1
|
Luo J, Li Y, Zhang Y, Wu D, Ren Y, Liu J, Wang C, Zhang J. An update on small molecule compounds targeting synthetic lethality for cancer therapy. Eur J Med Chem 2024; 278:116804. [PMID: 39241482 DOI: 10.1016/j.ejmech.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Targeting cancer-specific vulnerabilities through synthetic lethality (SL) is an emerging paradigm in precision oncology. A SL strategy based on PARP inhibitors has demonstrated clinical efficacy. Advances in DNA damage response (DDR) uncover novel SL gene pairs. Beyond BRCA-PARP, emerging SL targets like ATR, ATM, DNA-PK, CHK1, WEE1, CDK12, RAD51, and RAD52 show clinical promise. Selective and bioavailable small molecule inhibitors have been developed to induce SL, but optimization for potency, specificity, and drug-like properties remains challenging. This article illuminated recent progress in the field of medicinal chemistry centered on the rational design of agents capable of eliciting SL specifically in neoplastic cells. It is envisioned that innovative strategies harnessing SL for small molecule design may unlock novel prospects for targeted cancer therapeutics going forward.
Collapse
Affiliation(s)
- Jiaxiang Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengdi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Manguinhas R, Serra PA, Gil N, Rosell R, Oliveira NG, Guedes RC. Novel DNA Repair Inhibitors Targeting XPG to Enhance Cisplatin Therapy in Non-Small Cell Lung Cancer: Insights from In Silico and Cell-Based Studies. Cancers (Basel) 2024; 16:3174. [PMID: 39335146 PMCID: PMC11430689 DOI: 10.3390/cancers16183174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
NSCLC is marked by low survival and resistance to platinum-based chemotherapy. The XPG endonuclease has emerged as a promising biomarker for predicting the prognosis of cisplatin-treated patients and its downregulation having been reported to increase cisplatin efficacy. This study presents an integrated strategy for identifying small molecule inhibitors of XPG to improve cisplatin therapy in NSCLC. A structure-based virtual screening approach was adopted, including a structural and physicochemical analysis of the protein, and a library of small molecules with reported inhibitory activities was retrieved. This analysis identified Lys84 as a crucial residue for XPG activity by targeting its interaction with DNA. After molecular docking and virtual screening calculations, 61 small molecules were selected as potential XPG inhibitors, acquired from the ChemBridge database and then validated in H1299 cells, a NSCLC cell line exhibiting the highest ERCC5 expression. The MTS assay was performed as a first screening approach to determine whether these potential inhibitors could enhance cisplatin-induced cytotoxicity. Overall, among the eight compounds identified as the most promising, three of them revealed to significantly increase the impact of cisplatin. The inherent cytotoxicity of these compounds was further investigated in a non-tumoral lung cell line (BEAS-2B cells), which resulted in the identification of two non-cytotoxic candidates to be used in combination with cisplatin in order to improve its efficacy in NSCLC therapy.
Collapse
Affiliation(s)
- Rita Manguinhas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.)
| | - Patrícia A. Serra
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.)
- Lung Unit, Champalimaud Clinical Centre (CCC), Champalimaud Foundation, 1400-038 Lisboa, Portugal;
- Egas Moniz Interdisciplinary Research Center, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal
| | - Nuno Gil
- Lung Unit, Champalimaud Clinical Centre (CCC), Champalimaud Foundation, 1400-038 Lisboa, Portugal;
| | - Rafael Rosell
- Dr. Rosell Oncology Institute, 08028 Barcelona, Spain;
- Institute Germans Trias i Pujol, 08916 Badalona, Spain
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.)
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.)
| |
Collapse
|
3
|
Lee JH. Targeting the ATM pathway in cancer: Opportunities, challenges and personalized therapeutic strategies. Cancer Treat Rev 2024; 129:102808. [PMID: 39106770 DOI: 10.1016/j.ctrv.2024.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Ataxia telangiectasia mutated (ATM) kinase plays a pivotal role in orchestrating the DNA damage response, maintaining genomic stability, and regulating various cellular processes. This review provides a comprehensive analysis of ATM's structure, activation mechanisms, and various functions in cancer development, progression, and treatment. I discuss ATM's dual nature as both a tumor suppressor and potential promoter of cancer cell survival in certain contexts. The article explores the complex signaling pathways mediated by ATM, its interactions with other DNA repair mechanisms, and its influence on cell cycle checkpoints, apoptosis, and metabolism. I examine the clinical implications of ATM alterations, including their impact on cancer predisposition, prognosis, and treatment response. The review highlights recent advances in ATM-targeted therapies, discussing ongoing clinical trials of ATM inhibitors and their potential in combination with other treatment modalities. I also address the challenges in developing effective biomarkers for ATM activity and patient selection strategies for personalized cancer therapy. Finally, I outline future research directions, emphasizing the need for refined biomarker development, optimized combination therapies, and strategies to overcome potential resistance mechanisms. This comprehensive overview underscores the critical importance of ATM in cancer biology and its emerging potential as a therapeutic target in precision oncology.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
4
|
Liu Z, Jiang K, Liu Y, Li J, Huang S, Li P, Xu L, Xu X, Hu X, Zeng X, Huang Z, Zhou Y, Li J, Long K, Wang M. Discovery of Preclinical Candidate AD1058 as a Highly Potent, Selective, and Brain-Penetrant ATR Inhibitor for the Treatment of Advanced Malignancies. J Med Chem 2024. [PMID: 39053006 DOI: 10.1021/acs.jmedchem.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The ataxia telangiectasia-mutated and Rad3-related protein (ATR) plays a crucial role in regulating the cellular DNA-damage response (DDR), making it a promising target for antitumor drug development through synthetic lethality. In this study, we present the discovery and detailed characterization of AD1058, a highly potent and selective ATR inhibitor, with good preclinical pharmacokinetic profiles. AD1058 exhibits superior efficacy in inhibiting cell proliferation, disrupting the cell cycle, and inducing apoptosis compared to AZD6738. AD1058 displays potent antitumor effects as a single agent or in combination with clinically approved tumor therapies such as PARP inhibitors, ionizing radiotherapy, or chemotherapy in vivo. Considering its enhanced ability to permeate the blood-brain barrier, AD1058 is a promising clinical candidate for the treatment of brain metastases and leptomeningeal metastases in solid tumors. Additionally, among reported ATR inhibitors, AD1058 features the shortest synthesis route and the highest efficiency to date.
Collapse
Affiliation(s)
- Zhi Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kailong Jiang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yan Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfei Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Siqi Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ping Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Lei Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiaomin Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiaobei Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xia Zeng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Zehui Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kai Long
- Shanghai Annova Biotechnology Co., Ltd., Shanghai 201203, China
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Jo U, Arakawa Y, Zimmermann A, Taniyama D, Mizunuma M, Jenkins LM, Maity T, Kumar S, Zenke FT, Takebe N, Pommier Y. The Novel ATR Inhibitor M1774 Induces Replication Protein Overexpression and Broad Synergy with DNA-targeted Anticancer Drugs. Mol Cancer Ther 2024; 23:911-923. [PMID: 38466804 PMCID: PMC11555614 DOI: 10.1158/1535-7163.mct-23-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/09/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase inhibitors are in clinical trials. Here we explored the molecular pharmacology and therapeutic combination strategies of the oral ATR inhibitor M1774 (Tuvusertib) with DNA-damaging agents (DDA). As single agent, M1774 suppressed cancer cell viability at nanomolar concentrations, showing greater activity than ceralasertib and berzosertib, but less potency than gartisertib and elimusertib in the small cell lung cancer H146, H82, and DMS114 cell lines. M1774 also efficiently blocked the activation of the ATR-CHK1 checkpoint pathway caused by replication stress induced by TOP1 inhibitors. Combination with non-toxic dose of M1774 enhanced TOP1 inhibitor-induced cancer cell death by enabling unscheduled replication upon replicative damage, thereby increasing genome instability. Tandem mass tag-based quantitative proteomics uncovered that M1774, in the presence of DDA, forces the expression of proteins activating replication (CDC45) and G2-M progression (PLK1 and CCNB1). In particular, the fork protection complex proteins (TIMELESS and TIPIN) were enriched. Low dose of M1774 was found highly synergistic with a broad spectrum of clinical DDAs including TOP1 inhibitors (SN-38/irinotecan, topotecan, exatecan, and exatecan), the TOP2 inhibitor etoposide, cisplatin, the RNA polymerase II inhibitor lurbinectedin, and the PARP inhibitor talazoparib in various models including cancer cell lines, patient-derived organoids, and mouse xenograft models. Furthermore, we demonstrate that M1774 reverses chemoresistance to anticancer DDAs in cancer cells lacking SLFN11 expression, suggesting that SLFN11 can be utilized for patient selection in upcoming clinical trials.
Collapse
Affiliation(s)
- Ukhyun Jo
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yasuhiro Arakawa
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Daiki Taniyama
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Makito Mizunuma
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tapan Maity
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Naoko Takebe
- Developmental Therapeutics Branch and Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Lead contact
| |
Collapse
|
6
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Chen X, Zhou Z, Li Y, Wang S, Xue E, Wang X, Peng H, Fan M, Wang M, Qin X, Wu Y, Li J, Zhu H, Chen D, Hu Y, Beaty TH, Wu T. Detecting Gene-Gene Interaction among DNA Repair Genes in Chinese non-Syndromic Cleft lip with or Without Palate Trios. Cleft Palate Craniofac J 2024:10556656241228124. [PMID: 38303570 DOI: 10.1177/10556656241228124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVE The objective of this study is to investigate the gene-gene interactions associated with NSCL/P among DNA repair genes. DESIGN This study included 806 NSCL/P case-parent trios from China. Quality control process was conducted for genotyped single nucleotide polymorphisms (SNPs) located in six DNA repair genes (ATR, ERCC4, RFC1, TYMS, XRCC1 and XRCC3). We tested gene-gene interactions with Cordell's method using statistical package TRIO in R software. Bonferroni corrected significance level was set as P = 4.24 × 10-4. We also test the robustness of the interactions by permutation tests. SETTING Not applicable. PATIENTS/PARTICIPANTS A total of 806 NSCL/P case-parent trios (complete trios: 682, incomplete trios: 124) with Chinese ancestry. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURE(S) Not applicable. RESULTS A total of 118 SNPs were extracted for the interaction tests. Fourteen pairs of significant interactions were identified after Bonferroni correction, which were confirmed in permutation tests. Twelve pairs were between ATR and ERCC4 or XRCC3. The most significant interaction occurred between rs2244500 in TYMS and rs3213403 in XRCC1(P = 8.16 × 10-15). CONCLUSIONS The current study identified gene-gene interactions among DNA repair genes in 806 Chinese NSCL/P trios, providing additional evidence for the complicated genetic structure underlying NSCL/P. ATR, ERCC4, XRCC3, TYMS and RFC1 were suggested to be possible candidate genes for NSCL/P.
Collapse
Affiliation(s)
- Xi Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhibo Zhou
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yixin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Siyue Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Enci Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xueheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hexiang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Meng Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xueying Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hongping Zhu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Terri H Beaty
- School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Reproductive Health, Ministry of Health, Beijing, China
| |
Collapse
|
8
|
Manguinhas R, Serra PA, Soares RB, Rosell R, Gil N, Oliveira NG, Guedes RC. Unveiling Novel ERCC1-XPF Complex Inhibitors: Bridging the Gap from In Silico Exploration to Experimental Design. Int J Mol Sci 2024; 25:1246. [PMID: 38279246 PMCID: PMC10816628 DOI: 10.3390/ijms25021246] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
Modifications in DNA repair pathways are recognized as prognostic markers and potential therapeutic targets in various cancers, including non-small cell lung cancer (NSCLC). Overexpression of ERCC1 correlates with poorer prognosis and response to platinum-based chemotherapy. As a result, there is a pressing need to discover new inhibitors of the ERCC1-XPF complex that can potentiate the efficacy of cisplatin in NSCLC. In this study, we developed a structure-based virtual screening strategy targeting the inhibition of ERCC1 and XPF interaction. Analysis of crystal structures and a library of small molecules known to act against the complex highlighted the pivotal role of Phe293 (ERCC1) in maintaining complex stability. This residue was chosen as the primary binding site for virtual screening. Using an optimized docking protocol, we screened compounds from various databases, ultimately identifying more than one hundred potential inhibitors. Their capability to amplify cisplatin-induced cytotoxicity was assessed in NSCLC H1299 cells, which exhibited the highest ERCC1 expression of all the cell lines tested. Of these, 22 compounds emerged as promising enhancers of cisplatin efficacy. Our results underscore the value of pinpointing crucial molecular characteristics in the pursuit of novel modulators of the ERCC1-XPF interaction, which could be combined with cisplatin to treat NSCLC more effectively.
Collapse
Affiliation(s)
- Rita Manguinhas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.); (R.B.S.)
| | - Patrícia A. Serra
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.); (R.B.S.)
- Lung Unit, Champalimaud Clinical Centre (CCC), Champalimaud Foundation, 1400-038 Lisboa, Portugal;
- Egas Moniz Interdisciplinary Research Center, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal
| | - Rita B. Soares
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.); (R.B.S.)
- Lung Unit, Champalimaud Clinical Centre (CCC), Champalimaud Foundation, 1400-038 Lisboa, Portugal;
| | - Rafael Rosell
- Dr. Rosell Oncology Institute, 08028 Barcelona, Spain;
- Catalan Institute of Oncology, 08916 Barcelona, Spain
| | - Nuno Gil
- Lung Unit, Champalimaud Clinical Centre (CCC), Champalimaud Foundation, 1400-038 Lisboa, Portugal;
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.); (R.B.S.)
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.); (R.B.S.)
| |
Collapse
|
9
|
Dillon MT, Guevara J, Mohammed K, Patin EC, Smith SA, Dean E, Jones GN, Willis SE, Petrone M, Silva C, Thway K, Bunce C, Roxanis I, Nenclares P, Wilkins A, McLaughlin M, Jayme-Laiche A, Benafif S, Nintos G, Kwatra V, Grove L, Mansfield D, Proszek P, Martin P, Moore L, Swales KE, Banerji U, Saunders MP, Spicer J, Forster MD, Harrington KJ. Durable responses to ATR inhibition with ceralasertib in tumors with genomic defects and high inflammation. J Clin Invest 2024; 134:e175369. [PMID: 37934611 PMCID: PMC10786692 DOI: 10.1172/jci175369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUNDPhase 1 study of ATRinhibition alone or with radiation therapy (PATRIOT) was a first-in-human phase I study of the oral ATR (ataxia telangiectasia and Rad3-related) inhibitor ceralasertib (AZD6738) in advanced solid tumors.METHODSThe primary objective was safety. Secondary objectives included assessment of antitumor responses and pharmacokinetic (PK) and pharmacodynamic (PD) studies. Sixty-seven patients received 20-240 mg ceralasertib BD continuously or intermittently (14 of a 28-day cycle).RESULTSIntermittent dosing was better tolerated than continuous, which was associated with dose-limiting hematological toxicity. The recommended phase 2 dose of ceralasertib was 160 mg twice daily for 2 weeks in a 4-weekly cycle. Modulation of target and increased DNA damage were identified in tumor and surrogate PD. There were 5 (8%) confirmed partial responses (PRs) (40-240 mg BD), 34 (52%) stable disease (SD), including 1 unconfirmed PR, and 27 (41%) progressive disease. Durable responses were seen in tumors with loss of AT-rich interactive domain-containing protein 1A (ARID1A) and DNA damage-response defects. Treatment-modulated tumor and systemic immune markers and responding tumors were more immune inflamed than nonresponding.CONCLUSIONCeralasertib monotherapy was tolerated at 160 mg BD intermittently and associated with antitumor activity.TRIAL REGISTRATIONClinicaltrials.gov: NCT02223923, EudraCT: 2013-003994-84.FUNDINGCancer Research UK, AstraZeneca, UK Department of Health (National Institute for Health Research), Rosetrees Trust, Experimental Cancer Medicine Centre.
Collapse
Affiliation(s)
- Magnus T. Dillon
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jeane Guevara
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Kabir Mohammed
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Marcella Petrone
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Carlos Silva
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Khin Thway
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Catey Bunce
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Anna Wilkins
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Adoracion Jayme-Laiche
- UCL Cancer Institute and University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Sarah Benafif
- UCL Cancer Institute and University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Georgios Nintos
- King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Vineet Kwatra
- King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Lorna Grove
- The Institute of Cancer Research, London, United Kingdom
| | | | - Paula Proszek
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Philip Martin
- Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Luiza Moore
- Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | | | - Udai Banerji
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - James Spicer
- King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Martin D. Forster
- UCL Cancer Institute and University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Kevin J. Harrington
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
10
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
11
|
Ao W, Kim HI, Tommarello D, Conrads KA, Hood BL, Litzi T, Abulez T, Teng PN, Dalgard CL, Zhang X, Wilkerson MD, Darcy KM, Tarney CM, Phippen NT, Bakkenist CJ, Maxwell GL, Conrads TP, Risinger JI, Bateman NW. Metronomic dosing of ovarian cancer cells with the ATR inhibitor AZD6738 leads to loss of CDC25A expression and resistance to ATRi treatment. Gynecol Oncol 2023; 177:60-71. [PMID: 37639904 DOI: 10.1016/j.ygyno.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE ATR kinase inhibitors promote cell killing by inducing replication stress and through potentiation of genotoxic agents in gynecologic cancer cells. To explore mechanisms of acquired resistance to ATRi in ovarian cancer, we characterized ATRi-resistant ovarian cancer cells generated by metronomic dosing with the clinical ATR inhibitor AZD6738. METHODS ATRi-resistant ovarian cancer cells (OVCAR3 and OV90) were generated by dosing with AZD6738 and assessed for sensitivity to Chk1i (LY2603618), PARPi (Olaparib) and combination with cisplatin or a CDK4/6 inhibitor (Palbociclib). Models were characterized by diverse methods including silencing CDC25A in OV90 cells and assessing impact on ATRi response. Serum proteomic analysis of ATRi-resistant OV90 xenografts was performed to identify circulating biomarker candidates of ATRi-resistance. RESULTS AZD6738-resistant cell lines are refractory to LY2603618, but not to Olaparib or combinations with cisplatin. Cell cycle analyses showed ATRi-resistant cells exhibit G1/S arrest following AZD6738 treatment. Accordingly, combination with Palbociclib confers resistance to AZD6738. AZD6738-resistant cells exhibit altered abundances of G1/S phase regulatory proteins, including loss of CDC25A in AZD6738-resistant OV90 cells. Silencing of CDC25A in OV90 cells confers resistance to AZD6738. Serum proteomics from AZD6738-resistant OV90 xenografts identified Vitamin D-Binding Protein (GC), Apolipoprotein E (APOE) and A1 (APOA1) as significantly elevated in AZD6738-resistant backgrounds. CONCLUSIONS We show that metronomic dosing of ovarian cancer cells with AZD6738 results in resistance to ATR/ Chk1 inhibitors, that loss of CDC25A expression represents a mechanism of resistance to ATRi treatment in ovarian cancer cells and identify several circulating biomarker candidates of CDC25A low, AZD6738-resistant ovarian cancer cells.
Collapse
Affiliation(s)
- Wei Ao
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Hong Im Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University Grand Rapids, MI, USA
| | - Domenic Tommarello
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Tracy Litzi
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Pang-Ning Teng
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Clifton L Dalgard
- The American Genome Center, Department of Anatomy Physiology and Genetics, Collaborative Health Initiative Research Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xijun Zhang
- The American Genome Center, Department of Anatomy Physiology and Genetics, Collaborative Health Initiative Research Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Matthew D Wilkerson
- The American Genome Center, Department of Anatomy Physiology and Genetics, Collaborative Health Initiative Research Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA
| | - Christopher M Tarney
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA
| | - Neil T Phippen
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA
| | - Christopher J Bakkenist
- Departments of Radiation Biology and Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - G Larry Maxwell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Department of Obstetrics and Gynecology, Inova Fairfax Medical Campus, 3300 Gallows Rd. Falls Church, VA 22042, USA
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Department of Obstetrics and Gynecology, Inova Fairfax Medical Campus, 3300 Gallows Rd. Falls Church, VA 22042, USA
| | - John I Risinger
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University Grand Rapids, MI, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA.
| |
Collapse
|
12
|
Neff RA, Bosch-Gutierrez A, Sun Y, Katsyv I, Song WM, Wang M, Walsh MJ, Zhang B. Dysfunction of ubiquitin protein ligase MYCBP2 leads to cell resilience in human breast cancers. NAR Cancer 2023; 5:zcad036. [PMID: 37435531 PMCID: PMC10331931 DOI: 10.1093/narcan/zcad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Breast cancer is the most common type of cancer among women worldwide, and it is estimated that 294 000 new diagnoses and 37 000 deaths will occur each year in the United States alone by 2030. Large-scale genomic studies have identified a number of genetic loci with alterations in breast cancer. However, identification of the genes that are critical for tumorgenicity still remains a challenge. Here, we perform a comprehensive functional multi-omics analysis of somatic mutations in breast cancer and identify previously unknown key regulators of breast cancer tumorgenicity. We identify dysregulation of MYCBP2, an E3 ubiquitin ligase and an upstream regulator of mTOR signaling, is accompanied with decreased disease-free survival. We validate MYCBP2 as a key target through depletion siRNA using in vitro apoptosis assays in MCF10A, MCF7 and T47D cells. We demonstrate that MYCBP2 loss is associated with resistance to apoptosis from cisplatin-induced DNA damage and cell cycle changes, and that CHEK1 inhibition can modulate MYCBP2 activity and caspase cleavage. Furthermore, we show that MYCBP2 knockdown is associated with transcriptomic responses in TSC2 and in apoptosis genes and interleukins. Therefore, we show that MYCBP2 is an important genetic target that represents a key node regulating multiple molecular pathways in breast cancer corresponding with apparent drug resistance in our study.
Collapse
Affiliation(s)
- Ryan A Neff
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Almudena Bosch-Gutierrez
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifei Sun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Igor Katsyv
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Martin J Walsh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
13
|
Biswas H, Makinwa Y, Zou Y. Novel Cellular Functions of ATR for Therapeutic Targeting: Embryogenesis to Tumorigenesis. Int J Mol Sci 2023; 24:11684. [PMID: 37511442 PMCID: PMC10380702 DOI: 10.3390/ijms241411684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The DNA damage response (DDR) is recognized as having an important role in cancer growth and treatment. ATR (ataxia telangiectasia mutated and Rad3-related) kinase, a major regulator of DDR, has shown significant therapeutic potential in cancer treatment. ATR inhibitors have shown anti-tumor effectiveness, not just as monotherapies but also in enhancing the effects of standard chemotherapy, radiation, and immunotherapy. The biological basis of ATR is examined in this review, as well as its functional significance in the development and therapy of cancer, and the justification for inhibiting this target as a therapeutic approach, including an assessment of the progress and status of previous decades' development of effective and selective ATR inhibitors. The current applications of these inhibitors in preclinical and clinical investigations as single medicines or in combination with chemotherapy, radiation, and immunotherapy are also fully reviewed. This review concludes with some insights into the many concerns highlighted or identified with ATR inhibitors in both the preclinical and clinical contexts, as well as potential remedies proposed.
Collapse
Affiliation(s)
| | | | - Yue Zou
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (H.B.); (Y.M.)
| |
Collapse
|
14
|
Duan Y, Zhuang L, Xu Y, Cheng H, Xia J, Lu T, Chen Y. Design, synthesis, and biological evaluation of pyrido[3,2-d]pyrimidine derivatives as novel ATR inhibitors. Bioorg Chem 2023; 136:106535. [PMID: 37086581 DOI: 10.1016/j.bioorg.2023.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Targeting ataxia telangiectasia mutated and Rad3-related (ATR) kinase is being pursued as a new therapeutic strategy for the treatment of advanced solid tumor with specific DNA damage response deficiency. Herein, we report a series of pyrido[3,2-d]pyrimidine derivatives with potent ATR inhibitory activity through structure-based drug design. Among them, the representative compound 10q exhibited excellent potency against ATR in both biochemical and cellular assays. More importantly, 10q exhibited good liver microsomes stability in different species and also showed moderate inhibitory activity against HT-29 cells in combination treatment with the ATM inhibitor AZD1390. Thus, this work provides a promising lead compound against ATR for further study.
Collapse
Affiliation(s)
- Yunxin Duan
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Lili Zhuang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yerong Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Haodong Cheng
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jiawei Xia
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
15
|
Yap TA, Fontana E, Lee EK, Spigel DR, Højgaard M, Lheureux S, Mettu NB, Carneiro BA, Carter L, Plummer R, Cote GM, Meric-Bernstam F, O'Connell J, Schonhoft JD, Wainszelbaum M, Fretland AJ, Manley P, Xu Y, Ulanet D, Rimkunas V, Zinda M, Koehler M, Silverman IM, Reis-Filho JS, Rosen E. Camonsertib in DNA damage response-deficient advanced solid tumors: phase 1 trial results. Nat Med 2023; 29:1400-1411. [PMID: 37277454 PMCID: PMC10287555 DOI: 10.1038/s41591-023-02399-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
Predictive biomarkers of response are essential to effectively guide targeted cancer treatment. Ataxia telangiectasia and Rad3-related kinase inhibitors (ATRi) have been shown to be synthetic lethal with loss of function (LOF) of ataxia telangiectasia-mutated (ATM) kinase, and preclinical studies have identified ATRi-sensitizing alterations in other DNA damage response (DDR) genes. Here we report the results from module 1 of an ongoing phase 1 trial of the ATRi camonsertib (RP-3500) in 120 patients with advanced solid tumors harboring LOF alterations in DDR genes, predicted by chemogenomic CRISPR screens to sensitize tumors to ATRi. Primary objectives were to determine safety and propose a recommended phase 2 dose (RP2D). Secondary objectives were to assess preliminary anti-tumor activity, to characterize camonsertib pharmacokinetics and relationship with pharmacodynamic biomarkers and to evaluate methods for detecting ATRi-sensitizing biomarkers. Camonsertib was well tolerated; anemia was the most common drug-related toxicity (32% grade 3). Preliminary RP2D was 160 mg weekly on days 1-3. Overall clinical response, clinical benefit and molecular response rates across tumor and molecular subtypes in patients who received biologically effective doses of camonsertib (>100 mg d-1) were 13% (13/99), 43% (43/99) and 43% (27/63), respectively. Clinical benefit was highest in ovarian cancer, in tumors with biallelic LOF alterations and in patients with molecular responses. ClinicalTrials.gov registration: NCT04497116 .
Collapse
Affiliation(s)
- Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Elizabeth K Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David R Spigel
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | | | | | - Niharika B Mettu
- Department of Medical Oncology, Duke University, Durham, NC, USA
| | - Benedito A Carneiro
- Legorreta Cancer Center at Brown University and Lifespan Cancer Institute, Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Louise Carter
- Division of Cancer Sciences, University of Manchester and the Christie NHS Foundation Trust, Manchester, UK
| | - Ruth Plummer
- Newcastle University and Newcastle Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle-upon-Tyne, UK
| | - Gregory M Cote
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Yi Xu
- Repare Therapeutics, Cambridge, MA, USA
| | | | | | | | | | | | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ezra Rosen
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
16
|
Yano K, Shiotani B. Emerging strategies for cancer therapy by ATR inhibitors. Cancer Sci 2023. [PMID: 37189251 DOI: 10.1111/cas.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
DNA replication stress (RS) causes genomic instability and vulnerability in cancer cells. To counteract RS, cells have evolved various mechanisms involving the ATR kinase signaling pathway, which regulates origin firing, cell cycle checkpoints, and fork stabilization to secure the fidelity of replication. However, ATR signaling also alleviates RS to support cell survival by driving RS tolerance, thereby contributing to therapeutic resistance. Cancer cells harboring genetic mutations and other changes that disrupt normal DNA replication increase the risk of DNA damage and the levels of RS, conferring addiction to ATR activity for sustainable replication and susceptibility to therapeutic approaches using ATR inhibitors (ATRis). Therefore, clinical trials are currently being conducted to evaluate the efficacy of ATRis as monotherapies or in combination with other drugs and biomarkers. In this review, we discuss recent advances in the elucidation of the mechanisms by which ATR functions in the RS response and its therapeutic relevance when utilizing ATRis.
Collapse
Affiliation(s)
- Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
17
|
Concannon K, Morris BB, Gay CM, Byers LA. Combining targeted DNA repair inhibition and immune-oncology approaches for enhanced tumor control. Mol Cell 2023; 83:660-680. [PMID: 36669489 PMCID: PMC9992136 DOI: 10.1016/j.molcel.2022.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
Targeted therapy and immunotherapy have revolutionized cancer treatment. However, the ability of cancer to evade the immune system remains a major barrier for effective treatment. Related to this, several targeted DNA-damage response inhibitors (DDRis) are being tested in the clinic and have been shown to potentiate anti-tumor immune responses. Seminal studies have shown that these agents are highly effective in a pan-cancer class of tumors with genetic defects in key DNA repair genes such as BRCA1/2, BRCA-related genes, ataxia telangiectasia mutated (ATM), and others. Here, we review the molecular consequences of targeted DDR inhibition, from tumor cell death to increased engagement of the anti-tumor immune response. Additionally, we discuss mechanistic and clinical rationale for pairing targeted DDRis with immunotherapy for enhanced tumor control. We also review biomarkers for patient selection and promising new immunotherapy approaches poised to form the foundation of next-generation DDRi and immunotherapy combinations.
Collapse
Affiliation(s)
- Kyle Concannon
- Department of Hematology/Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin B Morris
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Heyza JR, Ekinci E, Lindquist J, Lei W, Yunker C, Vinothkumar V, Rowbotham R, Polin L, Snider N, Van Buren E, Watza D, Back J, Chen W, Mamdani H, Schwartz A, Turchi J, Bepler G, Patrick S. ATR inhibition overcomes platinum tolerance associated with ERCC1- and p53-deficiency by inducing replication catastrophe. NAR Cancer 2023; 5:zcac045. [PMID: 36644397 PMCID: PMC9832712 DOI: 10.1093/narcan/zcac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
ERCC1/XPF is a heterodimeric DNA endonuclease critical for repair of certain chemotherapeutic agents. We recently identified that ERCC1- and p53-deficient lung cancer cells are tolerant to platinum-based chemotherapy. ATR inhibition synergistically re-stored platinum sensitivity to platinum tolerant ERCC1-deficient cells. Mechanistically we show this effect is reliant upon several functions of ATR including replication fork protection and altered cell cycle checkpoints. Utilizing an inhibitor of replication protein A (RPA), we further demonstrate that replication fork protection and RPA availability are critical for platinum-based drug tolerance. Dual treatment led to increased formation of DNA double strand breaks and was associated with chromosome pulverization. Combination treatment was also associated with increased micronuclei formation which were capable of being bound by the innate immunomodulatory factor, cGAS, suggesting that combination platinum and ATR inhibition may also enhance response to immunotherapy in ERCC1-deficient tumors. In vivo studies demonstrate a significant effect on tumor growth delay with combination therapy compared with single agent treatment. Results of this study have led to the identification of a feasible therapeutic strategy combining ATR inhibition with platinum and potentially immune checkpoint blockade inhibitors to overcome platinum tolerance in ERCC1-deficient, p53-mutant lung cancers.
Collapse
Affiliation(s)
- Joshua R Heyza
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Elmira Ekinci
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Jacob Lindquist
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Wen Lei
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Christopher Yunker
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Vilvanathan Vinothkumar
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Rachelle Rowbotham
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Natalie G Snider
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Eric Van Buren
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Donovan Watza
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Jessica B Back
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Wei Chen
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Hirva Mamdani
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Ann G Schwartz
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - John J Turchi
- Departments of Medicine and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- NERx Biosciences, Indianapolis, IN, USA
| | - Gerold Bepler
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Steve M Patrick
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
19
|
Li S, Wang T, Fei X, Zhang M. ATR Inhibitors in Platinum-Resistant Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14235902. [PMID: 36497387 PMCID: PMC9740197 DOI: 10.3390/cancers14235902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Platinum-resistant ovarian cancer (PROC) is one of the deadliest types of epithelial ovarian cancer, and it is associated with a poor prognosis as the median overall survival (OS) is less than 12 months. Targeted therapy is a popular emerging treatment method. Several targeted therapies, including those using bevacizumab and poly (ADP-ribose) polymerase inhibitor (PARPi), have been used to treat PROC. Ataxia telangiectasia and RAD3-Related Protein Kinase inhibitors (ATRi) have attracted attention as a promising class of targeted drugs that can regulate the cell cycle and influence homologous recombination (HR) repair. In recent years, many preclinical and clinical studies have demonstrated the efficacy of ATRis in PROC. This review focuses on the anticancer mechanism of ATRis and the progress of research on ATRis for PROC.
Collapse
Affiliation(s)
- Siyu Li
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Tao Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Xichang Fei
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Mingjun Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
- Correspondence:
| |
Collapse
|
20
|
Baxter JS, Zatreanu D, Pettitt SJ, Lord CJ. Resistance to DNA repair inhibitors in cancer. Mol Oncol 2022; 16:3811-3827. [PMID: 35567571 PMCID: PMC9627783 DOI: 10.1002/1878-0261.13224] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) represents a complex network of proteins which detect and repair DNA damage, thereby maintaining the integrity of the genome and preventing the transmission of mutations and rearranged chromosomes to daughter cells. Faults in the DDR are a known driver and hallmark of cancer. Furthermore, inhibition of DDR enzymes can be used to treat the disease. This is exemplified by PARP inhibitors (PARPi) used to treat cancers with defects in the homologous recombination DDR pathway. A series of novel DDR targets are now also under pre-clinical or clinical investigation, including inhibitors of ATR kinase, WRN helicase or the DNA polymerase/helicase Polθ (Pol-Theta). Drug resistance is a common phenomenon that impairs the overall effectiveness of cancer treatments and there is already some understanding of how resistance to PARPi occurs. Here, we discuss how an understanding of PARPi resistance could inform how resistance to new drugs targeting the DDR emerges. We also discuss potential strategies that could limit the impact of these therapy resistance mechanisms in cancer.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
21
|
Kloeber JA, Lou Z. Critical DNA damaging pathways in tumorigenesis. Semin Cancer Biol 2022; 85:164-184. [PMID: 33905873 PMCID: PMC8542061 DOI: 10.1016/j.semcancer.2021.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
The acquisition of DNA damage is an early driving event in tumorigenesis. Premalignant lesions show activated DNA damage responses and inactivation of DNA damage checkpoints promotes malignant transformation. However, DNA damage is also a targetable vulnerability in cancer cells. This requires a detailed understanding of the cellular and molecular mechanisms governing DNA integrity. Here, we review current work on DNA damage in tumorigenesis. We discuss DNA double strand break repair, how repair pathways contribute to tumorigenesis, and how double strand breaks are linked to the tumor microenvironment. Next, we discuss the role of oncogenes in promoting DNA damage through replication stress. Finally, we discuss our current understanding on DNA damage in micronuclei and discuss therapies targeting these DNA damage pathways.
Collapse
Affiliation(s)
- Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
22
|
Sugitani N, Vendetti FP, Cipriano AJ, Pandya P, Deppas JJ, Moiseeva TN, Schamus-Haynes S, Wang Y, Palmer D, Osmanbeyoglu HU, Bostwick A, Snyder NW, Gong YN, Aird KM, Delgoffe GM, Beumer JH, Bakkenist CJ. Thymidine rescues ATR kinase inhibitor-induced deoxyuridine contamination in genomic DNA, cell death, and interferon-α/β expression. Cell Rep 2022; 40:111371. [PMID: 36130512 PMCID: PMC9646445 DOI: 10.1016/j.celrep.2022.111371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
ATR kinase is a central regulator of the DNA damage response (DDR) and cell cycle checkpoints. ATR kinase inhibitors (ATRi's) combine with radiation to generate CD8+ T cell-dependent responses in mouse models of cancer. We show that ATRi's induce cyclin-dependent kinase 1 (CDK1)-dependent origin firing across active replicons in CD8+ T cells activated ex vivo while simultaneously decreasing the activity of rate-limiting enzymes for nucleotide biosynthesis. These pleiotropic effects of ATRi induce deoxyuridine (dU) contamination in genomic DNA, R loops, RNA-DNA polymerase collisions, and interferon-α/β (IFN-α/β). Remarkably, thymidine rescues ATRi-induced dU contamination and partially rescues death and IFN-α/β expression in proliferating CD8+ T cells. Thymidine also partially rescues ATRi-induced cancer cell death. We propose that ATRi-induced dU contamination contributes to dose-limiting leukocytopenia and inflammation in the clinic and CD8+ T cell-dependent anti-tumor responses in mouse models. We conclude that ATR is essential to limit dU contamination in genomic DNA and IFN-α/β expression.
Collapse
Affiliation(s)
- Norie Sugitani
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank P Vendetti
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew J Cipriano
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pinakin Pandya
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua J Deppas
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tatiana N Moiseeva
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Tallinn, Estonia
| | - Sandra Schamus-Haynes
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiyang Wang
- Department of Immunology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Drake Palmer
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hatice U Osmanbeyoglu
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Biomedical Informatics, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Bostwick
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Center for Metabolic Disease Research, Philadelphia, PA, USA
| | - Nathaniel W Snyder
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Center for Metabolic Disease Research, Philadelphia, PA, USA
| | - Yi-Nan Gong
- Department of Immunology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine M Aird
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jan H Beumer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Hematology-Oncology, UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher J Bakkenist
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
The Role of ATR Inhibitors in Ovarian Cancer: Investigating Predictive Biomarkers of Response. Cells 2022; 11:cells11152361. [PMID: 35954206 PMCID: PMC9367423 DOI: 10.3390/cells11152361] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/05/2023] Open
Abstract
Ataxia telangiectasia and Rad-3 related kinase (ATR) signals DNA lesions and replication stress (RS) to the S and G2/M checkpoints and DNA repair pathways making it a promising target to exploit the dysregulated DNA damage response in cancer. ATR inhibitors (ATRi) are under clinical investigation as monotherapy and in combination with other anticancer agents. Molecular determinants of sensitivity to ATRi are common in ovarian cancer, suggesting the therapeutic potential of ATRi. We investigated the cytotoxicity of the ATRi, VE-821, in a panel of human ovarian cancer cell lines. High grade serous (HGS) cell lines were significantly more sensitive to VE-821 than non-HGS (p ≤ 0.0001) but previously identified determinants of sensitivity (TP53, ATM and BRCA1) were not predictive. Only low RAD51 (p = 0.041), TopBP1 (p = 0.026) and APOBEC3B (p = 0.015) protein expression were associated with increased VE-821 sensitivity. HGS cells had increased levels of RS (pRPASer4/8 and γH2AX nuclear immunofluorescence), and elevated RS predicted sensitivity to VE-821 independently of the cell line subtype. These data suggest that functional assessment of RS biomarkers may be a better predictive biomarker of ATRi response than any single aberrant gene in ovarian cancer and potentially other cancers.
Collapse
|
24
|
Chen P, Bin H, Jiao Y, Lin G, Zhang Y, Xia A, Pan Z, Qiao J, Guo Y, Liu J, Zhou Y, Li L. Discovery of 6,7-dihydro-5H-pyrrolo[3,4-d] pyrimidine derivatives as a new class of ATR inhibitors. Bioorg Med Chem Lett 2022; 63:128651. [PMID: 35245663 DOI: 10.1016/j.bmcl.2022.128651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 02/08/2023]
Abstract
Ataxia telangiectasia and Rad3-related (ATR) kinase is a key regulating protein within the DNA damage response (DDR), responsible for sensing replication stress (RS), and has been considered as a potential target for cancer therapy. Herein, we report the discovery of a series of 6,7-dihydro-5H-pyrrolo[3,4-d]-pyrimidine derivatives as a new class of ATR inhibitors. Among them, compound 5g exhibits an IC50 value of 0.007 μM against ATR kinase. In vitro, 5g displays good anti-tumor activity and could significantly reduce the phosphorylation level of ATR and its downstream signaling protein. Overall, this study provides a promising lead compound for subsequent drug discovery targeting ATR kinase.
Collapse
Affiliation(s)
- Pei Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Huachao Bin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Jiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yun Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Macular Disease Research Laboratory, Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Anjie Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhilin Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingxin Qiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yinping Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingming Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yangli Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
25
|
Wilson Z, Odedra R, Wallez Y, Wijnhoven PW, Hughes AM, Gerrard J, Jones GN, Bargh-Dawson H, Brown E, Young LA, O'Connor MJ, Lau A. ATR Inhibitor AZD6738 (Ceralasertib) Exerts Antitumor Activity as a Monotherapy and in Combination with Chemotherapy and the PARP Inhibitor Olaparib. Cancer Res 2022; 82:1140-1152. [PMID: 35078817 PMCID: PMC9359726 DOI: 10.1158/0008-5472.can-21-2997] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/10/2021] [Accepted: 01/19/2022] [Indexed: 01/09/2023]
Abstract
AZD6738 (ceralasertib) is a potent and selective orally bioavailable inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase. ATR is activated in response to stalled DNA replication forks to promote G2-M cell-cycle checkpoints and fork restart. Here, we found AZD6738 modulated CHK1 phosphorylation and induced ATM-dependent signaling (pRAD50) and the DNA damage marker γH2AX. AZD6738 inhibited break-induced replication and homologous recombination repair. In vitro sensitivity to AZD6738 was elevated in, but not exclusive to, cells with defects in the ATM pathway or that harbor putative drivers of replication stress such as CCNE1 amplification. This translated to in vivo antitumor activity, with tumor control requiring continuous dosing and free plasma exposures, which correlated with induction of pCHK1, pRAD50, and γH2AX. AZD6738 showed combinatorial efficacy with agents associated with replication fork stalling and collapse such as carboplatin and irinotecan and the PARP inhibitor olaparib. These combinations required optimization of dose and schedules in vivo and showed superior antitumor activity at lower doses compared with that required for monotherapy. Tumor regressions required at least 2 days of daily dosing of AZD6738 concurrent with carboplatin, while twice daily dosing was required following irinotecan. In a BRCA2-mutant patient-derived triple-negative breast cancer (TNBC) xenograft model, complete tumor regression was achieved with 3 to5 days of daily AZD6738 per week concurrent with olaparib. Increasing olaparib dosage or AZD6738 dosing to twice daily allowed complete tumor regression even in a BRCA wild-type TNBC xenograft model. These preclinical data provide rationale for clinical evaluation of AZD6738 as a monotherapy or combinatorial agent. SIGNIFICANCE This detailed preclinical investigation, including pharmacokinetics/pharmacodynamics and dose-schedule optimizations, of AZD6738/ceralasertib alone and in combination with chemotherapy or PARP inhibitors can inform ongoing clinical efforts to treat cancer with ATR inhibitors.
Collapse
Affiliation(s)
- Zena Wilson
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Rajesh Odedra
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Yann Wallez
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Adina M. Hughes
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Joe Gerrard
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gemma N. Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Hannah Bargh-Dawson
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elaine Brown
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Lucy A. Young
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mark J. O'Connor
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom.,Corresponding Author: Alan Lau, Bioscience, Oncology R&D, AstraZeneca, Hodgkin Building, C/O Darwin Building, Unit 310, Cambridge Science Park, Milton Road, Cambridge CB4 OWG, United Kingdom. Phone: 4407-9171-88399; E-mail:
| |
Collapse
|
26
|
Abstract
DNA repair and DNA damage signaling pathways are critical for the maintenance of genomic stability. Defects of DNA repair and damage signaling contribute to tumorigenesis, but also render cancer cells vulnerable to DNA damage and reliant on remaining repair and signaling activities. Here, we review the major classes of DNA repair and damage signaling defects in cancer, the genomic instability that they give rise to, and therapeutic strategies to exploit the resulting vulnerabilities. Furthermore, we discuss the impacts of DNA repair defects on both targeted therapy and immunotherapy, and highlight emerging principles for targeting DNA repair defects in cancer therapy.
Collapse
Affiliation(s)
- Jessica L Hopkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
27
|
Pan Y, Yang Y, Huang R, Yang H, Huang Q, Ji Y, Dai J, Qiao K, Tang W, Xie L, Yin M, Ouyang J, Ning S, Su D. Ring finger protein 126 promotes breast cancer metastasis and serves as a potential target to improve the therapeutic sensitivity of ATR inhibitors. Breast Cancer Res 2022; 24:92. [PMID: 36539893 PMCID: PMC9764525 DOI: 10.1186/s13058-022-01586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIMS This study explores the relationship between the E3 ubiquitin ligase Ring finger protein 126 (RNF126) and early breast cancer metastasis and tests the hypothesis that RNF126 determines the efficacy of inhibitors targeting Ataxia telangiectasia mutated and Rad3-related kinase (ATR). METHODS Various metastasis-related genes were identified by univariable Cox proportional hazards regression analysis based on the GSE11121 dataset. The RNF126-related network modules were identified by WGCNA, whereas cell viability, invasion, and migration assays were performed to evaluate the biological characteristics of breast cancer cells with or without RNF126 knockdown. MTT, immunoblotting, immunofluorescence, and DNA fiber assays were conducted to determine the efficiency of ATR inhibitor in cells with or without RNF126 knockdown. RESULTS RNF126 was associated with early breast cancer metastasis. RNF126 promoted breast cancer cell proliferation, growth, migration, and invasion. ATR inhibitors were more effective at killing breast cancer cells with intact RNF126 due to replication stress compared with the corresponding cells with RNF126 knockdown. Cyclin-dependent kinase 2 (CDK2) was involved in regulating replication stress in breast cancer cells with intact RNF126. CONCLUSION A high level of expression of RNF126 in early breast cancer patients without lymph node metastases may indicate a high-risk type of metastatic disease, possibly due to RNF126, which may increase breast cancer cell proliferation and invasion. RNF126-expressing breast cancer cells exhibit CDK2-mediated replication stress that makes them potential targets for ATR inhibitors.
Collapse
Affiliation(s)
- You Pan
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Yuchao Yang
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Medical Biomechanics & Nation Key Discipline of Human Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| | - Rong Huang
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Huawei Yang
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Qinghua Huang
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Yinan Ji
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Jingxing Dai
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Medical Biomechanics & Nation Key Discipline of Human Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| | - Kun Qiao
- grid.412651.50000 0004 1808 3502Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150000 China
| | - Wei Tang
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Longgui Xie
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Ming Yin
- grid.284723.80000 0000 8877 7471Department of Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jun Ouyang
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Medical Biomechanics & Nation Key Discipline of Human Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| | - Shipeng Ning
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Danke Su
- grid.256607.00000 0004 1798 2653Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| |
Collapse
|
28
|
Abstract
ABSTRACT DNA damage response and repair (DDR) is responsible for ensuring genomic integrity. It is composed of intricate, complex pathways that detect various DNA insults and then activate pathways to restore DNA fidelity. Mutations in this network are implicated in many malignancies but can also be exploited for cancer therapies. The advent of inhibitors of poly(ADP-ribose) polymerase has led to the investigation of other DDR inhibitors and combinations to address high unmet needs in cancer therapeutics. Specifically, regimens, often in combination with chemotherapy, radiation, or other DDR inhibitors, are being investigated. This review will focus on 4 main DDR pathways-ATR/CHK1, ATM/CHK2, DNA-PKcs, and polymerase θ-and the current state of clinical research and use of the inhibitors of these pathways with other DDR inhibitors.
Collapse
|
29
|
Gao C, Gu X, Chen Y, Zhou M, Jiang F, Zheng S. Identification of Potential Prognostic and Predictive Biomarkers for Immune-Checkpoint Inhibitor Response in Small Cell Lung Cancer. Med Sci Monit 2021; 27:e932275. [PMID: 34719665 PMCID: PMC8570048 DOI: 10.12659/msm.932275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Immune-checkpoint inhibitors have propelled the field of therapeutics for small cell lung cancer (SCLC) treatment, but are only beneficial to some patients. The objective of this study was to identify valid biomarkers for good potential response to immunotherapy. MATERIAL AND METHODS We performed an integrated analysis of the available datasets from the Gene Expression Omnibus (GEO) projects, Cancer Cell Line Encyclopedia (CCLE), TISIDB database, and Lung Cancer Explorer (LCE) database. Six prognosis-related genes (MCM2, EZH2, CENPK, CHEK1, CDKN2A, and EXOSC2) were identified utilizing the meta workflow of data analysis methods. We performed subclass mapping to compare their expression profiles to other datasets of patients who responded to immunotherapy. A drug sensitivity predictive model was used to predict the chemotherapeutic response to cisplatin and etoposide. RESULTS Our results showed that the expression of the 6 key genes was significantly associated with the overall survival of patients with SCLC. Lower expression of these 6 genes was correlated to the response to anti-PD-1 treatment. Additionally, low expression of MCM2, EZH2, CENPK, and CHEK1 was correlated with increased sensitivity to cisplatin, but not etoposide. CONCLUSIONS Overall, our data showed that MCM2, EZH2, CENPK, CHEK1, CDKN2A, and EXOSC2 are potential prognostic and predictive biomarkers for response to immune-checkpoint inhibitor treatment in patients with SCLC. Further studies with large sample sizes are required to validate our findings and to explore the detailed mechanisms underlying the role of these genes in SCLC.
Collapse
Affiliation(s)
- Chanchan Gao
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China (mainland)
| | - Xuyu Gu
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China (mainland)
| | - Yan Chen
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China (mainland)
| | - Min Zhou
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China (mainland)
| | - Feng Jiang
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China (mainland)
| | - Shiya Zheng
- Department of Oncology , Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
30
|
Lloyd R, Urban V, Muñoz-Martínez F, Ayestaran I, Thomas J, de Renty C, O’Connor M, Forment J, Galanty Y, Jackson S. Loss of Cyclin C or CDK8 provides ATR inhibitor resistance by suppressing transcription-associated replication stress. Nucleic Acids Res 2021; 49:8665-8683. [PMID: 34329458 PMCID: PMC8421211 DOI: 10.1093/nar/gkab628] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
The protein kinase ATR plays pivotal roles in DNA repair, cell cycle checkpoint engagement and DNA replication. Consequently, ATR inhibitors (ATRi) are in clinical development for the treatment of cancers, including tumours harbouring mutations in the related kinase ATM. However, it still remains unclear which functions and pathways dominate long-term ATRi efficacy, and how these vary between clinically relevant genetic backgrounds. Elucidating common and genetic-background specific mechanisms of ATRi efficacy could therefore assist in patient stratification and pre-empting drug resistance. Here, we use CRISPR-Cas9 genome-wide screening in ATM-deficient and proficient mouse embryonic stem cells to interrogate cell fitness following treatment with the ATRi, ceralasertib. We identify factors that enhance or suppress ATRi efficacy, with a subset of these requiring intact ATM signalling. Strikingly, two of the strongest resistance-gene hits in both ATM-proficient and ATM-deficient cells encode Cyclin C and CDK8: members of the CDK8 kinase module for the RNA polymerase II mediator complex. We show that Cyclin C/CDK8 loss reduces S-phase DNA:RNA hybrid formation, transcription-replication stress, and ultimately micronuclei formation induced by ATRi. Overall, our work identifies novel biomarkers of ATRi efficacy in ATM-proficient and ATM-deficient cells, and highlights transcription-associated replication stress as a predominant driver of ATRi-induced cell death.
Collapse
Affiliation(s)
- Rebecca L Lloyd
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | - Vaclav Urban
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Francisco Muñoz-Martínez
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | - Iñigo Ayestaran
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | - John C Thomas
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | | | | | | | - Yaron Galanty
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | - Stephen P Jackson
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| |
Collapse
|
31
|
Rødland GE, Hauge S, Hasvold G, Bay LTE, Raabe TTH, Joel M, Syljuåsen RG. Differential Effects of Combined ATR/WEE1 Inhibition in Cancer Cells. Cancers (Basel) 2021; 13:cancers13153790. [PMID: 34359691 PMCID: PMC8345075 DOI: 10.3390/cancers13153790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Cancer cells often show elevated replication stress and loss of cell cycle checkpoints. The ataxia telangiectasia and Rad3-related (ATR) and WEE1 kinases play roles in protecting cancer cells from high replication stress and in regulating the remaining cell cycle checkpoints. Inhibitors of ATR or WEE1 therefore have the potential to selectively kill cancer cells and are currently being tested in clinical trials. However, more studies are needed to understand how these inhibitors work in various types of cancer and to find the most effective ways of using them. Here, we have explored whether simultaneous treatment with ATR and WEE1 inhibitors is a promising approach. Effects were investigated in cell lines from osteosarcoma and lung cancer. We expect our results to be of importance for future treatment strategies with these inhibitors. Abstract Inhibitors of WEE1 and ATR kinases are considered promising for cancer treatment, either as monotherapy or in combination with chemo- or radiotherapy. Here, we addressed whether simultaneous inhibition of WEE1 and ATR might be advantageous. Effects of the WEE1 inhibitor MK1775 and ATR inhibitor VE822 were investigated in U2OS osteosarcoma cells and in four lung cancer cell lines, H460, A549, H1975, and SW900, with different sensitivities to the WEE1 inhibitor. Despite the differences in cytotoxic effects, the WEE1 inhibitor reduced the inhibitory phosphorylation of CDK, leading to increased CDK activity accompanied by ATR activation in all cell lines. However, combining ATR inhibition with WEE1 inhibition could not fully compensate for cell resistance to the WEE1 inhibitor and reduced cell viability to a variable extent. The decreased cell viability upon the combined treatment correlated with a synergistic induction of DNA damage in S-phase in U2OS cells but not in the lung cancer cells. Moreover, less synergy was found between ATR and WEE1 inhibitors upon co-treatment with radiation, suggesting that single inhibitors may be preferable together with radiotherapy. Altogether, our results support that combining WEE1 and ATR inhibitors may be beneficial for cancer treatment in some cases, but also highlight that the effects vary between cancer cell lines.
Collapse
|
32
|
Biskup E, Niazi O, Pless V. Cell membrane permeability and defective G2/M block as factors potentially contributing to increased cell chemosensitivity. SeAx cell line as an example. Biochem Biophys Rep 2021; 26:101005. [PMID: 34027132 PMCID: PMC8129889 DOI: 10.1016/j.bbrep.2021.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/05/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
Background Immortalized mammalian cell lines are a valuable research tool, though they represent a highly simplified model. Due to accumulated mutations they may not reflect characteristics of the disease or even the tissue they derive from. Objective We aim to pinpoint factors distinguishing SeAx cells from two other cutaneous T-cell lymphoma (CTCL) cell lines, namely Hut78 and MyLa2000. Of note, these factors may influence cell sensitivity in an unspecific way and therefore should be taken under consideration. Methods We evaluated transcriptional levels of drug transporters across cell lines, cell membrane permeability, functionality of pathways related to DNA damage response and activation of G2/M block. Results Analysis of the transcriptional levels of genes coding drug efflux pumps indicated that they are not consistently down-regulated in SeAx. However, we noted that SeAx cell membrane is markedly more permeable than Hut78 and MyLa2000, which may contribute to increased chemosensitivity in an unspecific way. Moreover, though DNA damage response seemed to be at least partly functional in SeAx cells, they fail to activate G2/M block in response to psoralen + UVA treatment. Any DNA damage should be repaired before cells enter mitosis, in order to uphold genome integrity. Thus, a defective cell cycle block may contribute to cell sensitivity. Conclusions We believe that factors such as increased membrane permeability or defective cell cycle block should be accounted for when comparing sensitivity of cell line panels to chemotherapeutics of interest. It is worth to exclude a simple, indiscriminative mechanisms of cell resistance or sensitivity before attempting comparisons. Cell lines that are indiscriminately sensitive to a broad range of chemicals may contribute to overestimating the cytotoxic potential of tested compounds if used in cytotoxicity studies. Mammalian cell lines are a valuable, but highly simplified model. Cell chemosensitivity and resistance may have specific or unspecific character. SeAx cell line exhibits higher chemosensitivity than other tested CTCL cell lines. SeAx chemosensitivity may result from high membrane permeability and/or defective G2/M block. Unspecific mechanisms of cell sensitivity or resistance may lead to false conclusions.
Collapse
Affiliation(s)
- Edyta Biskup
- Department of Dermatology, Bispebjerg Hospital, Bispebjerg Bakke 23, 2400, Copenhagen, Denmark
| | - Omid Niazi
- Department of Dermatology, Bispebjerg Hospital, Bispebjerg Bakke 23, 2400, Copenhagen, Denmark
| | - Vibeke Pless
- Department of Dermatology, Bispebjerg Hospital, Bispebjerg Bakke 23, 2400, Copenhagen, Denmark
| |
Collapse
|
33
|
Sensitivity of cells to ATR and CHK1 inhibitors requires hyperactivation of CDK2 rather than endogenous replication stress or ATM dysfunction. Sci Rep 2021; 11:7077. [PMID: 33782497 PMCID: PMC8007816 DOI: 10.1038/s41598-021-86490-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
DNA damage activates cell cycle checkpoint proteins ATR and CHK1 to arrest cell cycle progression, providing time for repair and recovery. Consequently, inhibitors of ATR (ATRi) and CHK1 (CHK1i) enhance damage-induced cell death. Intriguingly, both CHK1i and ATRi alone elicit cytotoxicity in some cell lines. Sensitivity has been attributed to endogenous replications stress, but many more cell lines are sensitive to ATRi than CHK1i. Endogenous activation of the DNA damage response also did not correlate with drug sensitivity. Sensitivity correlated with the appearance of γH2AX, a marker of DNA damage, but without phosphorylation of mitotic markers, contradicting suggestions that the damage is due to premature mitosis. Sensitivity to ATRi has been associated with ATM mutations, but dysfunction in ATM signaling did not correlate with sensitivity. CHK1i and ATRi circumvent replication stress by reactivating stalled replicons, a process requiring a low threshold activity of CDK2. In contrast, γH2AX induced by single agent ATRi and CHK1i requires a high threshold activity CDK2. Hence, phosphorylation of different CDK2 substrates is required for cytotoxicity induced by replication stress plus ATRi/CHK1i as compared to their single agent activity. In summary, sensitivity to ATRi and CHK1i as single agents is elicited by premature hyper-activation of CDK2.
Collapse
|
34
|
Yin Z, Chen E, Cai X, Gong E, Li Y, Xu C, Ye Z, Cao Z, Pan J. Baicalin attenuates XRCC1-mediated DNA repair to enhance the sensitivity of lung cancer cells to cisplatin. J Recept Signal Transduct Res 2021; 42:215-224. [PMID: 33719846 DOI: 10.1080/10799893.2021.1892132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Baicalin plays important roles in different types of cancer. A previous report showed that baicalin attenuates cisplatin resistance in lung cancer. However, its mechanism remains unclear. In this study, we investigated the effect and mechanism of baicalin on DNA repair and sensitivity of lung cancer cells to cisplatin. A549 and A549/DPP cells were treated with baicalin and cisplatin. A549/DPP cells were transfected with XRCC1 and siXRCC1. Cell viability and DNA damage were detected by MTT and comet assay. Apoptosis rate and cell cycle were detected by flow cytometry assay. The expressions of Bax, Bcl-2, and Cyclin D1 were detected by western blot. XRCC1 expression was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot. Baicalin and cisplatin decreased cell viability in A549 and A549/DPP cells in dose-dependent manner. Baicalin enhanced the effect of cisplatin on promoting apoptosis, arresting cell on S stage and triggering DNA damage accompanied with the upregulation of Bcl-2-associated X protein (Bax) and downregulation of B-cell lymphoma 2 (Bcl-2) and Cyclin D1 in A549/DPP cells. Moreover, baicalin promoted the inhibitory effect of cisplatin on XRCC1 expression in A549 and A549/DPP cells. However, the synthetic effects of baicalin and cisplatin on A549/DPP cells were partially inhibited by XRCC1 overexpression and promoted by XRCC1 knockdown. This study demonstrates that baicalin interferes with XRCC1-mediated cellar DNA repair to sensitize lung cancer cells to cisplatin.
Collapse
Affiliation(s)
- Zhangyong Yin
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Enguo Chen
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Affiliated with Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaoping Cai
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Enhui Gong
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Yuling Li
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Cunlai Xu
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Zaiting Ye
- Department of Radiology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Zhuo Cao
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,People's Hospital of Longquan, Longquan, China
| | - Jiongwei Pan
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
35
|
Gorecki L, Andrs M, Korabecny J. Clinical Candidates Targeting the ATR-CHK1-WEE1 Axis in Cancer. Cancers (Basel) 2021; 13:795. [PMID: 33672884 PMCID: PMC7918546 DOI: 10.3390/cancers13040795] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra‑S or G2/M checkpoints has also been extensively pursued. This review focuses on clinical candidates that target the kinases involved in intra‑S and G2/M checkpoints, namely, ATR, CHK1, and WEE1 inhibitors. It provides insight into their current status and future perspectives for anticancer treatment. Overall, even though CHK1 inhibitors are still far from clinical establishment, promising accomplishments with ATR and WEE1 inhibitors in phase II trials present a positive outlook for patient survival.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| | - Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| |
Collapse
|
36
|
Wessel SR, Mohni KN, Luzwick JW, Dungrawala H, Cortez D. Functional Analysis of the Replication Fork Proteome Identifies BET Proteins as PCNA Regulators. Cell Rep 2020; 28:3497-3509.e4. [PMID: 31553917 PMCID: PMC6878991 DOI: 10.1016/j.celrep.2019.08.051] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/25/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023] Open
Abstract
Identifying proteins that function at replication forks is essential to understanding DNA replication, chromatin assembly, and replication-coupled DNA repair mechanisms. Combining quantitative mass spectrometry in multiple cell types with stringent statistical cutoffs, we generated a high-confidence catalog of 593 proteins that are enriched at replication forks and nascent chromatin. Loss-of-function genetic analyses indicate that 85% yield phenotypes that are consistent with activities in DNA and chromatin replication or already have described functions in these processes. We illustrate the value of this resource by identifying activities of the BET family proteins BRD2, BRD3, and BRD4 in controlling DNA replication. These proteins use their extra-terminal domains to bind and inhibit the ATAD5 complex and thereby control the amount of PCNA on chromatin.
Collapse
Affiliation(s)
- Sarah R Wessel
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kareem N Mohni
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Jessica W Luzwick
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Huzefa Dungrawala
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
37
|
Gao A, Guo M. Epigenetic based synthetic lethal strategies in human cancers. Biomark Res 2020; 8:44. [PMID: 32974031 PMCID: PMC7493427 DOI: 10.1186/s40364-020-00224-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Over the past decades, it is recognized that loss of DNA damage repair (DDR) pathways is an early and frequent event in tumorigenesis, occurring in 40-50% of many cancer types. The basis of synthetic lethality in cancer therapy is DDR deficient cancers dependent on backup DNA repair pathways. In cancer, the concept of synthetic lethality has been extended to pairs of genes, in which inactivation of one by deletion or mutation and pharmacological inhibition of the other leads to death of cancer cells whereas normal cells are spared the effect of the drug. The paradigm study is to induce cell death by inhibiting PARP in BRCA1/2 defective cells. Since the successful application of PARP inhibitor, a growing number of developed DDR inhibitors are ongoing in preclinical and clinical testing, including ATM, ATR, CHK1/2 and WEE1 inhibitors. Combination of PARP inhibitors and other DDR inhibitors, or combination of multiple components of the same pathway may have great potential synthetic lethality efficiency. As epigenetics joins Knudson’s two hit theory, silencing of DDR genes by aberrant epigenetic changes provide new opportunities for synthetic lethal therapy in cancer. Understanding the causative epigenetic changes of loss-of-function has led to the development of novel therapeutic agents in cancer. DDR and related genes were found frequently methylated in human cancers, including BRCA1/2, MGMT, WRN, MLH1, CHFR, P16 and APC. Both genetic and epigenetic alterations may serve as synthetic lethal therapeutic markers.
Collapse
Affiliation(s)
- Aiai Gao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China.,Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052 Henan China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| |
Collapse
|
38
|
Wang C, Chen Z, Su D, Tang M, Nie L, Zhang H, Feng X, Wang R, Shen X, Srivastava M, McLaughlin ME, Hart T, Li L, Chen J. C17orf53 is identified as a novel gene involved in inter-strand crosslink repair. DNA Repair (Amst) 2020; 95:102946. [PMID: 32853826 DOI: 10.1016/j.dnarep.2020.102946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 01/05/2023]
Abstract
Ataxia Telangiectasia and Rad3-Related kinase (ATR) is a master regulator of genome maintenance, and participates in DNA replication and various DNA repair pathways. In a genome-wide screen for ATR-dependent fitness genes, we identified a previously uncharacterized gene, C17orf53, whose loss led to hypersensitivity to ATR inhibition. C17orf53 is conserved in vertebrates and is required for efficient cell proliferation. Loss of C17orf53 slowed down DNA replication and led to pronounced interstrand crosslink (ICL) repair defect. We showed that C17orf53 is a ssDNA- and RPA-binding protein and both characteristics are important for its functions in the cell. In addition, using multiple omics methods, we found that C17orf53 works with MCM8/9 to promote cell survival in response to ICL lesions. Taken together, our data suggest that C17orf53 is a novel component involved in ICL repair pathway.
Collapse
Affiliation(s)
- Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Megan E McLaughlin
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Bradbury A, O’Donnell R, Drew Y, Curtin NJ, Sharma Saha S. Characterisation of Ovarian Cancer Cell Line NIH-OVCAR3 and Implications of Genomic, Transcriptomic, Proteomic and Functional DNA Damage Response Biomarkers for Therapeutic Targeting. Cancers (Basel) 2020; 12:cancers12071939. [PMID: 32709004 PMCID: PMC7409137 DOI: 10.3390/cancers12071939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
In order to be effective models to identify biomarkers of chemotherapy response, cancer cell lines require thorough characterization. In this study, we characterised the widely used high grade serous ovarian cancer (HGSOC) cell line NIH-OVCAR3 using bioinformatics, cytotoxicity assays and molecular/functional analyses of DNA damage response (DDR) pathways in comparison to an ovarian cancer cell line panel. Bioinformatic analysis confirmed the HGSOC-like features of NIH-OVCAR3, including low mutation frequency, TP53 loss and high copy number alteration frequency similar to 201 HGSOCs analysed (TCGA). Cytotoxicity assays were performed for the standard of care chemotherapy, carboplatin, and DDR targeting drugs: rucaparib (a PARP inhibitor) and VE-821 (an ATR inhibitor). Interestingly, NIH-OVCAR3 cells showed sensitivity to carboplatin and rucaparib which was explained by functional loss of homologous recombination repair (HRR) identified by plasmid re-joining assay, despite the ability to form RAD51 foci and absence of mutations in HRR genes. NIH-OVCAR3 cells also showed high non-homologous end joining activity, which may contribute to HRR loss and along with genomic amplification in ATR and TOPBP1, could explain the resistance to VE-821. In summary, NIH-OVCAR3 cells highlight the complexity of HGSOCs and that genomic or functional characterization alone might not be enough to predict/explain chemotherapy response.
Collapse
Affiliation(s)
- Alice Bradbury
- Newcastle Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (A.B.); (Y.D.); (N.J.C.)
| | - Rachel O’Donnell
- Newcastle Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (A.B.); (Y.D.); (N.J.C.)
- Northern Cancer Alliance, Northern Centre for Gynaecological Surgery, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Yvette Drew
- Newcastle Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (A.B.); (Y.D.); (N.J.C.)
- Northern Centre for Cancer Care (NCCC), Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Nicola J. Curtin
- Newcastle Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (A.B.); (Y.D.); (N.J.C.)
| | - Sweta Sharma Saha
- Newcastle Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (A.B.); (Y.D.); (N.J.C.)
- Correspondence:
| |
Collapse
|
40
|
Mauri G, Arena S, Siena S, Bardelli A, Sartore-Bianchi A. The DNA damage response pathway as a land of therapeutic opportunities for colorectal cancer. Ann Oncol 2020; 31:1135-1147. [PMID: 32512040 DOI: 10.1016/j.annonc.2020.05.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) represents a major cause of cancer deaths worldwide. Although significant progress has been made by molecular and immune therapeutic approaches, prognosis of advanced stage disease is still dismal. Alterations in the DNA damage response (DDR) pathways are emerging as novel targets for treatment across different cancer types. However, even though preclinical studies have shown the potential exploitation of DDR alterations in CRC, systematic and comprehensive testing is lagging and clinical development is based on analogies with other solid tumors according to a tissue-agnostic paradigm. Recently, functional evidence from patient-derived xenografts and organoids have suggested that maintenance with PARP inhibitors might represent a therapeutic opportunity in CRC patients previously responsive to platinum-based treatment. DESIGN AND RESULTS In this review, we highlight the most promising preclinical data and systematically summarize published clinical trials in which DDR inhibitors have been used for CRC and provide evidence that disappointing results have been mainly due to a lack of clinical and molecular selection. CONCLUSIONS Future preclinical and translational research will help in better understanding the role of DDR alterations in CRC and pave the way to novel strategies that might have a transformative impact on treatment by identifying new therapeutic options including tailored use of standard chemotherapy.
Collapse
Affiliation(s)
- G Mauri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - S Arena
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo (TO), Torino, Italy; Department of Oncology, University of Torino, Candiolo (TO), Italy.
| | - S Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - A Bardelli
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo (TO), Torino, Italy; Department of Oncology, University of Torino, Candiolo (TO), Italy.
| | - A Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
41
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Participation of the ATR/CHK1 pathway in replicative stress targeted therapy of high-grade ovarian cancer. J Hematol Oncol 2020; 13:39. [PMID: 32316968 PMCID: PMC7175546 DOI: 10.1186/s13045-020-00874-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecologic malignancies reported throughout the world. The initial, standard-of-care, adjuvant chemotherapy in epithelial ovarian cancer is usually a platinum drug, such as cisplatin or carboplatin, combined with a taxane. However, despite surgical removal of the tumor and initial high response rates to first-line chemotherapy, around 80% of women will develop cancer recurrence. Effective strategies, including chemotherapy and new research models, are necessary to improve the prognosis. The replication stress response (RSR) is characteristic of the development of tumors, including ovarian cancer. Hence, RSR pathway and DNA repair proteins have emerged as a new area for anticancer drug development. Although clinical trials have shown poly (ADP-ribose) polymerase inhibitors (PARPi) response rates of around 40% in women who carry a mutation in the BRCA1/2 genes, PARPi is responsible for tumor suppression, but not for complete tumor regression. Recent reports suggest that cells with impaired homologous recombination (HR) activities due to mutations in TP53 gene or specific DNA repair proteins are specifically sensitive to ataxia telangiectasia and Rad3-related protein (ATR) inhibitors. Replication stress activates DNA repair checkpoint proteins (ATR, CHK1), which prevent further DNA damage. This review describes the use of DNA repair checkpoint inhibitors as single agents and strategies combining these inhibitors with DNA-damaging compounds for ovarian cancer therapy, as well as the new platforms used for optimizing ovarian cancer therapy.
Collapse
Affiliation(s)
- Patrycja Gralewska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Aneta Rogalska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
42
|
Gorecki L, Andrs M, Rezacova M, Korabecny J. Discovery of ATR kinase inhibitor berzosertib (VX-970, M6620): Clinical candidate for cancer therapy. Pharmacol Ther 2020; 210:107518. [PMID: 32109490 DOI: 10.1016/j.pharmthera.2020.107518] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Chemoresistance, radioresistance, and the challenge of achieving complete resection are major driving forces in the search for more robust and targeted anticancer therapies. Targeting the DNA damage response has recently attracted research interest, as these processes are enhanced in tumour cells. The major replication stress responder is ATM and Rad3-related (ATR) kinase, which is attracting attention worldwide with four drug candidates currently in phase I/II clinical trials. This review addresses a potent and selective small-molecule ATR inhibitor, which is known as VX-970 (also known as berzosertib or M6620), and summarizes the existing preclinical data to provide deep insight regarding its real potential. We also outline the transition from preclinical to clinical studies, as well as its relationships with other clinical candidates (AZD6738, VX-803 [M4344], and BAY1895344). The results suggest that VX-970 is indeed a promising anticancer drug that can be used both as monotherapy and in combination with either chemotherapy or radiotherapy strategies. Based on patient anamnesis and biomarker identification, VX-970 could become a valuable tool for oncologists in the fight against cancer.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 38 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
43
|
Abstract
Cancer is a multi-step process during which cells acquire mutations that eventually lead to uncontrolled cell growth and division and evasion of programmed cell death. The oncogenes such as Ras and c-Myc may be responsible in all three major stages of cancer i.e., early, intermediate, and late. The NF-κB has been shown to control the expression of genes linked with tumor pathways such as chronic inflammation, tumor cell survival, anti-apoptosis, proliferation, invasion, and angiogenesis. In the last few decades, various biomarker pathways have been identified that play a critical role in carcinogenesis such as Ras, NF-κB and DNA damage.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India.,Department of Nano-Therapeutics, Institute of Nano Science and Technology (INST), Habitat Centre, Mohali, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
44
|
Warren NJH, Eastman A. Comparison of the different mechanisms of cytotoxicity induced by checkpoint kinase I inhibitors when used as single agents or in combination with DNA damage. Oncogene 2020; 39:1389-1401. [PMID: 31659257 PMCID: PMC7023985 DOI: 10.1038/s41388-019-1079-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022]
Abstract
Inhibition of the DNA damage response is an emerging strategy to treat cancer. Understanding how DNA damage response inhibitors cause cytotoxicity in cancer cells is crucial to their further clinical development. This review focuses on three different mechanisms of cell killing by checkpoint kinase I inhibitors (CHK1i). DNA damage induced by chemotherapy drugs, such as topoisomerase I inhibitors, results in S and G2 phase arrest. Addition of CHK1i promotes cell cycle progression before repair is completed resulting in mitotic catastrophe. Ribonucleotide reductase inhibitors such as gemcitabine also arrest cells in S phase by preventing dNTP synthesis. Addition of CHK1i re-activates the DNA helicase to unwind DNA, but in the absence of dNTPs, this leads to excessive single-strand DNA that exceeds the protective capacity of the single-strand-binding protein RPA. Unprotected DNA is subjected to nuclease cleavage, resulting in replication catastrophe. CHK1i alone also kills a subset of cell lines through MRE11 and MUS81-mediated DNA cleavage in S phase cells. The choice of mechanism depends on the activation state of CDK2. Low level activation of CDK2 mediates helicase activation, cell cycle progression, and both replication and mitotic catastrophe. In contrast, high CDK2 activity is required for sensitivity to CHK1i as monotherapy. This high CDK2 activity threshold usually occurs late in the cell cycle to prepare for mitosis, but in CHK1i-sensitive cells, high activity can be attained in early S phase, resulting in DNA cleavage and cell death. This sensitivity to CHK1i has previously been associated with endogenous replication stress, but the dependence on high CDK2 activity, as well as MRE11, contradicts this hypothesis. The major unresolved question is why some cell lines fail to restrain their high CDK2 activity and hence succumb to CHK1i in S phase. Resolving this question will facilitate stratification of patients for treatment with CHK1i as monotherapy.
Collapse
Affiliation(s)
- Nicholas J H Warren
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Alan Eastman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
| |
Collapse
|
45
|
Menolfi D, Zha S. ATM, ATR and DNA-PKcs kinases-the lessons from the mouse models: inhibition ≠ deletion. Cell Biosci 2020; 10:8. [PMID: 32015826 PMCID: PMC6990542 DOI: 10.1186/s13578-020-0376-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
DNA damage, especially DNA double strand breaks (DSBs) and replication stress, activates a complex post-translational network termed DNA damage response (DDR). Our review focuses on three PI3-kinase related protein kinases-ATM, ATR and DNA-PKcs, which situate at the apex of the mammalian DDR. They are recruited to and activated at the DNA damage sites by their respective sensor protein complexes-MRE11/RAD50/NBS1 for ATM, RPA/ATRIP for ATR and KU70-KU80/86 (XRCC6/XRCC5) for DNA-PKcs. Upon activation, ATM, ATR and DNA-PKcs phosphorylate a large number of partially overlapping substrates to promote efficient and accurate DNA repair and to coordinate DNA repair with other DNA metabolic events (e.g., transcription, replication and mitosis). At the organism level, robust DDR is critical for normal development, aging, stem cell maintenance and regeneration, and physiological genomic rearrangements in lymphocytes and germ cells. In addition to endogenous damage, oncogene-induced replication stresses and genotoxic chemotherapies also activate DDR. On one hand, DDR factors suppress genomic instability to prevent malignant transformation. On the other hand, targeting DDR enhances the therapeutic effects of anti-cancer chemotherapy, which led to the development of specific kinase inhibitors for ATM, ATR and DNA-PKcs. Using mouse models expressing kinase dead ATM, ATR and DNA-PKcs, an unexpected structural function of these kinases was revealed, where the expression of catalytically inactive kinases causes more genomic instability than the loss of the proteins themselves. The spectrum of genomic instabilities and physiological consequences are unique for each kinase and depends on their activating complexes, suggesting a model in which the catalysis is coupled with DNA/chromatin release and catalytic inhibition leads to the persistence of the kinases at the DNA lesion, which in turn affects repair pathway choice and outcomes. Here we discuss the experimental evidences supporting this mode of action and their implications in the design and use of specific kinase inhibitors for ATM, ATR and DNA-PKcs for cancer therapy.
Collapse
Affiliation(s)
- Demis Menolfi
- Institute for Cancer Genetics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
- Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
| |
Collapse
|
46
|
Tutuncuoglu B, Krogan NJ. Mapping genetic interactions in cancer: a road to rational combination therapies. Genome Med 2019; 11:62. [PMID: 31640753 PMCID: PMC6805649 DOI: 10.1186/s13073-019-0680-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/16/2019] [Indexed: 01/08/2023] Open
Abstract
The discovery of synthetic lethal interactions between poly (ADP-ribose) polymerase (PARP) inhibitors and BRCA genes, which are involved in homologous recombination, led to the approval of PARP inhibition as a monotherapy for patients with BRCA1/2-mutated breast or ovarian cancer. Studies following the initial observation of synthetic lethality demonstrated that the reach of PARP inhibitors is well beyond just BRCA1/2 mutants. Insights into the mechanisms of action of anticancer drugs are fundamental for the development of targeted monotherapies or rational combination treatments that will synergize to promote cancer cell death and overcome mechanisms of resistance. The development of targeted therapeutic agents is premised on mapping the physical and functional dependencies of mutated genes in cancer. An important part of this effort is the systematic screening of genetic interactions in a variety of cancer types. Until recently, genetic-interaction screens have relied either on the pairwise perturbations of two genes or on the perturbation of genes of interest combined with inhibition by commonly used anticancer drugs. Here, we summarize recent advances in mapping genetic interactions using targeted, genome-wide, and high-throughput genetic screens, and we discuss the therapeutic insights obtained through such screens. We further focus on factors that should be considered in order to develop a robust analysis pipeline. Finally, we discuss the integration of functional interaction data with orthogonal methods and suggest that such approaches will increase the reach of genetic-interaction screens for the development of rational combination therapies.
Collapse
Affiliation(s)
- Beril Tutuncuoglu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 16th Street, Mission Bay Campus, San Francisco, CA, 94158-2140, USA.,The J. David Gladstone Institutes, Owens Street, San Francisco, CA, 94158, USA.,Quantitative Biosciences Institute, University of California, San Francisco, 4th Street, San Francisco, CA, 94158, USA.,Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 16th Street, Mission Bay Campus, San Francisco, CA, 94158-2140, USA. .,The J. David Gladstone Institutes, Owens Street, San Francisco, CA, 94158, USA. .,Quantitative Biosciences Institute, University of California, San Francisco, 4th Street, San Francisco, CA, 94158, USA. .,Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA.
| |
Collapse
|
47
|
Hustedt N, Álvarez-Quilón A, McEwan A, Yuan JY, Cho T, Koob L, Hart T, Durocher D. A consensus set of genetic vulnerabilities to ATR inhibition. Open Biol 2019; 9:190156. [PMID: 31506018 PMCID: PMC6769295 DOI: 10.1098/rsob.190156] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
The response to DNA replication stress in eukaryotes is under the control of the ataxia-telangiectasia and Rad3-related (ATR) kinase. ATR responds to single-stranded (ss) DNA to stabilize distressed DNA replication forks, modulate DNA replication firing and prevent cells with damaged DNA or incomplete DNA replication from entering into mitosis. Furthermore, inhibitors of ATR are currently in clinical development either as monotherapies or in combination with agents that perturb DNA replication. To gain a genetic view of the cellular pathways requiring ATR kinase function, we mapped genes whose mutation causes hypersensitivity to ATR inhibitors with genome-scale CRISPR/Cas9 screens. We delineate a consensus set of 117 genes enriched in DNA replication, DNA repair and cell cycle regulators that promote survival when ATR kinase activity is suppressed. We validate 14 genes from this set and report genes not previously described to modulate response to ATR inhibitors. In particular we found that the loss of the POLE3/POLE4 proteins, which are DNA polymerase ε accessory subunits, results in marked hypersensitivity to ATR inhibition. We anticipate that this 117-gene set will be useful for the identification of genes involved in the regulation of genome integrity and the characterization of new biological processes involving ATR, and may reveal biomarkers of ATR inhibitor response in the clinic.
Collapse
Affiliation(s)
- Nicole Hustedt
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
| | - Alejandro Álvarez-Quilón
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
| | - Andrea McEwan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
| | - Jing Yi Yuan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
| | - Tiffany Cho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, CanadaM5S 1A8
| | - Lisa Koob
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, CanadaM5S 1A8
| |
Collapse
|
48
|
Deshar R, Yoo W, Cho EB, Kim S, Yoon JB. RNF8 mediates NONO degradation following UV-induced DNA damage to properly terminate ATR-CHK1 checkpoint signaling. Nucleic Acids Res 2019; 47:762-778. [PMID: 30445466 PMCID: PMC6344893 DOI: 10.1093/nar/gky1166] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/02/2018] [Indexed: 12/26/2022] Open
Abstract
RNF8 plays a critical role in DNA damage response (DDR) to initiate ubiquitination-dependent signaling. To better characterize the role of RNF8 in UV-induced DDR, we searched for novel substrates of RNF8 and identified NONO as one intriguing substrate. We found that: (i) RNF8 ubiquitinates NONO and (ii) UV radiation triggers NONO ubiquitination and its subsequent degradation. Depletion of RNF8 inhibited UV-induced degradation of NONO, suggesting that RNF8 targets NONO for degradation in response to UV damage. In addition, we found that 3 NONO lysine residues (positions 279, 290 and 295) are important for conferring its instability in UV-DDR. Depletion of RNF8 or expression of NONO with lysine to arginine substitutions at positions 279, 290 and 295 prolonged CHK1 phosphorylation over an extended period of time. Furthermore, expression of the stable mutant, but not wild-type NONO, induced a prolonged S phase following UV exposure. Stable cell lines expressing the stable NONO mutant showed increased UV sensitivity in a clonogenic survival assay. Since RNF8 recruitment to the UV-damaged sites is dependent on ATR, we propose that RNF8-mediated NONO degradation and subsequent inhibition of NONO-dependent chromatin loading of TOPBP1, a key activator of ATR, function as a negative feedback loop critical for turning off ATR-CHK1 checkpoint signaling in UV-DDR.
Collapse
Affiliation(s)
- Rakesh Deshar
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul 137-701, Korea
| | - Wonjin Yoo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Eun-Bee Cho
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Sungjoo Kim
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul 137-701, Korea
| | - Jong-Bok Yoon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
49
|
Jin MH, Nam AR, Park JE, Bang JH, Bang YJ, Oh DY. Therapeutic Co-targeting of WEE1 and ATM Downregulates PD-L1 Expression in Pancreatic Cancer. Cancer Res Treat 2019; 52:149-166. [PMID: 31291716 PMCID: PMC6962488 DOI: 10.4143/crt.2019.183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Pancreatic cancer (PC) is one of the most lethal cancers worldwide, but there are currently no effective treatments. The DNA damage response (DDR) is under investigation for the development of novel anti-cancer drugs. Since DNA repair pathway alterations have been found frequently in PC, the purpose of this study was to test the DDR-targeting strategy in PC using WEE1 and ATM inhibitors. Materials and Methods We performed in vitro experiments using a total of ten human PC cell lines to evaluate antitumor effect of AZD1775 (WEE1 inhibitor) alone or combination with AZD0156 (ATM inhibitor). We established Capan-1-mouse model for in vivo experiments to confirm our findings. RESULTS In our research, we found that WEE1 inhibitor (AZD1775) as single agent showed anti-tumor effects in PC cells, however, targeting WEE1 upregulated p-ATM level. Here, we observed that co-targeting of WEE1 and ATM acted synergistically to reduce cell proliferation and migration, and to induce DNA damage in vitro. Notably, inhibition of WEE1 or WEE1/ATM downregulated programmed cell death ligand 1 expression by blocking glycogen synthase kinase-3β serine 9 phosphorylation and decrease of CMTM6 expression. In Capan-1 mouse xenograft model, AZD1775 plus AZD0156 (ATM inhibitor) treatment reduced tumor growth and downregulated tumor expression of programmed cell death ligand 1, CMTM6, CD163, and CXCR2, all of which contribute to tumor immune evasion. CONCLUSION Dual blockade of WEE1 and ATM might be a potential therapeutic strategy for PC. Taken toget.
Collapse
Affiliation(s)
- Mei Hua Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Eun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
50
|
Wang C, Wang G, Feng X, Shepherd P, Zhang J, Tang M, Chen Z, Srivastava M, McLaughlin ME, Navone NM, Hart GT, Chen J. Genome-wide CRISPR screens reveal synthetic lethality of RNASEH2 deficiency and ATR inhibition. Oncogene 2019; 38:2451-2463. [PMID: 30532030 PMCID: PMC6450769 DOI: 10.1038/s41388-018-0606-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022]
Abstract
Ataxia telangiectasia mutated and RAD3 related (ATR) protein kinase plays critical roles in ensuring DNA replication, DNA repair, and cell cycle control in response to replication stress, making ATR inhibition a promising therapeutic strategy for cancer treatment. To identify genes whose loss makes tumor cells hypersensitive to ATR inhibition, we performed CRISPR/Cas9-based whole-genome screens in 3 independent cell lines treated with a highly selective ATR inhibitor, AZD6738. These screens uncovered a comprehensive genome-wide profile of ATR inhibitor sensitivity. From the candidate genes, we demonstrated that RNASEH2 deficiency is synthetic lethal with ATR inhibition both in vitro and in vivo. RNASEH2-deficient cells exhibited elevated levels of DNA damage and, when treated with AZD6738, underwent apoptosis (short-time treated) or senescence (long-time treated). Notably, RNASEH2 deficiency is frequently found in prostate adenocarcinoma; we found decreased RNASEH2B protein levels in prostate adenocarcinoma patient-derived xenograft (PDX) samples. Our findings suggest that ATR inhibition may be beneficial for cancer patients with reduced levels of RNASEH2 and that RNASEH2 merits further exploration as a potential biomarker for ATR inhibitor-based therapy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peter Shepherd
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Megan E McLaughlin
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Glen Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|