1
|
Chamandi G, El-Hajjar L, El Kurdi A, Le Bras M, Nasr R, Lehmann-Che J. ER Negative Breast Cancer and miRNA: There Is More to Decipher Than What the Pathologist Can See! Biomedicines 2023; 11:2300. [PMID: 37626796 PMCID: PMC10452617 DOI: 10.3390/biomedicines11082300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC), the most prevalent cancer in women, is a heterogenous disease. Despite advancements in BC diagnosis, prognosis, and therapeutics, survival rates have drastically decreased in the metastatic setting. Therefore, BC still remains a medical challenge. The evolution of high-throughput technology has highlighted gaps in the classification system of BCs. Of particular interest is the notorious triple negative BC, which was recounted as being heterogenous itself and it overlaps with distinct subtypes, namely molecular apocrine (MA) and luminal androgen (LAR) BCs. These subtypes are, even today, still misdiagnosed and poorly treated. As such, researchers and clinicians have been looking for ways through which to refine BC classification in order to properly understand the initiation, development, progression, and the responses to the treatment of BCs. One tool is biomarkers and, specifically, microRNA (miRNA), which are highly reported as associated with BC carcinogenesis. In this review, the diverse roles of miRNA in estrogen receptor negative (ER-) and androgen receptor positive (AR+) BC are depicted. While highlighting their oncogenic and tumor suppressor functions in tumor progression, we will discuss their diagnostic, prognostic, and predictive biomarker potentials, as well as their drug sensitivity/resistance activity. The association of several miRNAs in the KEGG-reported pathways that are related to ER-BC carcinogenesis is presented. The identification and verification of accurate miRNA panels is a cornerstone for tackling BC classification setbacks, as is also the deciphering of the carcinogenesis regulators of ER - AR + BC.
Collapse
Affiliation(s)
- Ghada Chamandi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon
| | - Abdallah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon;
| | - Morgane Le Bras
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
| | - Jacqueline Lehmann-Che
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| |
Collapse
|
2
|
Tian H, Liu C, Yu J, Han J, Du J, Liang S, Wang W, Liu Q, Lian R, Zhu T, Wu S, Tao T, Ye Y, Zhao J, Yang Y, Zhu X, Cai J, Wu J, Li M. PHF14 enhances DNA methylation of SMAD7 gene to promote TGF-β-driven lung adenocarcinoma metastasis. Cell Discov 2023; 9:41. [PMID: 37072414 PMCID: PMC10113255 DOI: 10.1038/s41421-023-00528-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/07/2023] [Indexed: 04/20/2023] Open
Abstract
Aberrant activation of TGF-β signaling plays a pivotal role in cancer metastasis and progression. However, molecular mechanisms underlying the dysregulation of TGF-β pathway remain to be understood. Here, we found that SMAD7, a direct downstream transcriptional target and also a key antagonist of TGF-β signaling, is transcriptionally suppressed in lung adenocarcinoma (LAD) due to DNA hypermethylation. We further identified that PHF14 binds DNMT3B and serves as a DNA CpG motif reader, recruiting DNMT3B to the SMAD7 gene locus, resulting in DNA methylation and transcriptional suppression of SMAD7. Our in vitro and in vivo experiments showed that PHF14 promotes metastasis through binding DNMT3B to suppress SMAD7 expression. Moreover, our data revealed that PHF14 expression correlates with lowered SMAD7 level and shorter survival of LAD patients, and importantly that SMAD7 methylation level of circulating tumor DNA (ctDNA) can potentially be used for prognosis prediction. Together, our present study illustrates a new epigenetic mechanism, mediated by PHF14 and DNMT3B, in the regulation of SMAD7 transcription and TGF-β-driven LAD metastasis, and suggests potential opportunities for LAD prognosis.
Collapse
Affiliation(s)
- Han Tian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Cancer Institute, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenying Liu
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jianchen Yu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, China
| | - Jian Han
- Cancer Institute, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianan Du
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shujun Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenting Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qin Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rong Lian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tianyu Tao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaokai Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingjing Zhao
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xun Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junchao Cai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jueheng Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengfeng Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Cancer Institute, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Ismail A, El-Mahdy HA, Abulsoud AI, Sallam AAM, Eldeib MG, Elsakka EG, Zaki MB, Doghish AS. Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: A comprehensive review. Int J Biol Macromol 2022; 224:1541-1565. [DOI: 10.1016/j.ijbiomac.2022.10.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
4
|
Yu TJ, Tang JY, Shiau JP, Hou MF, Yen CH, Ou-Yang F, Chen CY, Chang HW. Gingerenone A Induces Antiproliferation and Senescence of Breast Cancer Cells. Antioxidants (Basel) 2022; 11:587. [PMID: 35326237 PMCID: PMC8945794 DOI: 10.3390/antiox11030587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/08/2023] Open
Abstract
Ginger is a popular spice and consists of several bioactive antioxidant compounds. Gingerenone A (Gin A), a novel compound isolated from Zingiber officinale, is rarely investigated for its anti-breast-cancer properties. Some ginger extracts have been reported to initiate senescence, an anticancer strategy. However, the anticancer effects of Gin A on breast cancer cells remain unclear. The present study aims to assess the modulating impact of Gin A acting on proliferation and senescence to breast cancer cells. Gin A diminished the cellular ATP content and decreased the cell viability of the MTS assay in several breast cancer cell lines. It also showed a delayed G2/M response to breast cancer cells (MCF7 and MDA-MB-231). N-acetylcysteine (NAC), an oxidative stress inhibitor, can revert these responses of antiproliferation and G2/M delay. The oxidative stress and senescence responses of Gin A were further validated by increasing reactive oxygen species, mitochondrial superoxide, and β-galactosidase activity, which were reverted by NAC. Gin A also upregulated senescence-associated gene expressions. In addition to oxidative stress, Gin A also induced DNA damage responses by increasing γH2AX level and foci and generating 8-hydroxyl-2'-deoxyguanosine in breast cancer cells, which were reverted by NAC. Therefore, Gin A promotes antiproliferation and senescence of breast cancer cells induced by oxidative stress.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-J.Y.); (C.-H.Y.)
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.); (F.O.-Y.)
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.); (F.O.-Y.)
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-J.Y.); (C.-H.Y.)
| | - Fu Ou-Yang
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.); (F.O.-Y.)
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Sciences, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
5
|
Zyulina V, Yan KK, Ju B, Schwarzenberger E, Passegger C, Tam-Amersdorfer C, Pan Q, Sconocchia T, Pollack C, Shaner B, Zebisch A, Easton J, Yu J, Silva JM, Strobl H. The miR-424(322)/503 gene cluster regulates pro- versus anti-inflammatory skin DC subset differentiation by modulating TGF-β signaling. Cell Rep 2021; 35:109049. [PMID: 33910004 DOI: 10.1016/j.celrep.2021.109049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/26/2020] [Accepted: 04/06/2021] [Indexed: 11/15/2022] Open
Abstract
Transforming growth factor β (TGF-β) family ligands are key regulators of dendritic cell (DC) differentiation and activation. Epidermal Langerhans cells (LCs) require TGF-β family signaling for their differentiation, and canonical TGF-β1 signaling secures a non-activated LC state. LCs reportedly control skin inflammation and are replenished from peripheral blood monocytes, which also give rise to pro-inflammatory monocyte-derived DCs (moDCs). By studying mechanisms in inflammation, we previously screened LCs versus moDCs for differentially expressed microRNAs (miRNAs). This revealed that miR-424/503 is the most strongly inversely regulated (moDCs > LCs). We here demonstrate that miR-424/503 is induced during moDC differentiation and promotes moDC differentiation in human and mouse. Inversely, forced repression of miR-424 during moDC differentiation facilitates TGF-β1-dependent LC differentiation. Mechanistically, miR-424/503 deficiency in monocyte/DC precursors leads to the induction of TGF-β1 response genes critical for LC differentiation. Therefore, the miR-424/503 gene cluster plays a decisive role in anti-inflammatory LC versus pro-inflammatory moDC differentiation from monocytes.
Collapse
Affiliation(s)
- Victoria Zyulina
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Koon-Kiu Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Elke Schwarzenberger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Christina Passegger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Carmen Tam-Amersdorfer
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Christian Pollack
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Bridget Shaner
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, 8010 Graz, Austria; Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jose M Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| | - Herbert Strobl
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
6
|
He Y, Cai Y, Pai PM, Ren X, Xia Z. The Causes and Consequences of miR-503 Dysregulation and Its Impact on Cardiovascular Disease and Cancer. Front Pharmacol 2021; 12:629611. [PMID: 33762949 PMCID: PMC7982518 DOI: 10.3389/fphar.2021.629611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
microRNAs (miRs) are short, non-coding RNAs that regulate gene expression by mRNA degradation or translational repression. Accumulated studies have demonstrated that miRs participate in various biological processes including cell differentiation, proliferation, apoptosis, metabolism and development, and the dysregulation of miRs expression are involved in different human diseases, such as neurological, cardiovascular disease and cancer. microRNA-503 (miR-503), one member of miR-16 family, has been studied widely in cardiovascular disease and cancer. In this review, we summarize and discuss the studies of miR-503 in vitro and in vivo, and how miR-503 regulates gene expression from different aspects of pathological processes of diseases, including carcinogenesis, angiogenesis, tissue fibrosis and oxidative stress; We will also discuss the mechanisms of dysregulation of miR-503, and whether miR-503 could be applied as a diagnostic marker or therapeutic target in cardiovascular disease or cancer.
Collapse
Affiliation(s)
- Yanjing He
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Pearl Mingchu Pai
- Department of Medicine, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
- Department of Medicine, The University of Hong Kong - Queen Mary Hospital, Hong Kong, China
| | - Xinling Ren
- Department of Respiratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
The microRNA-424/503 cluster: A master regulator of tumorigenesis and tumor progression with paradoxical roles in cancer. Cancer Lett 2020; 494:58-72. [PMID: 32846190 DOI: 10.1016/j.canlet.2020.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that play a crucial role in post-transcriptional gene regulation and act as indispensable mediators in several critical biological processes, including tumorigenesis, tissue homeostasis, and regeneration. MiR-424 and miR-503 are intragenic miRNAs that are clustered on human chromosome Xq26.3. Previous studies have reported that both miRNAs are dysregulated and play crucial but paradoxical roles in tumor initiation and progression, involving different target genes and molecular pathways. Moreover, these two miRNAs are concomitantly expressed in several cancer cells, indicating a coordinating function as a cluster. In this review, the roles and regulatory mechanisms of miR-424, miR-503, and miR-424/503 cluster are summarized in different types of cancers.
Collapse
|
8
|
Yu TJ, Tang JY, Lin LC, Lien WJ, Cheng YB, Chang FR, Ou-Yang F, Chang HW. Withanolide C Inhibits Proliferation of Breast Cancer Cells via Oxidative Stress-Mediated Apoptosis and DNA Damage. Antioxidants (Basel) 2020; 9:antiox9090873. [PMID: 32947878 PMCID: PMC7555407 DOI: 10.3390/antiox9090873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Some withanolides, particularly the family of steroidal lactones, show anticancer effects, but this is rarely reported for withanolide C (WHC)—especially anti-breast cancer effects. The subject of this study is to evaluate the ability of WHC to regulate the proliferation of breast cancer cells, using both time and concentration in treatment with WHC. In terms of ATP depletion, WHC induced more antiproliferation to three breast cancer cell lines, SKBR3, MCF7, and MDA-MB-231, than to normal breast M10 cell lines. SKBR3 and MCF7 cells showing higher sensitivity to WHC were used to explore the antiproliferation mechanism. Flow cytometric apoptosis analyses showed that subG1 phase and annexin V population were increased in breast cancer cells after WHC treatment. Western blotting showed that cleaved forms of the apoptotic proteins poly (ADP-ribose) polymerase (c-PARP) and cleaved caspase 3 (c-Cas 3) were increased in breast cancer cells. Flow cytometric oxidative stress analyses showed that WHC triggered reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX) production as well as glutathione depletion. In contrast, normal breast M10 cells showed lower levels of ROS and annexin V expression than breast cancer cells. Flow cytometric DNA damage analyses showed that WHC triggered γH2AX and 8-oxo-2′-deoxyguanosine (8-oxodG) expression in breast cancer cells. Moreover, N-acetylcysteine (NAC) pretreatment reverted oxidative stress-mediated ATP depletion, apoptosis, and DNA damage. Therefore, WHC kills breast cancer cells depending on oxidative stress-associated mechanisms.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan;
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
| | - Wan-Ju Lien
- Department of Biomedical Science and Environmental Biology, Ph.D Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
| | - Fu Ou-Yang
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Correspondence: or (F.O.-Y.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (F.O.-Y.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: or (F.O.-Y.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (F.O.-Y.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
9
|
Connolly M, Garfield BE, Crosby A, Morrell NW, Wort SJ, Kemp PR. miR-1-5p targets TGF-βR1 and is suppressed in the hypertrophying hearts of rats with pulmonary arterial hypertension. PLoS One 2020; 15:e0229409. [PMID: 32109943 PMCID: PMC7048278 DOI: 10.1371/journal.pone.0229409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/05/2020] [Indexed: 01/09/2023] Open
Abstract
The microRNA miR-1 is an important regulator of muscle phenotype including cardiac muscle. Down-regulation of miR-1 has been shown to occur in left ventricular hypertrophy but its contribution to right ventricular hypertrophy in pulmonary arterial hypertension are not known. Previous studies have suggested that miR-1 may suppress transforming growth factor-beta (TGF-β) signalling, an important pro-hypertrophic pathway but only indirect mechanisms of regulation have been identified. We identified the TGF-β type 1 receptor (TGF-βR1) as a putative miR-1 target. We therefore hypothesized that miR-1 and TGF-βR1 expression would be inversely correlated in hypertrophying right ventricle of rats with pulmonary arterial hypertension and that miR-1 would inhibit TGF-β signalling by targeting TGF-βR1 expression. Quantification of miR-1 and TGF-βR1 in rats treated with monocrotaline to induce pulmonary arterial hypertension showed appropriate changes in miR-1 and TGF-βR1 expression in the hypertrophying right ventricle. A miR-1-mimic reduced enhanced green fluorescent protein expression from a reporter vector containing the TGF-βR1 3’- untranslated region and knocked down endogenous TGF-βR1. Lastly, miR-1 reduced TGF-β activation of a (mothers against decapentaplegic homolog) SMAD2/3-dependent reporter. Taken together, these data suggest that miR-1 targets TGF-βR1 and reduces TGF-β signalling, so a reduction in miR-1 expression may increase TGF-β signalling and contribute to cardiac hypertrophy.
Collapse
Affiliation(s)
- Martin Connolly
- Molecular Medicine, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Benjamin E. Garfield
- Molecular Medicine, National Heart & Lung Institute, Imperial College London, London, United Kingdom
- National Pulmonary Hypertension Centre at the Royal Brompton and Harefield NHS Trust and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alexi Crosby
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nick W. Morrell
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J. Wort
- National Pulmonary Hypertension Centre at the Royal Brompton and Harefield NHS Trust and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Paul R. Kemp
- Molecular Medicine, National Heart & Lung Institute, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
SMURF2 prevents detrimental changes to chromatin, protecting human dermal fibroblasts from chromosomal instability and tumorigenesis. Oncogene 2020; 39:3396-3410. [PMID: 32103168 DOI: 10.1038/s41388-020-1226-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/17/2023]
Abstract
E3 ubiquitin ligases (E3s) play essential roles in the maintenance of tissue homeostasis under normal and stress conditions, as well as in disease states, particularly in cancer. However, the role of E3s in the initiation of human tumors is poorly understood. Previously, we reported that genetic ablation of the HECT-type E3 ubiquitin ligase Smurf2 induces carcinogenesis in mice; but whether and how these findings are pertinent to the inception of human cancer remain unknown. Here we show that SMURF2 is essential to protect human dermal fibroblasts (HDFs) from malignant transformation, and its depletion converts HDFs into tumorigenic entity. This phenomenon was associated with the radical changes in chromatin structural and epigenetic landscape, dysregulated gene expression and cell-cycle control, mesenchymal-to-epithelial transition and impaired DNA damage response. Furthermore, we show that SMURF2-mediated tumor suppression is interlinked with SMURF2's ability to regulate the expression of two central chromatin modifiers-an E3 ubiquitin ligase RNF20 and histone methyltransferase EZH2. Silencing these factors significantly reduced the growth and transformation capabilities of SMURF2-depleted cells. Finally, we demonstrate that SMURF2-compromised HDFs are highly tumorigenic in nude mice. These findings suggest the critical role that SMURF2 plays in preventing malignant alterations, chromosomal instability and cancer.
Collapse
|
11
|
Gao X, Xu H, Xu D, Li S, Wei Z, Li S, Cai W, Mao N, Jin F, Li Y, Li T, Yi X, Liu H, Yang F. MiR-411-3p alleviates Silica-induced pulmonary fibrosis by regulating Smurf2/TGF-β signaling. Exp Cell Res 2020; 388:111878. [PMID: 32004504 DOI: 10.1016/j.yexcr.2020.111878] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/11/2020] [Accepted: 01/26/2020] [Indexed: 02/03/2023]
Abstract
Occupational exposure to silica dust particles was the major cause of pulmonary fibrosis, and many miRNAs have been demonstrated to regulate target mRNAs in silicosis. In the present study, we found that a decreasing level of miR-411-3p in silicosis rats and lung fibroblasts induced by TGF-β1. Enlargement of miR-411-3p could inhibit the cell proliferation and migration in lung fibroblasts with TGF-β1 treatment and attenuate lung fibrosis in silicotic mice. In addition, a mechanistic study showed that miR-411-3p exert its inhibitory effect on Smad ubiquitination regulatory factor 2 (Smurf2) expression and decrease ubiquitination degradation of Smad7 regulated by smurf2, result in blocking of TGF-β/Smad signaling. We proposed that increased expression of miR-411-3p abrogates silicosis by blocking activation of TGF-β/Smad signaling through decreasing ubiquitination degradation effect of smurf2 on Smad7.
Collapse
Affiliation(s)
- Xuemin Gao
- Basic Medical College, Hebei Medical Collage, Shijiazhuang, Hebei, 050017, China
| | - Hong Xu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Dingjie Xu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Shumin Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Zhongqiu Wei
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Shifeng Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Wenchen Cai
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Na Mao
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Fuyu Jin
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Yaqian Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Tian Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Xue Yi
- Key Labortary of Functional and Clinical Translational Medicine, Xiamen Medical College, Xianmen, Fujian, China
| | - Heliang Liu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Fang Yang
- Basic Medical College, Hebei Medical Collage, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
12
|
Karkhanis V, Alinari L, Ozer HG, Chung J, Zhang X, Sif S, Baiocchi RA. Protein arginine methyltransferase 5 represses tumor suppressor miRNAs that down-regulate CYCLIN D1 and c-MYC expression in aggressive B-cell lymphoma. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49877-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
13
|
Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol 2019; 67:102-116. [PMID: 31899247 DOI: 10.1016/j.semcancer.2019.12.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/10/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Smad ubiquitination regulatory factor 1 (Smurf1) and Smurf2 are HECT-type E3 ubiquitin ligases, and both Smurfs were initially identified to regulate Smad protein stability in the TGF-β/BMP signaling pathway. In recent years, Smurfs have exhibited E3 ligase-dependent and -independent activities in various kinds of cells. Smurfs act as either potent tumor promoters or tumor suppressors in different tumors by regulating biological processes, including metastasis, apoptosis, cell cycle, senescence and genomic stability. The regulation of Smurfs activity and expression has therefore emerged as a hot spot in tumor biology research. Further, the Smurf1- or Smurf2-deficient mice provide more in vivo clues for the functional study of Smurfs in tumorigenesis and development. In this review, we summarize these milestone findings and, in turn, reveal new avenues for the prevention and treatment of cancer by regulating Smurfs.
Collapse
Affiliation(s)
- Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xueli Zhang
- Department of General Surgery, Shanghai Fengxian Central Hospital Graduate Training Base, Fengxian Hospital, Southern Medical University, Shanghai, China.
| | - Lingqiang Zhang
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Peixian People's Hospital, Jiangsu Province 221600, China.
| |
Collapse
|
14
|
Karkhanis V, Alinari L, Ozer HG, Chung J, Zhang X, Sif S, Baiocchi RA. Protein arginine methyltransferase 5 represses tumor suppressor miRNAs that down-regulate CYCLIN D1 and c-MYC expression in aggressive B-cell lymphoma. J Biol Chem 2019; 295:1165-1180. [PMID: 31822509 DOI: 10.1074/jbc.ra119.008742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Protein arginine methyltransferase-5 (PRMT5) is overexpressed in aggressive B-cell non-Hodgkin's lymphomas, including mantle cell lymphoma and diffuse large B-cell lymphoma, and supports constitutive expression of CYCLIN D1 and c-MYC. Here, we combined ChIP analysis with next-generation sequencing to identify microRNA (miRNA) genes that are targeted by PRMT5 in aggressive lymphoma cell lines. We identified enrichment of histone 3 dimethylation at Arg-8 (H3(Me2)R8) in the promoter regions of miR33b, miR96, and miR503. PRMT5 knockdown de-repressed transcription of all three miRNAs, accompanied by loss of recruitment of epigenetic repressor complexes containing PRMT5 and either histone deacetylase 2 (HDAC2) or HDAC3, enhanced binding of co-activator complexes containing p300 or CREB-binding protein (CBP), and increased acetylation of specific histones, including H2BK12, H3K9, H3K14, and H4K8 at the miRNA promoters. Re-expression of individual miRNAs in B-cell lymphoma cells down-regulated expression of PRMT5, CYCLIN D1, and c-MYC, which are all predicted targets of these miRNAs, and reduced lymphoma cell survival. Luciferase reporter assays with WT and mutant 3'UTRs of CYCLIN D1 and c-MYC mRNAs revealed that binding sites for miR33b, miR96, and miR503 are critical for translational regulation of the transcripts of these two genes. Our findings link altered PRMT5 expression to transcriptional silencing of tumor-suppressing miRNAs in lymphoma cells and reinforce PRMT5's relevance for promoting lymphoma cell growth and survival.
Collapse
Affiliation(s)
- Vrajesh Karkhanis
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, Ohio State University, Columbus, Ohio 43210
| | - Jihyun Chung
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Xiaoli Zhang
- Center for Biostatistics, Department of Biomedical Informatics, Ohio State University, Columbus, Ohio 43210
| | - Saïd Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
15
|
Abolghasemi M, Tehrani SS, Yousefi T, Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M, Kafil HS, Bastami M, Edalati M, Eyvazi S, Naghizadeh M, Targhazeh N, Yousefi B, Safa A, Majidinia M, Rameshknia V. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J Cell Physiol 2019; 235:5008-5029. [PMID: 31724738 DOI: 10.1002/jcp.29396] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most lethal malignancies in women in the world. Various factors are involved in the development and promotion of the malignancy; most of them involve changes in the expression of certain genes, such as microRNAs (miRNAs). MiRNAs can regulate signaling pathways negatively or positively, thereby affecting tumorigenesis and various aspects of cancer progression, particularly breast cancer. Besides, accumulating data demonstrated that miRNAs are a novel tool for prognosis and diagnosis of breast cancer patients. Herein, we will review the roles of these RNA molecules in several important signaling pathways, such as transforming growth factor, Wnt, Notch, nuclear factor-κ B, phosphoinositide-3-kinase/Akt, and extracellular-signal-regulated kinase/mitogen activated protein kinase signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Maryam Abolghasemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Ghamari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Naghizadeh
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Babol University Of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rameshknia
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
16
|
Fazilaty H, Rago L, Kass Youssef K, Ocaña OH, Garcia-Asencio F, Arcas A, Galceran J, Nieto MA. A gene regulatory network to control EMT programs in development and disease. Nat Commun 2019; 10:5115. [PMID: 31712603 PMCID: PMC6848104 DOI: 10.1038/s41467-019-13091-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
The Epithelial to Mesenchymal Transition (EMT) regulates cell plasticity during embryonic development and in disease. It is dynamically orchestrated by transcription factors (EMT-TFs), including Snail, Zeb, Twist and Prrx, all activated by TGF-β among other signals. Here we find that Snail1 and Prrx1, which respectively associate with gain or loss of stem-like properties and with bad or good prognosis in cancer patients, are expressed in complementary patterns during vertebrate development and in cancer. We show that this complementarity is established through a feedback loop in which Snail1 directly represses Prrx1, and Prrx1, through direct activation of the miR-15 family, attenuates the expression of Snail1. We also describe how this gene regulatory network can establish a hierarchical temporal expression of Snail1 and Prrx1 during EMT and validate its existence in vitro and in vivo, providing a mechanism to switch and select different EMT programs with important implications in development and disease. EMT is a developmental process that is aberrantly activated in metastasizing cancer cells, but how multiple transcription factors regulate EMT is unclear. Here, the authors uncover a gene regulatory network between Prrx1 and Snail1 that selects EMT mode in developing vertebrates and cancer cells.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Instituto de Neurociencias (CSIC-UMH), Avda. Ramón y Cajal s/n, Sant Joan d', Alacant, 03550, Spain.,Institute of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
| | - Luciano Rago
- Instituto de Neurociencias (CSIC-UMH), Avda. Ramón y Cajal s/n, Sant Joan d', Alacant, 03550, Spain.,Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Khalil Kass Youssef
- Instituto de Neurociencias (CSIC-UMH), Avda. Ramón y Cajal s/n, Sant Joan d', Alacant, 03550, Spain
| | - Oscar H Ocaña
- Instituto de Neurociencias (CSIC-UMH), Avda. Ramón y Cajal s/n, Sant Joan d', Alacant, 03550, Spain
| | - Francisco Garcia-Asencio
- Instituto de Neurociencias (CSIC-UMH), Avda. Ramón y Cajal s/n, Sant Joan d', Alacant, 03550, Spain
| | - Aida Arcas
- Instituto de Neurociencias (CSIC-UMH), Avda. Ramón y Cajal s/n, Sant Joan d', Alacant, 03550, Spain.,Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Juan Galceran
- Instituto de Neurociencias (CSIC-UMH), Avda. Ramón y Cajal s/n, Sant Joan d', Alacant, 03550, Spain
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Avda. Ramón y Cajal s/n, Sant Joan d', Alacant, 03550, Spain.
| |
Collapse
|
17
|
Li T, Li Y, Gan Y, Tian R, Wu Q, Shu G, Yin G. Methylation-mediated repression of MiR-424/503 cluster promotes proliferation and migration of ovarian cancer cells through targeting the hub gene KIF23. Cell Cycle 2019; 18:1601-1618. [PMID: 31135262 PMCID: PMC6619937 DOI: 10.1080/15384101.2019.1624112] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one type of gynecological malignancies with extremely high lethal rate. Abnormal proliferation and metastasis are regarded to play important roles in patients' death, whereas we know little about the underlying molecular mechanisms. Under this circumstance, our current study aims to investigate the role of hub genes in ovarian cancer. Bioinformatics analysis of the data from GEO and analyses of ovarian cancer samples were performed. Then, the results showed that KIF23, a hub gene, was mainly related to cell cycle and positively associated with poor prognosis. Meanwhile, both miR-424-5p and miR-503-5p directly targeted to 3'UTR of KIF23 to suppress the expression of KIF23 and inhibit ovarian cancer cell proliferation and migration. Furthermore, we discovered that miR-424/503 was epigenetically repressed by hypermethylation in the promoter regions, which directly modulated the expression of KIF23 to improve the oncogenic performance of cancer cells in vitro. Together, our research certifies that miR-424/503 cluster is silenced by DNA hypermethylation, which promotes the expression of KIF23, thereby regulating the proliferation and migration of ovarian cancer cells. Interposing this process might be a novel approach in cancer therapy.
Collapse
Affiliation(s)
- Tong Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yimin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yaqi Gan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Ruotong Tian
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Qihan Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Medical School, Fudan University, Shanghai, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
18
|
Cañete PF, Sweet RA, Gonzalez-Figueroa P, Papa I, Ohkura N, Bolton H, Roco JA, Cuenca M, Bassett KJ, Sayin I, Barry E, Lopez A, Canaday DH, Meyer-Hermann M, Doglioni C, Fazekas de St Groth B, Sakaguchi S, Cook MC, Vinuesa CG. Regulatory roles of IL-10-producing human follicular T cells. J Exp Med 2019; 216:1843-1856. [PMID: 31209070 PMCID: PMC6683995 DOI: 10.1084/jem.20190493] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/02/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022] Open
Abstract
Uncontrolled IgE responses drive allergies and anaphylaxis. Here, Cañete et al. describe a human follicular regulatory T cell population that does not express FOXP3 and produces abundant IL-10, which limits IgE switching. These cells appear to be key regulators of atopy. Mucosal lymphoid tissues such as human tonsil are colonized by bacteria and exposed to ingested and inhaled antigens, requiring tight regulation of immune responses. Antibody responses are regulated by follicular helper T (TFH) cells and FOXP3+ follicular regulatory T (TFR) cells. Here we describe a subset of human tonsillar follicular T cells identified by expression of TFH markers and CD25 that are the main source of follicular T (TF) cell–derived IL-10. Despite lack of FOXP3 expression, CD25+ TF cells resemble T reg cells in high CTLA4 expression, low IL-2 production, and their ability to repress T cell proliferation. CD25+ TF cell–derived IL-10 dampens induction of B cell class-switching to IgE. In children, circulating total IgE titers were inversely correlated with the frequencies of tonsil CD25+ TF cells and IL-10–producing TF cells but not with total T reg cells, TFR, or IL-10–producing T cells. Thus, CD25+ TF cells emerge as a subset with unique T and B cell regulatory activities that may help prevent atopy.
Collapse
Affiliation(s)
- Pablo F Cañete
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Rebecca A Sweet
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Paula Gonzalez-Figueroa
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ilenia Papa
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Naganari Ohkura
- Laboratory of Experimental Immunology, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Holly Bolton
- Discipline of Pathology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Jonathan A Roco
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Marta Cuenca
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Katharine J Bassett
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ismail Sayin
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH
| | - Emma Barry
- Cytokine Receptor Laboratory, Centre for Cancer Biology, Adelaide, Australia
| | - Angel Lopez
- Cytokine Receptor Laboratory, Centre for Cancer Biology, Adelaide, Australia
| | - David H Canaday
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Claudio Doglioni
- Department Pathology, San Raffaele Scientific Institute, Università Vita-Salute, Milan, Italy
| | - Barbara Fazekas de St Groth
- Discipline of Pathology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Matthew C Cook
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,Department of Immunology, Canberra Hospital, Canberra, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
19
|
NEDD4 Family of E3 Ubiquitin Ligases in Breast Cancer: Spotlight on SMURFs, WWPs and NEDD4. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:365-375. [PMID: 31456194 DOI: 10.1007/978-3-030-20301-6_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Massively parallel sequencing, genomic and proteomic technologies have provided near complete resolution of signaling landscape of breast cancer (BCa). NEDD4 family of E3-ubiquitin ligases comprises a large family of proteins particularly, SMURFs (SMURF1, SMURF2), WWPs and NEDD4 which are ideal candidates for targeted therapy. However, it is becoming progressively more understandable that SMURFs and NEDD4 have "split-personalities". These molecules behave dualistically in breast cancer and future studies must converge on detailed identification of context specific role of these proteins in BCa. Finally, we provide scattered clues of regulation of SMURF2 by oncogenic miRNAs, specifically considering longstanding questions related to regulation of SMURF1 and WWPs by miRNAs in BCa. SMURFS, WWPs and NEDD4 are versatile regulators and represent a fast-growing field in cancer research and better understanding of the underlying mechanisms will be helpful in transition of our knowledge from a segmented view to a more conceptual continuum.
Collapse
|
20
|
黎 文, 冯 赟, 马 振, 陆 伦. [Expression of miR-454-3p and its effect on proliferation, invasion and metastasis of colon cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1421-1426. [PMID: 30613008 PMCID: PMC6744220 DOI: 10.12122/j.issn.1673-4254.2018.12.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To study the expression of miR-454-3p in colon cancer and its effect on colon cancer proliferation, invasion and hepatic metastasis. METHODS Specimens of tumor tissues and paired adjacent tissues were collected from 20 patients with colorectal cancer for detecting the expression levels of miR-454-3p using in situ hybridization. Colon cancer cell line SW480 was transfected with a lentiviral vector to induce miR-454-3p over-expression, and the changes in cell proliferation and invasion were observed using cell counting kit-8 (CCK-8), clone formation assay and Transwell experiment. The effect of miR- 454-3p over-expression on hepatic metastasis of colon cancer was assessed in BALB/c mouse models. RESULTS The results of in situ hybridization showed a significantly increased expression level of miR-454-3p in colon cancer tissues as compared with normal colon tissues (P < 0.05). In SW480 cells, over-expression of miR-454-3p significantly promoted the cell proliferation and invasion (P < 0.05). In BALB/c mice, SW480 cells over-expressing miR-454-3p showed a significantly higher potential for liver metastases than the control cells (P < 0.05). CONCLUSIONS miR-454-3p is overexpressed in the tumor tissues in patients with colorectal cancer and participates in the progression of colorectal cancer by promoting cancer cell proliferation, invasion, and liver metastasis. miR-454-3p may serve as a novel biomarker for colorectal cancer diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- 文华 黎
- 南京医科大学附属上海一院临床医学院消化科,上海 201600Department of Gastroenterology, Shanghai General Hospital of Nanjing Medical University, Shanghai 201600, China
- 南京医科大学附属无锡第二医院消化科,江苏无锡 214002Department of Gastroenterology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - 赟 冯
- 南京医科大学附属上海一院临床医学院消化科,上海 201600Department of Gastroenterology, Shanghai General Hospital of Nanjing Medical University, Shanghai 201600, China
| | - 振增 马
- 南京医科大学附属上海一院临床医学院消化科,上海 201600Department of Gastroenterology, Shanghai General Hospital of Nanjing Medical University, Shanghai 201600, China
| | - 伦根 陆
- 南京医科大学附属上海一院临床医学院消化科,上海 201600Department of Gastroenterology, Shanghai General Hospital of Nanjing Medical University, Shanghai 201600, China
| |
Collapse
|
21
|
Manzanarez-Ozuna E, Flores DL, Gutiérrez-López E, Cervantes D, Juárez P. Model based on GA and DNN for prediction of mRNA-Smad7 expression regulated by miRNAs in breast cancer. Theor Biol Med Model 2018; 15:24. [PMID: 30594253 PMCID: PMC6310970 DOI: 10.1186/s12976-018-0095-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023] Open
Abstract
Background The Smad7 protein is negative regulator of the TGF-β signaling pathway, which is upregulated in patients with breast cancer. miRNAs regulate proteins expressions by arresting or degrading the mRNAs. The purpose of this work is to identify a miRNAs profile that regulates the expression of the mRNA coding for Smad7 in breast cancer using the data from patients with breast cancer obtained from the Cancer Genome Atlas Project. Methods We develop an automatic search method based on genetic algorithms to find a predictive model based on deep neural networks (DNN) which fit the set of biological data and apply the Olden algorithm to identify the relative importance of each miRNAs. Results A computational model of non-linear regression is shown, based on deep neural networks that predict the regulation given by the miRNA target transcripts mRNA coding for Smad7 protein in patients with breast cancer, with R2 of 0.99 is shown and MSE of 0.00001. In addition, the model is validated with the results in vivo and in vitro experiments reported in the literature. The set of miRNAs hsa-mir-146a, hsa-mir-93, hsa-mir-375, hsa-mir-205, hsa-mir-15a, hsa-mir-21, hsa-mir-20a, hsa-mir-503, hsa-mir-29c, hsa-mir-497, hsa-mir-107, hsa-mir-125a, hsa-mir-200c, hsa-mir-212, hsa-mir-429, hsa-mir-34a, hsa-let-7c, hsa-mir-92b, hsa-mir-33a, hsa-mir-15b, hsa-mir-224, hsa-mir-185 and hsa-mir-10b integrate a profile that critically regulates the expression of the mRNA coding for Smad7 in breast cancer. Conclusions We developed a genetic algorithm to select best features as DNN inputs (miRNAs). The genetic algorithm also builds the best DNN architecture by optimizing the parameters. Although the confirmation of the results by laboratory experiments has not occurred, the results allow suggesting that miRNAs profile could be used as biomarkers or targets in targeted therapies. Electronic supplementary material The online version of this article (10.1186/s12976-018-0095-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edgar Manzanarez-Ozuna
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917 Colonia Playitas, C.P. 22860, Ensenada, B.C., Mexico
| | - Dora-Luz Flores
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917 Colonia Playitas, C.P. 22860, Ensenada, B.C., Mexico.
| | - Everardo Gutiérrez-López
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917 Colonia Playitas, C.P. 22860, Ensenada, B.C., Mexico
| | - David Cervantes
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917 Colonia Playitas, C.P. 22860, Ensenada, B.C., Mexico
| | - Patricia Juárez
- Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico
| |
Collapse
|
22
|
Su Y, Lu S, Li J, Deng L. Shikonin-mediated up-regulation of miR-34a and miR-202 inhibits retinoblastoma proliferation. Toxicol Res (Camb) 2018; 7:907-912. [PMID: 30310667 DOI: 10.1039/c8tx00079d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Retinoblastoma (RB) is an ocular tumor that occurs mainly in children. The pathogenesis of RB is not well understood, and its treatment strategies are very limited. Shikonin is widely reported as an anti-tumor agent. However, its effect on RB is still unknown. MTT assay was performed to detect the proliferation ability of two RB cell lines, Y-79 and WERI-Rb-1, upon treatment with Shikonin. Colony formation assay was conducted to examine the clonogenic ability of Shikonin-treated cells. Real-time PCR and western blotting were performed for expression analysis of miRNAs and MYCN, respectively. Luciferase activity assay was conducted to test the inhibition mechanism of miR-34a and miR-202 on MYCN. Shikonin could effectively inhibit the proliferation of RB cells and upregulate the expressions of miR-34a and miR-202. MiR-34a and miR-202 could directly target the mRNA degradation of oncogene MYCN, and the inhibitory effect of Shikonin was largely weakened by restoring the MYCN protein expression. Shikonin-mediated up-regulation of miR-34a and miR-202 inhibits RB proliferation, partially mediated through MYCN.
Collapse
Affiliation(s)
- Yan Su
- Department of TCM Ophthalmology , Jinan Second People's Hospital , No. 148 Jingyi Road , Jinan 250001 , Shandong , China .
| | - Shiyou Lu
- Department of Acupuncture , Affiliated hospital of Shandong University of TCM , No. 42 Wenhua West Road , Jinan 250011 , Shandong , China
| | - Jincun Li
- Department of TCM , Shandong Provincial Western Hospital , No. 4 Duanxing West Road , Jinan 250022 , Shandong , China
| | - Liya Deng
- Department of TCM Ophthalmology , Jinan Second People's Hospital , No. 148 Jingyi Road , Jinan 250001 , Shandong , China .
| |
Collapse
|
23
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
24
|
Huang PS, Chung IH, Lin YH, Lin TK, Chen WJ, Lin KH. The Long Non-Coding RNA MIR503HG Enhances Proliferation of Human ALK-Negative Anaplastic Large-Cell Lymphoma. Int J Mol Sci 2018; 19:ijms19051463. [PMID: 29758012 PMCID: PMC5983830 DOI: 10.3390/ijms19051463] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 02/07/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK)-negative anaplastic large-cell lymphoma (ALCL) is a rare type of highly malignant, non-Hodgkin lymphoma. Currently, only a few gene rearrangements have been linked to ALK-negative ALCL progression. However, the specific molecular mechanisms underlying the growth of ALK-negative ALCL tumors remain unclear. Here, we investigated aberrantly expressed, long non-coding RNAs (lncRNAs) in ALK-negative ALCL and assessed their potential biological function. MIR503HG (miR-503 host gene) was highly expressed in ALK-negative cell lines and was significantly upregulated in tumors in mice formed from ALK-negative ALCL cell lines. Depletion of MIR503HG suppressed tumor cell proliferation in vivo and in vitro; conversely, its overexpression enhanced tumor cell growth. MIR503HG-induced proliferation was mediated by the induction of microRNA-503 (miR-503) and suppression of Smurf2, resulting in stabilization of the tumor growth factor-β receptor (TGFBR) and enhanced tumor cell growth. Collectively, these findings support a potential role for MIR503HG in cancer cell proliferation through the miR-503/Smurf2/TGFBR axis and indicate that MIR503HG is a potential marker in ALK-negative ALCL.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Animals
- Cell Line, Tumor
- Cell Proliferation
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Heterografts
- Humans
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Mice
- MicroRNAs/genetics
- RNA Interference
- RNA, Long Noncoding/genetics
- Receptor Protein-Tyrosine Kinases/deficiency
- Receptors, Transforming Growth Factor beta
- Ubiquitin-Protein Ligases/genetics
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - I-Hsiao Chung
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Yang-Hsiang Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Tzu-Kang Lin
- Neurosurgery, Fu Jen Catholic University Hospital and School of Medicine, Fu Jen Catholic University, New Taipei City 24250, Taiwan.
| | - Wei-Jan Chen
- Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan.
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
25
|
Chen Y, Huang S, Wu B, Fang J, Zhu M, Sun L, Zhang L, Zhang Y, Sun M, Guo L, Wang S. Transforming growth factor-β1 promotes breast cancer metastasis by downregulating miR-196a-3p expression. Oncotarget 2018; 8:49110-49122. [PMID: 28418877 PMCID: PMC5564753 DOI: 10.18632/oncotarget.16308] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/23/2017] [Indexed: 01/26/2023] Open
Abstract
Transforming growth factor-β1 is considered a key contributor to the progression of breast cancer. MicroRNAs are important factors in the development and progression of many malignancies. In the present study, upon studies of breast cancer cell lines and tissues, we showed that microRNA -196a-3p is decreased by transforming growth factor-β1 in breast cancer cells and associated with breast cancer progression. We identified neuropilin-2 as a target gene of microRNA -196a-3p and showed that it is regulated by transforming growth factor-β1. Moreover, transforming growth factor-β1-mediated inhibition of microRNA -196a-3p and activation of neuropilin-2were required for transforming growth factor-β1-induced migration and invasion of breast cancer cells. In addition, neuropilin-2 expression was suppressed in breast tumors, particularly in triple-negative breast cancers. Collectively, our findings strongly indicate that microRNA -196a-3p is a predictive biomarker of breast cancer metastasis and patient survival and a potential therapeutic target in metastatic breast cancer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Shai Huang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Bo Wu
- Department of Surgery, The People's Hospital of Sihong County, Sihong 223900, Jiangsu Province, China
| | - Jiankai Fang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Minsheng Zhu
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Li Sun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - Lifeng Zhang
- Department of Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yongsheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Maomin Sun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - Lingling Guo
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Shouli Wang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China.,Laboratory of Molecular Pathology, Soochow University & Sihong County People's Hospital, Suzhou 215123, China.,Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou 215006, China
| |
Collapse
|
26
|
Yao W, Pan Z, Du X, Zhang J, Li Q. miR-181b-induced SMAD7 downregulation controls granulosa cell apoptosis through TGF-β signaling by interacting with the TGFBR1 promoter. J Cell Physiol 2018; 233:6807-6821. [PMID: 29319157 DOI: 10.1002/jcp.26431] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
SMAD7 disrupts the TGF-β signaling pathway by influencing TGFBR1 stability and by blocking the binding of TGFBR1 to SMAD2/3. In this study, we showed that SMAD7 attenuated the TGF-β signaling pathway in ovarian granulosa cells (GCs) by regulating TGFBR1 transcriptional activity. To function as a transcription factor, SMAD7 downregulated the mRNA levels of TGFBR1 via direct binding to the SMAD-binding elements (SBEs) within the promoter region of pig TGFBR1. We also showed that SMAD7 enhanced porcine GC apoptosis by interrupting TGFBR1 and the TGF-β signaling pathway. Interestingly, miR-181b, a microRNA that is downregulated during porcine follicular atresia, was identified to be directly targeting SMAD7 at its 3'-UTR. By inhibiting SMAD7, miR-181b could inhibit GC apoptosis by activating the TGF-β signaling pathway. Our findings provide new insights into the mechanisms underlying the regulation of the TGF-β signaling pathway by SMAD7 and miR-181b.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jinbi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
TMPRSS2:ERG gene fusion variants induce TGF-β signaling and epithelial to mesenchymal transition in human prostate cancer cells. Oncotarget 2018; 8:25115-25130. [PMID: 28445989 PMCID: PMC5421914 DOI: 10.18632/oncotarget.15931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/15/2017] [Indexed: 01/17/2023] Open
Abstract
TMPRSS2:ERG (T/E) gene fusions are present in approximately 50% of all prostate cancer (PCa) cases. The expression of fusion mRNAs from distinct T/E variants is associated with clinicopathological parameters, while the underlying molecular processes remain unclear. We characterized the molecular mechanisms and functional implications caused by doxycycline (Dox)-inducible overexpression of the frequent T/E III and VI fusion variants in LNCaP cells. Induction of T/E expression resulted in increased cellular migratory and invasive potential, and reduced proliferation and accumulation in G1 phase. T/E overexpressing cells showed epithelial-to-mesenchymal transition (EMT), as demonstrated by upregulation of TGF-β and WNT pathway genes, mesenchymal markers, and increased phosphorylation of the p38 MAPK. Augmented secretion of TGF-β1 and –β2, and T/E-mediated regulation of ALK1, a member of the TGF-β receptor family, was detected. ALK1 inhibition in T/E overexpressing cells blocked p38 phosphorylation and reduced the expression of the TGF-β target genes VIM, MMP1, CDH2, and SNAI2. We found a T/E variant VI-specific induction of miR-503 associated with reduced expression of SMAD7 and CDH1. Overexpression of miR-503 led to increased levels of VIM and MMP1. Our findings indicate that TGF-β signaling is a major determinant of EMT in T/E overexpressing LNCaP cells. We provide evidence that T/E VI-specific transcriptional modulation by miR-503 accounts for differences in the activation of EMT pathway genes, promoting the aggressive phenotype of tumors expressing T/E variant VI. We suggest that ALK1-mediated TGF-β signaling is a novel oncogenic mechanism in T/E positive PCa.
Collapse
|
28
|
Connolly M, Garfield BE, Crosby A, Morrell NW, Wort SJ, Kemp PR. miR-322-5p targets IGF-1 and is suppressed in the heart of rats with pulmonary hypertension. FEBS Open Bio 2018; 8:339-348. [PMID: 29511611 PMCID: PMC5832985 DOI: 10.1002/2211-5463.12369] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/09/2017] [Accepted: 12/10/2017] [Indexed: 01/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterised by remodelling of the pulmonary vasculature leading to right ventricular hypertrophy. Here, we show that miR‐322‐5p (the rodent orthologue of miR‐424‐5p) expression is decreased in the right ventricle of monocrotaline‐treated rats, a model of PAH, whereas a putative target insulin‐like growth factor 1 (IGF‐1) is increased. IGF‐1 mRNA was enriched 16‐fold in RNA immunoprecipitated with Ago2, indicating binding to miR‐322‐5p. In cell transfection experiments, miR‐322‐5p suppressed the activity of a luciferase reporter containing a section of the IGF‐1 3′ untranslated region (UTR) as well as IGF‐1 mRNA and protein levels. Taken together, these data suggest that miR‐322 targets IGF‐1, a process downregulated in PAH‐related RV hypertrophy.
Collapse
Affiliation(s)
- Martin Connolly
- Molecular Medicine National Heart & Lung Institute Imperial College London UK
| | - Benjamin E Garfield
- Molecular Medicine National Heart & Lung Institute Imperial College London UK.,National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London UK
| | - Alexi Crosby
- Department of Medicine Addenbrookes Hospital University of Cambridge UK
| | - Nick W Morrell
- Department of Medicine Addenbrookes Hospital University of Cambridge UK
| | - Stephen J Wort
- National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London UK
| | - Paul R Kemp
- Molecular Medicine National Heart & Lung Institute Imperial College London UK
| |
Collapse
|
29
|
Garros RF, Paul R, Connolly M, Lewis A, Garfield BE, Natanek SA, Bloch S, Mouly V, Griffiths MJ, Polkey MI, Kemp PR. MicroRNA-542 Promotes Mitochondrial Dysfunction and SMAD Activity and Is Elevated in Intensive Care Unit-acquired Weakness. Am J Respir Crit Care Med 2017; 196:1422-1433. [PMID: 28809518 DOI: 10.1164/rccm.201701-0101oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE Loss of skeletal muscle mass and function is a common consequence of critical illness and a range of chronic diseases, but the mechanisms by which this occurs are unclear. OBJECTIVES To identify microRNAs (miRNAs) that were increased in the quadriceps of patients with muscle wasting and to determine the molecular pathways by which they contributed to muscle dysfunction. METHODS miRNA-542-3p/5p (miR-542-3p/5p) were quantified in the quadriceps of patients with chronic obstructive pulmonary disease and intensive care unit-acquired weakness (ICUAW). The effect of miR-542-3p/5p was determined on mitochondrial function and transforming growth factor-β signaling in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS miR-542-3p/5p were elevated in patients with chronic obstructive pulmonary disease but more markedly in patients with ICUAW. In vitro, miR-542-3p suppressed the expression of the mitochondrial ribosomal protein MRPS10 and reduced 12S ribosomal RNA (rRNA) expression, suggesting mitochondrial ribosomal stress. miR-542-5p increased nuclear phospho-SMAD2/3 and suppressed expression of SMAD7, SMURF1, and PPP2CA, proteins that inhibit or reduce SMAD2/3 phosphorylation, suggesting that miR-542-5p increased transforming growth factor-β signaling. In mice, miR-542 overexpression caused muscle wasting, and reduced mitochondrial function, 12S rRNA expression, and SMAD7 expression, consistent with the effects of the miRNAs in vitro. Similarly, in patients with ICUAW, the expression of 12S rRNA and of the inhibitors of SMAD2/3 phosphorylation were reduced, indicative of mitochondrial ribosomal stress and increased transforming growth factor-β signaling. In patients undergoing aortic surgery, preoperative levels of miR-542-3p/5p were positively correlated with muscle loss after surgery. CONCLUSIONS Elevated miR-542-3p/5p may cause muscle atrophy in intensive care unit patients through the promotion of mitochondrial dysfunction and activation of SMAD2/3 phosphorylation.
Collapse
Affiliation(s)
| | - Richard Paul
- 1 Molecular Medicine Section and.,2 National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom; and
| | | | | | | | | | - Susannah Bloch
- 1 Molecular Medicine Section and.,2 National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom; and
| | - Vincent Mouly
- 3 Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Mark J Griffiths
- 4 Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College, South Kensington Campus, London, United Kingdom
| | - Michael I Polkey
- 2 National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom; and
| | | |
Collapse
|
30
|
Grelet S, Link LA, Howley B, Obellianne C, Palanisamy V, Gangaraju VK, Diehl JA, Howe PH. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nat Cell Biol 2017; 19:1105-1115. [PMID: 28825698 PMCID: PMC5578890 DOI: 10.1038/ncb3595] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022]
Abstract
The contribution of lncRNAs to tumour progression and the regulatory mechanisms driving their expression are areas of intense investigation. Here, we characterize the binding of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) to a nucleic acid structural element located in exon 12 of PNUTS (also known as PPP1R10) pre-RNA that regulates its alternative splicing. HnRNP E1 release from this structural element, following its silencing, nucleocytoplasmic translocation or in response to TGFβ, allows alternative splicing and generates a non-coding isoform of PNUTS. Functionally the lncRNA-PNUTS serves as a competitive sponge for miR-205 during epithelial-mesenchymal transition (EMT). In mesenchymal breast tumour cells and in breast tumour samples, the expression of lncRNA-PNUTS is elevated and correlates with levels of ZEB mRNAs. Thus, PNUTS is a bifunctional RNA encoding both PNUTS mRNA and lncRNA-PNUTS, each eliciting distinct biological functions. While PNUTS mRNA is ubiquitously expressed, lncRNA-PNUTS appears to be tightly regulated dependent on the status of hnRNP E1 and tumour context.
Collapse
Affiliation(s)
- Simon Grelet
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Laura A Link
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Breege Howley
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Clémence Obellianne
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Viswanathan Palanisamy
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Vamsi K Gangaraju
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - J Alan Diehl
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Philip H Howe
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
31
|
Fang Z, Yin S, Sun R, Zhang S, Fu M, Wu Y, Zhang T, Khaliq J, Li Y. miR-140-5p suppresses the proliferation, migration and invasion of gastric cancer by regulating YES1. Mol Cancer 2017; 16:139. [PMID: 28818100 PMCID: PMC5561618 DOI: 10.1186/s12943-017-0708-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/07/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aberrant expression of microRNA-140-5p (miR-140-5p) has been described in gastric cancer (GC). However, the role of miR-140-5p in GC remains unclear. In this study, the prognostic relevance of miR-140-5p in GC was investigated and YES1 was identified as a novel target of miR-140-5p in regulating tumor progression. METHODS miR-140-5p level was determined in 20 paired frozen specimens through quantitative real-time PCR, and analyzed in tissue microarrays through in situ hybridization. The target of miR-140-5p was verified through a dual luciferase reporter assay, and the effects of miR-140-5p on phenotypic changes in GC cells were investigated in vitro and in vivo. RESULTS Compared with that in adjacent normal tissues, miR-140-5p expression decreased in cancerous tissues. The downregulated miR-140-5p in 144 patients with GC was significantly correlated with the reduced overall survival of these patients. miR-140-5p could inhibit GC cell proliferation, migration and invasion by directly targeting 3'-untranlated region of YES1. miR-140-5p could also remarkably reduce the tumor size in GC xenograft mice. CONCLUSIONS miR-140-5p serves as a potential prognostic factor in patients with GC, and miR-140-5p mediated YES1 inhibition is a novel mechanism behind the suppressive effects of miR-140-5p in GC.
Collapse
Affiliation(s)
- Zheng Fang
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Shuai Yin
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of University of Munich, Marchioninistr.15, 5H-02-428, 81377, Munich, Germany
| | - Ruochuan Sun
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Shangxin Zhang
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Min Fu
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Youliang Wu
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Tao Zhang
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Junaid Khaliq
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Yongxiang Li
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China.
| |
Collapse
|
32
|
Zhao S, Sun H, Jiang W, Mi Y, Zhang D, Wen Y, Cheng D, Tang H, Wu S, Yu Y, Liu X, Cui W, Zhang M, Sun X, Zhou Z, Peng Z, Yan D. miR-4775 promotes colorectal cancer invasion and metastasis via the Smad7/TGFβ-mediated epithelial to mesenchymal transition. Mol Cancer 2017; 16:12. [PMID: 28095858 PMCID: PMC5240405 DOI: 10.1186/s12943-017-0585-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/04/2017] [Indexed: 02/05/2023] Open
Abstract
Background Despite advancements in the diagnosis and treatment of colorectal cancer (CRC), many patients die because of tumor metastasis or recurrence. Therefore, identifying new prognostic markers and elucidating the mechanisms of CRC metastasis and recurrence will help to improve the prognosis of the disease. As dysregulation of microRNAs is strongly related to cancer progression, the aim of this study was to identify the role of miR-4775 in the prognosis of CRC patients and the underling mechanisms involved in CRC progression. Methods qPCR and in situ hybridization were used to evaluate the expression of miR-4775 in 544 pairs of paraffin-embedded normal and CRC tissues. Kaplan–Meier analysis with the log-rank test was used for survival analyses. Immunohistochemical staining was applied to investigate the expression of miR-4775-regulated Smad7/TGFβ pathway-associated markers. In vitro and in vivo invasion and metastasis assays were used to explore the function of miR-4775 in the progression of CRC. Results miR-4775 was identified as a high-risk factor for CRC metastasis and recurrence, with high levels predicting poor survival among the 544 studied CRC patients. Furthermore, high miR-4775 expression promoted the invasion of CRC cells as well as metastasis and the epithelial to mesenchymal transition (EMT) via Smad7-mediated activation of TGFβ signaling both in vitro and in vivo. Downregulating miR-4775 or overexpressing Smad7 reversed the tumor-promoting roles of miR-4775/Smad7/TGFβ in vitro and in vivo. Conclusion miR-4775 promotes CRC metastasis and recurrence in a Smad7/TGFβ signaling-dependent manner, providing a new therapeutic target for inhibiting the metastasis or recurrence of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0585-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Senlin Zhao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China
| | - Hongcheng Sun
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China
| | - Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China
| | - Yushuai Mi
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China
| | - Dongyuan Zhang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China
| | - Yugang Wen
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China
| | - Dantong Cheng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China
| | - Huamei Tang
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China
| | - Shaohan Wu
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing College, 1518 Huancheng North Road, Jiaxing, Zhejiang, 314000, China
| | - Yang Yu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China
| | - Xisheng Liu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China
| | - Weiyingqi Cui
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, SE-581 83, Linköping, Sweden
| | - Meng Zhang
- Department of Pathology, Fudan University, Shanghai Cancer Center, 270 Dongan Road, 200030, Shanghai, China
| | - Xiaofeng Sun
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, SE-581 83, Linköping, Sweden
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang Street, Chengdu, 610041, Sichuan, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China.
| | - Dongwang Yan
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China.
| |
Collapse
|
33
|
Gao Z, Liu R, Liao J, Yang M, Pan E, Yin L, Pu Y. Possible tumor suppressive role of the miR-144/451 cluster in esophageal carcinoma as determined by principal component regression analysis. Mol Med Rep 2016; 14:3805-13. [PMID: 27572636 DOI: 10.3892/mmr.2016.5691] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 06/24/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA) clusters are expressed universally across different types of organisms, and an accumulating number of studies have demonstrated that miRNA clusters function more efficiently compared with single miRNAs during the development of certain cancer types. miRNA clusters may have increased stability and reliability over individual miRNAs as diagnostic or therapeutic biomarkers. In the present study, the expression levels of mature miRNAs within the miR-144/451 cluster were examined using stem‑loop reverse transcription‑quantitative polymerase chain reaction in 102 patients pathologically diagnosed with esophageal carcinoma. Bioinformatics tools were used to identify a possible miRNA‑mediated network of the miR‑144/451 cluster. The expression levels of hsa‑miR‑451a, hsa‑miR‑144‑3p and hsa‑miR‑144‑5p in tumor tissues were significantly lower compared with those in adjacent non‑tumor tissues (P<0.05). Pearson correlation analysis demonstrated that the expression levels of individual miR‑144/451 cluster members were correlated with each other, except for the pair of hsa‑miR‑144‑3p and hsa‑miR‑4732‑3p. In particular, hsa‑miR‑144‑5p expression was highly associated with hsa-miR-4732‑5p and hsa-miR-451a expression levels, with correlation coefficients of 0.729 and 0.608, respectively. Furthermore, the low expression levels of hsa‑miR‑144‑3p [odds ratio (OR), 0.85; P<0.05] and hsa-miR-144-5p (OR, 0.84; P<0.05) were determined to be risk factors for esophageal carcinoma development. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that miRNAs forming the miR‑144/451 cluster may cooperate to regulate the cell cycle. Therefore, the miR‑144/451 cluster may serve an important role in the progression of esophageal carcinoma and may be considered as a biomarker for the detection of esophageal carcinoma at an early stage.
Collapse
Affiliation(s)
- Zhikui Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Juan Liao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Miao Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Enchun Pan
- Huaian Center for Disease Control and Prevention, Huaian, Jiangsu 223001, P.R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
34
|
Yan C, Shen LP, Ma R, Li B, Li XY, Hua H, Zhang B, Yu Q, Wang YG, Tang RX, Zheng KY. Characterization and identification of differentially expressed microRNAs during the process of the peribiliary fibrosis induced by Clonorchis sinensis. INFECTION GENETICS AND EVOLUTION 2016; 43:321-8. [PMID: 27267304 DOI: 10.1016/j.meegid.2016.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 12/16/2022]
Abstract
Clonorchis sinensis (C. sinensis) infection can lead to biliary fibrosis. MicroRNAs (miRNAs) play important roles in regulation of genes expression in the liver diseases. However, the differential expression of miRNAs that probably regulates the portal fibrogenesis caused by C. sinensis has not yet been investigated. Hepatic miRNAs expression profiles from C. sinensis-infected mice at different time-points were analyzed by miRNA microarray and validated by quantitative real-time PCR (qRT-PCR). 349 miRNAs were differentially expressed in the liver of the C. sinensis-infected mice at 2, 8 or 16weeks post infection (p.i.), compared with those at 0week p.i., and there were 143 down-regulated and 206 up-regulated miRNAs among them. These all dysregulated miRNAs were potentially involved in the pathological processes of clonorchiasis by regulation of cancer-related signaling pathway, TGF-β signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway, PI3K /AKT signaling pathway, etc. 169 of these dysregulated miRNAs were predicted to be involved in the TGF/Smads signaling pathway which plays an important role in the biliary fibrosis caused by C. sinensis. Additionally, miRNA-32, miRNA-34a, miRNA-125b and miRNA-497 were negatively correlated with Smad7 expression, indicating these miRNAs may specifically down-regulate Smad7 expression and participate in regulation of biliary fibrosis caused by C. sinensis. The results of the present study for the first time demonstrated that miRNAs were differentially expressed in the liver of mice infected by C. sinensis, and these miRNAs may play important roles in regulation of peribiliary fibrosis caused by C. sinensis, which may provide possible therapeutic targets for clonorchiasis.
Collapse
Affiliation(s)
- Chao Yan
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Li-Ping Shen
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Rui Ma
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Bo Li
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Xiang-Yang Li
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Hui Hua
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Bo Zhang
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Qian Yu
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Yu-Gang Wang
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Ren-Xian Tang
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China.
| | - Kui-Yang Zheng
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China.
| |
Collapse
|
35
|
Ma M, He M, Jiang Q, Yan Y, Guan S, Zhang J, Yu Z, Chen Q, Sun M, Yao W, Zhao H, Jin F, Wei M. MiR-487a Promotes TGF-β1-induced EMT, the Migration and Invasion of Breast Cancer Cells by Directly Targeting MAGI2. Int J Biol Sci 2016; 12:397-408. [PMID: 27019625 PMCID: PMC4807160 DOI: 10.7150/ijbs.13475] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/29/2015] [Indexed: 01/14/2023] Open
Abstract
Tumor metastasis is a complex and multistep process and its exact molecular mechanisms remain unclear. We attempted to find novel microRNAs (miRNAs) contributing to the migration and invasion of breast cancer cells. In this study, we found that the expression of miR-487a was higher in MDA-MB-231breast cancer cells with high metastasis ability than MCF-7 breast cancer cells with low metastasis ability and the treatment with transforming growth factor β1 (TGF-β1) significantly increased the expression of miR-487a in MCF-7 and MDA-MB-231 breast cancer cells. Subsequently, we found that the transfection of miR-487a inhibitor significantly decreased the expression of vimentin, a mesenchymal marker, while increased the expression of E-cadherin, an epithelial marker, in both MCF-7 cells and MDA-MB-231 cells. Also, the inactivation of miR-487a inhibited the migration and invasion of breast cancer cells. Furthermore, our findings demonstrated that miR-487a directly targeted the MAGI2 involved in the stability of PTEN. The down-regulation of miR-487a increased the expression of p-PTEN and PTEN, and reduced the expression of p-AKT in both cell lines. In addition, the results showed that NF-kappaB (p65) significantly increased the miR-487a promoter activity and expression, and TGF-β1 induced the increased miR-487a promoter activity via p65 in MCF-7 cells and MDA-MB-231 cells. Moreover, we further confirmed the expression of miR-487a was positively correlated with the lymph nodes metastasis and negatively correlated with the expression of MAGI2 in human breast cancer tissues. Overall, our results suggested that miR-487a could promote the TGF-β1-induced EMT, the migration and invasion of breast cancer cells by directly targeting MAGI2.
Collapse
Affiliation(s)
- Mengtao Ma
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Miao He
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Qian Jiang
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Yuanyuan Yan
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Shu Guan
- 2. Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jing Zhang
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Zhaojin Yu
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Qiuchen Chen
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Mingli Sun
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Weifan Yao
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Haishan Zhao
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Feng Jin
- 2. Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Minjie Wei
- 1. Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
36
|
Abstract
Cancer cells have the unusual capacity to limit the cost of the mutation load that they harbor and simultaneously harness its evolutionary potential. This property fuels drug resistance, a key failure mode in oncogene-directed therapy. However, the factors that regulate this capacity might also provide an Achilles' heel that could be exploited therapeutically. Recently, insight has come from a seemingly distant field: protein folding. It is now clear that protein homeostasis broadly supports malignancy and fuels the rapid evolution of drug resistance. Among protein homeostatic mechanisms that influence cancer biology, the essential ATP-driven molecular chaperone heat-shock protein 90 (Hsp90) is especially important. Hsp90 catalyzes folding of many proteins that regulate growth and development. These "client" kinases, transcription factors, and ubiquitin ligases often play critical roles in human disease, especially cancer. Studies in a wide range of systems-from single-celled organisms to human tumor samples-suggest that Hsp90 can broadly reshape the map between genotype and phenotype, acting as a "capacitor" and "potentiator" of genetic variation. Indeed, it has likely done so to such a degree that it has left an impress on diverse genome sequences. Hsp90 can constitute as much as 5% of total protein in transformed cells and increased levels of heat-shock activation correlate with poor prognosis in breast cancer. These findings and others have motivated a flurry of interest in Hsp90 inhibitors as cancer therapeutics, which have met with rather limited success as single agents, but may eventually prove invaluable in limiting the emergence of resistance to other chemotherapeutics, both genotoxic and molecularly targeted. Here, we provide an overview of Hsp90 function, review its relationship to genetic variation and the evolution of new traits, and discuss the importance of these findings for cancer biology and future efforts to drug this pathway.
Collapse
Affiliation(s)
- Daniel Jarosz
- Chemical & Systems Biology, Stanford University School of Medicine, Stanford, California, USA; Developmental Biology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|