1
|
Upadhyay S, Khan S, Hassan MI. Exploring the diverse role of pyruvate kinase M2 in cancer: Navigating beyond glycolysis and the Warburg effect. Biochim Biophys Acta Rev Cancer 2024; 1879:189089. [PMID: 38458358 DOI: 10.1016/j.bbcan.2024.189089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Pyruvate Kinase M2, a key enzyme in glycolysis, has garnered significant attention in cancer research due to its pivotal role in the metabolic reprogramming of cancer cells. Originally identified for its association with the Warburg effect, PKM2 has emerged as a multifaceted player in cancer biology. The functioning of PKM2 is intricately regulated at multiple levels, including controlling the gene expression via various transcription factors and non-coding RNAs, as well as adding post-translational modifications that confer distinct functions to the protein. Here, we explore the diverse functions of PKM2, encompassing newly emerging roles in non-glycolytic metabolic regulation, immunomodulation, inflammation, DNA repair and mRNA processing, beyond its canonical role in glycolysis. The ever-expanding list of its functions has recently grown to include roles in subcellular compartments such as the mitochondria and extracellular milieu as well, all of which make PKM2 an attractive drug target in the pursuit of therapeutics for cancer.
Collapse
Affiliation(s)
- Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shumayila Khan
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
2
|
Li G, Xiong Z, Li Y, Yan C, Cheng Y, Wang Y, Li J, Dai Z, Zhang D, Du W, Men C, Shi C. Hypoxic microenvironment-induced exosomes confer temozolomide resistance in glioma through transfer of pyruvate kinase M2. Discov Oncol 2024; 15:110. [PMID: 38598023 PMCID: PMC11006647 DOI: 10.1007/s12672-024-00963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
OBJECTIVE Glioma, a malignant primary brain tumor, is notorious for its high incidence rate. However, the clinical application of temozolomide (TMZ) as a treatment option for glioma is often limited due to resistance, which has been linked to hypoxic glioma cell-released exosomes. In light of this, the present study aimed to investigate the role of exosomal pyruvate kinase M2 (PKM2) in glioma cells that exhibit resistance to TMZ. METHODS Sensitive and TMZ-resistant glioma cells were subjected to either a normoxic or hypoxic environment, and the growth patterns and enzymatic activity of glycolysis enzymes were subsequently measured. From these cells, exosomal PKM2 was isolated and the subsequent effect on TMZ resistance was examined and characterized, with a particular focus on understanding the relevant mechanisms. Furthermore, the intercellular communication between hypoxic resistant cells and tumor-associated macrophages (TAMs) via exosomal PKM2 was also assessed. RESULTS The adverse impact of hypoxic microenvironments on TMZ resistance in glioma cells was identified and characterized. Among the three glycolysis enzymes that were examined, PKM2 was found to be a critical mediator in hypoxia-triggered TMZ resistance. Upregulation of PKM2 was found to exacerbate the hypoxia-mediated TMZ resistance. Exosomal PKM2 were identified and isolated from hypoxic TMZ-resistant glioma cells, and were found to be responsible for transmitting TMZ resistance to sensitive glioma cells. The exosomal PKM2 also contributed towards mitigating TMZ-induced apoptosis in sensitive glioma cells, while also causing intracellular ROS accumulation. Additionally, hypoxic resistant cells also released exosomal PKM2, which facilitated TMZ resistance in tumor-associated macrophages. CONCLUSION In the hypoxic microenvironment, glioma cells become resistant to TMZ due to the delivery of PKM2 by exosomes. Targeted modulation of exosomal PKM2 may be a promising strategy for overcoming TMZ resistance in glioma.
Collapse
Affiliation(s)
- Guofu Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Ziyu Xiong
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cong Yan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingying Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yuwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zifeng Dai
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongdong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenzhong Du
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunyang Men
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Changbin Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
3
|
Abband H, Dabirian S, Jafari A, Nasiri M, Nasiri E. Inhibitory effect of temozolomide on apoptosis induction of cinnamaldehyde in human glioblastoma multiforme T98G cell line. Anat Cell Biol 2024; 57:85-96. [PMID: 37994040 PMCID: PMC10968198 DOI: 10.5115/acb.23.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 11/24/2023] Open
Abstract
Glioblastoma is the most common primary malignant brain tumor in adults. Temozolomide (TMZ) is an FDA-approved drug used to treat this type of cancer. Cinnamaldehyde (CIN) is a derivative of cinnamon extract and makes up 99% of it. The aim of this study was to investigate the in vitro combined effect of CIN and TMZ on human glioblastoma multiforme T98G cell line viability. In this study, we used 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tertazolium bromide (MTT) method to evaluate the extent of IC50, acridine orange, Giemsa and Hoechst staining to evaluate the manner of apoptosis and the Western blotting method to examine the expression change of apoptotic proteins. Our results show that TMZ has an inhibitory effect on CIN when both used in combination at concentrations of 300 and 100 μM (P<0.05) and has a cytotoxic effect when used alone at the same concentrations (P<0.05). The western blotting result showed that TMZ at concentrations of 2,000 and 1,000 μM significantly increased Bax expression and decreased Bcl2 expression (P<0.05), indicating that TMZ induced apoptosis through the mitochondrial pathway. However, CIN had no effect on Bax and Bcl2 expressions, thus causing apoptosis from another pathway. Also, the Bax:Bcl2 expression ratio at concentrations combined was lower than that for TMZ 1,000 μM and higher than that for CIN 150 and 100 μM (P<0.05), which confirms the inhibitory effect of TMZ on CIN. From the present study, we conclude that TMZ in combination with CIN has an inhibitory effect on increasing the cytotoxicity rate.
Collapse
Affiliation(s)
- Hedieh Abband
- Department of Anatomy, Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Dabirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehran Nasiri
- Department of Anatomy, Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Nasiri
- Department of Anatomy, Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
Srivastava S, Patil K, Thompson EW, Nakhai SA, Kim YN, Haynes C, Bryant C, Pai SB. Disruption of Glioblastoma Multiforme Cell Circuits with Cinnamaldehyde Highlights Potential Targets with Implications for Novel Therapeutic Strategies. Cells 2023; 12:cells12091277. [PMID: 37174677 PMCID: PMC10177046 DOI: 10.3390/cells12091277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a major aggressive primary brain tumor with dismal survival outcome and few therapeutic options. Although Temozolomide (TMZ) is a part of the standard therapy, over time, it can cause DNA damage leading to deleterious effects, necessitating the discovery of drugs with minimal side effects. To this end, we investigated the effect of cinnamaldehyde (CA), a highly purified, single ingredient from cinnamon, on the GBM cell lines U87 and U251 and the neuroglioma cell line H4. On observing similar impact on the viability in all the three cell lines, detailed studies were conducted with CA and its isomer/analog, trans-CA (TCA), and methoxy-CA (MCA) on U87 cells. The compounds exhibited equal potency when assessed at the cellular level in inhibiting U87 cells as well as at the molecular level, resulting in an increase in reactive oxygen species (ROS) and an increase in the apoptotic and multicaspase cell populations. To further characterize the key entities, protein profiling was performed with CA. The studies revealed differential regulation of entities that could be key to glioblastoma cell circuits such as downregulation of pyruvate kinase-PKM2, the key enzyme of the glycolytic pathway that is central to the Warburg effect. This allows for monitoring the levels of PKM2 after therapy using recently developed noninvasive technology employing PET [18F] DASA-23. Additionally, the observation of downregulation of phosphomevalonate kinase is significant as the brain tumor initiating cells (BTIC) are maintained by the metabolism occurring via the mevalonate pathway. Results from the current study, if translated in vivo, could provide additional efficacious treatment options for glioblastoma with minimal side effects.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Ketki Patil
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Elizabeth W Thompson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Shadi A Nakhai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Yoo Na Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Casey Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Crystal Bryant
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - S Balakrishna Pai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Li H, Guglielmetti C, Sei YJ, Zilberter M, Le Page LM, Shields L, Yang J, Nguyen K, Tiret B, Gao X, Bennett N, Lo I, Dayton TL, Kampmann M, Huang Y, Rathmell JC, Vander Heiden M, Chaumeil MM, Nakamura K. Neurons require glucose uptake and glycolysis in vivo. Cell Rep 2023; 42:112335. [PMID: 37027294 PMCID: PMC10556202 DOI: 10.1016/j.celrep.2023.112335] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Neurons require large amounts of energy, but whether they can perform glycolysis or require glycolysis to maintain energy remains unclear. Using metabolomics, we show that human neurons do metabolize glucose through glycolysis and can rely on glycolysis to supply tricarboxylic acid (TCA) cycle metabolites. To investigate the requirement for glycolysis, we generated mice with postnatal deletion of either the dominant neuronal glucose transporter (GLUT3cKO) or the neuronal-enriched pyruvate kinase isoform (PKM1cKO) in CA1 and other hippocampal neurons. GLUT3cKO and PKM1cKO mice show age-dependent learning and memory deficits. Hyperpolarized magnetic resonance spectroscopic (MRS) imaging shows that female PKM1cKO mice have increased pyruvate-to-lactate conversion, whereas female GLUT3cKO mice have decreased conversion, body weight, and brain volume. GLUT3KO neurons also have decreased cytosolic glucose and ATP at nerve terminals, with spatial genomics and metabolomics revealing compensatory changes in mitochondrial bioenergetics and galactose metabolism. Therefore, neurons metabolize glucose through glycolysis in vivo and require glycolysis for normal function.
Collapse
Affiliation(s)
- Huihui Li
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Yoshitaka J Sei
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lydia M Le Page
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Lauren Shields
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joyce Yang
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kevin Nguyen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Brice Tiret
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Xiao Gao
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA
| | - Neal Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Talya L Dayton
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin Kampmann
- Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Minami N, Hong D, Taglang C, Batsios G, Gillespie AM, Viswanath P, Stevers N, Barger CJ, Costello JF, Ronen SM. Hyperpolarized δ-[1- 13C]gluconolactone imaging visualizes response to TERT or GABPB1 targeting therapy for glioblastoma. Sci Rep 2023; 13:5190. [PMID: 36997627 PMCID: PMC10063634 DOI: 10.1038/s41598-023-32463-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
TERT promoter mutations are a hallmark of glioblastoma (GBM). Accordingly, TERT and GABPB1, a subunit of the upstream mutant TERT promoter transcription factor GABP, are being considered as promising therapeutic targets in GBM. We recently reported that the expression of TERT or GABP1 modulates flux via the pentose phosphate pathway (PPP). Here, we investigated whether 13C magnetic resonance spectroscopy (MRS) of hyperpolarized (HP) δ- [1-13C]gluconolactone can serve to image the reduction in PPP flux following TERT or GABPB1 silencing. We investigated two different human GBM cell lines stably expressing shRNAs targeting TERT or GABPB1, as well as doxycycline-inducible shTERT or shGABPB1cells. MRS studies were performed on live cells and in vivo tumors, and dynamic sets of 13C MR spectra were acquired following injection of HP δ-[1-13C]gluconolactone. HP 6-phosphogluconolactone (6PG), the product of δ-[1-13C]gluconolactone via the PPP, was significantly reduced in TERT or GABPB1-silenced cells or tumors compared to controls in all our models. Furthermore, a positive correlation between TERT expression and 6PG levels was observed. Our data indicate that HP δ-[1-13C]gluconolactone, an imaging tool with translational potential, could serve to monitor TERT expression and its silencing with therapies that target either TERT or GABPB1 in mutant TERT promoter GBM patients.
Collapse
Affiliation(s)
- Noriaki Minami
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Celine Taglang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Nicholas Stevers
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Carter J Barger
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA.
| |
Collapse
|
7
|
Photodynamic therapy enhances the cytotoxicity of temozolomide against glioblastoma via reprogramming anaerobic glycolysis. Photodiagnosis Photodyn Ther 2023; 42:103342. [PMID: 36781008 DOI: 10.1016/j.pdpdt.2023.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
The successful application of photodynamic therapy in the treatment of glioma (CNS WHO grade 4) depends in large part to the effect of killing cells in the infiltrating area after tumor had been removed, when combined with radiotherapy, chemotherapy, and targeted drug therapy. The purpose of this study was to investigate the potential mechanism of TMZ's involvement in the glioma's glycolytic metabolic pathway during photodynamic therapy. The low dose of photodynamic therapy treatment on the cell viability of gliomas was investigated by CCK8. Alterations in reactive oxygen species were detected by flow cytometer. The differentially expressed proteins related to glucose transporter 1 (GLUT-1), matrix metalloproteinase-2 (MMP-2)/actively MMP-2 and apoptosis-associated caspase-3/cleaved caspase-3 were evaluated by Western Blot experiment. Additionally, transmission electron microscopy observed apoptosis, necrosis and the changes of the ultrastructure in U251 cells. In addition, antitumor effects in vivo were tested using orthotopic BALB/c mice with the glioma U87 model. The findings showed that low dose PDT affected mitochondrial function by inducing radical oxygen, hindered cellular glucose transport and metabolism, and induced apoptosis. The results also showed that cell viability considerably decreased and increased cell apoptosis under the PDT therapy. The HIF-1/GLUT-1 axis enhanced the cytotoxicity of temozolomide in gliomas as a result of PDT treatment, which was influenced by ROS. As a result, this study presents PDT as a potential therapeutic approach for treating malignant glioma, and enhanced antitumor effect of TMZ by inhibiting glycolytic pathway.
Collapse
|
8
|
Tang PLY, Méndez Romero A, Jaspers JPM, Warnert EAH. The potential of advanced MR techniques for precision radiotherapy of glioblastoma. MAGMA (NEW YORK, N.Y.) 2022; 35:127-143. [PMID: 35129718 PMCID: PMC8901515 DOI: 10.1007/s10334-021-00997-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
As microscopic tumour infiltration of glioblastomas is not visible on conventional magnetic resonance (MR) imaging, an isotropic expansion of 1-2 cm around the visible tumour is applied to define the clinical target volume for radiotherapy. An opportunity to visualize microscopic infiltration arises with advanced MR imaging. In this review, various advanced MR biomarkers are explored that could improve target volume delineation for radiotherapy of glioblastomas. Various physiological processes in glioblastomas can be visualized with different advanced MR techniques. Combining maps of oxygen metabolism (CMRO2), relative cerebral blood volume (rCBV), vessel size imaging (VSI), and apparent diffusion coefficient (ADC) or amide proton transfer (APT) can provide early information on tumour infiltration and high-risk regions of future recurrence. Oxygen consumption is increased 6 months prior to tumour progression being visible on conventional MR imaging. However, presence of the Warburg effect, marking a switch from an infiltrative to a proliferative phenotype, could result in CMRO2 to appear unaltered in high-risk regions. Including information on biomarkers representing angiogenesis (rCBV and VSI) and hypercellularity (ADC) or protein concentration (APT) can omit misinterpretation due to the Warburg effect. Future research should evaluate these biomarkers in radiotherapy planning to explore the potential of advanced MR techniques to personalize target volume delineation with the aim to improve local tumour control and/or reduce radiation-induced toxicity.
Collapse
Affiliation(s)
- Patrick L Y Tang
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands.
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Alejandra Méndez Romero
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Jaap P M Jaspers
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Esther A H Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Arora S, Joshi G, Chaturvedi A, Heuser M, Patil S, Kumar R. A Perspective on Medicinal Chemistry Approaches for Targeting Pyruvate Kinase M2. J Med Chem 2022; 65:1171-1205. [PMID: 34726055 DOI: 10.1021/acs.jmedchem.1c00981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The allosteric regulation of pyruvate kinase M2 (PKM2) affects the switching of the PKM2 protein between the high-activity and low-activity states that allow ATP and lactate production, respectively. PKM2, in its low catalytic state (dimeric form), is chiefly active in metabolically energetic cells, including cancer cells. More recently, PKM2 has emerged as an attractive target due to its role in metabolic dysfunction and other interrelated conditions. PKM2 (dimer) activity can be inhibited by modulating PKM2 dimer-tetramer dynamics using either PKM2 inhibitors that bind at the ATP binding active site of PKM2 (dimer) or PKM2 activators that bind at the allosteric site of PKM2, thus activating PKM2 from the dimer formation to the tetrameric formation. The present perspective focuses on medicinal chemistry approaches to design and discover PKM2 inhibitors and activators and further provides a scope for the future design of compounds targeting PKM2 with better efficacy and selectivity.
Collapse
Affiliation(s)
- Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand 248171, India
| | - Anuhar Chaturvedi
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Santoshkumar Patil
- Discovery Services, Syngene International Ltd., Biocon Park, SEZ, Bommasandra Industrial Area-Phase-IV, Bommasandra-Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
10
|
Beinat C, Patel CB, Haywood T, Murty S, Naya L, Castillo JB, Reyes ST, Phillips M, Buccino P, Shen B, Park JH, Koran MEI, Alam IS, James ML, Holley D, Halbert K, Gandhi H, He JQ, Granucci M, Johnson E, Liu DD, Uchida N, Sinha R, Chu P, Born DE, Warnock GI, Weissman I, Hayden-Gephart M, Khalighi M, Massoud TF, Iagaru A, Davidzon G, Thomas R, Nagpal S, Recht LD, Gambhir SS. A Clinical PET Imaging Tracer ([ 18F]DASA-23) to Monitor Pyruvate Kinase M2-Induced Glycolytic Reprogramming in Glioblastoma. Clin Cancer Res 2021; 27:6467-6478. [PMID: 34475101 PMCID: PMC8639752 DOI: 10.1158/1078-0432.ccr-21-0544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/15/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in GBM. We evaluated 1-((2-fluoro-6-[18F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in cell culture, mouse models of GBM, healthy human volunteers, and patients with GBM. EXPERIMENTAL DESIGN [18F]DASA-23 was synthesized with a molar activity of 100.47 ± 29.58 GBq/μmol and radiochemical purity >95%. We performed initial testing of [18F]DASA-23 in GBM cell culture and human GBM xenografts implanted orthotopically into mice. Next, we produced [18F]DASA-23 under FDA oversight, and evaluated it in healthy volunteers and a pilot cohort of patients with glioma. RESULTS In mouse imaging studies, [18F]DASA-23 clearly delineated the U87 GBM from surrounding healthy brain tissue and had a tumor-to-brain ratio of 3.6 ± 0.5. In human volunteers, [18F]DASA-23 crossed the intact blood-brain barrier and was rapidly cleared. In patients with GBM, [18F]DASA-23 successfully outlined tumors visible on contrast-enhanced MRI. The uptake of [18F]DASA-23 was markedly elevated in GBMs compared with normal brain, and it identified a metabolic nonresponder within 1 week of treatment initiation. CONCLUSIONS We developed and translated [18F]DASA-23 as a new tracer that demonstrated the visualization of aberrantly expressed PKM2 for the first time in human subjects. These results warrant further clinical evaluation of [18F]DASA-23 to assess its utility for imaging therapy-induced normalization of aberrant cancer metabolism.
Collapse
Affiliation(s)
- Corinne Beinat
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California.
| | - Chirag B Patel
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Tom Haywood
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Surya Murty
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Lewis Naya
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Jessa B Castillo
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Samantha T Reyes
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Megan Phillips
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Pablo Buccino
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Bin Shen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Jun Hyung Park
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Mary Ellen I Koran
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| | - Israt S Alam
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Michelle L James
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Dawn Holley
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Kim Halbert
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Harsh Gandhi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Joy Q He
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Monica Granucci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Eli Johnson
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Daniel Dan Liu
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Nobuko Uchida
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Rahul Sinha
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Pauline Chu
- Stanford Human Research Histology Core, Stanford University School of Medicine, Stanford, California
| | - Donald E Born
- Department of Pathology, Neuropathology, Stanford University School of Medicine, Stanford, California
| | | | - Irving Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Melanie Hayden-Gephart
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Mehdi Khalighi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Tarik F Massoud
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| | - Guido Davidzon
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| | - Reena Thomas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Seema Nagpal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Lawrence D Recht
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California.
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
- Departments of Bioengineering and Materials Science & Engineering, Stanford University, Stanford, California
| |
Collapse
|
11
|
Characterization of Distinctive In Vivo Metabolism between Enhancing and Non-Enhancing Gliomas Using Hyperpolarized Carbon-13 MRI. Metabolites 2021; 11:metabo11080504. [PMID: 34436445 PMCID: PMC8398100 DOI: 10.3390/metabo11080504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
The development of hyperpolarized carbon-13 (13C) metabolic MRI has enabled the sensitive and noninvasive assessment of real-time in vivo metabolism in tumors. Although several studies have explored the feasibility of using hyperpolarized 13C metabolic imaging for neuro-oncology applications, most of these studies utilized high-grade enhancing tumors, and little is known about hyperpolarized 13C metabolic features of a non-enhancing tumor. In this study, 13C MR spectroscopic imaging with hyperpolarized [1-13C]pyruvate was applied for the differential characterization of metabolic profiles between enhancing and non-enhancing gliomas using rodent models of glioblastoma and a diffuse midline glioma. Distinct metabolic profiles were found between the enhancing and non-enhancing tumors, as well as their contralateral normal-appearing brain tissues. The preliminary results from this study suggest that the characterization of metabolic patterns from hyperpolarized 13C imaging between non-enhancing and enhancing tumors may be beneficial not only for understanding distinct metabolic features between the two lesions, but also for providing a basis for understanding 13C metabolic processes in ongoing clinical trials with neuro-oncology patients using this technology.
Collapse
|
12
|
Kawai T, Brender JR, Lee JA, Kramp T, Kishimoto S, Krishna MC, Tofilon P, Camphausen KA. Detection of metabolic change in glioblastoma cells after radiotherapy using hyperpolarized 13 C-MRI. NMR IN BIOMEDICINE 2021; 34:e4514. [PMID: 33939204 PMCID: PMC8243917 DOI: 10.1002/nbm.4514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Dynamic nuclear polarization (DNP) of 13 C-labeled substrates enables the use of magnetic resonance imaging (MRI) to monitor specific enzymatic reactions in tumors and offers an opportunity to investigate these differences. In this study, DNP-MRI chemical shift imaging with hyperpolarized [1-13 C] pyruvate was conducted to evaluate the metabolic change in glycolytic profiles after radiation of two glioma stem-like cell-derived gliomas (GBMJ1 and NSC11) and an adherent human glioblastoma cell line (U251) in an orthotopic xenograft mouse model. The DNP-MRI showed an increase in Lac/Pyr at 6 and 16 h after irradiation (18% ± 4% and 14% ± 3%, respectively; mean ± SEM) compared with unirradiated controls in GBMJ1 tumors, whereas no significant change was observed in U251 and NSC11 tumors. Metabolomic analysis likewise showed a significant increase in lactate in GBMJ1 tumors at 16 h. An immunoblot assay showed upregulation of lactate dehydrogenase-A expression in GBMJ1 following radiation exposure, consistent with DNP-MRI and metabolomic analysis. In conclusion, our preclinical study demonstrates that the DNP-MRI technique has the potential to be a powerful diagnostic method with which to evaluate GBM tumor metabolism before and after radiation in the clinical setting.
Collapse
Affiliation(s)
- Tatsuya Kawai
- Radiation Oncology BranchNational Cancer InstituteBethesdaMarylandUSA
- Department of RadiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | | | - Jennifer A. Lee
- Radiation Oncology BranchNational Cancer InstituteBethesdaMarylandUSA
| | - Tamalee Kramp
- Radiation Oncology BranchNational Cancer InstituteBethesdaMarylandUSA
| | - Shun Kishimoto
- Radiation Biology BranchNational Cancer InstituteBethesdaMarylandUSA
| | - Murali C. Krishna
- Radiation Biology BranchNational Cancer InstituteBethesdaMarylandUSA
| | - Philip Tofilon
- Radiation Oncology BranchNational Cancer InstituteBethesdaMarylandUSA
| | | |
Collapse
|
13
|
Nguyen NT, Bae EH, Do LN, Nguyen TA, Park I, Shin SS. In Vivo Assessment of Metabolic Abnormality in Alport Syndrome Using Hyperpolarized [1- 13C] Pyruvate MR Spectroscopic Imaging. Metabolites 2021; 11:metabo11040222. [PMID: 33917329 PMCID: PMC8067337 DOI: 10.3390/metabo11040222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 01/23/2023] Open
Abstract
Alport Syndrome (AS) is a genetic disorder characterized by impaired kidney function. The development of a noninvasive tool for early diagnosis and monitoring of renal function during disease progression is of clinical importance. Hyperpolarized 13C MRI is an emerging technique that enables non-invasive, real-time measurement of in vivo metabolism. This study aimed to investigate the feasibility of using this technique for assessing changes in renal metabolism in the mouse model of AS. Mice with AS demonstrated a significant reduction in the level of lactate from 4- to 7-week-old, while the levels of lactate were unchanged in the control mice over time. This reduction in lactate production in the AS group accompanied a significant increase of PEPCK expression levels, indicating that the disease progression in AS triggered the gluconeogenic pathway and might have resulted in a decreased lactate pool size and a subsequent reduction in pyruvate-to-lactate conversion. Additional metabolic imaging parameters, including the level of lactate and pyruvate, were found to be different between the AS and control groups. These preliminary results suggest that hyperpolarized 13C MRI might provide a potential noninvasive tool for the characterization of disease progression in AS.
Collapse
Affiliation(s)
- Nguyen-Trong Nguyen
- Department of Biomedical Science, Chonnam National University, Gwangju 61469, Korea;
| | - Eun-Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea;
| | - Luu-Ngoc Do
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
| | - Tien-Anh Nguyen
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
| | - Ilwoo Park
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (I.P.); (S.-S.S.); Tel.: +82-62-220-5744 (I.P.); +82-62-220-5882 (S.-S.S.)
| | - Sang-Soo Shin
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
- Correspondence: (I.P.); (S.-S.S.); Tel.: +82-62-220-5744 (I.P.); +82-62-220-5882 (S.-S.S.)
| |
Collapse
|
14
|
Evaluation of Glycolytic Response to Multiple Classes of Anti-glioblastoma Drugs by Noninvasive Measurement of Pyruvate Kinase M2 Using [ 18F]DASA-23. Mol Imaging Biol 2021; 22:124-133. [PMID: 30989436 DOI: 10.1007/s11307-019-01353-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, the key process of tumor metabolism. PKM2 is found in high levels in glioblastoma (GBM) cells with marginal expression within healthy brain tissue, rendering it a key biomarker of GBM metabolic re-programming. Our group has reported the development of a novel radiotracer, 1-((2-fluoro- 6-[18F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA- 23), to non-invasively detect PKM2 levels with positron emission tomography (PET). PROCEDURE U87 human GBM cells were treated with the IC50 concentration of various agents used in the treatment of GBM, including alkylating agents (temozolomide, carmustine, lomustine, procarbazine), inhibitor of topoisomerase I (irinotecan), vascular endothelial and epidermal growth factor receptor inhibitors (cediranib and erlotinib, respectively) anti-metabolite (5-fluorouracil), microtubule inhibitor (vincristine), and metabolic agents (dichloroacetate and IDH1 inhibitor ivosidenib). Following drug exposure for three or 6 days (n = 6 replicates per condition), the radiotracer uptake of [18F]DASA-23 and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) was assessed. Changes in PKM2 protein levels were determined via Western blot and correlated to radiotracer uptake. RESULTS Significant interactions were found between the treatment agent (n = 12 conditions total comprised 11 drugs and vehicle) and the duration of treatment (3- or 6-day exposure to each drug) on the cellular uptake of [18F]DASA-23 (p = 0.0001). The greatest change in the cellular uptake of [18F]DASA-23 was found after exposure to alkylating agents (p < 0. 0001) followed by irinotecan (p = 0. 0012), erlotinib (p = 0. 02), and 5-fluorouracil (p = 0. 005). Correlation of PKM2 protein levels and [18F]DASA-23 cellular uptake revealed a moderate correlation (r = 0.44, p = 0.15). CONCLUSIONS These proof of principle studies emphasize the superiority of [18F]DASA-23 to [18F]FDG in detecting the glycolytic response of GBM to multiple classes of anti-neoplastic drugs in cell culture. A clinical trial evaluating the diagnostic utility of [18F]DASA-23 PET in GBM patients (NCT03539731) is ongoing.
Collapse
|
15
|
Park I, Kim S, Pucciarelli D, Song J, Choi JM, Lee KH, Kim YH, Jung S, Yoon W, Nakamura JL. Differentiating Radiation Necrosis from Brain Tumor Using Hyperpolarized Carbon-13 MR Metabolic Imaging. Mol Imaging Biol 2021; 23:417-426. [PMID: 33442835 DOI: 10.1007/s11307-020-01574-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE Differentiation between radiation-induced necrosis and tumor recurrence is crucial to determine proper management strategies but continues to be one of the central challenges in neuro-oncology. We hypothesized that hyperpolarized 13C MRI, a unique technique to measure real-time in vivo metabolism, would distinguish radiation necrosis from tumor on the basis of cell-intrinsic metabolic differences. The purpose of this study was to explore the feasibility of using hyperpolarized [1-13C]pyruvate for differentiating radiation necrosis from brain tumors. PROCEDURES Radiation necrosis was initiated by employing a CT-guided 80-Gy single-dose irradiation of a half cerebrum in mice (n = 7). Intracerebral tumor was modeled with two orthotopic mouse models: GL261 glioma (n = 6) and Lewis lung carcinoma (LLC) metastasis (n = 7). 13C 3D MR spectroscopic imaging data were acquired following hyperpolarized [1-13C]pyruvate injection approximately 89 and 14 days after treatment for irradiated and tumor-bearing mice, respectively. The ratio of lactate to pyruvate (Lac/Pyr), normalized lactate, and pyruvate in contrast-enhancing lesion was compared between the radiation-induced necrosis and brain tumors. Histopathological analysis was performed from resected brains. RESULTS Conventional MRI exhibited typical radiographic features of radiation necrosis and brain tumor with large areas of contrast enhancement and T2 hyperintensity in all animals. Normalized lactate in radiation necrosis (0.10) was significantly lower than that in glioma (0.26, P = .004) and LLC metastatic tissue (0.25, P = .00007). Similarly, Lac/Pyr in radiation necrosis (0.18) was significantly lower than that in glioma (0.55, P = .00008) and LLC metastasis (0.46, P = .000008). These results were consistent with histological findings where tumor-bearing brains were highly cellular, while irradiated brains exhibited pathological markers consistent with reparative changes from radiation necrosis. CONCLUSION Hyperpolarized 13C MR metabolic imaging of pyruvate is a noninvasive imaging method that differentiates between radiation necrosis and brain tumors, providing a groundwork for further clinical investigation and translation for the improved management of patients with brain tumors.
Collapse
Affiliation(s)
- Ilwoo Park
- Department of Radiology, Chonnam National University, 42 Jaebongro, Donggu, Gwangju, 61469, South Korea.
- Department of Radiology, Chonnam National University Hospital, 42 Jaebongro, Donggu, Gwangju, 61469, South Korea.
- Department of Artificial Intelligence Convergence, Chonnam National University, 77 Yongbong-ro, Bukgu, Gwangju, 61186, South Korea.
| | - Seulkee Kim
- Department of Radiology, Chonnam National University, 42 Jaebongro, Donggu, Gwangju, 61469, South Korea
- Department of Radiology, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-gun, Jeollanam-do, Hwasun, 58128, South Korea
| | - Daniela Pucciarelli
- Department of Radiation Oncology, University of California San Francisco, 505 Parnassus Ave, San Francisco, California, 94143, USA
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, 322 Seoyang-ro, Hwasun-gun, Jeollanam-do, Hwasun, 58128, South Korea
| | - Jin Myung Choi
- Neurosurgery, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-gun, Jeollanam-do, Hwasun, 58128, South Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School, 42 Jaebongro, Donggu, Gwangju, 61469, South Korea
| | - Yun Hyeon Kim
- Department of Radiology, Chonnam National University, 42 Jaebongro, Donggu, Gwangju, 61469, South Korea
- Department of Radiology, Chonnam National University Hospital, 42 Jaebongro, Donggu, Gwangju, 61469, South Korea
| | - Shin Jung
- Neurosurgery, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-gun, Jeollanam-do, Hwasun, 58128, South Korea
| | - Woong Yoon
- Department of Radiology, Chonnam National University, 42 Jaebongro, Donggu, Gwangju, 61469, South Korea
- Department of Radiology, Chonnam National University Hospital, 42 Jaebongro, Donggu, Gwangju, 61469, South Korea
| | - Jean L Nakamura
- Department of Radiation Oncology, University of California San Francisco, 505 Parnassus Ave, San Francisco, California, 94143, USA
| |
Collapse
|
16
|
Patel CB, Beinat C, Xie Y, Chang E, Gambhir SS. Tumor treating fields (TTFields) impairs aberrant glycolysis in glioblastoma as evaluated by [ 18F]DASA-23, a non-invasive probe of pyruvate kinase M2 (PKM2) expression. Neoplasia 2021; 23:58-67. [PMID: 33221711 PMCID: PMC7689378 DOI: 10.1016/j.neo.2020.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022]
Abstract
Despite the anti-proliferative and survival benefits from tumor treating fields (TTFields) in human glioblastoma (hGBM), little is known about the effects of this form of alternating electric fields therapy on the aberrant glycolysis of hGBM. [18F]FDG is the most common radiotracer in cancer metabolic imaging, but its utility in hGBM is impaired due to high glucose uptake in normal brain tissue. With TTFields, radiochemistry, Western blot, and immunofluorescence microscopy, we identified pyruvate kinase M2 (PKM2) as a biomarker of hGBM response to therapeutic TTFields. We used [18F]DASA-23, a novel radiotracer that measures PKM2 expression and which has been shown to be safe in humans, to detect a shift away from hGBM aberrant glycolysis in response to TTFields. Compared to unexposed hGBM, [18F]DASA-23 uptake was reduced in hGBM exposed to TTFields (53%, P< 0.05) or temozolomide chemotherapy (33%, P > 0.05) for 3 d. A 6-d TTFields exposure resulted in a 31% reduction (P = 0.043) in 60-min uptake of [18F]DASA-23. [18F]DASA-23 was retained after a 10 but not 30-min wash-out period. Compared to [18F]FDG, [18F]DASA-23 demonstrated a 4- to 9-fold greater uptake, implying an improved tumor-to-background ratio. Furthermore, compared to no-TTFields exposure, a 6-d TTFields exposure caused a 35% reduction in [18F]DASA-23 30-min uptake compared to only an 8% reduction in [18F]FDG 30-min uptake. Quantitative Western blot analysis and qualitative immunofluorescence for PKM2 confirmed the TTFields-induced reduction in PKM2 expression. This is the first study to demonstrate that TTFields impairs hGBM aberrant glycolytic metabolism through reduced PKM2 expression, which can be non-invasively detected by the [18F]DASA-23 radiotracer.
Collapse
Affiliation(s)
- Chirag B Patel
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; Division of Adult Neuro-Oncology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Corinne Beinat
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuanyang Xie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Edwin Chang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; Departments of Bioengineering and Materials Science & Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Subramani E, Radoul M, Najac C, Batsios G, Molloy AR, Hong D, Gillespie AM, Santos RD, Viswanath P, Costello JF, Pieper RO, Ronen SM. Glutamate Is a Noninvasive Metabolic Biomarker of IDH1-Mutant Glioma Response to Temozolomide Treatment. Cancer Res 2020; 80:5098-5108. [PMID: 32958546 PMCID: PMC7669718 DOI: 10.1158/0008-5472.can-20-1314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 02/04/2023]
Abstract
Although lower grade gliomas are driven by mutations in the isocitrate dehydrogenase 1 (IDH1) gene and are less aggressive than primary glioblastoma, they nonetheless generally recur. IDH1-mutant patients are increasingly being treated with temozolomide, but early detection of response remains a challenge and there is a need for complementary imaging methods to assess response to therapy prior to tumor shrinkage. The goal of this study was to determine the value of magnetic resonance spectroscopy (MRS)-based metabolic changes for detection of response to temozolomide in both genetically engineered and patient-derived mutant IDH1 models. Using 1H MRS in combination with chemometrics identified several metabolic alterations in temozolomide-treated cells, including a significant increase in steady-state glutamate levels. This was confirmed in vivo, where the observed 1H MRS increase in glutamate/glutamine occurred prior to tumor shrinkage. Cells labeled with [1-13C]glucose and [3-13C]glutamine, the principal sources of cellular glutamate, showed that flux to glutamate both from glucose via the tricarboxylic acid cycle and from glutamine were increased following temozolomide treatment. In line with these results, hyperpolarized [5-13C]glutamate produced from [2-13C]pyruvate and hyperpolarized [1-13C]glutamate produced from [1-13C]α-ketoglutarate were significantly higher in temozolomide-treated cells compared with controls. Collectively, our findings identify 1H MRS-detectable elevation of glutamate and hyperpolarized 13C MRS-detectable glutamate production from either pyruvate or α-ketoglutarate as potential translatable metabolic biomarkers of response to temozolomide treatment in mutant IDH1 glioma. SIGNIFICANCE: These findings show that glutamate can be used as a noninvasive, imageable metabolic marker for early assessment of tumor response to temozolomide, with the potential to improve treatment strategies for mutant IDH1 patients.
Collapse
Affiliation(s)
- Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Chloe Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Abigail R Molloy
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.
- Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
18
|
Overexpression of CXCL14 Alleviates Ventilator-Induced Lung Injury through the Downregulation of PKM2-Mediated Cytokine Production. Mediators Inflamm 2020; 2020:7650978. [PMID: 32774150 PMCID: PMC7396076 DOI: 10.1155/2020/7650978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is one of the most common complications of mechanical ventilation (MV), which strongly impacts the outcome of ventilated patients. Current evidences indicated that inflammation is a major contributor to the pathogenesis of VILI. Our results showed that MV induced excessive proinflammatory cytokine productions together with decreased CXCL14 and increased PKM2 expressions in injured lungs. In addition, CXCL14 overexpression downregulated PKM2 expression and attenuated VILI with reduced inflammation. Moreover, the overexpression of PKM2 markedly diminished the protective effects of CXCL14 against VILI as reflected by worsened morphology and increased cytokine production, whereas PKM2 knockdown decreased cytokine production and attenuated VILI. Collectively, these results suggested that CXCL14 overexpression attenuates VILI through the downregulation of PKM2-mediated proinflammatory cytokine production.
Collapse
|
19
|
Molloy AR, Najac C, Viswanath P, Lakhani A, Subramani E, Batsios G, Radoul M, Gillespie AM, Pieper RO, Ronen SM. MR-detectable metabolic biomarkers of response to mutant IDH inhibition in low-grade glioma. Theranostics 2020; 10:8757-8770. [PMID: 32754276 PMCID: PMC7392019 DOI: 10.7150/thno.47317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1mut) are reported in 70-90% of low-grade gliomas and secondary glioblastomas. IDH1mut catalyzes the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG), an oncometabolite which drives tumorigenesis. Inhibition of IDH1mut is therefore an emerging therapeutic approach, and inhibitors such as AG-120 and AG-881 have shown promising results in phase 1 and 2 clinical studies. However, detection of response to these therapies prior to changes in tumor growth can be challenging. The goal of this study was to identify non-invasive clinically translatable metabolic imaging biomarkers of IDH1mut inhibition that can serve to assess response. Methods: IDH1mut inhibition was confirmed using an enzyme assay and 1H- and 13C- magnetic resonance spectroscopy (MRS) were used to investigate the metabolic effects of AG-120 and AG-881 on two genetically engineered IDH1mut-expressing cell lines, NHAIDH1mut and U87IDH1mut. Results:1H-MRS indicated a significant decrease in steady-state 2-HG following treatment, as expected. This was accompanied by a significant 1H-MRS-detectable increase in glutamate. However, other metabolites previously linked to 2-HG were not altered. 13C-MRS also showed that the steady-state changes in glutamate were associated with a modulation in the flux of glutamine to both glutamate and 2-HG. Finally, hyperpolarized 13C-MRS was used to show that the flux of α-KG to both glutamate and 2-HG was modulated by treatment. Conclusion: In this study, we identified potential 1H- and 13C-MRS-detectable biomarkers of response to IDH1mut inhibition in gliomas. Although further studies are needed to evaluate the utility of these biomarkers in vivo, we expect that in addition to a 1H-MRS-detectable drop in 2-HG, a 1H-MRS-detectable increase in glutamate, as well as a hyperpolarized 13C-MRS-detectable change in [1-13C] α-KG flux, could serve as metabolic imaging biomarkers of response to treatment.
Collapse
Affiliation(s)
- Abigail R Molloy
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Aliya Lakhani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Russell O Pieper
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
Park I, Lupo JM, Nelson SJ. Correlation of Tumor Perfusion Between Carbon-13 Imaging with Hyperpolarized Pyruvate and Dynamic Susceptibility Contrast MRI in Pre-Clinical Model of Glioblastoma. Mol Imaging Biol 2020; 21:626-632. [PMID: 30225760 DOI: 10.1007/s11307-018-1275-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The purpose of this study was to compare C-13 imaging parameters with hyperpolarized [1-13C]pyruvate with conventional gadolinium (Gd)-based perfusion weighted imaging using an orthotopic xenograft model of human glioblastoma multiforme (GBM). PROCEDURES C-13 3D magnetic resonance spectroscopic imaging (MRSI) data were obtained from 14 tumor-bearing rats after the injection of hyperpolarized [1-13C]pyruvate at a 3T scanner. Dynamic susceptibility contrast (DSC) perfusion-weighted MR images were obtained following intravenous administration of Gd-DTPA. Normalized lactate, pyruvate, total carbon, and lactate to pyruvate ratio from C-13 MRSI data were compared with normalized peak height and percent recovery of ΔR2* curve from the DSC images in the voxels containing tumor using a Pearson's linear correlation. RESULTS Normalized peak height from DSC imaging showed substantial correlations with normalized lactate (r = 0.6, p = 0.02) and total carbon (r = 0.6, p = 0.02) from hyperpolarized C-13 MRSI data. CONCLUSIONS Since the peak height in the ΔR2* curve from DSC data is related to the extent of blood volume, these hyperpolarized C-13 imaging parameters may be used to assess blood volume in rodent intracranial xenograft models of GBM.
Collapse
Affiliation(s)
- Ilwoo Park
- Department of Radiology, Chonnam National University Medical School, Jeabongro 42, Donggu, Gwangju, 61469, South Korea. .,Department of Radiology, Chonnam National University Hospital, Gwangju, South Korea.
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
21
|
Zalles M, Smith N, Ziegler J, Saunders D, Remerowski S, Thomas L, Gulej R, Mamedova N, Lerner M, Fung K, Chung J, Hwang K, Jin J, Wiley G, Brown C, Battiste J, Wren JD, Towner RA. Optimized monoclonal antibody treatment against ELTD1 for GBM in a G55 xenograft mouse model. J Cell Mol Med 2020; 24:1738-1749. [PMID: 31863639 PMCID: PMC6991683 DOI: 10.1111/jcmm.14867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma is an aggressive brain tumour found in adults, and the therapeutic approaches available have not significantly increased patient survival. Recently, we discovered that ELTD1, an angiogenic biomarker, is highly expressed in human gliomas. Polyclonal anti-ELTD1 treatments were effective in glioma pre-clinical models, however, pAb binding is potentially promiscuous. Therefore, the aim of this study was to determine the effects of an optimized monoclonal anti-ELTD1 treatment in G55 xenograft glioma models. MRI was used to assess the effects of the treatments on animal survival, tumour volumes, perfusion rates and binding specificity. Immunohistochemistry and histology were conducted to confirm and characterize microvessel density and Notch1 levels, and to locate the molecular probes. RNA-sequencing was used to analyse the effects of the mAb treatment. Our monoclonal anti-ELTD1 treatment significantly increased animal survival, reduced tumour volumes, normalized the vasculature and showed higher binding specificity within the tumour compared with both control- and polyclonal-treated mice. Notch1 positivity staining and RNA-seq results suggested that ELTD1 has the ability to interact with and interrupt Notch1 signalling. Although little is known about ELTD1, particularly about its ligand and pathways, our data suggest that our monoclonal anti-ELTD1 antibody is a promising anti-angiogenic therapeutic in glioblastomas.
Collapse
Affiliation(s)
- Michelle Zalles
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Nataliya Smith
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Jadith Ziegler
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Dean McGee Eye InstituteUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Debra Saunders
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Shannon Remerowski
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
- Center for Veterinary SciencesOklahoma State UniversityStillwaterOKUSA
| | - Lincy Thomas
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
- The Jimmy Everest Center for Cancer and Blood Disorders in ChildrenUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Rafal Gulej
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
- Pharmaceutical DepartmentMedical University of LodzLodzPoland
| | - Nadya Mamedova
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Megan Lerner
- Surgery Research LaboratoryUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Kar‐Ming Fung
- Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Cardiovascular BiologyOklahoma Medical Research FoundationOklahoma CityOKUSA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Junho Chung
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulKorea
| | - Kyusang Hwang
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulKorea
| | - Junyeong Jin
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulKorea
| | - Graham Wiley
- Clinical Genomics CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Chase Brown
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Genes & Human DiseaseOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - James Battiste
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Department of NeurologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Jonathan D. Wren
- Genes & Human DiseaseOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Rheal A. Towner
- Advanced Magnetic Resonance CenterOklahoma Medical Research FoundationOklahoma CityOKUSA
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| |
Collapse
|
22
|
Su Q, Luo S, Tan Q, Deng J, Zhou S, Peng M, Tao T, Yang X. The role of pyruvate kinase M2 in anticancer therapeutic treatments. Oncol Lett 2019; 18:5663-5672. [PMID: 31788038 PMCID: PMC6865080 DOI: 10.3892/ol.2019.10948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer cells are characterized by a high glycolytic rate, which leads to energy regeneration and anabolic metabolism; a consequence of this is the abnormal expression of pyruvate kinase isoenzyme M2 (PKM2). Multiple studies have demonstrated that the expression levels of PKM2 are upregulated in numerous cancer types. Consequently, the mechanism of action of certain anticancer drugs is to downregulate PKM2 expression, indicating the significance of PKM2 in a chemotherapeutic setting. Furthermore, it has previously been highlighted that the downregulation of PKM2 expression, using either inhibitors or short interfering RNA, enhances the anticancer effect exerted by THP treatment on bladder cancer cells, both in vitro and in vivo. The present review summarizes the detailed mechanisms and therapeutic relevance of anticancer drugs that inhibit PKM2 expression. In addition, the relationship between PKM2 expression levels and drug resistance were explored. Finally, future directions, such as the targeting of PKM2 as a strategy to explore novel anticancer agents, were suggested. The current review explored and highlighted the important role of PKM2 in anticancer treatments.
Collapse
Affiliation(s)
- Qiongli Su
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Shengping Luo
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Qiuhong Tan
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ting Tao
- Department of Pharmacy, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, Hunan 414000, P.R. China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
23
|
Julià-Sapé M, Candiota AP, Arús C. Cancer metabolism in a snapshot: MRS(I). NMR IN BIOMEDICINE 2019; 32:e4054. [PMID: 30633389 DOI: 10.1002/nbm.4054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The contribution of MRS(I) to the in vivo evaluation of cancer-metabolism-derived metrics, mostly since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly glycolytic, is now being sampled by 13 C magnetic resonance spectroscopic imaging (MRSI) following the injection of hyperpolarized [1-13 C] pyruvate (Pyr). Hot-spots of, mostly, increased lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. Therapy response is usually signalled by decreased Lac/Pyr 13 C-labelled ratio with respect to untreated or non-responding tumour. For therapeutic agents inducing tumour hypoxia, the 13 C-labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. 31 P MRSI may sample intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites (such as 2-hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such as total choline to N-acetylaspartate (plain ratio or CNI index)) or the whole 1 H MRSI(I) pattern through pattern recognition analysis. These approaches have been applied to address different questions such as tumour subtype definition, following/predicting the response to therapy or defining better resection or radiosurgery limits.
Collapse
Affiliation(s)
- Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
24
|
Li J, Halfter K, Zhang M, Saad C, Xu K, Bauer B, Huang Y, Shi L, Mansmann UR. Computational analysis of receptor tyrosine kinase inhibitors and cancer metabolism: implications for treatment and discovery of potential therapeutic signatures. BMC Cancer 2019; 19:600. [PMID: 31208363 PMCID: PMC6580552 DOI: 10.1186/s12885-019-5804-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Receptor tyrosine kinase (RTK) inhibitors are frequently used to treat cancers and the results have been mixed, some of these small molecule drugs are highly successful while others show a more modest response. A high number of studies have been conducted to investigate the signaling mechanisms and corresponding therapeutic influence of RTK inhibitors in order to explore the therapeutic potential of RTK inhibitors. However, most of these studies neglected the potential metabolic impact of RTK inhibitors, which could be highly associated with drug efficacy and adverse effects during treatment. METHODS In order to fill these knowledge gaps and improve the therapeutic utilization of RTK inhibitors a large-scale computational simulation/analysis over multiple types of cancers with the treatment responses of RTK inhibitors was performed. The pharmacological data of all eight RTK inhibitor and gene expression profiles of 479 cell lines from The Cancer Cell Line Encyclopedia were used. RESULTS The potential metabolic impact of RTK inhibitors on different types of cancers were analyzed resulting in cancer-specific (breast, liver, pancreas, central nervous system) metabolic signatures. Many of these are in line with results from different independent studies, thereby providing indirect verification of the obtained results. CONCLUSIONS Our study demonstrates the potential of using a computational approach on signature-based-analysis over multiple cancer types. The results reveal the strength of multiple-cancer analysis over conventional signature-based analysis on a single cancer type.
Collapse
Affiliation(s)
- Jian Li
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin Halfter
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
| | - Mengying Zhang
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
| | - Christian Saad
- Department of Computational Science, University of Augsburg, Augsburg, Germany
| | - Kai Xu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Bernhard Bauer
- Department of Computational Science, University of Augsburg, Augsburg, Germany
| | - Yijiang Huang
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU, Munich, Germany
| | - Lei Shi
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Ulrich R. Mansmann
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
25
|
Wang ZJ, Ohliger MA, Larson PEZ, Gordon JW, Bok RA, Slater J, Villanueva-Meyer JE, Hess CP, Kurhanewicz J, Vigneron DB. Hyperpolarized 13C MRI: State of the Art and Future Directions. Radiology 2019; 291:273-284. [PMID: 30835184 DOI: 10.1148/radiol.2019182391] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hyperpolarized (HP) carbon 13 (13C) MRI is an emerging molecular imaging method that allows rapid, noninvasive, and pathway-specific investigation of dynamic metabolic and physiologic processes that were previously inaccessible to imaging. This technique has enabled real-time in vivo investigations of metabolism that are central to a variety of diseases, including cancer, cardiovascular disease, and metabolic diseases of the liver and kidney. This review provides an overview of the methods of hyperpolarization and 13C probes investigated to date in preclinical models of disease. The article then discusses the progress that has been made in translating this technology for clinical investigation. In particular, the potential roles and emerging clinical applications of HP [1-13C]pyruvate MRI will be highlighted. The future directions to enable the adoption of this technology to advance the basic understanding of metabolism, to improve disease diagnosis, and to accelerate treatment assessment are also detailed.
Collapse
Affiliation(s)
- Zhen J Wang
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Michael A Ohliger
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Peder E Z Larson
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Jeremy W Gordon
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Robert A Bok
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - James Slater
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Javier E Villanueva-Meyer
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Christopher P Hess
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - John Kurhanewicz
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Daniel B Vigneron
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
26
|
Najac C, Radoul M, Le Page LM, Batsios G, Subramani E, Viswanath P, Gillespie AM, Ronen SM. In vivo investigation of hyperpolarized [1,3- 13C 2]acetoacetate as a metabolic probe in normal brain and in glioma. Sci Rep 2019; 9:3402. [PMID: 30833594 PMCID: PMC6399277 DOI: 10.1038/s41598-019-39677-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Dysregulation in NAD+/NADH levels is associated with increased cell division and elevated levels of reactive oxygen species in rapidly proliferating cancer cells. Conversion of the ketone body acetoacetate (AcAc) to β-hydroxybutyrate (β-HB) by the mitochondrial enzyme β-hydroxybutyrate dehydrogenase (BDH) depends upon NADH availability. The β-HB-to-AcAc ratio is therefore expected to reflect mitochondrial redox. Previous studies reported the potential of hyperpolarized 13C-AcAc to monitor mitochondrial redox in cells, perfused organs and in vivo. However, the ability of hyperpolarized 13C-AcAc to cross the blood brain barrier (BBB) and its potential to monitor brain metabolism remained unknown. Our goal was to assess the value of hyperpolarized [1,3-13C2]AcAc in healthy and tumor-bearing mice in vivo. Following hyperpolarized [1,3-13C2]AcAc injection, production of [1,3-13C2]β-HB was detected in normal and tumor-bearing mice. Significantly higher levels of [1-13C]AcAc and lower [1-13C]β-HB-to-[1-13C]AcAc ratios were observed in tumor-bearing mice. These results were consistent with decreased BDH activity in tumors and associated with increased total cellular NAD+/NADH. Our study confirmed that AcAc crosses the BBB and can be used for monitoring metabolism in the brain. It highlights the potential of AcAc for future clinical translation and its potential utility for monitoring metabolic changes associated with glioma, and other neurological disorders.
Collapse
Affiliation(s)
- Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Lydia M Le Page
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States.,Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, United States
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
27
|
Guo Z, Wang H, Wei J, Han L, Li Z. Sequential treatment of phenethyl isothiocyanate increases sensitivity of Temozolomide resistant glioblastoma cells by decreasing expression of MGMT via NF-κB pathway. Am J Transl Res 2019; 11:696-708. [PMID: 30899372 PMCID: PMC6413290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Existence of acquired or intrinsic resistance to Temozolomide (TMD) remains a point of concern in treating glioblastoma (GBM). Here we established mechanism by which Phenethyl isothiocyanate (PEITC) reverses TMD resistance in T98G cell lines both in vitro and in vivo. METHODS For the study TMD-resistant cell lines were generated by stepwise exposing the parental cell lines (U87 and U373) to TMD. The 50% inhibitory concentration (IC50) values were established. MTT assay was done for cell survival studies, apoptosis assay by FITC Annexin V/PI staining, luciferase reporter assay for NF-κB transcription activity, cell colony survival and cell invasion assay, protein expression by western blot was done. For in vivo studies nude mouse model of GBM was established, TUNEL assay was done for apoptosis in tumor specimens. RESULTS We established that T98G, U87-R and U373-R showed higher NF-κB activity and exhibited higher IC50 of TMD with significantly increased MGMT expression compared to untreated cells. Next, we found that PEITC suppressed proliferation of resistant GBM cells, inhibited NF-κB activity, decreased expression of MGMT and reversed the resistance in U373-R, U87-R and T98G cells. Exposure to PEITC followed by sequential treatment of TMD produced synergistic effect. In U373-R grafted xenografts mouse model PEITC suppressed cell growth and enhanced cell death. CONCLUSION Altogether, the present research established that combination of PEITC with TMD could enhance its clinical efficacy in resistant GBM by suppressing MGMT via inhibiting NF-κB activity.
Collapse
Affiliation(s)
- Zhigang Guo
- Department of Neurosurgery, China-Japan Union Hospital of Jilin UniversityNo. 126, Xiantai Street, Changchun 130033, China
| | - Han Wang
- Clinical Laboratory The Affiliated Hospital of Changchun University of Traditional Chinese MedicineNo. 1478, Gongnong Road, Changchun 130021, China
| | - Jun Wei
- Surgery Institute, China-Japan Union Hospital of Jilin UniversityNo. 126, Xiantai Street, Changchun 130033, China
| | - Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin UniversityNo. 126, Xiantai Street, Changchun 130033, China
| | - Zhaohui Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin UniversityNo. 126, Xiantai Street, Changchun 130033, China
| |
Collapse
|
28
|
Radoul M, Najac C, Viswanath P, Mukherjee J, Kelly M, Gillespie AM, Chaumeil MM, Eriksson P, Santos RD, Pieper RO, Ronen SM. HDAC inhibition in glioblastoma monitored by hyperpolarized 13 C MRSI. NMR IN BIOMEDICINE 2019; 32:e4044. [PMID: 30561869 PMCID: PMC6545173 DOI: 10.1002/nbm.4044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 05/20/2023]
Abstract
Vorinostat is a histone deacetylase (HDAC) inhibitor that inhibits cell proliferation and induces apoptosis in solid tumors, and is in clinical trials for the treatment of glioblastoma (GBM). The goal of this study was to assess whether hyperpolarized 13 C MRS and magnetic resonance spectroscopic imaging (MRSI) can detect HDAC inhibition in GBM models. First, we confirmed HDAC inhibition in U87 GBM cells and evaluated real-time dynamic metabolic changes using a bioreactor system with live vorinostat-treated or control cells. We found a significant 40% decrease in the 13 C MRS-detectable ratio of hyperpolarized [1-13 C]lactate to hyperpolarized [1-13 C]pyruvate, [1-13 C]Lac/Pyr, and a 37% decrease in the pseudo-rate constant, kPL , for hyperpolarized [1-13 C]lactate production, in vorinostat-treated cells compared with controls. To understand the underlying mechanism for this finding, we assessed the expression and activity of lactate dehydrogenase (LDH) (which catalyzes the pyruvate to lactate conversion), its associated cofactor nicotinamide adenine dinucleotide, the expression of monocarboxylate transporters (MCTs) MCT1 and MCT4 (which shuttle pyruvate and lactate in and out of the cell) and intracellular lactate levels. We found that the most likely explanation for our finding that hyperpolarized lactate is reduced in treated cells is a 30% reduction in intracellular lactate levels that occurs as a result of increased expression of both MCT1 and MCT4 in vorinostat-treated cells. In vivo 13 C MRSI studies of orthotopic tumors in mice also showed a significant 52% decrease in hyperpolarized [1-13 C]Lac/Pyr when comparing vorinostat-treated U87 GBM tumors with controls, and, as in the cell studies, this metabolic finding was associated with increased MCT1 and MCT4 expression in HDAC-inhibited tumors. Thus, the 13 C MRSI-detectable decrease in hyperpolarized [1-13 C]lactate production could serve as a biomarker of response to HDAC inhibitors.
Collapse
Affiliation(s)
- Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Joydeep Mukherjee
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Mark Kelly
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Myriam M. Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
- Department of Physical Therapy and Rehabilitation Science and Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | - Russell O. Pieper
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
29
|
Kurhanewicz J, Vigneron DB, Ardenkjaer-Larsen JH, Bankson JA, Brindle K, Cunningham CH, Gallagher FA, Keshari KR, Kjaer A, Laustsen C, Mankoff DA, Merritt ME, Nelson SJ, Pauly JM, Lee P, Ronen S, Tyler DJ, Rajan SS, Spielman DM, Wald L, Zhang X, Malloy CR, Rizi R. Hyperpolarized 13C MRI: Path to Clinical Translation in Oncology. Neoplasia 2019; 21:1-16. [PMID: 30472500 PMCID: PMC6260457 DOI: 10.1016/j.neo.2018.09.006] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
Abstract
This white paper discusses prospects for advancing hyperpolarization technology to better understand cancer metabolism, identify current obstacles to HP (hyperpolarized) 13C magnetic resonance imaging's (MRI's) widespread clinical use, and provide recommendations for overcoming them. Since the publication of the first NIH white paper on hyperpolarized 13C MRI in 2011, preclinical studies involving [1-13C]pyruvate as well a number of other 13C labeled metabolic substrates have demonstrated this technology's capacity to provide unique metabolic information. A dose-ranging study of HP [1-13C]pyruvate in patients with prostate cancer established safety and feasibility of this technique. Additional studies are ongoing in prostate, brain, breast, liver, cervical, and ovarian cancer. Technology for generating and delivering hyperpolarized agents has evolved, and new MR data acquisition sequences and improved MRI hardware have been developed. It will be important to continue investigation and development of existing and new probes in animal models. Improved polarization technology, efficient radiofrequency coils, and reliable pulse sequences are all important objectives to enable exploration of the technology in healthy control subjects and patient populations. It will be critical to determine how HP 13C MRI might fill existing needs in current clinical research and practice, and complement existing metabolic imaging modalities. Financial sponsorship and integration of academia, industry, and government efforts will be important factors in translating the technology for clinical research in oncology. This white paper is intended to provide recommendations with this goal in mind.
Collapse
Affiliation(s)
- John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | | | - James A Bankson
- Department of Imaging Physics, MD Anderson Medical Center, Houston, TX, USA
| | - Kevin Brindle
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, New York, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Denmark
| | | | - David A Mankoff
- Department of Radiology, University of Pennsylvania, PA, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - John M Pauly
- Department of Electric Engineering, Stanford University, USA
| | - Philips Lee
- Functional Metabolism Group, Singapore Biomedical Consortium, Agency for Science, Technology and Research, Singapore
| | - Sabrina Ronen
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Damian J Tyler
- Department of Biomedical Science, University of Oxford, Oxford, UK
| | - Sunder S Rajan
- Center for Devices and Radiological Health (CDRH), FDA, White Oak, MD, USA
| | - Daniel M Spielman
- Departments of Radiology and Electric Engineering, Stanford University, USA
| | - Lawrence Wald
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, PA, USA
| |
Collapse
|
30
|
Podder A, Koo S, Lee J, Mun S, Khatun S, Kang HG, Bhuniya S, Kim JS. A rhodamine based fluorescent probe validates substrate and cellular hypoxia specific NADH expression. Chem Commun (Camb) 2019; 55:537-540. [DOI: 10.1039/c8cc08991d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel rhodamine-based redox probe (MQR) was developed to visualize the alteration of the NADH level under diverse metabolic perturbations.
Collapse
Affiliation(s)
- Arup Podder
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| | - Seyoung Koo
- Department of Chemistry
- Korea University
- Seoul 02841
- Korea
| | - Jiyeong Lee
- Department of Biomedical Laboratory Science
- College of Health Sciences
- Eulji University
- Seongnam 13135
- Korea
| | - Sora Mun
- Department of Senior Healthcare
- BK21 Plus Program
- Graduate School
- Eulji University
- Seongnam 13135
| | - Sabina Khatun
- Department of Chemical Engineering & Materials Science
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| | - Hee-Gyoo Kang
- Department of Biomedical Laboratory Science
- College of Health Sciences
- Eulji University
- Seongnam 13135
- Korea
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| | | |
Collapse
|
31
|
Sulforaphane from Cruciferous Vegetables: Recent Advances to Improve Glioblastoma Treatment. Nutrients 2018; 10:nu10111755. [PMID: 30441761 PMCID: PMC6267435 DOI: 10.3390/nu10111755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Sulforaphane (SFN), an isothiocyanate (ITC) derived from cruciferous vegetables, particularly broccoli and broccoli sprouts, has been widely investigated due to its promising health-promoting properties in disease, and low toxicity in normal tissue. Although not yet fully understood, many mechanisms of anticancer activity at each step of cancer development have been attributed to this ITC. Given the promising data available regarding SFN, this review aimed to provide an overview on the potential activities of SFN related to the cellular mechanisms involved in glioblastoma (GBM) progression. GBM is the most frequent malignant brain tumor among adults and is currently an incurable disease due mostly to its highly invasive phenotype, and the poor efficacy of the available therapies. Despite all efforts, the median overall survival of GBM patients remains approximately 1.5 years under therapy. Therefore, there is an urgent need to provide support for translating the progress in understanding the molecular background of GBM into more complex, but promising therapeutic strategies, in which SFN may find a leading role.
Collapse
|
32
|
Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis 2018; 9:1128. [PMID: 30425242 PMCID: PMC6233226 DOI: 10.1038/s41419-018-1176-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/11/2018] [Accepted: 10/18/2018] [Indexed: 01/28/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most hypoxic tumors of the central nervous system. Although temozolomide (TMZ) is an effective clinical agent in the GBM therapy, the hypoxic microenvironment remains a major barrier in glioma chemotherapy resistance, and the underlying mechanisms are poorly understood. Here, we find hypoxia can induce the protective response to mitochondrion via HIF-1α-mediated miR-26a upregulation which is associated with TMZ resistance in vitro and in vivo. Further, we demonstrated that HIF-1α/miR-26a axis strengthened the acquisition of TMZ resistance through prevention of Bax and Bad in mitochondria dysfunction in GBM. In addition, miR-26a expression levels negatively correlate with Bax, Bad levels, and GBM progression; but highly correlate with HIF-1α levels in clinical cancer tissues. These findings provide a new link in the mechanistic understanding of TMZ resistance under glioma hypoxia microenvironment, and consequently HIF-1α/miR-26a/Bax/Bad signaling pathway as a promising adjuvant therapy for GBM with TMZ.
Collapse
|
33
|
Park I, Larson PEZ, Gordon JW, Carvajal L, Chen HY, Bok R, Van Criekinge M, Ferrone M, Slater JB, Xu D, Kurhanewicz J, Vigneron DB, Chang S, Nelson SJ. Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn Reson Med 2018; 80:864-873. [PMID: 29322616 PMCID: PMC5980662 DOI: 10.1002/mrm.27077] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/27/2017] [Accepted: 12/16/2017] [Indexed: 12/11/2022]
Abstract
Purpose Hyperpolarized 13C metabolic imaging is a non-invasive imaging modality for evaluating real-time metabolism. The purpose of this study was to develop and implement experimental strategies for using [1-13C]pyruvate to probe in vivo metabolism for patients with brain tumors and other neurological diseases. Methods The 13C RF coils and pulse sequences were tested in a phantom and were performed using a 3T whole body scanner. Samples of [1-13C]pyruvate were polarized using a SPINlab system. Dynamic 13C data were acquired from eight patients previously diagnosed with brain tumors, who had received treatment and were being followed with serial MR scans. Results The phantom studies produced good quality spectra with a reduction in signal intensity in the center due to the reception profiles of the 13C receive coils. Dynamic data obtained from a 3 cm slice through a patient’s brain following injection with [1-13C]pyruvate showed the anticipated arrival of the agent, its conversion to lactate and bicarbonate, and subsequent reduction in signal intensity. A similar temporal pattern was observed in 2D dynamic patient studies, with signals corresponding to pyruvate, lactate and bicarbonate being in normal appearing brain but only pyruvate and lactate being detected in regions corresponding to the anatomic lesion. Physiological monitoring and follow-up confirmed that there were no adverse events associated with the injection. Conclusions This study has presented the first application of hyperpolarized 13C metabolic imaging in patients with brain tumor and demonstrated the safety and feasibility of using hyperpolarized [1-13C]pyruvate to evaluate in vivo brain metabolism.
Collapse
Affiliation(s)
- Ilwoo Park
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Peder EZ. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Marcus Ferrone
- Department of Clinical Pharmacy, University of California, San Francisco, CA, United States
| | - James B. Slater
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Susan Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, United States
| | - Sarah J. Nelson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| |
Collapse
|
34
|
Park I, Larson PEZ, Gordon JW, Carvajal L, Chen HY, Bok R, Van Criekinge M, Ferrone M, Slater JB, Xu D, Kurhanewicz J, Vigneron DB, Chang S, Nelson SJ. Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn Reson Med 2018. [PMID: 29322616 DOI: 10.1002/mrm.v80.310.1002/mrm.27077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
PURPOSE Hyperpolarized 13C metabolic imaging is a non-invasive imaging modality for evaluating real-time metabolism. The purpose of this study was to develop and implement experimental strategies for using [1-13C]pyruvate to probe in vivo metabolism for patients with brain tumors and other neurological diseases. METHODS The 13C RF coils and pulse sequences were tested in a phantom and were performed using a 3T whole body scanner. Samples of [1-13C]pyruvate were polarized using a SPINlab system. Dynamic 13C data were acquired from eight patients previously diagnosed with brain tumors, who had received treatment and were being followed with serial MR scans. RESULTS The phantom studies produced good quality spectra with a reduction in signal intensity in the center due to the reception profiles of the 13C receive coils. Dynamic data obtained from a 3 cm slice through a patient’s brain following injection with [1-13C]pyruvate showed the anticipated arrival of the agent, its conversion to lactate and bicarbonate, and subsequent reduction in signal intensity. A similar temporal pattern was observed in 2D dynamic patient studies, with signals corresponding to pyruvate, lactate and bicarbonate being in normal appearing brain but only pyruvate and lactate being detected in regions corresponding to the anatomic lesion. Physiological monitoring and follow-up confirmed that there were no adverse events associated with the injection. CONCLUSIONS This study has presented the first application of hyperpolarized 13C metabolic imaging in patients with brain tumor and demonstrated the safety and feasibility of using hyperpolarized [1-13C]pyruvate to evaluate in vivo brain metabolism.
Collapse
Affiliation(s)
- Ilwoo Park
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Marcus Ferrone
- Department of Clinical Pharmacy, University of California, San Francisco, California, USA
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Susan Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| |
Collapse
|
35
|
Magnetic resonance imaging of cancer metabolism with hyperpolarized 13C-labeled cell metabolites. Curr Opin Chem Biol 2018; 45:187-194. [DOI: 10.1016/j.cbpa.2018.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
|
36
|
Velpula KK, Guda MR, Sahu K, Tuszynski J, Asuthkar S, Bach SE, Lathia JD, Tsung AJ. Metabolic targeting of EGFRvIII/PDK1 axis in temozolomide resistant glioblastoma. Oncotarget 2018; 8:35639-35655. [PMID: 28410193 PMCID: PMC5482605 DOI: 10.18632/oncotarget.16767] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 01/15/2023] Open
Abstract
Glioblastomas are characterized by amplification of EGFR. Approximately half of tumors with EGFR over-expression also express a constitutively active ligand independent EGFR variant III (EGFRvIII). While current treatments emphasize surgery followed by radiation and chemotherapy with Temozolomide (TMZ), acquired chemoresistance is a universal feature of recurrent GBMs. To mimic the GBM resistant state, we generated an in vitro TMZ resistant model and demonstrated that dichloroacetate (DCA), a metabolic inhibitor of pyruvate dehydrogenase kinase 1 (PDK1), reverses the Warburg effect. Microarray analysis conducted on the TMZ resistant cells with their subsequent treatment with DCA revealed PDK1 as its sole target. DCA treatment also induced mitochondrial membrane potential change and apoptosis as evidenced by JC-1 staining and electron microscopic studies. Computational homology modeling and docking studies confirmed DCA binding to EGFR, EGFRvIII and PDK1 with high affinity. In addition, expression of EGFRvIII was comparable to PDK1 when compared to EGFR in GBM surgical specimens supporting our in silico prediction data. Collectively our current study provides the first in vitro proof of concept that DCA reverses the Warburg effect in the setting of EGFRvIII positivity and TMZ resistance leading to GBM cytotoxicity, implicating cellular tyrosine kinase signaling in cancer cell metabolism.
Collapse
Affiliation(s)
- Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.,Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Kamlesh Sahu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jack Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Sarah E Bach
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Justin D Lathia
- Department of Cellular and Molecular medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.,Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.,Illinois Neurological Institute, Peoria, IL, USA
| |
Collapse
|
37
|
Su Q, Tao T, Tang L, Deng J, Darko KO, Zhou S, Peng M, He S, Zeng Q, Chen AF, Yang X. Down-regulation of PKM2 enhances anticancer efficiency of THP on bladder cancer. J Cell Mol Med 2018. [PMID: 29512924 PMCID: PMC5908113 DOI: 10.1111/jcmm.13571] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) regulates the final step of glycolysis levels that are correlated with the sensitivity of anticancer chemotherapeutic drugs. THP is one of the major drugs used in non‐muscle‐invasive bladder cancer instillation chemotherapy. However, low response ratio of THP (19.7%) treatment to human genitourinary tumours using collagen gel matrix has been observed. This study aims to investigate the effect of down‐regulation of PKM2 on THP efficiency. Via inhibitor or siRNA, the effects of reduced PKM2 on the efficiency of THP were determined in 2 human and 1 murine bladder cancer cell lines, using MTT, cologenic and fluorescence approaches. Molecular mechanisms of PKM2 on THP sensitization were explored by probing p‐AMPK and p‐STAT3 levels via WB. Syngeneic orthotopic bladder tumour model was applied to evaluate this efficiency in vivo, analysed by Kaplan‐Meier survival curves, body and bladder weights plus immunohistochemistric tumour biomarkers. PKM2 was overexpressed in bladder cancer cells and tissues, and down‐regulation of PKM2 enhanced the sensitivity of THP in vitro. Activation of AMPK is essential for THP to exert anti‐bladder cancer activities. On the other hand, down‐regulating PKM2 activates AMPK and inhibits STAT3, correlated with THP sensitivity. Compared with THP alone (400 μmol L−1, 50 μL), the combination with metformin (60 mmol L−1, 50 μL) stopped growth of bladder cancer completely in vivo (combination group VS normal group P = .078). Down‐regulating the expression of PKM2 enhances the anticancer efficiency of THP. This study provides a new insight for improving the chemotherapeutic effect of THP.
Collapse
Affiliation(s)
- Qiongli Su
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Ting Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Lei Tang
- Department of Urology Surgery, 3rd Affiliated Hospital, Changsha, Hunan, China.,School of Pharmacy, Central South University, Changsha, Hunan, China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Kwame Oteng Darko
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanping He
- Animal Nutrition and Human Health Laboratory, Hunan Normal University, Changsha, Hunan, China
| | - Qing Zeng
- Department of Urology Surgery, 3rd Affiliated Hospital, Changsha, Hunan, China.,School of Pharmacy, Central South University, Changsha, Hunan, China
| | - Alex F Chen
- Department of Urology Surgery, 3rd Affiliated Hospital, Changsha, Hunan, China.,School of Pharmacy, Central South University, Changsha, Hunan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China.,Animal Nutrition and Human Health Laboratory, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
38
|
Chiang GC, Kovanlikaya I, Choi C, Ramakrishna R, Magge R, Shungu DC. Magnetic Resonance Spectroscopy, Positron Emission Tomography and Radiogenomics-Relevance to Glioma. Front Neurol 2018; 9:33. [PMID: 29459844 PMCID: PMC5807339 DOI: 10.3389/fneur.2018.00033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/15/2018] [Indexed: 12/22/2022] Open
Abstract
Advances in metabolic imaging techniques have allowed for more precise characterization of gliomas, particularly as it relates to tumor recurrence or pseudoprogression. Furthermore, the emerging field of radiogenomics where radiographic features are systemically correlated with molecular markers has the potential to achieve the holy grail of neuro-oncologic neuro-radiology, namely molecular diagnosis without requiring tissue specimens. In this section, we will review the utility of metabolic imaging and discuss the current state of the art related to the radiogenomics of glioblastoma.
Collapse
Affiliation(s)
- Gloria C Chiang
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Ilhami Kovanlikaya
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Changho Choi
- Radiology, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Dikoma C Shungu
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
39
|
Xia L, Qin K, Wang XR, Wang XL, Zhou AW, Chen GQ, Lu Y. Pyruvate kinase M2 phosphorylates H2AX and promotes genomic instability in human tumor cells. Oncotarget 2017; 8:109120-109134. [PMID: 29312595 PMCID: PMC5752508 DOI: 10.18632/oncotarget.22621] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/28/2017] [Indexed: 01/02/2023] Open
Abstract
Pyruvate kinase (PK) catalyzes the conversion of phosphoenolpyruvate and ADP to pyruvate and ATP, a rate-limiting reaction in glycolysis. M2 isoform of PK (PKM2) is the predominant form of PK expressed in tumors. In addition to its well established cytosolic functions as a glycolytic enzyme, PKM2 displays nuclear localization and important nonmetabolic functions in tumorigenesis. Herein, we report that nuclear PKM2 interacts with histone H2AX under DNA damage conditions. Depletion of PKM2 decreased the level of serine 139-phosphorylated H2AX (γ-H2AX) in response to DNA damage. The in vitro kinase assay reveals that PKM2 directly phosphorylates H2AX at serine 139, which is abolished by the deletion of FBP-binding pocket of PKM2 (PKM2-Del515-520). Replacement of wild type PKM2 with the kinase dead mutant PKM2-Del515-520 leads to decreased cell proliferation and chromosomal aberrations under DNA damage conditions. Together, we propose that PKM2 promotes genomic instability in tumor cells which involves direct phosphorylation of H2AX. These findings reveal PKM2 as a novel modulator for genomic instability in tumor cells.
Collapse
Affiliation(s)
- Li Xia
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Kang Qin
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xin-Ran Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xiao-Ling Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ai-Wu Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ying Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
40
|
Interrogating IDH Mutation in Brain Tumor: Magnetic Resonance and Hyperpolarization. Top Magn Reson Imaging 2017; 26:27-32. [PMID: 28079713 DOI: 10.1097/rmr.0000000000000113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Magnetic resonance spectroscopy (MRS) offers the possibility to noninvasively quantify 2HG concentration in the brain in the clinic, thereby serving as a valuable tool for patient-stratification as well as targeted treatment monitoring. Recently, hyperpolarized magnetic resonance techniques have opened up new opportunities for metabolic imaging not possible with conventional MRS in the brain. With over 10,000-fold increase in signal-to-noise ratio (SNR), dynamic metabolic processes can be interrogated in vivo with very high specificity by hyperpolarized MRI. In the following article, we will review relevant clinical studies and practical considerations of MRS and hyperpolarized MRS, as well as discuss some promising preclinical hyperpolarization studies to interrogate real-time metabolism in IDH mutations in vivo.
Collapse
|
41
|
Temozolomide arrests glioma growth and normalizes intratumoral extracellular pH. Sci Rep 2017; 7:7865. [PMID: 28801587 PMCID: PMC5554228 DOI: 10.1038/s41598-017-07609-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/16/2017] [Indexed: 12/24/2022] Open
Abstract
Gliomas maintain an acidic extracellular pH (pHe), which promotes tumor growth and builds resistance to therapy. Given evidence that acidic pHe beyond the tumor core indicates infiltration, we hypothesized that imaging the intratumoral pHe in relation to the peritumoral pHe can provide a novel readout of therapeutic influence on the tumor microenvironment. We used Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), which utilizes chemical shifts of non-exchangeable protons from macrocyclic chelates (e.g., DOTP8−) complexed with paramagnetic thulium (Tm3+), to generate pHe maps in rat brains bearing U251 tumors. Following TmDOTP5− infusion, T2-weighted MRI provided delineation of the tumor boundary and BIRDS was used to image the pHe gradient between intratumoral and peritumoral regions (ΔpHe) in both untreated and temozolomide treated (40 mg/kg) rats bearing U251 tumors. Treated rats had reduced tumor volume (p < 0.01), reduced proliferation (Ki-67 staining; p < 0.03) and apoptosis induction (cleaved Caspase-3 staining; p < 0.001) when compared to untreated rats. The ΔpHe was significantly higher in untreated compared to treated rats (p < 0.002), suggesting that temozolomide, which induces apoptosis and hinders proliferation, also normalizes intratumoral pHe. Thus, BIRDS can be used to map the ΔpHe in gliomas and provide a physiological readout of the therapeutic response on the tumor microenvironment.
Collapse
|
42
|
Abstract
Modern imaging techniques, particularly functional imaging techniques that interrogate some specific aspect of underlying tumor biology, have enormous potential in neuro-oncology for disease detection, grading, and tumor delineation to guide biopsy and resection; monitoring treatment response; and targeting radiotherapy. This brief review considers the role of magnetic resonance imaging and spectroscopy, and positron emission tomography in these areas and discusses the factors that limit translation of new techniques to the clinic, in particular, the cost and difficulties associated with validation in multicenter clinical trials.
Collapse
Affiliation(s)
- Kevin M Brindle
- Kevin M. Brindle, Richard J. Mair, and Alan J. Wright, Cancer Research UK Cambridge Institute, Cambridge; David Y. Lewis, Cancer Research UK Beatson Institute, Glasgow, United Kingdom; José L. Izquierdo-García, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III and Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid, Spain
| | - José L Izquierdo-García
- Kevin M. Brindle, Richard J. Mair, and Alan J. Wright, Cancer Research UK Cambridge Institute, Cambridge; David Y. Lewis, Cancer Research UK Beatson Institute, Glasgow, United Kingdom; José L. Izquierdo-García, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III and Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid, Spain
| | - David Y Lewis
- Kevin M. Brindle, Richard J. Mair, and Alan J. Wright, Cancer Research UK Cambridge Institute, Cambridge; David Y. Lewis, Cancer Research UK Beatson Institute, Glasgow, United Kingdom; José L. Izquierdo-García, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III and Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid, Spain
| | - Richard J Mair
- Kevin M. Brindle, Richard J. Mair, and Alan J. Wright, Cancer Research UK Cambridge Institute, Cambridge; David Y. Lewis, Cancer Research UK Beatson Institute, Glasgow, United Kingdom; José L. Izquierdo-García, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III and Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid, Spain
| | - Alan J Wright
- Kevin M. Brindle, Richard J. Mair, and Alan J. Wright, Cancer Research UK Cambridge Institute, Cambridge; David Y. Lewis, Cancer Research UK Beatson Institute, Glasgow, United Kingdom; José L. Izquierdo-García, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III and Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
43
|
Cancer recurrence monitoring using hyperpolarized [1- 13C]pyruvate metabolic imaging in murine breast cancer model. Magn Reson Imaging 2017; 43:105-109. [PMID: 28716678 DOI: 10.1016/j.mri.2017.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022]
Abstract
The purpose of this work was to study the anatomic and metabolic changes that occur with tumor progression, regression and recurrence in a switchable MYC-driven murine breast cancer model. Serial 1H MRI and hyperpolarized [1-13C]pyruvate metabolic imaging were used to investigate the changes in tumor volume and glycolytic metabolism over time during the multistage tumorigenesis. We show that acute de-induction of MYC expression in established tumors results in rapid tumor regression and significantly reduced glycolytic metabolism as measured by pyruvate-to-lactate conversion. Moreover, cancer recurrences occurring at the tumor sites independently of MYC expression were observed to accompany markedly increased lactate production.
Collapse
|
44
|
Salzillo TC, Hu J, Nguyen L, Whiting N, Lee J, Weygand J, Dutta P, Pudakalakatti S, Millward NZ, Gammon ST, Lang FF, Heimberger AB, Bhattacharya PK. Interrogating Metabolism in Brain Cancer. Magn Reson Imaging Clin N Am 2017; 24:687-703. [PMID: 27742110 DOI: 10.1016/j.mric.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article reviews existing and emerging techniques of interrogating metabolism in brain cancer from well-established proton magnetic resonance spectroscopy to the promising hyperpolarized metabolic imaging and chemical exchange saturation transfer and emerging techniques of imaging inflammation. Some of these techniques are at an early stage of development and clinical trials are in progress in patients to establish the clinical efficacy. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy; with the combined knowledge of genomics and proteomics a complete understanding of tumorigenesis in brain might be achieved.
Collapse
Affiliation(s)
- Travis C Salzillo
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jingzhe Hu
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| | - Linda Nguyen
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nicholas Whiting
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Jaehyuk Lee
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Joseph Weygand
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Niki Zacharias Millward
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Seth T Gammon
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Frederick F Lang
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Amy B Heimberger
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
45
|
Ziegler J, Bastian A, Lerner M, Bailey-Downs L, Saunders D, Smith N, Sutton J, Battiste JD, Ihnat MA, Gangjee A, Towner RA. AG488 as a therapy against gliomas. Oncotarget 2017; 8:71833-71844. [PMID: 29069750 PMCID: PMC5641093 DOI: 10.18632/oncotarget.18284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/05/2017] [Indexed: 11/25/2022] Open
Abstract
High-grade gliomas such as glioblastomas (GBM) present a deadly prognosis following diagnosis and very few effective treatment options. Here, we investigate if the small molecule AG488 can be an effective therapy against GBM with both anti-angiogenic as well as an anti-microtubule inhibiting modalities, using a human G55 glioma xenograft model in nude mice. From in vitro studies, we report that AG488 incubation reduced cell viability in G55 and HMEC-1 cells more so than TMZ treatment, and AG488 treatment also decreased cell viability in normal astrocytes, but not as much as for G55 cells (p<0.0001). In vivo investigations indicated that AG488 therapy helped reduce tumor volumes (p<0.0001), prolong survival (p<0.01), increase tumor perfusion (p<0.01), and decrease microvessel density (MVD) (p<0.05), compared to untreated mice or mice treated with non-specific IgG, in the G55 xenograft model. Additionally, AG488 did not induce apoptosis in normal mouse brain tissue. Animal survival and tumor volume changes for AG488 were comparable to TMZ or anti-VEGF therapies, however AG488 was found to be more effective in decreasing tumor-related vascularity (perfusion and MVD). AG488 is a potential novel therapy against high-grade gliomas.
Collapse
Affiliation(s)
- Jadith Ziegler
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anja Bastian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Megan Lerner
- Department of Surgery Research Laboratory, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lora Bailey-Downs
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jake Sutton
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - James D Battiste
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aleem Gangjee
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
46
|
MR Molecular Imaging of Brain Cancer Metabolism Using Hyperpolarized 13C Magnetic Resonance Spectroscopy. Top Magn Reson Imaging 2017; 25:187-196. [PMID: 27748711 DOI: 10.1097/rmr.0000000000000104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic reprogramming is an important hallmark of cancer. Alterations in many metabolic pathways support the requirement for cellular building blocks that are essential for cancer cell proliferation. This metabolic reprogramming can be imaged using magnetic resonance spectroscopy (MRS). H MRS can inform on alterations in the steady-state levels of cellular metabolites, but the emergence of hyperpolarized C MRS has now also enabled imaging of metabolic fluxes in real-time, providing a new method for tumor detection and monitoring of therapeutic response. In the case of glioma, preclinical cell and animal studies have shown that the hyperpolarized C MRS metabolic imaging signature is specific to tumor type and can distinguish between mutant IDH1 glioma and primary glioblastoma. Here, we review these findings, first describing the main metabolic pathways that are altered in the different glioma subtypes, and then reporting on the use of hyperpolarized C MRS and MR spectroscopic imaging (MRSI) to probe these pathways. We show that the future translation of this hyperpolarized C MRS molecular metabolic imaging method to the clinic promises to improve the noninvasive detection, characterization, and response-monitoring of brain tumors resulting in improved patient diagnosis and clinical management.
Collapse
|
47
|
Metabolic Profiling of IDH Mutation and Malignant Progression in Infiltrating Glioma. Sci Rep 2017; 7:44792. [PMID: 28327577 PMCID: PMC5361089 DOI: 10.1038/srep44792] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 02/14/2017] [Indexed: 01/04/2023] Open
Abstract
Infiltrating low grade gliomas (LGGs) are heterogeneous in their behavior and the strategies used for clinical management are highly variable. A key factor in clinical decision-making is that patients with mutations in the isocitrate dehydrogenase 1 and 2 (IDH1/2) oncogenes are more likely to have a favorable outcome and be sensitive to treatment. Because of their relatively long overall median survival, more aggressive treatments are typically reserved for patients that have undergone malignant progression (MP) to an anaplastic glioma or secondary glioblastoma (GBM). In the current study, ex vivo metabolic profiles of image-guided tissue samples obtained from patients with newly diagnosed and recurrent LGG were investigated using proton high-resolution magic angle spinning spectroscopy (1H HR-MAS). Distinct spectral profiles were observed for lesions with IDH-mutated genotypes, between astrocytoma and oligodendroglioma histologies, as well as for tumors that had undergone MP. Levels of 2-hydroxyglutarate (2HG) were correlated with increased mitotic activity, axonal disruption, vascular neoplasia, and with several brain metabolites including the choline species, glutamate, glutathione, and GABA. The information obtained in this study may be used to develop strategies for in vivo characterization of infiltrative glioma, in order to improve disease stratification and to assist in monitoring response to therapy.
Collapse
|
48
|
Park I, Nelson SJ, Talbott JF. In Vivo Monitoring of Rat Spinal Cord Metabolism Using Hyperpolarized Carbon-13 MR Spectroscopic Imaging. AJNR Am J Neuroradiol 2016; 37:2407-2409. [PMID: 27516238 DOI: 10.3174/ajnr.a4920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/06/2016] [Indexed: 11/07/2022]
Abstract
This study demonstrated the feasibility of using hyperpolarized 13C-MR spectroscopic imaging with [1-13C]-pyruvate to evaluate in vivo spinal cord metabolism. High pyruvate and relatively small lactate signal were observed in the cervical spinal cords of naive rats. Lactate and pyruvate measures were similar for spinal cord and supratentorial brain. The results from this study establish baseline measures for spinal cord hyperpolarized MRS imaging with 13C pyruvate. This technique holds promise as a valuable molecular imaging tool for monitoring biochemical processes in the normal and diseased spinal cord.
Collapse
Affiliation(s)
- I Park
- From the Department of Radiology and Biomedical Imaging (I.P., S.J.N., J.F.T.)
| | - S J Nelson
- From the Department of Radiology and Biomedical Imaging (I.P., S.J.N., J.F.T.).,Department of Bioengineering and Therapeutic Sciences (S.J.N.)
| | - J F Talbott
- From the Department of Radiology and Biomedical Imaging (I.P., S.J.N., J.F.T.).,Brain and Spinal Injury Center (BASIC), San Francisco General Hospital (J.F.T.), University of California, San Francisco, San Francisco, California
| |
Collapse
|
49
|
Gan J, Wang F, Mu D, Qu Y, Luo R, Wang Q. RNA interference targeting Aurora-A sensitizes glioblastoma cells to temozolomide chemotherapy. Oncol Lett 2016; 12:4515-4523. [PMID: 28105161 PMCID: PMC5228570 DOI: 10.3892/ol.2016.5261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/25/2016] [Indexed: 01/28/2023] Open
Abstract
Clinically, temozolomide (TMZ) is widely used in glioblastoma (GBM) treatment. However, the toxicity of TMZ may influence the quality of patient life. Thus, novel treatment options for sensitizing GBM cells to TMZ chemotherapy are necessary. Aurora-A is widely expressed in GBM and correlated with poor prognosis. It has been proven to be an effective target for gene therapy and chemotherapy. In the present study, short hairpin (sh)RNA targeting Aurora-A was employed to knockdown Aurora-A expression in GBM cells. Cell Counting Kit-8 assays, flow cytometry, colony formation assays, invasion assays and tube formation assays were used to determine the effects of Aurora-A knockdown when combined with TMZ treatment. A U251 subcutaneous cancer model was established to evaluate the efficacy of combined therapy. The results of the present study indicated that the proliferation, colony formation, invasion and angiogenesis of GBM cells were significantly inhibited by combined therapy when compared with TMZ treatment alone. In vivo results demonstrated that knockdown of Aurora-A significantly (P=0.0084) sensitizes GBM cells to TMZ chemotherapy. The results of the present study demonstrated that knockdown of Aurora-A in GBM cells enhances TMZ sensitivity in vitro and in vivo. Therefore, Aurora-A knockdown may be a novel treatment option for decreasing TMZ toxicity and improving patient quality of life.
Collapse
Affiliation(s)
- Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fangfang Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiu Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
50
|
Witney TH, James ML, Shen B, Chang E, Pohling C, Arksey N, Hoehne A, Shuhendler A, Park JH, Bodapati D, Weber J, Gowrishankar G, Rao J, Chin FT, Gambhir SS. PET imaging of tumor glycolysis downstream of hexokinase through noninvasive measurement of pyruvate kinase M2. Sci Transl Med 2016; 7:310ra169. [PMID: 26491079 DOI: 10.1126/scitranslmed.aac6117] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cancer cells reprogram their metabolism to meet increased biosynthetic demands, commensurate with elevated rates of replication. Pyruvate kinase M2 (PKM2) catalyzes the final and rate-limiting step in tumor glycolysis, controlling the balance between energy production and the synthesis of metabolic precursors. We report here the synthesis and evaluation of a positron emission tomography (PET) radiotracer, [(11)C]DASA-23, that provides a direct noninvasive measure of PKM2 expression in preclinical models of glioblastoma multiforme (GBM). In vivo, orthotopic U87 and GBM39 patient-derived tumors were clearly delineated from the surrounding normal brain tissue by PET imaging, corresponding to exclusive tumor-associated PKM2 expression. In addition, systemic treatment of mice with the PKM2 activator TEPP-46 resulted in complete abrogation of the PET signal in intracranial GBM39 tumors. Together, these data provide the basis for the clinical evaluation of imaging agents that target this important gatekeeper of tumor glycolysis.
Collapse
Affiliation(s)
- Timothy H Witney
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA
| | - Michelle L James
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA. Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 943065, USA
| | - Bin Shen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA
| | - Christoph Pohling
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA
| | - Natasha Arksey
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA
| | - Aileen Hoehne
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA
| | - Adam Shuhendler
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA
| | - Jun-Hyung Park
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA
| | - Deepika Bodapati
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA
| | - Judith Weber
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA
| | - Gayatri Gowrishankar
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 943065, USA. Departments of Bioengineering and Materials Science & Engineering, Bio-X, Stanford University, Stanford, CA 943065, USA.
| |
Collapse
|