic Niche and Redox Metabolism (LNOx), Faculté de Médecine, Université de Tours, Tours, France
| | | | - Christian Récher
- Service d'Hématologie, Institut Universitaire de Cancérologie de Toulouse, Toulouse, France
| | - Olivier Hérault
- ERL CNRS 7001, Leukemic Niche and Redox Metabolism (LNOx), Faculté de Médecine, Université de Tours, Tours, France. .,Service d'Hématologie Biologique, FHU GOAL, Centre Hospitalier Universitaire de Tours, Hôpital Bretonneau, Bâtiment B2A, 2, boulevard Tonnellé, 37044, Tours Cedex 09, France.
| |
Collapse
|
9
|
Thakral D, Gupta R, Khan A. Leukemic stem cell signatures in Acute myeloid leukemia- targeting the Guardians with novel approaches. Stem Cell Rev Rep 2022; 18:1756-1773. [DOI: 10.1007/s12015-022-10349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 11/09/2022]
|
10
|
Ruan Y, Kim HN, Ogana HA, Gang EJ, Li S, Liu HC, Bhojwani D, Wayne AS, Yang M, Kim YM. In vitro and in vivo effects of AVA4746, a novel competitive antagonist of the ligand binding of VLA-4, in B-cell acute lymphoblastic leukemia. Exp Ther Med 2021; 23:47. [PMID: 34934426 PMCID: PMC8652384 DOI: 10.3892/etm.2021.10969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
Treatment of resistant or recurrent acute lymphoblastic leukemia (ALL) remains a challenge. It was previously demonstrated that the adhesion molecule integrin α4, referred to hereafter as α4, mediates the cell adhesion-mediated drug resistance (CAM-DR) of B-cell ALL by binding to vascular cell adhesion molecule-1 (VCAM-1) on bone marrow stroma. In addition, it was previously observed that the blockade of α4 with natalizumab or inhibition using the small molecule antagonist TBC3486 sensitized relapsed ALL cells to chemotherapy. However, α4-targeted therapy is not clinically available for the treatment of leukemia to date. In the present study, the use of a novel non-peptidic small molecule integrin α4 antagonist, AVA4746, as a potential new approach to combat drug-resistant B-ALL was explored. An in vitro co-culture = model of primary B-ALL cells and an in vivo xenograft model of patient-derived B-ALL cells were utilized for evaluation of AVA4746. VLA-4 conformation activation, cell adhesion/de-adhesion, endothelial tube formation, in vivo leukemia cell mobilization and survival assays were performed. AVA4746 exhibited high affinity for binding to B-ALL cells, where it also efficiently blocked ligand-binding to VCAM-1. In addition, AVA4746 caused the functional de-adhesion of primary B-ALL cells from VCAM-1. Inhibition of α4 using AVA4746 also prevented angiogenesis in vitro and when applied in combination with chemotherapy consisting of Vincristine, Dexamethasone and L-asparaginase, it prolonged the survival of ~33% of the mice in an in vivo xenograft model of B-ALL. These data implicate the potential of targeting the α4-VCAM-1 interaction using AVA4746 for the treatment of drug-resistant B-lineage ALL.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Heather A Ogana
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Eun Ji Gang
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Shuangyue Li
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Deepa Bhojwani
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Alan S Wayne
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Mo Yang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
11
|
Yao Y, Li F, Huang J, Jin J, Wang H. Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development. Exp Hematol Oncol 2021; 10:39. [PMID: 34246314 PMCID: PMC8272391 DOI: 10.1186/s40164-021-00233-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the advances in intensive chemotherapy regimens and targeted therapies, overall survival (OS) of acute myeloid leukemia (AML) remains unfavorable due to inevitable chemotherapy resistance and high relapse rate, which mainly caused by the persistence existence of leukemia stem cells (LSCs). Bone marrow microenvironment (BMM), the home of hematopoiesis, has been considered to play a crucial role in both hematopoiesis and leukemogenesis. When interrupted by the AML cells, a malignant BMM formed and thus provided a refuge for LSCs and protecting them from the cytotoxic effects of chemotherapy. In this review, we summarized the alterations in the bidirectional interplay between hematopoietic cells and BMM in the normal/AML hematopoietic environment, and pointed out the key role of these alterations in pathogenesis and chemotherapy resistance of AML. Finally, we focused on the current potential BMM-targeted strategies together with future prospects and challenges. Accordingly, while further research is necessary to elucidate the underlying mechanisms behind LSC–BMM interaction, targeting the interaction is perceived as a potential therapeutic strategy to eradicate LSCs and ultimately improve the outcome of AML.
Collapse
Affiliation(s)
- Yiyi Yao
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310000, Zhejiang, People's Republic of China.
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Allegra A, Imbesi C, Bitto A, Ettari R. Drug Repositioning for the Treatment of Hematologic Disease: Limits, Challenges and Future Perspectives. Curr Med Chem 2021; 28:2195-2217. [PMID: 33138750 DOI: 10.2174/0929867327999200817102154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Drug repositioning is a strategy to identify new uses for approved or investigational drugs that are used off-label outside the scope of the original medical indication. In this review, we report the most relevant studies about drug repositioning in hematology, reporting the signalling pathways and molecular targets of these drugs, and describing the biological mechanisms which are responsible for their anticancer effects. Although the majority of studies on drug repositioning in hematology concern acute myeloid leukemia and multiple myeloma, numerous studies are present in the literature on the possibility of using these drugs also in other hematological diseases, such as acute lymphoblastic leukemia, chronic myeloid leukemia, and lymphomas. Numerous anti-infectious drugs and chemical entities used for the therapy of neurological or endocrine diseases, oral antidiabetics, statins and medications used to treat high blood pressure and heart failure, bisphosphonate and natural substance such as artemisin and curcumin, have found a place in the treatment of hematological diseases. Moreover, several molecules drastically reversed the resistance of the tumor cells to the chemotherapeutic drugs both in vitro and in vivo.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Messina, Italy
| |
Collapse
|
13
|
Alhallak K, de la Puente P, Jeske A, Sun J, Muz B, Rettig MP, Sahin I, Weisberg EL, Griffin JD, Reagan JL, DiPersio JF, Azab AK. 3D tissue engineered plasma cultures support leukemic proliferation and induces drug resistance. Leuk Lymphoma 2021; 62:2457-2465. [PMID: 33993837 DOI: 10.1080/10428194.2021.1919657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic myeloid leukemia (CML), acute myeloid leukemia (AML), and chronic lymphocytic leukemia (CLL) are hematological malignancies that remain incurable despite novel treatments. In order to improve current treatments and clinical efficacy, there remains a need for more complex in vitro models that mimic the intricate human leukemic microenvironment. This study aimed to use 3D tissue engineered plasma cultures (3DTEPC) derived from CML, AML and CLL patients to promote proliferation of leukemic cells for use as a drug screening tool for treatment. 3DTEPC supported the growth of primary CML, AML and CLL cells and also induced significantly more drug resistance in CML, AML and CLL cell lines compared to 2D. The 3DTEPC created a more physiologically relevant environment for leukemia cell proliferation, provided a reliable model for growing leukemia patient samples, and serves as a relevant tool for drug screening and personalized medicine.
Collapse
Affiliation(s)
- Kinan Alhallak
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Jeske
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Jennifer Sun
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Barbara Muz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael P Rettig
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ilyas Sahin
- Division of Hematology and Oncology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ellen L Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John L Reagan
- Division of Hematology and Oncology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - John F DiPersio
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
14
|
Sendker S, Waack K, Reinhardt D. Far from Health: The Bone Marrow Microenvironment in AML, A Leukemia Supportive Shelter. CHILDREN (BASEL, SWITZERLAND) 2021; 8:371. [PMID: 34066861 PMCID: PMC8150304 DOI: 10.3390/children8050371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022]
Abstract
Acute myeloid leukemia (AML) is the second most common leukemia among children. Although significant progress in AML therapy has been achieved, treatment failure is still associated with poor prognosis, emphasizing the need for novel, innovative therapeutic approaches. To address this major obstacle, extensive knowledge about leukemogenesis and the complex interplay between leukemic cells and their microenvironment is required. The tremendous role of this bone marrow microenvironment in providing a supportive and protective shelter for leukemic cells, leading to disease development, progression, and relapse, has been emphasized by recent research. It has been revealed that the interplay between leukemic cells and surrounding cellular as well as non-cellular components is critical in the process of leukemogenesis. In this review, we provide a comprehensive overview of recently gained knowledge about the importance of the microenvironment in AML whilst focusing on promising future therapeutic targets. In this context, we describe ongoing clinical trials and future challenges for the development of targeted therapies for AML.
Collapse
Affiliation(s)
| | | | - Dirk Reinhardt
- Department of Pediatric Hematology and Oncology, Clinic of Pediatrics III, Essen University Hospital, 45147 Essen, Germany; (S.S.); (K.W.)
| |
Collapse
|
15
|
Mosteo L, Storer J, Batta K, Searle EJ, Duarte D, Wiseman DH. The Dynamic Interface Between the Bone Marrow Vascular Niche and Hematopoietic Stem Cells in Myeloid Malignancy. Front Cell Dev Biol 2021; 9:635189. [PMID: 33777944 PMCID: PMC7991089 DOI: 10.3389/fcell.2021.635189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells interact with bone marrow niches, including highly specialized blood vessels. Recent studies have revealed the phenotypic and functional heterogeneity of bone marrow endothelial cells. This has facilitated the analysis of the vascular microenvironment in steady state and malignant hematopoiesis. In this review, we provide an overview of the bone marrow microenvironment, focusing on refined analyses of the marrow vascular compartment performed in mouse studies. We also discuss the emerging role of the vascular niche in “inflamm-aging” and clonal hematopoiesis, and how the endothelial microenvironment influences, supports and interacts with hematopoietic cells in acute myeloid leukemia and myelodysplastic syndromes, as exemplar states of malignant myelopoiesis. Finally, we provide an overview of strategies for modulating these bidirectional interactions to therapeutic effect in myeloid malignancies.
Collapse
Affiliation(s)
- Laura Mosteo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Joanna Storer
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Kiran Batta
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Emma J Searle
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom.,Department of Haematology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Delfim Duarte
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.,Department of Onco-Hematology, Instituto Português de Oncologia (IPO)-Porto, Porto, Portugal
| | - Daniel H Wiseman
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom.,Department of Haematology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
16
|
Halpert G, Halperin Sheinfeld M, Monteran L, Sharif K, Volkov A, Nadler R, Schlesinger A, Barshak I, Kalechman Y, Blank M, Shoenfeld Y, Amital H. The tellurium-based immunomodulator, AS101 ameliorates adjuvant-induced arthritis in rats. Clin Exp Immunol 2021; 203:375-384. [PMID: 33205391 PMCID: PMC7874835 DOI: 10.1111/cei.13553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022] Open
Abstract
Despite undeniable improvement in the management of rheumatoid arthritis (RA), the discovery of more effective, less toxic and, ideally, less immune suppressive drugs are much needed. In the current study, we set to explore the potential anti-rheumatic activity of the non-toxic, tellurium-based immunomodulator, AS101 in an experimental animal model of RA. The effect of AS101 was assessed on adjuvant-induced arthritis (AIA) rats. Clinical signs of arthritis were assessed. Histopathological examination was used to assess inflammation, synovial changes and tissue lesions. Very late antigen-4 (VLA-4)+ cellular infiltration was detected using immunohistochemical staining. Enzyme-linked immunosorbent assay (ELISA) was used to measure circulating anti-cyclic citrullinated-peptide autoantibody (ACPA) and real-time polymerase chain reaction (PCR) was used to measure the in-vitro effect of AS101 on interleukin (IL)-6 and IL-1β expression in activated primary human fibroblasts. Prophylactic treatment with intraperitoneal AS101 reduced clinical arthritis scores in AIA rats (P < 0·01). AS101 abrogated the migration of active chronic inflammatory immune cells, particularly VLA-4+ cells, into joint cartilage and synovium, reduced the extent of joint damage and preserved joint architecture. Compared to phosphate-buffered saline (PBS)-treated AIA rats, histopathological inflammatory scores were significantly reduced (P < 0·05). Furthermore, AS101 resulted in a marked reduction of circulating ACPA in comparison to PBS-treated rats (P < 0·05). Importantly, AS101 significantly reduced mRNA levels of proinflammatory mediators such as IL-6 (P < 0·05) and IL-1β (P < 0·01) in activated primary human fibroblasts. Taken together, we report the first demonstration of the anti-rheumatic/inflammatory activity of AS101 in experimental RA model, thereby supporting an alternative early therapeutic intervention and identifying a promising agent for therapeutic intervention.
Collapse
Affiliation(s)
- G. Halpert
- Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine,Tel Aviv UniversityTel AvivIsrael
| | - M. Halperin Sheinfeld
- The Safdié Institute for Cancer, AIDS and Immunology Research; Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - L. Monteran
- The Safdié Institute for Cancer, AIDS and Immunology Research; Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
- Present address:
Department of Pathology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - K. Sharif
- Internal Medicine B and Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - A. Volkov
- Institute of PathologySheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - R. Nadler
- The Academic Center of Law and ScienceHod HasharonIsrael
| | - A. Schlesinger
- Department of GeriatricsRabin Medical Center (Beilinson Campus)Petah TikvaIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - I. Barshak
- Institute of PathologySheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Y. Kalechman
- The Safdié Institute for Cancer, AIDS and Immunology Research; Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - M. Blank
- Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine,Tel Aviv UniversityTel AvivIsrael
| | - Y. Shoenfeld
- Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine,Tel Aviv UniversityTel AvivIsrael
- Laboratory of the Mosaics of AutoimmunitySaint Petersburg UniversitySaint PetersburgRussian Federation
| | - H. Amital
- Internal Medicine B and Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
17
|
Wu P, Gao W, Su M, Nice EC, Zhang W, Lin J, Xie N. Adaptive Mechanisms of Tumor Therapy Resistance Driven by Tumor Microenvironment. Front Cell Dev Biol 2021; 9:641469. [PMID: 33732706 PMCID: PMC7957022 DOI: 10.3389/fcell.2021.641469] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer is a disease which frequently has a poor prognosis. Although multiple therapeutic strategies have been developed for various cancers, including chemotherapy, radiotherapy, and immunotherapy, resistance to these treatments frequently impedes the clinical outcomes. Besides the active resistance driven by genetic and epigenetic alterations in tumor cells, the tumor microenvironment (TME) has also been reported to be a crucial regulator in tumorigenesis, progression, and resistance. Here, we propose that the adaptive mechanisms of tumor resistance are closely connected with the TME rather than depending on non-cell-autonomous changes in response to clinical treatment. Although the comprehensive understanding of adaptive mechanisms driven by the TME need further investigation to fully elucidate the mechanisms of tumor therapeutic resistance, many clinical treatments targeting the TME have been successful. In this review, we report on recent advances concerning the molecular events and important factors involved in the TME, particularly focusing on the contributions of the TME to adaptive resistance, and provide insights into potential therapeutic methods or translational medicine targeting the TME to overcome resistance to therapy in clinical treatment.
Collapse
Affiliation(s)
- Peijie Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Miao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Wenhui Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
18
|
Zigman-Hoffman E, Sredni B, Meilik B, Naparstek E, Tartakovsky B. Tellurium compound provides pro-apoptotic signaling in drug resistant multiple myeloma. Leuk Lymphoma 2020; 62:1146-1156. [PMID: 33334225 DOI: 10.1080/10428194.2020.1858292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Multiple Myeloma, effectively treated by chemotherapeutic drugs, relapses due to drug resistance. We tested here the capacity of mesenchymal stromal cells, from the bone marrow of patients or from adipose tissue of healthy individuals, to induce drug resistance in Myeloma cell lines. We show that drug resistance can be achieved by factors secreted by the various MSC's. Mass spectrometry analysis of MSC's conditioned media revealed that fibronectin, was particularly instrumental in providing anti-apoptotic signals to MM cells. Moreover, we demonstrate that SAS ([octa-O-bis-(R,R)tartarate ditellurane]), an immunomodulator Tellurium compound, is not only able of blocking the physical interaction between MM cells and fibronectin but is also capable of re-sensitizing the cells to the chemotherapeutic drugs. Finally, we show that this re-sensitization is coupled with the blocking of pAKT induction, in MM cells, by the MSC's. These results indicate that SAS may be useful in the treatment of drug resistant MM.
Collapse
Affiliation(s)
- Eti Zigman-Hoffman
- Bar Ilan University Mina and Everard Goodman Faculty of Life Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Tel Aviv Sourasky Medical Center, Institute of Hematology, BMT Unit, Tel Aviv, Israel
| | - Benjamin Sredni
- Bar Ilan University Mina and Everard Goodman Faculty of Life Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Benjamin Meilik
- Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ella Naparstek
- Tel Aviv Sourasky Medical Center, Institute of Hematology, BMT Unit, Tel Aviv, Israel
| | - Boris Tartakovsky
- Tel Aviv Sourasky Medical Center, Institute of Hematology, BMT Unit, Tel Aviv, Israel
| |
Collapse
|
19
|
Kim HN, Ruan Y, Ogana H, Kim YM. Cadherins, Selectins, and Integrins in CAM-DR in Leukemia. Front Oncol 2020; 10:592733. [PMID: 33425742 PMCID: PMC7793796 DOI: 10.3389/fonc.2020.592733] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The interaction between leukemia cells and the bone microenvironment is known to provide drug resistance in leukemia cells. This phenomenon, called cell adhesion-mediated drug resistance (CAM-DR), has been demonstrated in many subsets of leukemia including B- and T-acute lymphoblastic leukemia (B- and T-ALL) and acute myeloid leukemia (AML). Cell adhesion molecules (CAMs) are surface molecules that allow cell-cell or cell-extracellular matrix (ECM) adhesion. CAMs not only recognize ligands for binding but also initiate the intracellular signaling pathways that are associated with cell proliferation, survival, and drug resistance upon binding to their ligands. Cadherins, selectins, and integrins are well-known cell adhesion molecules that allow binding to neighboring cells, ECM proteins, and soluble factors. The expression of cadherin, selectin, and integrin correlates with the increased drug resistance of leukemia cells. This paper will review the role of cadherins, selectins, and integrins in CAM-DR and the results of clinical trials targeting these molecules.
Collapse
Affiliation(s)
- Hye Na Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yongsheng Ruan
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Heather Ogana
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yong-Mi Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| |
Collapse
|
20
|
The extracellular matrix: A key player in the pathogenesis of hematologic malignancies. Blood Rev 2020; 48:100787. [PMID: 33317863 DOI: 10.1016/j.blre.2020.100787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Hematopoietic stem and progenitor cells located in the bone marrow lay the foundation for multiple lineages of mature hematologic cells. Bone marrow niches are architecturally complex with specific cellular, physiochemical, and biomechanical factors. Increasing evidence suggests that the bone marrow microenvironment contributes to the pathogenesis of hematological neoplasms. Numerous studies have deciphered the role of genetic mutations and chromosomal translocations in the development hematologic malignancies. Significant progress has also been made in understanding how the cellular components and cytokine interactions within the bone marrow microenvironment promote the evolution of hematologic cancers. Although the extracellular matrix is known to be a key player in the pathogenesis of various diseases, it's role in the progression of hematologic malignancies is less understood. In this review, we discuss the interactions between the extracellular matrix and malignant cells, and provide an overview of the role of extracellular matrix remodeling in sustaining hematologic malignancies.
Collapse
|
21
|
Bewersdorf JP, Zeidan AM. Hyperleukocytosis and Leukostasis in Acute Myeloid Leukemia: Can a Better Understanding of the Underlying Molecular Pathophysiology Lead to Novel Treatments? Cells 2020; 9:cells9102310. [PMID: 33080779 PMCID: PMC7603052 DOI: 10.3390/cells9102310] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Up to 18% of patients with acute myeloid leukemia (AML) present with a white blood cell (WBC) count of greater than 100,000/µL, a condition that is frequently referred to as hyperleukocytosis. Hyperleukocytosis has been associated with an adverse prognosis and a higher incidence of life-threatening complications such as leukostasis, disseminated intravascular coagulation (DIC), and tumor lysis syndrome (TLS). The molecular processes underlying hyperleukocytosis have not been fully elucidated yet. However, the interactions between leukemic blasts and endothelial cells leading to leukostasis and DIC as well as the processes in the bone marrow microenvironment leading to the massive entry of leukemic blasts into the peripheral blood are becoming increasingly understood. Leukemic blasts interact with endothelial cells via cell adhesion molecules such as various members of the selectin family which are upregulated via inflammatory cytokines released by leukemic blasts. Besides their role in the development of leukostasis, cell adhesion molecules have also been implicated in leukemic stem cell survival and chemotherapy resistance and can be therapeutically targeted with specific inhibitors such as plerixafor or GMI-1271 (uproleselan). However, in the absence of approved targeted therapies supportive treatment with the uric acid lowering agents allopurinol and rasburicase as well as aggressive intravenous fluid hydration for the treatment and prophylaxis of TLS, transfusion of blood products for the management of DIC, and cytoreduction with intensive chemotherapy, leukapheresis, or hydroxyurea remain the mainstay of therapy for AML patients with hyperleukocytosis.
Collapse
Affiliation(s)
| | - Amer M. Zeidan
- Correspondence: ; Tel.: +1-203-737-7103; Fax: +1-203-785-7232
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Normal hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) interact with the stem cell niche bone marrow in different ways. Understanding the potentially unique microenvironmental regulation of LSCs is key to understanding in-vivo leukemogenic mechanisms and developing novel antileukemic therapies. RECENT FINDINGS When leukemic cells are engrafted in the stem cell niche, the cellular nature of the niche - including mesenchymal stromal cells - is reprogramed. Altered mesenchymal cells selectively support leukemic cells and reinforce the pro-leukemic environment. As the niche plays an active role in leukemogenesis, its remodeling may significantly influence the leukemogenic pattern, and cause differences in clinical prognosis. Notably, niche cells could be stimulated to revert to a pronormal/antileukemic state, creating potential for niche-based antileukemic therapy. SUMMARY Bone marrow microenvironments are under dynamic regulation for normal and leukemic cells, and there is bi-directional control of leukemic cells in the niche. Leukemic cells are both protected by stroma and able to reprogram stromal cells to transform the niche to a state, which reinforces leukemogenesis. Because of its dynamic nature, the niche could be converted to an environment with antileukemic properties, making it an attractive target for therapy.
Collapse
|
23
|
Kuželová K, Obr A, Marková J, Gašová Z. Integrin expression and adhesivity to fibronectin in primary acute myeloid leukemia cells: Impact of NPM1 and FLT3 mutations. Eur J Haematol 2020; 105:578-587. [PMID: 32668024 DOI: 10.1111/ejh.13488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Interaction of leukemia cells with the bone marrow extracellular matrix promotes cell survival and resistance to chemotherapy. In this work, we analyzed integrin expression and adhesivity to fibronectin in primary cells from patients with acute myeloid leukemia. METHODS Surface expression of integrins β1 and αVβ3 on primary leukemia cells (N = 46) was correlated with the stem cell marker CD34, as well as with cell adhesivity to fibronectin. The results were analyzed with regard to the mutational status of NPM1 and FLT3 genes. RESULTS The integrin β1 was omnipresent, whereas αVβ3 was often more expressed on CD34-positive cells. In particular, higher αVβ3 expression on CD34+ cells was associated with NPM1 mutation (P = .0018). Monocytic leukemias had significantly higher αVβ3 expression compared to less maturated cases (P = .0008). Cells from patients with internal tandem duplications in FLT3 (FLT3-ITD) had lower adhesivity to fibronectin compared to cells with wild-type FLT3 (P = .031), specifically in less differentiated myeloblasts. Inhibition of a putative FLT3-ITD target, EZH2, increased cell adhesivity in MV4-11 cell line (P = .024). CONCLUSIONS The integrin αVβ3 is expressed in particular on CD34+ cells with NPM1 mutation and might have a prognostic value in patients with mutated NPM1. FLT3-ITD is associated with lower cell adhesivity, especially in patients with less differentiated leukemias.
Collapse
Affiliation(s)
- Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Adam Obr
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Jana Marková
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Zdenka Gašová
- Department of Apheresis, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| |
Collapse
|
24
|
Villatoro A, Konieczny J, Cuminetti V, Arranz L. Leukemia Stem Cell Release From the Stem Cell Niche to Treat Acute Myeloid Leukemia. Front Cell Dev Biol 2020; 8:607. [PMID: 32754595 PMCID: PMC7367216 DOI: 10.3389/fcell.2020.00607] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous, complex, and deadly disease, whose treatment has hardly evolved for decades and grounds on the use of intensive chemotherapy regimens. Chemotherapy helps reduce AML bulk, but promotes relapse in the long-run by selection of chemoresistant leukemia stem cells (LSC). These may diversify and result in progression to more aggressive forms of AML. In vivo models suggest that the bone marrow stem cell niche helps LSC stay dormant and protected from chemotherapy. Here, we summarize relevant changes in stem cell niche homing and adhesion of AML LSC vs. healthy hematopoietic stem cells, and provide an overview of clinical trials aiming at targeting these processes for AML treatment and future directions within this field. Promising results with various non-mutation-targeted novel therapies directed to LSC eradication via interference with their anchoring to the stem cell niche have encouraged on-going or future advanced phase III clinical trials. In the coming years, we may see a shift in the focus of AML treatment to LSC-directed therapies if the prospect of improved cure rates holds true. In the future, AML treatment should lean toward personalized therapies using combinations of these compounds plus mutation-targeted agents and/or targeted delivery of chemotherapy, aiming at LSC eradication with reduced side effects.
Collapse
Affiliation(s)
- Alicia Villatoro
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Joanna Konieczny
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Vincent Cuminetti
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Lorena Arranz
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.,Norwegian Center for Molecular Medicine (NCMM), University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Pievani A, Biondi M, Tomasoni C, Biondi A, Serafini M. Location First: Targeting Acute Myeloid Leukemia Within Its Niche. J Clin Med 2020; 9:E1513. [PMID: 32443460 PMCID: PMC7290711 DOI: 10.3390/jcm9051513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Despite extensive research and development of new treatments, acute myeloid leukemia (AML)-backbone therapy has remained essentially unchanged over the last decades and is frequently associated with poor outcomes. Eradicating the leukemic stem cells (LSCs) is the ultimate challenge in the treatment of AML. Emerging evidence suggests that AML remodels the bone marrow (BM) niche into a leukemia-permissive microenvironment while suppressing normal hematopoiesis. The mechanism of stromal-mediated protection of leukemic cells in the BM is complex and involves many adhesion molecules, chemokines, and cytokines. Targeting these factors may represent a valuable approach to complement existing therapies and overcome microenvironment-mediated drug resistance. Some strategies for dislodging LSCs and leukemic blasts from their protective niche have already been tested in patients and are in different phases of the process of clinical development. Other strategies, such as targeting the stromal cells remodeling processes, remain at pre-clinical stages. Development of humanized xenograft mouse models, which overcome the mismatch between human leukemia cells and the mouse BM niche, is required to generate physiologically relevant, patient-specific human niches in mice that can be used to unravel the role of human AML microenvironment and to carry out preclinical studies for the development of new targeted therapies.
Collapse
Affiliation(s)
- Alice Pievani
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Marta Biondi
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Chiara Tomasoni
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Andrea Biondi
- Department of Pediatrics, Pediatric Hematology-Oncology Unit, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy;
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| |
Collapse
|
26
|
Behrmann L, Wellbrock J, Fiedler W. The bone marrow stromal niche: a therapeutic target of hematological myeloid malignancies. Expert Opin Ther Targets 2020; 24:451-462. [PMID: 32188313 DOI: 10.1080/14728222.2020.1744850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Myeloid malignancies are caused by uncontrolled proliferation of neoplastic cells and lack of mature hematopoietic cells. Beside intrinsic genetic and epigenetic alterations within the neoplastic population, abnormal function of the bone marrow stroma promotes the neoplastic process. To overcome the supportive action of the microenvironment, recent research focuses on the development of targeted therapies, inhibiting the interaction of malignant cells and niche cells.Areas covered: This review covers regulatory networks and potential druggable pathways within the hematopoietic stem cell niche. Recent insights into the cell-to-cell interactions in the bone marrow microenvironment are presented. We performed literature searches using PubMed Database from 2000 to the present.Expert opinion: Future therapy of myeloid malignancies must focus on targeted, personalized treatment addressing specific alterations within the malignant and the supporting niche cells. This includes treatments to overcome resistance mechanisms against chemotherapeutic agents mediated by supporting microenvironment. Novel techniques employing sequencing approaches, Crisp/Cas9, or transgenic mouse models are required to elucidate specific interactions between components of the bone marrow niche to identify new therapeutic targets.
Collapse
Affiliation(s)
- Lena Behrmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Huang S, Zhang B, Fan W, Zhao Q, Yang L, Xin W, Fu D. Identification of prognostic genes in the acute myeloid leukemia microenvironment. Aging (Albany NY) 2019; 11:10557-10580. [PMID: 31740623 PMCID: PMC6914404 DOI: 10.18632/aging.102477] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
The tumor microenvironment (TME) has a strong influence on the progression, therapeutic response, and clinical outcome of acute myeloid leukemia (AML), one of the most common hematopoietic malignancies in adults. In this study, we identified TME-related genes associated with AML prognosis. Gene expression profiles from AML patients were downloaded from TCGA database, and immune and stromal scores were calculated using the ESTIMATE algorithm. Immune scores were correlated with clinical features such as FAB subtypes and patient's age. After categorizing AML cases into high and low score groups, an association between several differentially expressed genes (DEGs) and overall survival was identified. Functional enrichment analysis of the DEGs showed that they were primarily enriched in the immune response, inflammatory response, and cytokine activity, and were involved in signaling processes related to hematopoietic cell lineage, B cell receptor, and chemokine pathways. Two significant modules, dominated respectively by CCR5 and ITGAM nodes, were identified from the PPI network, and 20 hub genes were extracted. A total of 112 DEGs correlated with poor overall survival of AML patients, and 11 of those genes were validated in a separate TARGET-AML cohort. By identifying TME-associated genes, our findings may lead to improved prognoses and therapies for AML.
Collapse
Affiliation(s)
- Shaoxin Huang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Biyu Zhang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Wenyan Fan
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Qihan Zhao
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wang Xin
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Denggang Fu
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
- Institute of Genomic and Personalized Medicine, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
28
|
Yossipof TE, Bazak ZR, Kenigsbuch-Sredni D, Caspi RR, Kalechman Y, Sredni B. Tellurium Compounds Prevent and Reverse Type-1 Diabetes in NOD Mice by Modulating α4β7 Integrin Activity, IL-1β, and T Regulatory Cells. Front Immunol 2019; 10:979. [PMID: 31191514 PMCID: PMC6549385 DOI: 10.3389/fimmu.2019.00979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/16/2019] [Indexed: 12/25/2022] Open
Abstract
The study shows that treatment of NOD mice with either of two tellurium-based small molecules, AS101 [ammonium trichloro(dioxoethylene-o,o')tellurate] or SAS [octa-O-bis-(R,R)-tartarate ditellurane] could preserve β cells function and mass. These beneficial effects were reflected in decreased incidence of diabetes, improved glucose clearance, preservation of body weight, and increased survival. The normal glucose levels were associated with increased insulin levels, preservation of β cell mass and increased islet size. Importantly, this protective activity could be demonstrated when the compounds were administered either at the early pre-diabetic phase with no or initial insulitis, at the pre-diabetic stage with advanced insulitis, or even at the advanced, overtly diabetic stage. We further demonstrate that both tellurium compounds prevent migration of autoimmune lymphocytes to the pancreas, via inhibition of the α4β7 integrin activity. Indeed, the decreased migration resulted in diminished pancreatic islets damage both with respect to their size, β cell function, and caspase-3 activity, the hallmark of apoptosis. Most importantly, AS101 and SAS significantly elevated the number of T regulatory cells in the pancreas, thus potentially controlling the autoimmune process. We show that the compounds inhibit pancreatic caspase-1 activity followed by decreased levels of the inflammatory cytokines IL-1β and IL-17 in the pancreas. These properties enable the compounds to increase the proportion of Tregs in the pancreatic lymph nodes. AS101 and SAS have been previously shown to regulate specific integrins through a unique redox mechanism. Our current results suggest that amelioration of disease in NOD mice by this unique mechanism is due to decreased infiltration of pancreatic islets combined with increased immune regulation, leading to decreased inflammation within the islets. As these tellurium compounds show remarkable lack of toxicity in clinical trials (AS101) and pre-clinical studies (SAS), they may be suitable for the treatment of type-1 diabetes.
Collapse
Affiliation(s)
- Tom Eitan Yossipof
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Ramat Gan, Israel
| | - Ziva Roy Bazak
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Ramat Gan, Israel
| | | | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yona Kalechman
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Ramat Gan, Israel
| | - Benjamin Sredni
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Ramat Gan, Israel
| |
Collapse
|
29
|
Bing SJ, Shemesh I, Chong WP, Horai R, Jittayasothorn Y, Silver PB, Sredni B, Caspi RR. AS101 ameliorates experimental autoimmune uveitis by regulating Th1 and Th17 responses and inducing Treg cells. J Autoimmun 2019; 100:52-61. [PMID: 30853312 DOI: 10.1016/j.jaut.2019.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
AS101 is an organotellurium compound with multifaceted immunoregulatory properties that is remarkable for its lack of toxicity. We tested the therapeutic effect of AS101 in experimental autoimmune uveitis (EAU), a model for human autoimmune uveitis. Unexpectedly, treatment with AS101 elicited Treg generation in vivo in otherwise unmanipulated mice. Mice immunized for EAU with the retinal antigen IRBP and treated with AS101 developed attenuated disease, as did AS101-treated recipients of retina-specific T cells activated in vitro. In both settings, eye-infiltrating effector T cells were decreased, whereas regulatory T (Treg) cells in the spleen were increased. Mechanistic studies in vitro revealed that AS101 restricted polarization of retina-specific T cells towards Th1 or Th17 lineage by repressing activation of their respective lineage-specific transcription factors and downstream signals. Retina-specific T cells polarized in vitro towards Th1 or Th17 in the presence of AS101 had impaired ability to induce EAU in naïve recipients. Finally, AS101 promoted differentiation of retina-specific T cells to Tregs in vitro independently of TGF-β. We conclude that AS101 modulates autoimmune T cells by inhibiting acquisition and expression of effector function and by promoting Treg generation, and suggest that AS101 could be useful as a therapeutic approach for autoimmune uveitis.
Collapse
Affiliation(s)
- So Jin Bing
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Itay Shemesh
- C.A.I.R. Institute, Safdié AIDS and Immunology Research Center, Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Wai Po Chong
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yingyos Jittayasothorn
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Phyllis B Silver
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Benjamin Sredni
- C.A.I.R. Institute, Safdié AIDS and Immunology Research Center, Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Gruszka AM, Valli D, Restelli C, Alcalay M. Adhesion Deregulation in Acute Myeloid Leukaemia. Cells 2019; 8:E66. [PMID: 30658474 PMCID: PMC6356639 DOI: 10.3390/cells8010066] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Cell adhesion is a process through which cells interact with and attach to neighboring cells or matrix using specialized surface cell adhesion molecules (AMs). Adhesion plays an important role in normal haematopoiesis and in acute myeloid leukaemia (AML). AML blasts express many of the AMs identified on normal haematopoietic precursors. Differential expression of AMs between normal haematopoietic cells and leukaemic blasts has been documented to a variable extent, likely reflecting the heterogeneity of the disease. AMs govern a variety of processes within the bone marrow (BM), such as migration, homing, and quiescence. AML blasts home to the BM, as the AM-mediated interaction with the niche protects them from chemotherapeutic agents. On the contrary, they detach from the niches and move from the BM into the peripheral blood to colonize other sites, i.e., the spleen and liver, possibly in a process that is reminiscent of epithelial-to-mesenchymal-transition in metastatic solid cancers. The expression of AMs has a prognostic impact and there are ongoing efforts to therapeutically target adhesion in the fight against leukaemia.
Collapse
Affiliation(s)
- Alicja M Gruszka
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy.
| | - Debora Valli
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy.
| | - Cecilia Restelli
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy.
| | - Myriam Alcalay
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20 122 Milan, Italy.
| |
Collapse
|
31
|
Le PM, Andreeff M, Battula VL. Osteogenic niche in the regulation of normal hematopoiesis and leukemogenesis. Haematologica 2018; 103:1945-1955. [PMID: 30337364 PMCID: PMC6269284 DOI: 10.3324/haematol.2018.197004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
The bone marrow microenvironment, also known as the bone marrow niche, is a complex network of cell types and acellular factors that supports normal hematopoiesis. For many years, leukemia was believed to be caused by a series of genetic hits to hematopoietic stem and progenitor cells, which transform them to preleukemic, and eventually to leukemic, cells. Recent discoveries suggest that genetic alterations in bone marrow niche cells, particularly in osteogenic cells, may also cause myeloid leukemia in mouse models. The osteogenic niche, which consists of osteoprogenitors, preosteoblasts, mature osteoblasts, osteocytes and osteoclasts, has been shown to play a critical role in the maintenance and expansion of hematopoietic stem and progenitor cells as well as in their oncogenic transformation into leukemia stem/initiating cells. We have recently shown that acute myeloid leukemia cells induce osteogenic differentiation in mesenchymal stromal cells to gain a growth advantage. In this review, we discuss the role of the osteogenic niche in the maintenance of hematopoietic stem and progenitor cells, as well as in their transformation into leukemia cells. We also discuss the signaling pathways that regulate osteogenic niche-hematopoietic stem and progenitor cells or osteogenic niche-leukemic stem/initiating cell interactions in the bone marrow, together with novel approaches for therapeutically targeting these interactions.
Collapse
Affiliation(s)
- Phuong M Le
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX .,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Behrmann L, Wellbrock J, Fiedler W. Acute Myeloid Leukemia and the Bone Marrow Niche-Take a Closer Look. Front Oncol 2018; 8:444. [PMID: 30370251 PMCID: PMC6195156 DOI: 10.3389/fonc.2018.00444] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
The bone marrow is the home of hematopoiesis and is therefore a hotspot for the development of hematopoietic diseases. Complex interactions between the bone marrow microenvironment and hematopoietic stem cells must find a balance between proliferation, differentiation and homeostasis of the stem cell compartment. Changes in this tightly regulated network can provoke malignant transformation, leading to hematopoietic diseases. Here we focus on acute myeloid leukemia (AML), since this is the most frequent acute leukemia in adulthood with very poor overall survival rates and where relapse after chemotherapy continues to be a major challenge, driving demand for new therapeutic strategies. Current research is focusing on the identification of specific interactions between leukemic blasts and their niche components, which may be exploited as novel treatment targets along with induction chemotherapy. Significant progress has been gained over the last few years in the field of high-resolution imaging. Confocal ex vivo and intravital microscopy have revealed a detailed map of bone marrow structures and components; as well as identifying numerous alterations in the stem cell niche that correspond to disease progression. However, the underlying mechanisms are still not completely understood and due to the complexity, their elucidation remains a challenging. This review discusses the constitution of the AML niche in the bone marrow, the improvement in visualization of the complex three-dimensional niche structures and points out new therapeutic strategies to increase the overall survival of AML patients.
Collapse
Affiliation(s)
- Lena Behrmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Wang A, Zhong H. Roles of the bone marrow niche in hematopoiesis, leukemogenesis, and chemotherapy resistance in acute myeloid leukemia. ACTA ACUST UNITED AC 2018; 23:729-739. [PMID: 29902132 DOI: 10.1080/10245332.2018.1486064] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To summarize the effects of the bone marrow niche on hematopoiesis and leukemogenesis and discuss the chemotherapy resistance that can arise from interactions between the niche and leukemia stem cells. METHODS We review the major roles of the bone marrow niche in cell proliferation, adhesion and drug resistance. The signaling pathways and major molecular participants in the niche are discussed. We also address potential niche-targeting strategies for the treatment of acute myeloid leukemia (AML). RESULTS The bone marrow niche supports normal hematopoiesis and affects acute myeloid leukemia (AML) initiation, progression and chemotherapy resistance. DISCUSSION AML is a group of heterogeneous malignant diseases characterized by the excessive proliferation of hematopoietic stem and/or progenitor cells. Even with intensive chemotherapy regimens and stem cell transplantation, the overall survival rate for AML is poor. The bone marrow niches of malignant cells are remodeled into a leukemia-permissive environment, and these reformed niches protect AML cells from chemotherapy-induced cell death. Inhibiting the cellular and molecular interactions between the niche and leukemia cells is a promising direction for targeted therapies for AML treatment. CONCLUSIONS Interactions between leukemia cells and the bone marrow niche influence hematopoiesis, leukemogenesis, and chemotherapy resistance in AML and require ongoing study. Understanding the mechanisms that underlie these interactions will help identify rational niche-targeting therapies to improve treatment outcomes in AML patients.
Collapse
Affiliation(s)
- Andi Wang
- a Department of Hematology , South Campus Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Hua Zhong
- a Department of Hematology , South Campus Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
34
|
The immunomodulatory tellurium compound ammonium trichloro (dioxoethylene-O,O') tellurate reduces anxiety-like behavior and corticosterone levels of submissive mice. Behav Pharmacol 2018; 28:458-465. [PMID: 28590303 DOI: 10.1097/fbp.0000000000000319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ammonium trichloro (dioxoethylene-O,O') tellurate (AS101) is a synthetic organotellurium compound with potent immunomodulatory and neuroprotective properties shown to inhibit the function of integrin αvβ3, a presynaptic cell-surface-adhesion receptor. As partial deletion of αvβ3 downregulated reuptake of serotonin by the serotonin transporter, we hypothesized that AS101 may influence pathways regulating anxiety. AS101 was tested in the modulation of anxiety-like behavior using the selectively bred Submissive (Sub) mouse strain that develop anxiety-like behavior in response to an i.p. injection. Mice were treated daily with AS101 (i.p., 125 or 200 μg/kg) or vehicle for 3 weeks, after which their anxiety-like behavior was measured in the elevated plus maze. Animals were then culled for the measurement of serum corticosterone levels by ELISA and hippocampal expression of brain-derived neurotrophic factor (BDNF) by RT-PCR. Chronic administration of AS101 significantly reduced anxiety-like behavior of Sub mice in the elevated plus maze, according to both time spent and entries to open arms, relative to vehicle-treated controls. AS101 also markedly reduced serum corticosterone levels of the treated mice and increased their hippocampal BDNF expression. Anxiolytic-like effects of AS101 may be attributed to the modulation of the regulatory influence integrin of αvβ3 upon the serotonin transporter, suggesting a multifaceted mechanism by which AS101 buffers the hypothalamic-pituitary-adrenal axis response to injection stress, enabling recovery of hippocampal BDNF expression and anxiety-like behavior in Sub mice. Further studies should advance the potential of AS101 in the context of anxiety-related disorders.
Collapse
|
35
|
Morozevich GE, Kozlova NI, Susova OY, Lupatov AY, Berman AE. Hyperexpression of Integrin α5β1 Promotes Resistance of MCF-7 Human Breast Carcinoma Cells to Doxorubicin via ERK Protein Kinase Down-regulation. BIOCHEMISTRY (MOSCOW) 2017; 82:1017-1024. [PMID: 28988530 DOI: 10.1134/s0006297917090048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In MCF-7 human breast carcinoma cells, α5β1 integrin hyperexpression, which was accomplished by transduction of a full-length α5 integrin cDNA, increased by about 50-70% the number of cells, survived during 48-72 h cell treatment with doxorubicin. Up-regulation of α5β1 reduced the level of the apoptogenic p53 protein and p21 cell cycle inhibitor, but enhanced the activity of Akt and mTOR protein kinases. In addition to these findings, we observed a significant decrease in the activity of both isoforms of phosphokinase Erk1/2, which is known to play a key role in cell viability pathways, including pathways alleviating stress damages caused by distinct antitumor drugs. Diminished Erk activity accompanying the rise of drug resistance can be explained by an "atypical" function of this kinase, which, in the cells studied, promotes an enhanced rather than reduced sensitivity to doxorubicin. To verify this suggestion, the effect of a specific Erk inhibitor, PD98059, on the resistance to doxorubicin of control and α5 cDNA-transduced MCF-7 cells was investigated. The data showed that suppression of Erk activity increased the resistance of control cells (transduced with an "empty" vector) to a level higher than that demonstrated by the α5 cDNA-transduced cells. The highest level of resistance was observed in α5β1-trancduced cells treated with PD98059. Akt and mTOR kinase inhibitors had little if any effect on doxorubicin resistance of α5 cDNA-transduced MCF-7 cells. The data show for the first time that integrin α5β1 can stimulate drug resistance of tumor cells through a mechanism based on the inhibition of protein kinase Erk. From a more general view, the results of this investigation suggest that signal protein kinases can perform in tumor cells "non-canonical" functions, opposite to those, which are the basis for using kinase inhibitors in targeted cancer therapy. It follows that if a protein kinase is supposed to be used as a target for such therapy, it is important to explore its features in the particular tumor prior to the onset of treatment.
Collapse
Affiliation(s)
- G E Morozevich
- Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia.
| | | | | | | | | |
Collapse
|
36
|
Raab-Westphal S, Marshall JF, Goodman SL. Integrins as Therapeutic Targets: Successes and Cancers. Cancers (Basel) 2017; 9:E110. [PMID: 28832494 PMCID: PMC5615325 DOI: 10.3390/cancers9090110] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Integrins are transmembrane receptors that are central to the biology of many human pathologies. Classically mediating cell-extracellular matrix and cell-cell interaction, and with an emerging role as local activators of TGFβ, they influence cancer, fibrosis, thrombosis and inflammation. Their ligand binding and some regulatory sites are extracellular and sensitive to pharmacological intervention, as proven by the clinical success of seven drugs targeting them. The six drugs on the market in 2016 generated revenues of some US$3.5 billion, mainly from inhibitors of α4-series integrins. In this review we examine the current developments in integrin therapeutics, especially in cancer, and comment on the health economic implications of these developments.
Collapse
Affiliation(s)
- Sabine Raab-Westphal
- Translational In Vivo Pharmacology, Translational Innovation Platform Oncology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| | - John F Marshall
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Simon L Goodman
- Translational and Biomarkers Research, Translational Innovation Platform Oncology, Merck KGaA, 64293 Darmstadt, Germany.
| |
Collapse
|
37
|
Barwe SP, Quagliano A, Gopalakrishnapillai A. Eviction from the sanctuary: Development of targeted therapy against cell adhesion molecules in acute lymphoblastic leukemia. Semin Oncol 2017; 44:101-112. [PMID: 28923207 DOI: 10.1053/j.seminoncol.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/10/2017] [Accepted: 06/29/2017] [Indexed: 02/04/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant hematological disease afflicting hematopoiesis in the bone marrow. While 80%-90% of patients diagnosed with ALL will achieve complete remission at some point during treatment, ALL is associated with high relapse rate, with a 5-year overall survival rate of 68%. The initial remission failure and the high rate of relapse can be attributed to intrinsic chemoprotective mechanisms that allow persistence of ALL cells despite therapy. These mechanisms are mediated, at least in part, through the engagement of cell adhesion molecules (CAMs) within the bone marrow microenvironment. This review assembles CAMs implicated in protection of leukemic cells from chemotherapy. Such studies are limited in ALL. Therefore, CAMs that are associated with poor outcomes or are overexpressed in ALL and have been shown to be involved in chemoprotection in other hematological cancers are also included. It is likely that these molecules play parallel roles in ALL because the CAMs identified to be a factor in ALL chemoresistance also work similarly in other hematological malignancies. We review the signaling mechanisms activated by the engagement of CAMs that provide protection from chemotherapy. Development of targeted therapies against CAMs could improve outcome and raise the overall cure rate in ALL.
Collapse
Affiliation(s)
- Sonali P Barwe
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE.
| | - Anthony Quagliano
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE
| | | |
Collapse
|
38
|
Azizidoost S, Vijay V, Cogle CR, Khodadi E, Saki N. The role and clinical implications of the endosteal niche and osteoblasts in regulating leukemia. Clin Transl Oncol 2017; 19:1059-1066. [DOI: 10.1007/s12094-017-1642-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/01/2017] [Indexed: 12/27/2022]
|
39
|
Hachmo Y, Kalechman Y, Skornick I, Gafter U, Caspi RR, Sredni B. The Small Tellurium Compound AS101 Ameliorates Rat Crescentic Glomerulonephritis: Association with Inhibition of Macrophage Caspase-1 Activity via Very Late Antigen-4 Inactivation. Front Immunol 2017; 8:240. [PMID: 28326083 PMCID: PMC5339302 DOI: 10.3389/fimmu.2017.00240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
Crescentic glomerulonephritis (CGN) is the most aggressive form of GN and, if untreated, patients can progress to end-stage renal failure within weeks of presentation. The α4β1 integrin very late antigen-4 (VLA-4) is an adhesion molecule of fundamental importance to the recruitment of leukocytes in inflammation. We addressed the role of VLA-4 in mediating progressive renal injury in a rat model of CGN using a small tellurium compound. AS101 [ammonium trichloro(dioxoethylene-o,o')tellurate]. This compound has been previously shown to uniquely inhibit VLA-4 activity by redox inactivation of adjacent thiols in the exofacial domain of VLA-4. The study shows that administration of AS101 either before or after glomerular basement membrane anti-serum injection ameliorates crescent formation or preserves renal function. This was associated with profound inhibition of critical inflammatory mediators, accompanied by decreased glomerular infiltration of macrophages. Mechanistic studies demonstrated vla-4 inactivation on glomerular macrophages both in vitro and in vivo as well as inhibition of caspase-1 activity. Importantly, this cysteine protease activity modification was dependent on VLA-4 inactivation and was associated with the anti-inflammatory activity of AS101. We propose that inactivation of macrophage VLA-4 by AS101 in vivo results in a decrease of inflammatory cytokines and chemokines produced in the glomeruli of diseased rats, resulting in decreased further macrophage recruitment and decreased extracellular matrix expansion. Thus, AS101, which is currently in clinical trials for other indications, might be beneficial for treatment of CGN.
Collapse
Affiliation(s)
- Yafit Hachmo
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan , Israel
| | - Yona Kalechman
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan , Israel
| | - Itai Skornick
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan , Israel
| | - Uzi Gafter
- Laboratory of Nephrology and Transplant Immunology, Rabin Medical Center, Petah-Tikva, Israel; Tel Aviv University, Tel Aviv, Israel
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health , Bethesda, MD , USA
| | - Benjamin Sredni
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan , Israel
| |
Collapse
|
40
|
Cho BS, Kim HJ, Konopleva M. Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside. Korean J Intern Med 2017; 32:248-257. [PMID: 28219003 PMCID: PMC5339474 DOI: 10.3904/kjim.2016.244] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
The interactions between the cancerous cells of acute myeloid leukemia (AML) and the bone marrow (BM) microenvironment have been postulated to be important for resistance to chemotherapy and disease relapse in AML. The chemokine receptor CXC chemokine receptor 4 (CXCR4) and its ligand, CXC motif ligand 12 (CXCL12), also known as stromal cell-derived factor 1α, are key mediators of this interaction. CXCL12 is produced by the BM microenvironment, binds and activates its cognate receptor CXCR4 on leukemic cells, facilitates leukemia cell trafficking and homing in the BM microenvironment, and keeps leukemic cells in close contact with the stromal cells and extracellular matrix that constitutively generate growth-promoting and anti-apoptotic signals. Indeed, a high level of CXCR4 expression on AML blasts is known to be associated with poor prognosis. Recent preclinical and clinical studies have revealed the safety and potential clinical utility of targeting the CXCL12/CXCR4 axis in AML with different classes of drugs, including small molecules, peptides, and monoclonal antibodies. In this review, we describe recent evidence of targeting these leukemia-stroma interactions, focusing on the CXCL12/CXCR4 axis. Related early phase clinical studies will be also introduced.
Collapse
Affiliation(s)
- Byung-Sik Cho
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary’s Hospital, Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hee-Je Kim
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary’s Hospital, Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Silberman A, Albeck M, Sredni B, Albeck A. Ligand-Substitution Reactions of the Tellurium Compound AS-101 in Physiological Aqueous and Alcoholic Solutions. Inorg Chem 2016; 55:10847-10850. [PMID: 27726342 DOI: 10.1021/acs.inorgchem.6b02138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Since its first crystallization, the aqueous structure of the tellurium-containing experimental drug AS-101 has never been studied. We show that, under the aqueous conditions in which it is administered, AS-101 is subjected to an immediate ligand-substitution reaction with water, yielding a stable hydrolyzed oxide anion product that is identified, for the first time, to be TeOCl3-. Studying the structure of AS-101 in propylene glycol (PG), an alcoholic solvent often used for the topical and oral administration of AS-101, revealed the same phenomenon of ligand-substitution reaction between the alcoholic ligands. Upon exposure to water, the PG-substituted product is also hydrolyzed to the same tellurium(IV) oxide form, TeOCl3-.
Collapse
Affiliation(s)
- Alon Silberman
- Department of Chemistry and ‡C.A.I.R. Institute, The Safdiè Center for AIDS and Immunology Research, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Michael Albeck
- Department of Chemistry and ‡C.A.I.R. Institute, The Safdiè Center for AIDS and Immunology Research, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Benjamin Sredni
- Department of Chemistry and ‡C.A.I.R. Institute, The Safdiè Center for AIDS and Immunology Research, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Amnon Albeck
- Department of Chemistry and ‡C.A.I.R. Institute, The Safdiè Center for AIDS and Immunology Research, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan 5290002, Israel
| |
Collapse
|
42
|
The fibronectin III-1 domain activates a PI3-Kinase/Akt signaling pathway leading to αvβ5 integrin activation and TRAIL resistance in human lung cancer cells. BMC Cancer 2016; 16:574. [PMID: 27484721 PMCID: PMC4970220 DOI: 10.1186/s12885-016-2621-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
Background Fibronectin is a mechanically sensitive protein which is organized in the extracellular matrix as a network of interacting fibrils. The lung tumor stroma is enriched for fibronectin which is thought to contribute to metastasis and drug resistance. Fibronectin is an elastic, multi-modular protein made up of individually folded domains, some of which can stretch in response to increased mechanical tension. Very little is known about the relationship of fibronectin’s unfolded domains to lung cancer resistance to chemotherapy. In the present study, we evaluated the impact of unfolding the first Type III domain of fibronectin (FnIII-1c) on TNF-related apoptosis inducing ligand (TRAIL) resistance. Methods NCI-H460 non-small cell lung cancer cells were treated with FnIII-1c then assessed for TRAIL-induced apoptosis. Subsequent analysis of FnIII-1c-mediated signaling pathways was also completed. Human non-small cell lung cancer tissue sections were assessed for the expression of vitronectin by immunohistochemistry. Results FnIII-1c inhibited TRAIL-induced activation of caspase 8 and subsequent apoptosis in NCI-H460 lung cancer cells. FnIII-1c treatment was associated with the activation of the phosphatidylinositol-3-kinase/alpha serine/threonine kinase (PI3K/Akt) pathway and the αvβ5 integrin receptor for vitronectin, both of which were required for TRAIL resistance. Immunohistochemical staining of sections from non-small cell lung cancers showed that vitronectin was localized around blood vessels and in the tumor-stroma interface. Conclusions Unfolding of Type III domains within the fibronectin matrix may promote TRAIL resistance through the activation of a PI3K/Akt/αvβ5 signaling axis and point to a novel mechanism by which changes in secondary structure of fibronectin contribute to cancer cell resistance to apoptosis.
Collapse
|
43
|
Silberman A, Kalechman Y, Hirsch S, Erlich Z, Sredni B, Albeck A. The Anticancer Activity of Organotelluranes: Potential Role in Integrin Inactivation. Chembiochem 2016; 17:918-27. [PMID: 26991356 DOI: 10.1002/cbic.201500614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/08/2022]
Abstract
Organic Te(IV) compounds (organotelluranes) differing in their labile ligands exhibited anti-integrin activities in vitro and anti-metastatic properties in vivo. They underwent ligand substitution with l-cysteine, as a thiol model compound. Unlike inorganic Te(IV) compounds, the organotelluranes did not form a stable complex with cysteine, but rather immediately oxidized it. The organotelluranes inhibited integrin functions, such as adhesion, migration, and metalloproteinase secretion mediation in B16F10 murine melanoma cells. In comparison, a reduced derivative with no labile ligand inhibited adhesion of B16F10 cells to a significantly lower extent, thus pointing to the importance of the labile ligands of the Te(IV) atom. One of the organotelluranes inhibited circulating cancer cells in vivo, possibly by integrin inhibition. Our results extend the current knowledge on the reactivity and mechanism of organotelluranes with different labile ligands and highlight their clinical potential.
Collapse
Affiliation(s)
- Alon Silberman
- The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel.,C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.,Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yona Kalechman
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shira Hirsch
- The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ziv Erlich
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Benjamin Sredni
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Amnon Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
44
|
Abstract
The bone marrow microenvironment plays a critical role in the development, progression, and relapse of acute myeloid leukemia (AML). Similar to normal hematopoietic stem cells, AML blasts express receptors on their surface, allowing them to interact with specific components of the marrow microenvironment. These interactions contribute to both chemotherapy resistance and disease relapse. Preclinical studies and early phase clinical trials have demonstrated the potential for targeting the tumor-microenvironment interactions in AML. Agents currently under investigation include hypoxia-inducible agents and inhibitors of CXCR4 and adhesion molecules such as VLA-4 and E-selectin.
Collapse
|
45
|
Rashidi A, DiPersio JF. Targeting the leukemia-stroma interaction in acute myeloid leukemia: rationale and latest evidence. Ther Adv Hematol 2016; 7:40-51. [PMID: 26834953 DOI: 10.1177/2040620715619307] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The concept of 'niche' has become a focus of attention in hematologic malignancies including acute myeloid leukemia (AML). Similar to normal hematopoietic stem cells, AML cells interact both anatomically and functionally with the stroma within the marrow microenvironment. These interactions have a critical role in the development, progression, and relapse of AML. Chemotherapy resistance is another feature that is at least partially related to AML-stroma interactions. The evidence for safety and efficacy of agents targeting AML-niche interactions is currently limited to preclinical and early phase clinical studies. Examples include CXCR4 inhibitors, hypoxia-inducible agents, and adhesion molecule inhibitors. Agents that target AML-stroma interactions differ from mutation-specific approaches that tend to be limited due to within-individual and between-individual genetic heterogeneity. These agents may be used alone or as chemosensitizers in AML. This novel and rapidly advancing strategy is likely to become an important part of our armamentarium of anti-leukemia treatments in the near future.
Collapse
Affiliation(s)
- Armin Rashidi
- Section of BMT and Leukemia, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - John F DiPersio
- Section of BMT and Leukemia, Division of Oncology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| |
Collapse
|
46
|
Cort A, Ozben T, Saso L, De Luca C, Korkina L. Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4251912. [PMID: 26881027 PMCID: PMC4736404 DOI: 10.1155/2016/4251912] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022]
Abstract
Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed.
Collapse
Affiliation(s)
- Aysegul Cort
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sanko University, İncili Pınar, Gazi Muhtar Paşa Bulvarı, Sehitkamil, 27090 Gaziantep, Turkey
| | - Tomris Ozben
- Department of Biochemistry, Akdeniz University Medical Faculty, Campus, Dumlupınar Street, 07070 Antalya, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara De Luca
- Evidence-Based Well-Being (EB-WB) Ltd., 31 Alt-Stralau, 10245 Berlin, Germany
| | - Liudmila Korkina
- Centre of Innovative Biotechnological Investigations Nanolab, 197 Vernadskogo Prospekt, Moscow 119571, Russia
| |
Collapse
|
47
|
Moschovi M, Critselis E, Cen O, Adamaki M, Lambrou GI, Chrousos GP, Vlahopoulos S. Drugs acting on homeostasis: challenging cancer cell adaptation. Expert Rev Anticancer Ther 2015; 15:1405-1417. [PMID: 26523494 DOI: 10.1586/14737140.2015.1095095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Cancer treatment aims to exploit properties that define malignant cells. In recent years, it has become apparent that malignant cells often survive cancer treatment and ensuing cell stress by switching on auxiliary turnover pathways, changing cellular metabolism and, concomitantly, the gene expression profile. The changed profile impacts the material exchange of cancer cells with affected tissues. Herein, we show that pathways of proteostasis and energy generation regulate common transcription factors. Namely, when one pathway of intracellular turnover is blocked, it triggers alternative turnover mechanisms, which induce transcription factor proteins that control expression of cytokines and regulators of apoptosis, cell division, differentiation, metabolism, and response to hormones. We focus on several alternative turnover mechanisms that can be blocked by drugs already used in clinical practice for the treatment of other non-cancer related diseases. We also discuss paradigms on the challenges posed by cancer cell adaptation mechanisms.
Collapse
Affiliation(s)
- Maria Moschovi
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
- b 2 University of Athens, Pediatric Hematology/Oncology Unit, First Department of Pediatrics, University of Athens, "Aghia Sofia" Children's Hospital, Thivon & Levadeias, 11527 Goudi, Athens, Greece
| | - Elena Critselis
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
| | - Osman Cen
- c 3 Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago Ave, Chicago, IL 60611, USA
| | - Maria Adamaki
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
- b 2 University of Athens, Pediatric Hematology/Oncology Unit, First Department of Pediatrics, University of Athens, "Aghia Sofia" Children's Hospital, Thivon & Levadeias, 11527 Goudi, Athens, Greece
| | - George I Lambrou
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
| | - George P Chrousos
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
| | - Spiros Vlahopoulos
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
| |
Collapse
|
48
|
AS101 prevents diabetic nephropathy progression and mesangial cell dysfunction: regulation of the AKT downstream pathway. PLoS One 2014; 9:e114287. [PMID: 25474550 PMCID: PMC4256394 DOI: 10.1371/journal.pone.0114287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/07/2014] [Indexed: 01/18/2023] Open
Abstract
Diabetic nephropathy (DN) is characterized by proliferation of mesangial cells, mesangial expansion, hypertrophy and extracellular matrix accumulation. Previous data have cross-linked PKB (AKT) to TGFβ induced matrix modulation. The non-toxic compound AS101 has been previously shown to favorably affect renal pathology in various animal models and inhibits AKT activity in leukemic cells. Here, we studied the pharmacological properties of AS101 against the progression of rat DN and high glucose-induced mesangial dysfunction. In-vivo administration of AS101 to Streptozotocin injected rats didn’t decreased blood glucose levels but ameliorated kidney hypotrophy, proteinuria and albuminuria and downregulated cortical kidney phosphorylation of AKT, GSK3β and SMAD3. AS101 treatment of primary rat glomerular mesangial cells treated with high glucose significantly reduced their elevated proliferative ability, as assessed by XTT assay and cell cycle analysis. This reduction was associated with decreased levels of p-AKT, increased levels of PTEN and decreased p-GSK3β and p-FoxO3a expression. Pharmacological inhibition of PI3K, mTORC1 and SMAD3 decreased HG-induced collagen accumulation, while inhibition of GSK3β did not affect its elevated levels. AS101 also prevented HG-induced cell growth correlated to mTOR and (rp)S6 de-phosphorylation. Thus, pharmacological inhibition of the AKT downstream pathway by AS101 has clinical potential in alleviating the progression of diabetic nephropathy.
Collapse
|
49
|
Danoch H, Kalechman Y, Albeck M, Longo DL, Sredni B. Sensitizing B- and T- cell Lymphoma Cells to Paclitaxel/Abraxane-Induced Death by AS101 via Inhibition of the VLA-4-IL10-Survivin Axis. Mol Cancer Res 2014; 13:411-22. [PMID: 25351768 DOI: 10.1158/1541-7786.mcr-14-0459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Cancer cell resistance to chemotherapy is a major concern in clinical oncology, resulting in increased tumor growth and decreased patient survival. Manipulation of apoptosis has emerged as a new therapeutic strategy to eliminate cancer cells. The focus of this study resides within a novel approach to target survivin, an integrator of both cell death and mitosis. This protein plays a pivotal role in the resistance of tumors to chemotherapy, especially to paclitaxel. The data herein demonstrate an indirect repression of survivin in both B- and T-cell lymphoma and human NHL by the nontoxic tellurium compound, AS101 [ammonium trichloro(dioxoethylene-o,o')tellurate], via inhibition of tumor autocrine IL10-STAT3-Survivin signaling. As a result of survivin abrogation, sensitization of lymphomas to paclitaxel or to Abraxane, the new albumin-stabilized nanoparticle formulation of paclitaxel, occurs both in vitro and in vivo. Importantly, inhibition of lymphoma cell IL10 secretion is mediated by inactivation of the VLA-4 integrin, recently shown to be an important target of AS101. This activity is followed by inhibition of the PI3K-AKT axis that mediates IL10 suppression. Because a wide variety of lymphomas and other tumor types express VLA-4 and secrete IL10 in an autocrine manner, inhibition of survivin with a small nontoxic agent has vast clinical significance in modulating chemosensitivity in many tumor types. IMPLICATIONS Combination therapy with AS101 and paclitaxel has novel therapeutic potential targeting deregulated active pathways in lymphoma, overcoming endogenous resistance to apoptosis.
Collapse
Affiliation(s)
- Hila Danoch
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yona Kalechman
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael Albeck
- Chemistry Department, Bar-Ilan University, Ramat-Gan, Israel
| | - Dan L Longo
- Laboratory of Molecular Biology and Immunology, Biomedical Research Center, National Institute of Aging, Baltimore, Maryland
| | - Benjamin Sredni
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
50
|
Wani R, Nagata A, Murray BW. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology. Front Pharmacol 2014; 5:224. [PMID: 25339904 PMCID: PMC4186267 DOI: 10.3389/fphar.2014.00224] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/17/2014] [Indexed: 12/26/2022] Open
Abstract
The perception of reactive oxygen species has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g., cancer). New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically distinct alterations to the protein (e.g., sulfenic/sulfinic/sulfonic acid, disulfides). These post-translational modifications (PTM) are shown to affect the protein structure and function. Because redox-sensitive proteins can traffic between subcellular compartments that have different redox environments, cysteine oxidation enables a spatio-temporal control to signaling. Understanding ramifications of these oxidative modifications to the functions of signaling proteins is crucial for understanding cellular regulation as well as for informed-drug discovery process. The effects of EGFR oxidation of Cys797 on inhibitor pharmacology are presented to illustrate the principle. Taken together, cysteine redox PTM can impact both cell biology and drug pharmacology.
Collapse
Affiliation(s)
- Revati Wani
- Oncology Research Unit, Pfizer Worldwide Research and Development San Diego, CA, USA
| | - Asako Nagata
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development San Diego, CA, USA
| | - Brion W Murray
- Oncology Research Unit, Pfizer Worldwide Research and Development San Diego, CA, USA
| |
Collapse
|