1
|
Wu L, Li ZZ, Yang H, Cao LZ, Wang XY, Wang DL, Chatterjee E, Li YF, Huang G. Cardioprotection of voluntary exercise against breast cancer-induced cardiac injury via STAT3. Basic Res Cardiol 2025; 120:113-131. [PMID: 39158697 DOI: 10.1007/s00395-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.
Collapse
Affiliation(s)
- Lan Wu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
- School of Basic Medical Science, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Zhi-Zheng Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li-Zhi Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiao-Ying Wang
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Dong-Liang Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yan-Fei Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
2
|
Artigas-Arias M, Curi R, Marzuca-Nassr GN. Myogenic microRNAs as Therapeutic Targets for Skeletal Muscle Mass Wasting in Breast Cancer Models. Int J Mol Sci 2024; 25:6714. [PMID: 38928418 PMCID: PMC11204047 DOI: 10.3390/ijms25126714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer is the type of cancer with the highest prevalence in women worldwide. Skeletal muscle atrophy is an important prognostic factor in women diagnosed with breast cancer. This atrophy stems from disrupted skeletal muscle homeostasis, triggered by diminished anabolic signalling and heightened inflammatory conditions, culminating in an upregulation of skeletal muscle proteolysis gene expression. The importance of delving into research on modulators of skeletal muscle atrophy, such as microRNAs (miRNAs), which play a crucial role in regulating cellular signalling pathways involved in skeletal muscle protein synthesis and degradation, has been recognised. This holds true for conditions of homeostasis as well as pathologies like cancer. However, the determination of specific miRNAs that modulate skeletal muscle atrophy in breast cancer conditions has not yet been explored. In this narrative review, we aim to identify miRNAs that could directly or indirectly influence skeletal muscle atrophy in breast cancer models to gain an updated perspective on potential therapeutic targets that could be modulated through resistance exercise training, aiming to mitigate the loss of skeletal muscle mass in breast cancer patients.
Collapse
Affiliation(s)
- Macarena Artigas-Arias
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Rui Curi
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, Brazil;
| | - Gabriel Nasri Marzuca-Nassr
- Departamento de Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
3
|
Improta-Caria AC, Ferrari F, Gomes JLP, Villalta PB, Soci ÚPR, Stein R, Oliveira EM. Dysregulated microRNAs in type 2 diabetes and breast cancer: Potential associated molecular mechanisms. World J Diabetes 2024; 15:1187-1198. [PMID: 38983808 PMCID: PMC11229979 DOI: 10.4239/wjd.v15.i6.1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Type 2 diabetes (T2D) is a multifaceted and heterogeneous syndrome associated with complications such as hypertension, coronary artery disease, and notably, breast cancer (BC). The connection between T2D and BC is established through processes that involve insulin resistance, inflammation and other factors. Despite this comprehension the specific cellular and molecular mechanisms linking T2D to BC, especially through microRNAs (miRNAs), remain elusive. miRNAs are regulators of gene expression at the post-transcriptional level and have the function of regulating target genes by modulating various signaling pathways and biological processes. However, the signaling pathways and biological processes regulated by miRNAs that are associated with T2D and BC have not yet been elucidated. This review aims to identify dysregulated miRNAs in both T2D and BC, exploring potential signaling pathways and biological processes that collectively contribute to the development of BC.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Filipe Ferrari
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - João Lucas Penteado Gomes
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Paloma Brasilio Villalta
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas-UNICAMP, Campinas 13484-350, Brazil
| | - Úrsula Paula Renó Soci
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Ricardo Stein
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - Edilamar M Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
- Departments of Internal Medicine, Molecular Pharmacology and Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, United States
| |
Collapse
|
4
|
Fujiya K, Kodato T, Koseki Y, Furukawa K, Tanizawa Y, Terashima M, Bando E. Postoperative sarcopenia increases both gastric cancer and other-cause mortality in older adults undergoing radical gastrectomy for cancer. Clin Nutr ESPEN 2024; 61:63-70. [PMID: 38777474 DOI: 10.1016/j.clnesp.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/18/2024] [Accepted: 03/10/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND & AIMS Preoperative sarcopenia in gastric cancer is associated with increased postoperative complications and reduced long-term survival. However, the association between postoperative sarcopenia and long-term outcomes remains unclear. Therefore, this study aims to clarify the association between sarcopenia after gastrectomy for gastric cancer and survival outcomes. METHODS This retrospective study included 1512 patients aged ≥65 who underwent curative gastric resection for clinical stage I-III primary gastric cancer during 2008-2018. Sarcopenia was assessed preoperatively by measuring arm muscle area and grip strength, which was repeated 1 month after surgery. We compared the clinical characteristics, surgical treatments, and long-term outcomes between the postoperative normal and sarcopenia groups. RESULTS Sarcopenia was observed in 173 and 305 patients pre- and postoperatively, respectively. Factors increasing the risk of postoperative sarcopenia included age of ≥75, lower preoperative body mass index, diabetes, and clinical stage II/III gastric cancer. Patients with postoperative sarcopenia after surgery had a significantly lower overall survival rate (hazard ratio [HR] 2.596, p < 0.001). Furthermore, postoperative sarcopenia was linked to decreased overall survival in patients with (HR 2.813, p = 0.002) and without (HR 1.925, p < 0.001) preoperative sarcopenia. Cumulative incidence showed significantly higher rates of deaths due to gastric cancer (HR 1.928, p < 0.001) and other causes (HR 2.736, p < 0.001) in the postoperative sarcopenia group. CONCLUSIONS Postoperative sarcopenia in gastric cancer is linked to an increased risk of death due to cancer and other causes, underscoring the importance of perioperative sarcopenia management strategies.
Collapse
Affiliation(s)
- Keiichi Fujiya
- Division of Gastric Surgery, Shizuoka Cancer Center, Shizuoka, Japan.
| | - Takashi Kodato
- Division of Gastric Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yusuke Koseki
- Division of Gastric Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Yutaka Tanizawa
- Division of Gastric Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Etsuro Bando
- Division of Gastric Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
5
|
Wang R, Khatpe AS, Kumar B, Mang HE, Batic K, Adebayo AK, Nakshatri H. Mutant RAS-driven Secretome Causes Skeletal Muscle Defects in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1282-1295. [PMID: 38651826 PMCID: PMC11094532 DOI: 10.1158/2767-9764.crc-24-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Cancer-induced skeletal muscle defects differ in severity between individuals with the same cancer type. Cancer subtype-specific genomic aberrations are suggested to mediate these differences, but experimental validation studies are very limited. We utilized three different breast cancer patient-derived xenograft (PDX) models to correlate cancer subtype with skeletal muscle defects. PDXs were derived from brain metastasis of triple-negative breast cancer (TNBC), estrogen receptor-positive/progesterone receptor-positive (ER+/PR+) primary breast cancer from a BRCA2-mutation carrier, and pleural effusion from an ER+/PR- breast cancer. While impaired skeletal muscle function as measured through rotarod performance and reduced levels of circulating and/or skeletal muscle miR-486 were common across all three PDXs, only TNBC-derived PDX activated phospho-p38 in skeletal muscle. To further extend these results, we generated transformed variants of human primary breast epithelial cells from healthy donors using HRASG12V or PIK3CAH1047R mutant oncogenes. Mutations in RAS oncogene or its modulators are found in approximately 37% of metastatic breast cancers, which is often associated with skeletal muscle defects. Although cells transformed with both oncogenes generated adenocarcinomas in NSG mice, only HRASG12V-derived tumors caused skeletal muscle defects affecting rotarod performance, skeletal muscle contraction force, and miR-486, Pax7, pAKT, and p53 levels in skeletal muscle. Circulating levels of the chemokine CXCL1 were elevated only in animals with tumors containing HRASG12V mutation. Because RAS pathway aberrations are found in 19% of cancers, evaluating skeletal muscle defects in the context of genomic aberrations in cancers, particularly RAS pathway mutations, may accelerate development of therapeutic modalities to overcome cancer-induced systemic effects. SIGNIFICANCE Mutant RAS- and PIK3CA-driven breast cancers distinctly affect the function of skeletal muscle. Therefore, research and therapeutic targeting of cancer-induced systemic effects need to take aberrant cancer genome into consideration.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Henry Elmer Mang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katie Batic
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
6
|
Chen D. Untoward immune effects of modern medication. J Biomed Res 2023; 38:17-23. [PMID: 38105750 PMCID: PMC10818179 DOI: 10.7555/jbr.37.20230071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 12/19/2023] Open
Abstract
Immune-related adverse events (irAEs) represent an increasingly concerning challenge in the assessment of biopharmaceutical products. In contrast to historically rare allergic reactions associated with small chemical drugs, contemporary biotherapeutics exhibit a significantly higher morbidity of irAEs, because of their complex structure and comprehensive mechanisms of action. While the immunogenicity of protein-based compounds is associated with the induction of anti-drug antibodies, the pathogenesis of irAEs in advanced biologics, such as cell and gene therapy, remains to be further delineated. In the current study, I present an updated profile regarding the untoward immune effects of medications, covering various material categories systematically, with the underlying mechanisms to inspire risk mitigation in biopharmaceutical development and application.
Collapse
Affiliation(s)
- Daohong Chen
- Research Institute, Changshan Biochemical Pharmaceutical, Shijiazhuang, Hebei 050800, China
| |
Collapse
|
7
|
Wang R, Kumar B, Bhat-Nakshatri P, Khatpe AS, Murphy MP, Wanczyk KE, Simpson E, Chen D, Gao H, Liu Y, Doud EH, Mosley AL, Nakshatri H. A human skeletal muscle stem/myotube model reveals multiple signaling targets of cancer secretome in skeletal muscle. iScience 2023; 26:106541. [PMID: 37102148 PMCID: PMC10123345 DOI: 10.1016/j.isci.2023.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Skeletal muscle dysfunction or reprogramming due to the effects of the cancer secretome is observed in multiple malignancies. Although mouse models are routinely used to study skeletal muscle defects in cancer, because of species specificity of certain cytokines/chemokines in the secretome, a human model system is required. Here, we establish simplified multiple skeletal muscle stem cell lines (hMuSCs), which can be differentiated into myotubes. Using single nuclei ATAC-seq (snATAC-seq) and RNA-seq (snRNA-seq), we document chromatin accessibility and transcriptomic changes associated with the transition of hMuSCs to myotubes. Cancer secretome accelerated stem to myotube differentiation, altered the alternative splicing machinery and increased inflammatory, glucocorticoid receptor, and wound healing pathways in hMuSCs. Additionally, cancer secretome reduced metabolic and survival pathway associated miR-486, AKT, and p53 signaling in hMuSCs. hMuSCs underwent myotube differentiation when engrafted into NSG mice and thus providing a humanized in vivo skeletal muscle model system to study cancer cachexia.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael P. Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| | - Kristen E. Wanczyk
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| | - Edward Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Duojiao Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Three Pathways of Cancer Cachexia: Inflammation, Changes in Adipose Tissue and Loss of Muscle Mass—The Role of miRNAs. J Pers Med 2022; 12:jpm12091438. [PMID: 36143223 PMCID: PMC9500979 DOI: 10.3390/jpm12091438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022] Open
Abstract
According to the World Health Organization, in 2018, cancers, along with over 18 million new cases and over 9.5 million deaths remained one of the main causes of mortality globally. Cancer-cachexia, also called wasting syndrome is a complex, multifactorial disorder characterized by progressive skeletal muscle mass loss, with or without adipose tissue atrophy. It is considered as a state of cancer-related malnutrition (CRM) accompanied by inflammation, that is irreversible despite the introduction of nutritional support. Indication of markers of pre-cachectic state seems to be urgently needed. Moreover, such markers have also potential to be used in the assessment of the effects of anti-cachexia treatment, and prognosis. miRNAs are non-coding RNA molecules that are about 20–30 nucleotides long. Single miRNA has the potential to control from few dozen to several hundred different genes. Despite the fact, that the number of miRNAs keep growing. we are making steady progress in establishing regulatory targets and their physiological levels. In this review we described the current knowledge on the impact of miRNAs on processes involved in cancer cachexia development: inflammation, adipose tissue remodelling, and loss of muscle mass both in animal models and the human cohorts. The available studies suggest that miRNAs, due to their properties, e.g., the possibility of regulating even hundreds of different genes, signalling pathways, and biological processes by one molecule, but also due their stability in biological material, the fact, that the change in their level reflects the disease status or the response to the applied treatment, they have great potential to be used as valuable biomarkers in the diagnosis, treatment, and prognosis of cancer cachexia.
Collapse
|
9
|
Yedigaryan L, Gatti M, Marini V, Maraldi T, Sampaolesi M. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia. Cells 2022; 11:2293. [PMID: 35892590 PMCID: PMC9332174 DOI: 10.3390/cells11152293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Significant loss of muscle mass may occur in cachexia and sarcopenia, which are major causes of mortality and disability. Cachexia represents a complex multi-organ syndrome associated with cancer and chronic diseases. It is often characterized by body weight loss, inflammation, and muscle and adipose wasting. Progressive muscle loss is also a hallmark of healthy aging, which is emerging worldwide as a main demographic trend. A great challenge for the health care systems is the age-related decline in functionality which threatens the independence and quality of life of elderly people. This biological decline can also be associated with functional muscle loss, known as sarcopenia. Previous studies have shown that microRNAs (miRNAs) play pivotal roles in the development and progression of muscle wasting in both cachexia and sarcopenia. These small non-coding RNAs, often carried in extracellular vesicles, inhibit translation by targeting messenger RNAs, therefore representing potent epigenetic modulators. The molecular mechanisms behind cachexia and sarcopenia, including the expression of specific miRNAs, share common and distinctive trends. The aim of the present review is to compile recent evidence about shared and divergent epigenetic mechanisms, particularly focusing on miRNAs, between cachexia and sarcopenia to understand a facet in the underlying muscle wasting associated with these morbidities and disclose potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
10
|
Zhang X, Yang S, Kang Z, Ru W, Shen X, Li M, Lan X, Chen H. circMEF2D Negatively Regulated by HNRNPA1 Inhibits Proliferation and Differentiation of Myoblasts via miR-486-PI3K/AKT Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8145-8163. [PMID: 35749701 DOI: 10.1021/acs.jafc.2c01888] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Circular RNA (circRNA) is a form of endogenous RNA that can regulate gene expression and participate in the regulation of myogenesis. However, the molecular mechanisms and potential roles of circRNAs in bovine muscle development remain largely unknown. Nevertheless, the RNA splicing factors regulating the biogenesis of bovine circRNA have not yet been characterized. In this study, we identified a novel circRNA, circMEF2D, formed by back-splicing of constitutive exons (exons 5-7) of the bovine MEF2D gene. Functional assays showed that circMEF2D inhibited the proliferation and differentiation of bovine myoblasts. Importantly, we showed that circMEF2D regulated the PI3K-AKT signaling pathway through direct and competitive binding to miR-486. Furthermore, to explore the formation mechanism of circMEF2D, we explored the MEF2D gene alternative splicing progress. Four alternative linear variants of MEF2D were found. Due to its role in alternative splicing, the RNA-binding protein HNRNPA1 was selected for further study and the modulation of HNRNPA1 levels showed that it negatively regulated both back-splicing and linear splicing of MEF2D gene. Overall, in addition to the characterization of bovine circRNAs, these findings revealed the crucial role of HNRNPA1 in MEF2D gene alternative splicing and demonstrated a regulatory circMEF2D-miR-486-PI3K-AKT axis.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuling Yang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zihong Kang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Wenxiu Ru
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xuemei Shen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Meng Li
- Cargill Animal Nutrition (Shaanxi) Co., Ltd, Yangling, 712100 Shaanxi, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
11
|
Wang R, Kumar B, Doud EH, Mosley AL, Alexander MS, Kunkel LM, Nakshatri H. Skeletal muscle-specific overexpression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:231-248. [PMID: 35402076 PMCID: PMC8971682 DOI: 10.1016/j.omtn.2022.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
miR-486 is a myogenic microRNA, and its reduced skeletal muscle expression is observed in muscular dystrophy. Transgenic overexpression of miR-486 using muscle creatine kinase promoter (MCK-miR-486) partially rescues muscular dystrophy phenotype. We had previously demonstrated reduced circulating and skeletal muscle miR-486 levels with accompanying skeletal muscle defects in mammary tumor models. To determine whether skeletal muscle miR-486 is functionally similar in dystrophies and cancer, we performed functional limitations and biochemical studies of skeletal muscles of MMTV-Neu mice that mimic HER2+ breast cancer and MMTV-PyMT mice that mimic luminal subtype B breast cancer and these mice crossed to MCK-miR-486 mice. miR-486 significantly prevented tumor-induced reduction in muscle contraction force, grip strength, and rotarod performance in MMTV-Neu mice. In this model, miR-486 reversed cancer-induced skeletal muscle changes, including loss of p53, phospho-AKT, and phospho-laminin alpha 2 (LAMA2) and gain of hnRNPA0 and SRSF10 phosphorylation. LAMA2 is a part of the dystrophin-associated glycoprotein complex, and its loss of function causes congenital muscular dystrophy. Complementing these beneficial effects on muscle, miR-486 indirectly reduced tumor growth and improved survival, which is likely due to systemic effects of miR-486 on production of pro-inflammatory cytokines such as IL-6. Thus, similar to dystrophy, miR-486 has the potential to reverse skeletal muscle defects and cancer burden.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology, University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
| | - Louis M. Kunkel
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Li X, Du L, Liu Q, Lu Z. MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review). Exp Ther Med 2022; 24:446. [PMID: 35720622 PMCID: PMC9199081 DOI: 10.3892/etm.2022.11373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cachexia denotes a complex metabolic syndrome featuring severe loss of weight, fatigue and anorexia. In total, 50-80% of patients suffering from advanced cancer are diagnosed with cancer cachexia, which contributes to 40% of cancer-associated mortalities. MicroRNAs (miRNAs) are non-coding RNAs capable of regulating gene expression. Dysregulated miRNA expression has been observed in muscle tissue, adipose tissue and blood samples from patients with cancer cachexia compared with that of samples from patients with cancer without cachexia or healthy controls. In addition, miRNAs promote and maintain the malignant state of systemic inflammation, while inflammation contributes to cancer cachexia. The present review discusses the role of miRNAs in the progression of cancer cachexia, and assess their diagnostic value and potential therapeutic value.
Collapse
Affiliation(s)
- Xin Li
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Lidong Du
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Qiang Liu
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
13
|
Abstract
Even though randomized controlled clinical trials (RCTs) have been accepted as the gold standard for official assessment of novel interventions, there is a substantial gap between the efficacy observed in RCTs and the impact on clinical practice and in terms of patient benefit. While real-world studies (RWS) are emerging to confer valuable complementing evidence in this regard and beyond, the evolving role of RWS is yet to be agreed. This article delineates an updated profile of RWS covering effectiveness verification, rare adverse effects discovery, indication repurposing, to name a few. RWS tends not only to improve the efficiency of clinical investigations for regulatory approval, but also optimizes the whole-life cycle evaluation of biomedical/pharmaceutical products.
Collapse
Affiliation(s)
- Daohong Chen
- Research Institute, Changshan Biochemical Pharmaceutical, Shijiazhuang, Hebei 050800, China
| |
Collapse
|
14
|
Gomes JLP, Tobias GC, Fernandes T, Silveira AC, Negrão CE, Chammas R, Brum PC, Oliveira EM. Effects of Aerobic Exercise Training on MyomiRs Expression in Cachectic and Non-Cachectic Cancer Mice. Cancers (Basel) 2021; 13:cancers13225728. [PMID: 34830882 PMCID: PMC8616427 DOI: 10.3390/cancers13225728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Muscle wasting is a symptom of the cancer cachexia closely related to the imbalance between protein synthesis and degradation. MyomiRs are small RNA molecules that do not encode proteins and have the function of regulating protein-coding genes, and in this way, myomiRs can regulate the homeostasis of skeletal muscle cells submitted to physiological or pathological stimulus. Aerobic exercise training (AET) is a nonpharmacological adjuvant treatment to prevent cancer cachexia, improving the patient’s quality of life. MyomiRs are modulated by cancer and AET, as well. Thus, we propose to investigate the effects promoted by AET on circulating and skeletal muscle myomiRs in cachectic and non-cachectic cancer mice. Exercise is a promising therapy for cancer-associated muscle wasting, revealing the importance to understand the molecular mechanisms involved to preserve muscle mass. Abstract We investigated the effects of AET on myomiRs expression in the skeletal muscle and serum of colon cachectic (CT26) and breast non-cachectic (MMTV-PyMT) cancer mice models. Colon cancer decreased microRNA-486 expression, increasing PTEN in tibialis anterior muscle (TA), decreasing the PI3K/mTOR protein pathway, body and muscle wasting, fibers’ cross-sectional area and muscle dysfunction, that were not preserved by AET. In contrast, breast cancer decreased those muscle functions, but were preserved by AET. In circulation, the downregulation of microRNA-486 and -206 in colon cancer, and the downregulation of microRNA-486 and upregulation of microRNA-206 expression in breast cancer might be good cancer serum biomarkers. Since the microRNA-206 is skeletal muscle specific, their expression was increased in the TA, serum and tumor in MMTV, suggesting a communication among these three compartments. The AET prevents these effects on microRNA-206, but not on microRNA-486 in MMTV. In conclusion, cancer induced a downregulation of microRNA-486 expression in TA and serum of CT26 and MMTV mice and these effects were not prevented by AET; however, to MMTV, the trained muscle function was preserved, probably sustained by the downregulation of microRNA-206 expression. Serum microRNA-206 is a potential biomarker for colon (decreased) and breast (increased) cancer to monitor the disease evolution and the effects promoted by the AET.
Collapse
Affiliation(s)
- João Lucas Penteado Gomes
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
| | - Gabriel Cardial Tobias
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
| | - Tiago Fernandes
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
| | - André Casanova Silveira
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
| | - Carlos Eduardo Negrão
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
- Heart Institute (InCor), Medical School, University of Sao Paulo, Sao Paulo 05508-030, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil;
| | - Patrícia Chakur Brum
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
| | - Edilamar Menezes Oliveira
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (J.L.P.G.); (G.C.T.); (T.F.); (A.C.S.); (C.E.N.); (P.C.B.)
- Correspondence: ; Tel.: +55-11-3091-2118
| |
Collapse
|
15
|
Wang R, Bhat-Nakshatri P, Zhong X, Zimmers T, Nakshatri H. Hormonally Regulated Myogenic miR-486 Influences Sex-specific Differences in Cancer-induced Skeletal Muscle Defects. Endocrinology 2021; 162:6321973. [PMID: 34265069 PMCID: PMC8335968 DOI: 10.1210/endocr/bqab142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 12/20/2022]
Abstract
Cancer-induced skeletal muscle defects show sex-specific differences in severity with men performing poorly compared to women. Hormones and sex chromosomal differences are suggested to mediate these differences, but the functional skeletal muscle markers to document these differences are unknown. We show that the myogenic microRNA miR-486 is a marker of sex-specific differences in cancer-induced skeletal muscle defects. Cancer-induced loss of circulating miR-486 was more severe in men with bladder, lung, and pancreatic cancers compared to women with the same cancer types. In a syngeneic model of pancreatic cancer, circulating and skeletal muscle loss of miR-486 was more severe in male mice compared to female mice. Estradiol (E2) and the clinically used selective estrogen receptor modulator toremifene increased miR-486 in undifferentiated and differentiated myoblast cell line C2C12 and E2-inducible expression correlated with direct binding of estrogen receptor alpha (ERα) to the regulatory region of the miR-486 gene. E2 and toremifene reduced the actions of cytokines such as myostatin, transforming growth factor β, and tumor necrosis factor α, which mediate cancer-induced skeletal muscle wasting. E2- and toremifene-treated C2C12 myoblast/myotube cells contained elevated levels of active protein kinase B (AKT) with a corresponding decrease in the levels of its negative regulator PTEN, which is a target of miR-486. We propose an ERα:E2-miR-486-AKT signaling axis, which reduces the deleterious effects of cancer-induced cytokines/chemokines on skeletal muscle mass and/or function.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
- Corresponding Author: Harikrishna Nakshatri, BVSc., PhD, C218C, 980 West Walnut St., Indianapolis, IN 46202, USA, 317 278 2238,
| |
Collapse
|
16
|
Chen D. Heparin beyond anti-coagulation. Curr Res Transl Med 2021; 69:103300. [PMID: 34237474 PMCID: PMC8257468 DOI: 10.1016/j.retram.2021.103300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 11/04/2022]
Abstract
Heparin has served as a mainstream anticoagulant for over eight decades. Clinically heparin-derived compounds significantly contribute to prevention and treatment of thrombotic events complicated in numerous medical conditions such as venous thromboembolism, coronary artery disease and extracorporeal circulation processes. Moreover in recent years, various off-labeled efficacious potentials of heparin beyond anti-coagulation are dramatically emerging, and increasingly investigated in clinical studies. Herein this article presents a comprehensive update on the expanded applications of heparin agents, covering the pregnant clinic, respiratory inflammation, renal disease, sepsis, pancreatitis, among others. It aims to maximize the beneficial profile of a pharmaceutical product through medical re-purposing development, exemplified by heparin, to address the unmet clinical needs of severe illness including coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Daohong Chen
- Research Institute, Changshan Biochemical Pharmaceutical, North Head of Yinchuan Street, Zhengding New District, Shijiazhuang, Hebei, 050800, China.
| |
Collapse
|
17
|
Kottorou A, Dimitrakopoulos FI, Tsezou A. Non-coding RNAs in cancer-associated cachexia: clinical implications and future perspectives. Transl Oncol 2021; 14:101101. [PMID: 33915516 PMCID: PMC8100623 DOI: 10.1016/j.tranon.2021.101101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 12/18/2022] Open
Abstract
Cachexia is a multifactorial syndrome characterized by skeletal muscle loss, with or without adipose atrophy, irreversible through nutritional support, in the context of systemic inflammation and metabolic disorders. It is mediated by inflammatory reaction and affects almost 50% of all cancer patients, due to prominent systemic inflammation associated with the disease. The comprehension of the molecular mechanisms that are implicated in cancer cachexia sheds light on its pathogenesis and lays the foundations for the discovery of new therapeutic targets and biomarkers. Recently, ncRNAs, like microRNAs as well as lncRNAs and circRNAs seem to regulate pathways that are implicated in cancer cachexia pathogenesis, as it has been observed in animal models and in cancer cachexia patients, highlighting their therapeutic potential. Moreover, increasing evidence highlights the involvement of circulating and exosomal ncRNAs in the activation and maintenance of systemic inflammation in cancer and cancer-associated cachexia. In that context, the present review focuses on the clinical significance of ncRNAs in cancer-associated cachexia.
Collapse
Affiliation(s)
- Anastasia Kottorou
- Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504, Rio, Greece
| | | | - Aspasia Tsezou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece; Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
18
|
Wilson HE, Stanton DA, Rellick S, Geldenhuys W, Pistilli EE. Breast cancer-associated skeletal muscle mitochondrial dysfunction and lipid accumulation is reversed by PPARG. Am J Physiol Cell Physiol 2021; 320:C577-C590. [PMID: 33439777 DOI: 10.1152/ajpcell.00264.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The peroxisome proliferator-activated receptors (PPARs) have been previously implicated in the pathophysiology of skeletal muscle dysfunction in women with breast cancer (BC) and animal models of BC. This study investigated alterations induced in skeletal muscle by BC-derived factors in an in vitro conditioned media (CM) system and tested the hypothesis that BC cells secrete a factor that represses PPAR-γ (PPARG) expression and its transcriptional activity, leading to downregulation of PPARG target genes involved in mitochondrial function and other metabolic pathways. We found that BC-derived factors repress PPAR-mediated transcriptional activity without altering protein expression of PPARG. Furthermore, we show that BC-derived factors induce significant alterations in skeletal muscle mitochondrial function and lipid accumulation, which are rescued with exogenous expression of PPARG. The PPARG agonist drug rosiglitazone was able to rescue BC-induced lipid accumulation but did not rescue effects of BC-derived factors on PPAR-mediated transcription or mitochondrial function. These data suggest that BC-derived factors alter lipid accumulation and mitochondrial function via different mechanisms that are both related to PPARG signaling, with mitochondrial dysfunction likely being altered via repression of PPAR-mediated transcription, and lipid accumulation being altered via transcription-independent functions of PPARG.
Collapse
Affiliation(s)
- Hannah E Wilson
- MD/PhD Medical Scientist Program, West Virginia University School of Medicine, Morgantown, West Virginia.,Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - David A Stanton
- Department of Human Performance, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Stephanie Rellick
- Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Werner Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Emidio E Pistilli
- Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Human Performance, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia.,West Virginia Clinical and Translational Sciences Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
19
|
Wang R, Kumar B, Bhat-Nakshatri P, Prasad MS, Jacobsen MH, Ovalle G, Maguire C, Sandusky G, Trivedi T, Mohammad KS, Guise T, Penthala NR, Crooks PA, Liu J, Zimmers T, Nakshatri H. Aging-associated skeletal muscle defects in HER2/Neu transgenic mammary tumor model. JCSM RAPID COMMUNICATIONS 2021; 4:24-39. [PMID: 33842876 PMCID: PMC8028024 DOI: 10.1002/rco2.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Loss of skeletal muscle volume and resulting in functional limitations are poor prognostic markers in breast cancer patients. Several molecular defects in skeletal muscle including reduced MyoD levels and increased protein turn over due to enhanced proteosomal activity have been suggested as causes of skeletal muscle loss in cancer patients. However, it is unknown whether molecular defects in skeletal muscle are dependent on tumor etiology. METHODS We characterized functional and molecular defects of skeletal muscle in MMTV-Neu (Neu+) mice (n= 6-12), an animal model that represents HER2+ human breast cancer, and compared the results with well-characterized luminal B breast cancer model MMTV-PyMT (PyMT+). Functional studies such as grip strength, rotarod performance, and ex vivo muscle contraction were performed to measure the effects of cancer on skeletal muscle. Expression of muscle-enriched genes and microRNAs as well as circulating cytokines/chemokines were measured. Since NF-κB pathway plays a significant role in skeletal muscle defects, the ability of NF-κB inhibitor dimethylaminoparthenolide (DMAPT) to reverse skeletal muscle defects was examined. RESULTS Neu+ mice showed skeletal muscle defects similar to accelerated aging. Compared to age and sex-matched wild type mice, Neu+ tumor-bearing mice had lower grip strength (202±6.9 vs. 179±6.8 g grip force, p=0.0069) and impaired rotarod performance (108±12.1 vs. 30±3.9 seconds, P<0.0001), which was consistent with reduced muscle contractibility (p<0.0001). Skeletal muscle of Neu+ mice (n=6) contained lower levels of CD82+ (16.2±2.9 vs 9.0±1.6) and CD54+ (3.8±0.5 vs 2.4±0.4) muscle stem and progenitor cells (p<0.05), suggesting impaired capacity of muscle regeneration, which was accompanied by decreased MyoD, p53 and miR-486 expression in muscles (p<0.05). Unlike PyMT+ mice, which showed skeletal muscle mitochondrial defects including reduced mitochondria levels and Pgc1β, Neu+ mice displayed accelerated aging-associated changes including muscle fiber shrinkage and increased extracellular matrix deposition. Circulating "aging factor" and cachexia and fibromyalgia-associated chemokine Ccl11 was elevated in Neu+ mice (1439.56±514 vs. 1950±345 pg/ml, p<0.05). Treatment of Neu+ mice with DMAPT significantly restored grip strength (205±6 g force), rotarod performance (74±8.5 seconds), reversed molecular alterations associated with skeletal muscle aging, reduced circulating Ccl11 (1083.26 ±478 pg/ml), and improved animal survival. CONCLUSIONS These results suggest that breast cancer subtype has a specific impact on the type of molecular and structure changes in skeletal muscle, which needs to be taken into consideration while designing therapies to reduce breast cancer-induced skeletal muscle loss and functional limitations.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Mayuri S Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Max H. Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gabriela Ovalle
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Calli Maguire
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Trupti Trivedi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khalid S Mohammad
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Theresa Guise
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jianguo Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
- Corresponding Author: Harikrishna Nakshatri, BVSc., PhD, C218C, 980 West Walnut St., Indianapolis, IN 46202, USA, 317 278 2238,
| |
Collapse
|
20
|
Martellucci S, Orefice NS, Angelucci A, Luce A, Caraglia M, Zappavigna S. Extracellular Vesicles: New Endogenous Shuttles for miRNAs in Cancer Diagnosis and Therapy? Int J Mol Sci 2020; 21:ijms21186486. [PMID: 32899898 PMCID: PMC7555972 DOI: 10.3390/ijms21186486] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular Vesicles (EVs) represent a heterogeneous population of membranous cell-derived structures, including cargo-oriented exosomes and microvesicles. EVs are functionally associated with intercellular communication and play an essential role in multiple physiopathological conditions. Shedding of EVs is frequently increased in malignancies and their content, including proteins and nucleic acids, altered during carcinogenesis and cancer progression. EVs-mediated intercellular communication between tumor cells and between tumor and stromal cells can modulate, through cargo miRNA, the survival, progression, and drug resistance in cancer conditions. These consolidated suggestions and EVs’ stability in bodily fluids have led to extensive investigations on the potential employment of circulating EVs-derived miRNAs as tumor biomarkers and potential therapeutic vehicles. In this review, we highlight the current knowledge about circulating EVs-miRNAs in human cancer and the application limits of these tools, discussing their clinical utility and challenges in functions such as in biomarkers and instruments for diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Stefano Martellucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.M.); (A.A.)
| | - Nicola Salvatore Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: or ; Tel.: +1-608-262-21-89
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.M.); (A.A.)
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, 83031 Avellino, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
| |
Collapse
|
21
|
Zhang L, Ding H, Zhang Y, Wang Y, Zhu W, Li P. Circulating MicroRNAs: Biogenesis and Clinical Significance in Acute Myocardial Infarction. Front Physiol 2020; 11:1088. [PMID: 33013463 PMCID: PMC7494963 DOI: 10.3389/fphys.2020.01088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myocardial infarction (AMI) causes many deaths around the world. Early diagnosis can prevent the development of AMI and provide theoretical support for the subsequent treatment. miRNAs participate in the AMI pathological processes. We aim to determine the early diagnostic and the prognostic roles of circulating miRNAs in AMI in the existing studies and summarize all the data to provide a greater understanding of their utility for clinical application. We reviewed current knowledge focused on the AMI development and circulating miRNA formation. Meanwhile, we collected and analyzed the potential roles of circulating miRNAs in AMI diagnosis, prognosis and therapeutic strategies. Additionally, we elaborated on the challenges and clinical perspectives of the application of circulating miRNAs in AMI diagnosis. Circulating miRNAs are stable in the circulation and have earlier increases of circulating levels than diagnostic golden criteria. In addition, they are tissue and disease-specific. All these characteristics indicate that circulating miRNAs are promising biomarkers for the early diagnosis of AMI. Although there are several limitations to be resolved before clinical use, the application of circulating miRNAs shows great potential in the early diagnosis and the prognosis of AMI.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Han Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjie Zhu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Donzelli S, Farneti A, Marucci L, Ganci F, Sacconi A, Strano S, Sanguineti G, Blandino G. Non-coding RNAs as Putative Biomarkers of Cancer-Associated Cachexia. Front Cell Dev Biol 2020; 8:257. [PMID: 32373612 PMCID: PMC7187787 DOI: 10.3389/fcell.2020.00257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023] Open
Abstract
Cachexia is a complex metabolic syndrome that determines a severe body weight loss characterized by a marked reduction in muscle mass. About 80% of patients with advanced cancer develop cachexia due to both the tumor itself and cancer treatment (radiotherapy and/or chemotherapy), which is associated to a worse prognosis. Despite its clinical relevance, this syndrome is still under-diagnosed and it lacks effective treatments. Radio-chemotherapy treatment is essential in patients with advanced head and neck cancers (HNSCC). Although this treatment has improved patients' life expectancy, it has also dramatically increased their need for assistance and support. The management of adverse symptoms, including cachexia, is of great importance in order to avoid delays in therapy, reduction of dosages and hospitalizations. MicroRNAs (miRNAs) are small non-coding RNA molecules, which have emerged as powerful biomarkers in stratifying human cancers. Due to their high stability in body fluids, miRNAs might be excellent non-invasive biomarkers for the early detection and follow-up of cancer patients. Here, we will summarize the current knowledge and debate the strong need to identify circulating biomarkers for the early diagnosis of cachexia. We will propose circulating non-coding RNAs as biomarkers for detecting early cachexia and implementing specific treatment. We will also discuss the potential use of circulating miRNAs as biomarkers of cachexia in HNSCC patients' blood samples collected before and after radio-chemotherapy treatment. Our intent is to pave the way to the identification of specific circulating miRNAs associated to cachexia occurrence and to the design of specific interventions aimed at improving the quality of life of cancer patients.
Collapse
Affiliation(s)
- Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessia Farneti
- Radiotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Marucci
- Radiotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sabrina Strano
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Sanguineti
- Radiotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
23
|
Wang R, Nakshatri H. Systemic Actions of Breast Cancer Facilitate Functional Limitations. Cancers (Basel) 2020; 12:cancers12010194. [PMID: 31941005 PMCID: PMC7016719 DOI: 10.3390/cancers12010194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a disease of a specific organ, but its effects are felt throughout the body. The systemic effects of breast cancer can lead to functional limitations in patients who suffer from muscle weakness, fatigue, pain, fibromyalgia, or many other dysfunctions, which hasten cancer-associated death. Mechanistic studies have identified quite a few molecular defects in skeletal muscles that are associated with functional limitations in breast cancer. These include circulating cytokines such as TNF-α, IL-1, IL-6, and TGF-β altering the levels or function of myogenic molecules including PAX7, MyoD, and microRNAs through transcriptional regulators such as NF-κB, STAT3, and SMADs. Molecular defects in breast cancer may also include reduced muscle mitochondrial content and increased extracellular matrix deposition leading to energy imbalance and skeletal muscle fibrosis. This review highlights recent evidence that breast cancer-associated molecular defects mechanistically contribute to functional limitations and further provides insights into therapeutic interventions in managing functional limitations, which in turn may help to improve quality of life in breast cancer patients.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-278-2238
| |
Collapse
|
24
|
Fan T, Mao Y, Liu F, Zhang W, Lin JS, Yin J, Tan Y, Huang X, Jiang Y. Label-free fluorescence detection of circulating microRNAs based on duplex-specific nuclease-assisted target recycling coupled with rolling circle amplification. Talanta 2019; 200:480-486. [DOI: 10.1016/j.talanta.2019.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 11/15/2022]
|
25
|
Chen D. Dually Efficacious Medicine Against Fibrosis and Cancer. Med Sci (Basel) 2019; 7:medsci7030041. [PMID: 30836705 PMCID: PMC6473536 DOI: 10.3390/medsci7030041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
Although there is a contemporary consensus of managing a severe disease with multi-targeted approach-based therapeutic combinations, it should not be ignored that certain patho-biological pathways are shared by distinct medical conditions and can be exploited to develop an exceptional type of medication conferring a dual efficacy. This article thus presents a spectrum of emerging molecular targets that substantially contribute to the pathogenesis of both fibrotic and neoplastic disorders, including kinase activities, cytokine cascades, and protein dynamics among others. Moreover, recently approved therapeutic agents in this regard have been sorted out to corroborate the drug’s ability upon targeting each one of these molecular pathways to treat fibrosis and cancer simultaneously. It not only streamlines an overlapping mechanistic profile in the pathogenesis across these two medical conditions, but also inspires clinicians and pharmaceutical innovation to tackle concomitant diseases, such as fibrosis and cancer, with an optimally efficacious medication.
Collapse
Affiliation(s)
- Daohong Chen
- Research Institute of Biological Medicine, Yiling Pharmaceutical; Beijing 102600, China.
| |
Collapse
|
26
|
Puthanveetil P. FoxO1-miRNA interacting networks as potential targets for mitochondrial diseases. Drug Discov Today 2018; 24:342-349. [PMID: 30367995 DOI: 10.1016/j.drudis.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/24/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Mitochondrial homeostasis is important for the health and well-being of organ systems and organisms. Mitochondrial dysfunction is known to be the cause and consequence of metabolic diseases, including obesity, diabetes, cancer, neurodegeneration, cerebrovascular, and cardiovascular disease. For cardiovascular tissue, which relies mostly on oxidative phosphorylation, the role of mitochondria is inevitable. Rather than being biomarkers of mitochondrial health, miRNAs are now known as bioregulators of this important feature. Recent studies have shown a close interaction between Forkhead box other 1 (FoxO1) transcription factors and miRNAs in the cardiovascular system. These interactions have also been shown to regulate mitochondrial homeostasis. In this review, I highlight how understanding FoxO1 and miRNA interacting networks could enable us to limit mitochondrial dysfunction and associated pathologies.
Collapse
Affiliation(s)
- Prasanth Puthanveetil
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
27
|
Chen D. Dual Targeting Autoimmunity and Cancer: From Biology to Medicine. J Clin Pharmacol 2018; 58:990-996. [DOI: 10.1002/jcph.1100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Daohong Chen
- Research Institute of Biological Medicine; Yiling Pharmaceutical; Beijing 102600 China
| |
Collapse
|
28
|
Beg F, Wang R, Saeed Z, Devaraj S, Masoor K, Nakshatri H. Inflammation-associated microRNA changes in circulating exosomes of heart failure patients. BMC Res Notes 2017; 10:751. [PMID: 29258606 PMCID: PMC5735935 DOI: 10.1186/s13104-017-3090-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
Objective MiR-486 and miR-146a are cardiomyocyte-enriched microRNAs that control cell survival and self-regulation of inflammation. These microRNAs are released into circulation and are detected in plasma or in circulating exosomes. Little is known whether heart failure affects their release into circulation, which this study investigated. Results Total and exosome-specific microRNAs in plasma of 40 heart failure patients and 20 controls were prepared using the miRVana Kit. We measured exosomal and total plasma microRNAs separately because exosomes serve as cargos that transfer biological materials and alter signaling in distant organs, whereas microRNAs in plasma indicate the level of tissue damage and are mostly derived from dead cells. qRT-PCR was used to quantify miR-486, miR-146a, and miR-16. Heart failure did not significantly affect plasma miR-486/miR-16 and miR-146a/miR-16 ratio, although miR-146a/miR-16 showed a trend of elevated expression (2.3 ± 0.79, p = 0.27). By contrast, circulating exosomal miR-146a/miR-16 ratio was higher in heart failure patients (2.46 ± 0.51, p = 0.05). miR-146a is induced in response to inflammation as a part of inflammation attenuation circuitry. Indeed, Tnfα and Gm-csf increased miR-146a but not miR-486 in the cardiomyocyte cell line H9C2. These results, if confirmed in a larger study, may help to develop circulating exosomal miR-146a as a biomarker of heart failure.
Collapse
Affiliation(s)
- Faheemullah Beg
- Department of Internal Medicine, IU School of Medicine, Indianapolis, IN, USA
| | - Ruizhong Wang
- Department of Surgery, IU School of Medicine, C218C, 980 West Walnut St., Indianapolis, IN, 46202, USA
| | - Zeb Saeed
- Department of Internal Medicine, IU School of Medicine, Indianapolis, IN, USA
| | - Srikant Devaraj
- Center for Business and Economic Research, Ball State University, Muncie, IN, USA
| | - Kamalesh Masoor
- Department of Cardiology, Richard L Roudebush VAMC, Indianapolis, IN, USA
| | - Harikrishna Nakshatri
- Department of Surgery, IU School of Medicine, C218C, 980 West Walnut St., Indianapolis, IN, 46202, USA. .,Department of Biochemistry and Molecular Biology, IU School of Medicine, C218C, 980 West Walnut St., Indianapolis, IN, 46202, USA. .,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
29
|
Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer 2017; 17:730. [PMID: 29121858 PMCID: PMC5679326 DOI: 10.1186/s12885-017-3737-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Background Circulating cell-free miRNAs have emerged as promising minimally-invasive biomarkers for early detection, prognosis and monitoring of cancer. They can exist in the bloodstream incorporated into extracellular vesicles (EVs) and ribonucleoprotein complexes. However, it is still debated if EVs contain biologically meaningful amounts of miRNAs and may provide a better source of miRNA biomarkers than whole plasma. The aim of this study was to systematically compare the diagnostic potential of prostate cancer-associated miRNAs in whole plasma and in plasma EVs. Methods RNA was isolated from whole plasma and plasma EV samples from a well characterised cohort of 50 patient with prostate cancer (PC) and 22 patients with benign prostatic hyperplasia (BPH). Nine miRNAs known to have a diagnostic potential for PC in cell-free blood were quantified by RT-qPCR and the relative quantities were compared between patients with PC and BPH and between PC patients with Gleason score ≥ 8 and ≤6. Results Only a small fraction of the total cell-free miRNA was recovered from the plasma EVs, however the EV-incorporated and whole plasma cell-free miRNA profiles were clearly different. Four of the miRNAs analysed showed a diagnostic potential in our patient cohort. MiR-375 could differentiate between PC and BPH patients when analysed in the whole plasma, while miR-200c-3p and miR-21-5p performed better when analysed in plasma EVs. EV-incorporated but not whole plasma Let-7a-5p level could distinguish PC patients with Gleason score ≥ 8 vs ≤6. Conclusions This study demonstrates that for some miRNA biomarkers EVs provide a more consistent source of RNA than whole plasma, while other miRNAs show better diagnostic performance when tested in the whole plasma.
Collapse
|
30
|
Wang R, Bhat-Nakshatri P, Padua MB, Prasad MS, Anjanappa M, Jacobson M, Finnearty C, Sefcsik V, McElyea K, Redmond R, Sandusky G, Penthala N, Crooks PA, Liu J, Zimmers T, Nakshatri H. Pharmacological Dual Inhibition of Tumor and Tumor-Induced Functional Limitations in a Transgenic Model of Breast Cancer. Mol Cancer Ther 2017; 16:2747-2758. [PMID: 28978719 DOI: 10.1158/1535-7163.mct-17-0717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022]
Abstract
Breast cancer progression is associated with systemic effects, including functional limitations and sarcopenia without the appearance of overt cachexia. Autocrine/paracrine actions of cytokines/chemokines produced by cancer cells mediate cancer progression and functional limitations. The cytokine-inducible transcription factor NF-κB could be central to this process, as it displays oncogenic functions and is integral to the Pax7:MyoD:Pgc-1β:miR-486 myogenesis axis. We tested this possibility using the MMTV-PyMT transgenic mammary tumor model and the NF-κB inhibitor dimethylaminoparthenolide (DMAPT). We observed deteriorating physical and functional conditions in PyMT+ mice with disease progression. Compared with wild-type mice, tumor-bearing PyMT+ mice showed decreased fat mass, impaired rotarod performance, and reduced grip strength as well as increased extracellular matrix (ECM) deposition in muscle. Contrary to acute cachexia models described in the literature, mammary tumor progression was associated with reduction in skeletal muscle stem/satellite-specific transcription factor Pax7. Additionally, we observed tumor-induced reduction in Pgc-1β in muscle, which controls mitochondrial biogenesis. DMAPT treatment starting at 6 to 8 weeks age prior to mammary tumor occurrence delayed mammary tumor onset and tumor growth rates without affecting metastasis. DMAPT overcame cancer-induced functional limitations and improved survival, which was accompanied with restoration of Pax7, Pgc-1β, and mitochondria levels and reduced ECM levels in skeletal muscles. In addition, DMAPT restored circulating levels of 6 out of 13 cancer-associated cytokines/chemokines changes to levels seen in healthy animals. These results reveal a pharmacological approach for overcoming cancer-induced functional limitations, and the above-noted cancer/drug-induced changes in muscle gene expression could be utilized as biomarkers of functional limitations. Mol Cancer Ther; 16(12); 2747-58. ©2017 AACR.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Maria B Padua
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mayuri S Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Max Jacobson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Courtney Finnearty
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Victoria Sefcsik
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kyle McElyea
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rachael Redmond
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Narsimha Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jianguo Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Teresa Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana. .,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
31
|
Loumaye A, Thissen JP. Biomarkers of cancer cachexia. Clin Biochem 2017; 50:1281-1288. [PMID: 28739222 DOI: 10.1016/j.clinbiochem.2017.07.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia.
Collapse
Affiliation(s)
- Audrey Loumaye
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium.
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
32
|
Urbánek P, Klotz L. Posttranscriptional regulation of FOXO expression: microRNAs and beyond. Br J Pharmacol 2017; 174:1514-1532. [PMID: 26920226 PMCID: PMC5446586 DOI: 10.1111/bph.13471] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 01/17/2023] Open
Abstract
Forkhead box, class O (FOXO) transcription factors are major regulators of diverse cellular processes, including fuel metabolism, oxidative stress response and redox signalling, cell cycle progression and apoptosis. Their activities are controlled by multiple posttranslational modifications and nuclear-cytoplasmic shuttling. Recently, post-transcriptional regulation of FOXO synthesis has emerged as a new regulatory level of their functions. Accumulating evidence suggests that this post-transcriptional mode of regulation of FOXO activity operates in response to stressful stimuli, including oxidative stress. Here, we give a brief overview on post-transcriptional regulation of FOXO synthesis by microRNAs (miRNAs) and by RNA-binding regulatory proteins, human antigen R (HuR) and quaking (QKI). Aberrant post-transcriptional regulation of FOXOs is frequently connected with various disease states. We therefore discuss characteristic examples of FOXO regulation at the post-transcriptional level under various physiological and pathophysiological conditions, including oxidative stress and cancer. The picture emerging from this summary points to a diversity of interactions between miRNAs/miRNA-induced silencing complexes and RNA-binding regulatory proteins. Better insight into these complexities of post-transcriptional regulatory interactions will add to our understanding of the mechanisms of pathological processes and the role of FOXO proteins. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- P Urbánek
- Institute of Nutrition, Department of NutrigenomicsFriedrich‐Schiller‐Universität JenaJenaGermany
| | - L‐O Klotz
- Institute of Nutrition, Department of NutrigenomicsFriedrich‐Schiller‐Universität JenaJenaGermany
| |
Collapse
|
33
|
Abstract
Anticancer immunotherapy has undergone a long evolving journey for decades, and has been dramatically applied to mainstream treatments in oncology in recent 5 years. This progress represents an advanced milestone following cytotoxic medicine and targeted therapy. Cellular immunity plays a pivotal role in the immune responses of hosts to tumor antigens. Such immunity is notably suppressed during neoplastic progression due to immuno-editing processes. Cellular immunity can also be selectively re-activated to combat malignancies while exploiting the advantages of contemporary scientific breakthroughs in molecular immunology and genetic engineering. The rapid advancement of cellular immunity-based therapeutic approaches has achieved high efficacy in certain cancer patients. Consequently, the landscape of oncologic medicine and pharmaceutical innovation has transformed recently. In this regard, we present a comprehensive update on clinically established anti-cancer treatments with cell immunity augmentation as the major mechanism of action.
Collapse
Affiliation(s)
- Daohong Chen
- Research Institute of Biomedicine, Yiling Pharmacy, Shijiazhuang 050035, China
| | - Xiaoshi Zhang
- Research Institute of Biomedicine, Yiling Pharmacy, Shijiazhuang 050035, China
| |
Collapse
|
34
|
Lima TI, Araujo HN, Menezes ES, Sponton CH, Araújo MB, Bomfim LH, Queiroz AL, Passos MA, e Sousa TA, Hirabara SM, Martins AR, Sampaio HC, Rodrigues A, Curi R, Carneiro EM, Boschero AC, Silveira LR. Role of microRNAs on the Regulation of Mitochondrial Biogenesis and Insulin Signaling in Skeletal Muscle. J Cell Physiol 2016; 232:958-966. [DOI: 10.1002/jcp.25645] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Tanes I. Lima
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
- Ribeirão Preto Medical School; Department of Biochemistry and Immunology; USPRP; Ribeirão Preto SP Brazil
| | - Hygor N. Araujo
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Eveline S. Menezes
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Carlos H. Sponton
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Michel B. Araújo
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Lucas H.M. Bomfim
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - André L. Queiroz
- Ribeirão Preto Medical School; Department of Biochemistry and Immunology; USPRP; Ribeirão Preto SP Brazil
| | - Madla A. Passos
- Ribeirão Preto Medical School; Department of Biochemistry and Immunology; USPRP; Ribeirão Preto SP Brazil
| | | | - Sandro M. Hirabara
- Institute of Physical Activity Sciences and Sports; Cruzeiro do Sul University; São Paulo SP Brazil
| | - Amanda R. Martins
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Helena C.L.B. Sampaio
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Alice Rodrigues
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Rui Curi
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Everardo M. Carneiro
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Antônio C. Boschero
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Leonardo R. Silveira
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| |
Collapse
|
35
|
Sestini S, Boeri M, Marchiano A, Pelosi G, Galeone C, Verri C, Suatoni P, Sverzellati N, La Vecchia C, Sozzi G, Pastorino U. Circulating microRNA signature as liquid-biopsy to monitor lung cancer in low-dose computed tomography screening. Oncotarget 2016; 6:32868-77. [PMID: 26451608 PMCID: PMC4741735 DOI: 10.18632/oncotarget.5210] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/25/2015] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsies can detect biomarkers carrying information on the development and progression of cancer. We demonstrated that a 24 plasma-based microRNA signature classifier (MSC) was capable of increasing the specificity of low dose computed tomography (LDCT) in a lung cancer screening trial. In the present study, we tested the prognostic performance of MSC, and its ability to monitor disease status recurrence in LDCT screening-detected lung cancers.Between 2000 and 2010, 3411 heavy smokers enrolled in two screening programmes, underwent annual or biennial LDCT. During the first five years of screening, 84 lung cancer patients were classified according to one of the three MSC levels of risk: high, intermediate or low. Kaplan-Meier survival analysis was performed according to MSC and clinico-pathological information. Follow-up MSC analysis was performed on longitudinal plasma samples (n = 100) collected from 31 patients before and after surgical resection.Five-year survival was 88.9% for low risk, 79.5% for intermediate risk and 40.1% for high risk MSC (p = 0.001). The prognostic power of MSC persisted after adjusting for tumor stage (p = 0.02) and when the analysis was restricted to LDCT-detected cases after exclusion of interval cancers (p < 0.001). The MSC risk level decreased after surgery in 76% of the 25 high-intermediate subjects who remained disease free, whereas in relapsing patients an increase of the MSC risk level was observed at the time of detection of second primary tumor or metastatic progression.These results encourage exploiting the MSC test for lung cancer monitoring in LDCT screening for lung cancer.
Collapse
Affiliation(s)
- Stefano Sestini
- Unit of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Mattia Boeri
- Unit of Tumor Genomics, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Alfonso Marchiano
- Unit of Radiology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giuseppe Pelosi
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.,Department of Clinical and Biomedical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Carlotta Galeone
- Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, Laboratory of Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy
| | - Carla Verri
- Unit of Tumor Genomics, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Paola Suatoni
- Unit of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Nicola Sverzellati
- Department of Clinical Sciences, Section of Radiology, University of Parma, Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gabriella Sozzi
- Unit of Tumor Genomics, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Ugo Pastorino
- Unit of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
36
|
Margue C, Reinsbach S, Philippidou D, Beaume N, Walters C, Schneider JG, Nashan D, Behrmann I, Kreis S. Comparison of a healthy miRNome with melanoma patient miRNomes: are microRNAs suitable serum biomarkers for cancer? Oncotarget 2016; 6:12110-27. [PMID: 25883223 PMCID: PMC4494926 DOI: 10.18632/oncotarget.3661] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/28/2015] [Indexed: 11/25/2022] Open
Abstract
MiRNAs are increasingly recognized as biomarkers for the diagnosis of cancers where they are profiled from tumor tissue (intracellular miRNAs) or serum/plasma samples (extracellular miRNAs). To improve detection of reliable biomarkers from blood samples, we first compiled a healthy reference miRNome and established a well-controlled analysis pipeline allowing for standardized quantification of circulating miRNAs. Using whole miRNome and custom qPCR arrays, miRNA expression profiles were analyzed in 126 serum, whole blood and tissue samples of healthy volunteers and melanoma patients and in primary melanocyte and keratinocyte cell lines. We found characteristic signatures with excellent prognostic scores only in late stage but not in early stage melanoma patients. Upon comparison of melanoma tissue miRNomes with matching serum samples, several miRNAs were identified to be exclusively tissue-derived (miR-30b-5p, miR-374a-5p and others) while others had higher expression levels in serum (miR-3201 and miR-122-5p). Here we have compiled a healthy and widely applicable miRNome from serum samples and we provide strong evidence that levels of cell-free miRNAs only change significantly at later stages of melanoma progression, which has serious implications for miRNA biomarker studies in cancer.
Collapse
Affiliation(s)
| | | | | | - Nicolas Beaume
- Life Sciences Research Unit, University of Luxembourg, Luxembourg
| | - Casandra Walters
- Life Sciences Research Unit, University of Luxembourg, Luxembourg
| | | | - Dorothée Nashan
- Life Sciences Research Unit, University of Luxembourg, Luxembourg.,Klinikum Dortmund GmbH, Germany
| | - Iris Behrmann
- Life Sciences Research Unit, University of Luxembourg, Luxembourg
| | - Stephanie Kreis
- Life Sciences Research Unit, University of Luxembourg, Luxembourg
| |
Collapse
|
37
|
YU YONGHUI, CHU WANLI, CHAI JIAKE, LI XIAO, LIU LINGYING, MA LI. Critical role of miRNAs in mediating skeletal muscle atrophy (Review). Mol Med Rep 2015; 13:1470-4. [DOI: 10.3892/mmr.2015.4748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 12/08/2015] [Indexed: 11/05/2022] Open
|
38
|
Zhang L, Xu Y, Jin X, Wang Z, Wu Y, Zhao D, Chen G, Li D, Wang X, Cao H, Xie Y, Liang Z. A circulating miRNA signature as a diagnostic biomarker for non-invasive early detection of breast cancer. Breast Cancer Res Treat 2015; 154:423-34. [DOI: 10.1007/s10549-015-3591-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/03/2015] [Indexed: 12/18/2022]
|
39
|
Chen DH, Zhang XS. Targeted therapy: resistance and re-sensitization. CHINESE JOURNAL OF CANCER 2015; 34:496-501. [PMID: 26370727 PMCID: PMC4593385 DOI: 10.1186/s40880-015-0047-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
Abstract
The last two decades have witnessed a paradigm shift from cytotoxic drugs to targeted therapy in medical oncology and pharmaceutical innovation. Inspired by breakthroughs in molecular and cellular biology, a number of novel synthesized chemical compounds and recombinant antibodies have been developed to selectively target oncogenic signaling pathways in a broad array of tumor types. Although targeted therapeutic agents show impressive clinical efficacy and minimized adverse effects compared with traditional treatments, the challenging drug-resistant issue has also emerged to limit their benefits to cancer patients. In this regard, we aim to improve targeted therapy by presenting a systematic framework regarding the drug resistance mechanisms and alternative approaches to re-sensitize cancer cells/tissues therapeutically.
Collapse
Affiliation(s)
- Dao-Hong Chen
- Biomedical Research Institute, Yiling Pharmaceutical Company, Beijing, 102600, P. R. China.
| | - Xiao-Shi Zhang
- Biotherapy Center, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.
| |
Collapse
|
40
|
Zhang R, Lan C, Pei H, Duan G, Huang L, Li L. Expression of circulating miR-486 and miR-150 in patients with acute myocardial infarction. BMC Cardiovasc Disord 2015; 15:51. [PMID: 26077801 PMCID: PMC4466864 DOI: 10.1186/s12872-015-0042-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/01/2015] [Indexed: 12/14/2022] Open
Abstract
Background With its high morbidity and mortality, acute myocardial infarction (AMI) places a major burden on society and on individual patients. Correct, early correct diagnosis is crucial to the management of AMI. Methods In this study, the expression of circulating miR-486 and miR-150 was investigated in AMI patients and the two miRNAs were evaluated as potential biomarkers for AMI. Plasma samples from 110 patients with AMI (65 patients with ST-segment elevation myocardial infarction (STEMI) and 45 patients with non-ST-segment elevation myocardial infarction (NSTEMI)) and 110 healthy adults were collected. Circulating levels of miR-486 and miR-150 were detected using quantitative real-time PCR in plasma samples. Results Results showed that the levels of miR-486 and miR-150 were significantly higher in AMI patients than in healthy controls. Receiver operating characteristic (ROC) curve analyses indicated that the two plasma miRNAs were of significant diagnostic value for AMI, especially NSTEMI. The combined ROC analysis revealed an AUC value of 0.771 in discriminating AMI patients from healthy controls and an AUC value of 0.845 in discriminating NSTEMI patients from healthy controls. Conclusion Results indicated that the levels of circulating miR-486 and miR-150 are associated with AMI. They may be novel and powerful biomarkers for AMI, especially for NSTEMI.
Collapse
Affiliation(s)
- Rui Zhang
- Department of emergency, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, Henan, 450052, China.
| | - Chao Lan
- Department of emergency, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, Henan, 450052, China.
| | - Hui Pei
- Department of emergency, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, Henan, 450052, China.
| | - Guoyu Duan
- Department of emergency, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, Henan, 450052, China.
| | - Li Huang
- Department of emergency, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, Henan, 450052, China.
| | - Li Li
- Department of emergency, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
41
|
Aoi W. Frontier impact of microRNAs in skeletal muscle research: a future perspective. Front Physiol 2015; 5:495. [PMID: 25601837 PMCID: PMC4283715 DOI: 10.3389/fphys.2014.00495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/01/2014] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that can regulate the expression of mRNAs and proteins by degrading mRNA molecules or by inhibiting their translation. It has been predicted that miRNAs regulate approximately 60% of protein-coding genes that could be involved in a wide range of biological processes. Research over the last 5 years suggests that miRNAs play important roles in skeletal muscle function and several miRNAs have been identified as modulators of myogenesis, muscle mass, and nutrient metabolism in physiological and pathological states. In addition, some miRNAs can be incorporated into intracellular vesicles, released into the circulation, transported to other cells, and possibly function in other organs in an endocrine manner. This phenomenon might explain the interactions between skeletal muscles and other organs. Thus, far, several muscle-secreted miRNAs have been identified and their involvement in muscle biology has been debated. Based on the recent understanding, this perspective article describes the potential valuable role of miRNAs in skeletal muscle function, delineates its limitations, and outlines its future perspectives.
Collapse
Affiliation(s)
- Wataru Aoi
- Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Kyoto, Japan
| |
Collapse
|