1
|
Pierangeli S, Donnini S, Ciaurro V, Milano F, Cardinali V, Sciabolacci S, Cimino G, Gionfriddo I, Ranieri R, Cipriani S, Padiglioni E, Iacucci Ostini R, Zei T, Pierini A, Martelli MP. The Leukemic Isocitrate Dehydrogenase (IDH) 1/2 Mutations Impair Myeloid and Erythroid Cell Differentiation of Primary Human Hematopoietic Stem and Progenitor Cells (HSPCs). Cancers (Basel) 2024; 16:2675. [PMID: 39123404 PMCID: PMC11312189 DOI: 10.3390/cancers16152675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
How hematopoietic stem and progenitor cell (HSPC) fate decisions are affected by genetic alterations acquired during AML leukemogenesis is poorly understood and mainly explored in animal models. Here, we study isocitrate dehydrogenase (IDH) gene mutations in the human model of HSPC and discuss the available literature on this topic. IDH1/2 mutations occur in ~20% of AML cases, are recognized among the mutations earliest acquired during leukemogenesis, and are targets of specific inhibitors (ivosidenib and enasidenib, respectively). In order to investigate the direct effects of these mutations on HSPCs, we expressed IDH1-R132H or IDH2-R140Q mutants into human CD34+ healthy donor cells via lentiviral transduction and analyzed the colony-forming unit (CFU) ability. CFU ability was dramatically compromised with a complete trilineage block of differentiation. Strikingly, the block was reversed by specific inhibitors, confirming that it was a specific effect induced by the mutants. In line with this observation, the CD34+ leukemic precursors isolated from a patient with IDH2-mutated AML at baseline and during enasidenib treatment showed progressive and marked improvements in their fitness over time, in terms of CFU ability and propensity to differentiate. They attained clonal trilinear reconstitution of hematopoiesis and complete hematological remission.
Collapse
Affiliation(s)
- Sara Pierangeli
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Serena Donnini
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Valerio Ciaurro
- MD Anderson Cancer Center, University of Texas, TX 78712, USA;
| | - Francesca Milano
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Valeria Cardinali
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| | - Sofia Sciabolacci
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| | - Gaetano Cimino
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| | - Ilaria Gionfriddo
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Roberta Ranieri
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Sabrina Cipriani
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Eleonora Padiglioni
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
| | - Roberta Iacucci Ostini
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| | - Tiziana Zei
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| | - Antonio Pierini
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| | - Maria Paola Martelli
- Hematology and Clinical Immunology Section, Department of Medicine and Surgery, Center for Hemato-Oncological Research (CREO), University of Perugia, 06123 Perugia, Italy; (S.P.); (S.D.); (F.M.); (V.C.); (G.C.); (I.G.); (R.R.); (S.C.); (A.P.)
- Hematology Department, ‘Santa Maria della Misericordia’ Perugia Hospital, 06129 Perugia, Italy; (S.S.); (R.I.O.); (T.Z.)
| |
Collapse
|
2
|
Papadopoulou V, Schoumans J, Basset V, Solly F, Pasquier J, Blum S, Spertini O. Single-center, observational study of AML/MDS-EB with IDH1/2 mutations: genetic profile, immunophenotypes, mutational kinetics and outcomes. Hematology 2023; 28:2180704. [PMID: 36815747 DOI: 10.1080/16078454.2023.2180704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE IDH1/2 mutations, intervening in epigenetic procedures, are frequently encountered in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Knowledge of the genetics, immunophenotypes, and mutational kinetics of IDH1/2-mutated AML can contribute to the understanding of AML clonal architecture and inform therapeutics and monitoring. METHODS We retrospectively analyzed 50 IDH1/2-mutated AML/MDS-EB cases of our institution, to identify recurrent co-mutations, immunophenotypes, patterns of co-variance of IDH1/2 allele burdens with those of recurrent co-mutations, frequency of persistent IDH1/2 mutation as clonal hematopoiesis of indeterminate potential (CHIP) in remission and response to hypomethylating agents. RESULTS Most frequently co-mutated genes were DNMT3A, SRSF2 and NPM1. Most cases with co-existent IDH1/2 and NPM1 mutations (11/13) showed an 'APL-like' immunophenotype (CD34-HLADR-). Allele burdens of mutated IDH1/2 were identical to mutated SRSF2 allele burdens at diagnosis and remission, but not always to mutated NPM1 allele burden in remission. We show persistence of significant mutIDH1/2 allele burden in approximately one-fourth of patients with deep remissions. IDH1/2 mutations were significantly more frequent among responders to first-line HMA-based regimens than among non-responders, in patients treated for myeloid neoplasms with excess blasts. CONCLUSIONS IDH1/2 mutations are most frequently accompanied by DNMT3A, SRSF2 and NPM1 mutations. NPM1-IDH1/2 mutated AML has a mature phenotype possibly amenable to differentiation therapies. IDH1/2 and SRSF2 mutations probably arise at the same developmental stage of the disease, as their allele burdens covariate. IDH1/2 mutation represents CHIP in a substantial proportion of cases and is therefore no reliable residual disease marker. The preferential presence of IDH1/2 mutations among HMA-responders could inform therapeutic decisions if confirmed in larger series.
Collapse
Affiliation(s)
- Vasiliki Papadopoulou
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jacqueline Schoumans
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Valentin Basset
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Françoise Solly
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jérôme Pasquier
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Sabine Blum
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Spertini
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
3
|
Gruber E, Kats LM. The curious case of IDH mutant acute myeloid leukaemia: biochemistry and therapeutic approaches. Biochem Soc Trans 2023; 51:1675-1686. [PMID: 37526143 PMCID: PMC10586776 DOI: 10.1042/bst20230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Of the many genetic alterations that occur in cancer, relatively few have proven to be suitable for the development of targeted therapies. Mutations in isocitrate dehydrogenase (IDH) 1 and -2 increase the capacity of cancer cells to produce a normally scarce metabolite, D-2-hydroxyglutarate (2-HG), by several orders of magnitude. The discovery of the unusual biochemistry of IDH mutations spurred a flurry of activity that revealed 2-HG as an 'oncometabolite' with pleiotropic effects in malignant cells and consequences for anti-tumour immunity. Over the next decade, we learned that 2-HG dysregulates a wide array of molecular pathways, among them a large family of dioxygenases that utilise the closely related metabolite α-ketoglutarate (α-KG) as an essential co-substrate. 2-HG not only contributes to malignant transformation, but some cancer cells become addicted to it and sensitive to inhibitors that block its synthesis. Moreover, high 2-HG levels and loss of wild-type IDH1 or IDH2 activity gives rise to synthetic lethal vulnerabilities. Herein, we review the biology of IDH mutations with a particular focus on acute myeloid leukaemia (AML), an aggressive disease where selective targeting of IDH-mutant cells is showing significant promise.
Collapse
Affiliation(s)
- Emily Gruber
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lev M. Kats
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Gene Mutations and Targeted Therapies of Myeloid Sarcoma. Curr Treat Options Oncol 2023; 24:338-352. [PMID: 36877373 DOI: 10.1007/s11864-023-01063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/07/2023]
Abstract
OPINION STATEMENT Myeloid sarcoma, a rare malignant tumor characterized by the invasion of extramedullary tissue by immature myeloid cells, commonly occurs concomitantly with acute myeloid leukemia, myelodysplastic syndromes, or myeloproliferative neoplasms. The rarity of myeloid sarcoma poses challenges for diagnosis and treatment. Currently, treatments for myeloid sarcoma remain controversial and primarily follow protocols for acute myeloid leukemia, such as chemotherapy utilizing multi-agent regimens, in addition to radiation therapy and/or surgery. The advancements in next-generation sequencing technology have led to significant progress in the field of molecular genetics, resulting in the identification of both diagnostic and therapeutic targets. The application of targeted therapeutics, such as FMS-like tyrosine kinase 3(FLT3) inhibitors, isocitrate dehydrogenases(IDH) inhibitors, and the B cell lymphoma 2(BCL2) inhibitors, has facilitated the gradual transformation of traditional chemotherapy into targeted precision therapy for acute myeloid leukemia. However, the field of targeted therapy for myeloid sarcoma is relatively under-investigated and not well-described. In this review, we comprehensively summarize the molecular genetic characteristics of myeloid sarcoma and the current application of targeted therapeutics.
Collapse
|
5
|
Effects of cancer-associated point mutations on the structure, function, and stability of isocitrate dehydrogenase 2. Sci Rep 2022; 12:18830. [PMID: 36335201 PMCID: PMC9637083 DOI: 10.1038/s41598-022-23659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH) are frequently found in low-grade gliomas, secondary glioblastoma, chondrosarcoma, acute myeloid leukemias, and intrahepatic cholangiocarcinoma. However, the molecular mechanisms of how IDH2 mutations induce carcinogenesis remain unclear. Using overlapping PCR, transfection, immunoblotting, immunoprecipitation, measurements of enzyme activity, glucose, lactic acid, ATP, and reactive oxygen species (ROS), cell viability, protein degradation assays post-inhibition of the 26S proteasome (bortezomib) or HSP90 (17-AAG), and a homology model, we demonstrated that the properties of ten cancer-associated IDH2 variants (R140G/Q/W and R172S/K/M/W/G/C/P) arising from point mutations are closely related to their structure and stability. Compared with wild-type IDH2, the R172 and R140 point mutations resulted in a decrease in IDH2 activity, ROS, and lactate levels and an increase in glucose and ATP levels under normal and hypoxic conditions, indicating that mutant IDH2 increases cell dependency on mitochondrial oxidative phosphorylation, and reduces glycolysis under hypoxia. Overexpression of most of IDH2 point mutants showed anti-proliferative effects in the 293T and BV2 cell lines by inhibition of PI3K/AKT signaling and cyclin D1 expression and/or induced the expression of TNF-α and IL-6. Furthermore, bortezomib treatment resulted in dramatic degradation of IDH2 mutants, including R140G, R140Q, R140W, R172S and R172K, whereas it had little impact on the expression of WT and other mutants (R172M, R172W, R172G, R172C and R172P). In addition, targeting HSP90 minimally affected the expression of mutated IDH2 due to a lack of interaction between HSP90 and IDH2. The homology model further revealed that changes in conformation and IDH2 protein stability appeared to be associated with these point mutations. Taken together, our findings provide information important for understanding the molecular mechanisms of IDH2 mutations in tumors.
Collapse
|
6
|
Lu J, Zheng G, Dong A, Chang X, Cao X, Liu M, Shi X, Wang C, Yang Y, Jia X. Prognostic characteristics of immune subtypes associated with acute myeloid leukemia and their identification in cell subsets based on single-cell sequencing analysis. Front Cell Dev Biol 2022; 10:990034. [PMID: 36211454 PMCID: PMC9540204 DOI: 10.3389/fcell.2022.990034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Immune genes play an important role in the development and progression of acute myeloid leukemia (AML). However, the role of immune genes in the prognosis and microenvironment of AML remains unclear. In this study, we analyzed 151 AML patients in the TCGA database for relevant immune cell infiltration. AML patients were divided into high and low immune cell infiltration clusters based on ssGSEA results. Immune-related pathways, AML pathways and glucose metabolism pathways were enriched in the high immune cell infiltration cluster. Then we screened the differential immune genes between the two immune cell infiltration clusters. Nine prognostic immune genes were finally identified in the train set by LASSO-Cox regression. We constructed a model in the train set based on the nine prognostic immune genes and validated the predictive capability in the test set. The areas under the ROC curve of the train set and the test set for ROC at 1, 3, 5 years were 0.807, 0.813, 0.815, and 0.731, 0.745, 0.830, respectively. The areas under ROC curve of external validation set in 1, 3, and 5 years were 0.564, 0.619, and 0.614, respectively. People with high risk scores accompanied by high TMB had been detected with the worst prognosis. Single-cell sequencing analysis revealed the expression of prognostic genes in AML cell subsets and pseudo-time analysis described the differentiation trajectory of cell subsets. In conclusion, our results reveal the characteristics of immune microenvironment and cell subsets of AML, while it still needs to be confirmed in larger samples studies. The prognosis model constructed with nine key immune genes can provide a new method to assess the prognosis of AML patients.
Collapse
Affiliation(s)
- Jie Lu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guowei Zheng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ani Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinyu Chang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiting Cao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengying Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuezhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunmei Wang
- Children’s Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Ramdas B, Lakshmi Reddy P, Mali RS, Pasupuleti SK, Zhang J, Kelley MR, Paczesny S, Zhang C, Kapur R. Combined heterozygosity of FLT3 ITD, TET2, and DNMT3A results in aggressive leukemia. JCI Insight 2022; 7:e162016. [PMID: 36073548 PMCID: PMC9536269 DOI: 10.1172/jci.insight.162016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Heterozygous mutations in FLT3ITD, TET2, and DNMT3A are associated with hematologic malignancies in humans. In patients, cooccurrence of mutations in FLT3ITD combined with TET2 (TF) or FLT3ITD combined with DNMT3A (DF) are frequent. However, in some rare complex acute myeloid leukemia (AML), all 3 mutations cooccur - i.e., FLT3ITD, TET2, and DNMT3A (TFD). Whether the presence of these mutations in combination result in quantitative or qualitative differences in disease manifestation has not been investigated. We generated mice expressing heterozygous Flt3ITD and concomitant for either heterozygous loss of Tet2 (TF) or Dnmt3a (DF) or both (TFD). TF and DF mice did not induce disease early on, in spite of similar changes in gene expression; during the same time frame, an aggressive form of transplantable leukemia was observed in TFD mice, which was mostly associated with quantitative but not qualitative differences in gene expression relative to TF or DF mice. The gene expression signature of TFD mice showed remarkable similarity to the human TFD gene signature at the single-cell RNA level. Importantly, TFD-driven AML responded to a combination of drugs that target Flt3ITD, inflammation, and methylation in a mouse model, as well as in a PDX model of AML bearing 3 mutations.
Collapse
Affiliation(s)
- Baskar Ramdas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Palam Lakshmi Reddy
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghuveer Singh Mali
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Santhosh Kumar Pasupuleti
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ji Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark R. Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics
- Department of Molecular Biology and Biochemistry, and
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Gong Y, Wei S, Wei Y, Chen Y, Cui J, Yu Y, Lin X, Yan H, Qin H, Yi L. IDH2: A novel biomarker for environmental exposure in blood circulatory system disorders (Review). Oncol Lett 2022; 24:278. [PMID: 35814829 PMCID: PMC9260733 DOI: 10.3892/ol.2022.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022] Open
Abstract
As the risk of harmful environmental exposure is increasing, it is important to find suitable targets for the diagnosis and treatment of the diseases caused. Isocitrate dehydrogenase 2 (IDH2) is an enzyme located in the mitochondria; it plays an important role in numerous cell processes, including maintaining redox homeostasis, participating in the tricarboxylic acid cycle and indirectly taking part in the transmission of the oxidative respiratory chain. IDH2 mutations promote progression in acute myeloid leukemia, glioma and other diseases. The present review mainly summarizes the role and mechanism of IDH2 with regard to the biological effects, such as the mitophagy and apoptosis of animal or human cells, caused by environmental pollution such as radiation, heavy metals and other environmental exposure factors. The possible mechanisms of these biological effects are described in terms of IDH2 expression, reduced nicotine adenine dinucleotide phosphate content and reactive oxygen species level, among other variables. The impact of environmental pollution on human health is increasingly attracting attention. IDH2 may therefore become useful as a potential diagnostic and therapeutic target for environmental exposure-induced diseases.
Collapse
Affiliation(s)
- Ya Gong
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuang Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuan Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yong Chen
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Cui
- Institute of Cardiovascular Disease, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yue Yu
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong Yan
- Pediatric Intensive Care Unit, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui Qin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
9
|
Shi Y, Xue Y, Wang C, Yu L. Nucleophosmin 1: from its pathogenic role to a tantalizing therapeutic target in acute myeloid leukemia. Hematology 2022; 27:609-619. [PMID: 35621728 DOI: 10.1080/16078454.2022.2067939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nucleophosmin 1 (NPM1, also known as B23) is a multifunctional protein involved in a variety of cellular processes, including ribosomal maturation, centrosome replication, maintenance of genomic stability, cell cycle control, and apoptosis. NPM1 is the most commonly mutated gene in adult acute myeloid leukemia (AML) and is present in approximately 40% of all AML cases. The underlying mechanisms of mutant NPM1 (NPM1mut) in leukemogenesis remain unclear. This review summarizes the structure and physiological function of NPM1, mechanisms underlying the pathogenesis of NPM1-mutated AML, and the potential role of NPM1 as a therapeutic target. It is reported that dysfunctional NPM1 might cause AML pathogenesis via its role as a protein chaperone, inhibiting differentiation of leukemia stem cells and regulation of non-coding RNAs. Besides conventional chemotherapies, NPM1 is a promising therapeutic target against AML that warrants further investigation. NPM1-based therapeutic strategies include inducing nucleolar relocalisation of NPM1 mutants, interfering with NPM1 oligomerization, and NPM1 as an immune response target.
Collapse
Affiliation(s)
- Yuye Shi
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yuhao Xue
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Liang Yu
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
10
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
11
|
Blasi F, Bruckmann C. MEIS1 in Hematopoiesis and Cancer. How MEIS1-PBX Interaction Can Be Used in Therapy. J Dev Biol 2021; 9:jdb9040044. [PMID: 34698191 PMCID: PMC8544432 DOI: 10.3390/jdb9040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Recently MEIS1 emerged as a major determinant of the MLL-r leukemic phenotype. The latest and most efficient drugs effectively decrease the levels of MEIS1 in cancer cells. Together with an overview of the latest drugs developed to target MEIS1 in MLL-r leukemia, we review, in detail, the role of MEIS1 in embryonic and adult hematopoiesis and suggest how a more profound knowledge of MEIS1 biochemistry can be used to design potent and effective drugs against MLL-r leukemia. In addition, we present data showing that the interaction between MEIS1 and PBX1 can be blocked efficiently and might represent a new avenue in anti-MLL-r and anti-leukemic therapy.
Collapse
|
12
|
A systematic analysis of genetic interactions and their underlying biology in childhood cancer. Commun Biol 2021; 4:1139. [PMID: 34615983 PMCID: PMC8494736 DOI: 10.1038/s42003-021-02647-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Childhood cancer is a major cause of child death in developed countries. Genetic interactions between mutated genes play an important role in cancer development. They can be detected by searching for pairs of mutated genes that co-occur more (or less) often than expected. Co-occurrence suggests a cooperative role in cancer development, while mutual exclusivity points to synthetic lethality, a phenomenon of interest in cancer treatment research. Little is known about genetic interactions in childhood cancer. We apply a statistical pipeline to detect genetic interactions in a combined dataset comprising over 2,500 tumors from 23 cancer types. The resulting genetic interaction map of childhood cancers comprises 15 co-occurring and 27 mutually exclusive candidates. The biological explanation of most candidates points to either tumor subtype, pathway epistasis or cooperation while synthetic lethality plays a much smaller role. Thus, other explanations beyond synthetic lethality should be considered when interpreting genetic interaction test results.
Collapse
|
13
|
Goldberg L, Negi V, Chung YJ, Onozawa M, Zhu YJ, Walker RL, Pierce R, Patel DP, Krausz KW, Gonzalez FJ, Goodell MA, Rodriguez BAT, Meltzer PS, Aplan PD. Mutant Idh2 Cooperates with a NUP98-HOXD13 Fusion to Induce Early Immature Thymocyte Precursor ALL. Cancer Res 2021; 81:5033-5046. [PMID: 34321240 PMCID: PMC8487989 DOI: 10.1158/0008-5472.can-21-1027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/09/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Mutations in the isocitrate dehydrogenase 1 (IDH1) and IDH2 genes are frequently observed in a wide variety of hematologic malignancies, including myeloid and T-cell leukemias. In this study, we generated Idh2R140Q transgenic mice to examine the role of the Idh2R140Q mutation in leukemia. No leukemia developed in Idh2R140Q transgenic mice, suggesting a need for additional genetic events for leukemia development. Because myeloid cells from NUP98-HOXD13 fusion (NHD13) transgenic mice frequently acquire somatic Idh mutations when they transform to acute myeloid leukemia, we generated Idh2R140Q/NHD13 double transgenic mice. Idh2R140Q/NHD13 transgenic mice developed an immature T-cell leukemia with an immunophenotype similar to double-negative 1 (DN1) or DN2 thymocytes. Idh2R140Q/NHD13 leukemic cells were enriched for an early thymic precursor transcriptional signature, and the gene expression profile for Idh2R140Q/NHD13 DN1/DN2 T-ALL closely matched that of human early/immature T-cell precursor (EITP) acute lymphoblastic leukemia (ALL). Moreover, recurrent mutations found in patients with EITP ALL, including KRAS, PTPN11, JAK3, SH2B3, and EZH2 were also found in Idh2R140Q/NHD13 DN1/DN2 T-ALL. In vitro treatment of Idh2R140Q/NHD13 thymocytes with enasidenib, a selective inhibitor of mutant IDH2, led to a marked decrease in leukemic cell proliferation. These findings demonstrate that Idh2R140Q/NHD13 mice can serve as a useful in vivo model for the study of early/immature thymocyte precursor acute lymphoblastic leukemia development and therapy. SIGNIFICANCE: T-cell leukemia induced in Idh2R140Q/NUP98-HOXD13 mice is immunophenotypically, transcriptionally, and genetically similar to human EITP ALL, providing a model for studying disease development and treatment.
Collapse
Affiliation(s)
- Liat Goldberg
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Vijay Negi
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Masahiro Onozawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yuelin J Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Robert L Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Rachel Pierce
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Daxesh P Patel
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Margaret A Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Benjamin A T Rodriguez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Valo Health, Boston, Massachusetts
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
14
|
Therapeutic implications of menin inhibition in acute leukemias. Leukemia 2021; 35:2482-2495. [PMID: 34131281 DOI: 10.1038/s41375-021-01309-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/31/2023]
Abstract
Menin inhibitors are novel targeted agents currently in clinical development for the treatment of genetically defined subsets of acute leukemia. Menin has a tumor suppressor function in endocrine glands. Germline mutations in the gene encoding menin cause the multiple endocrine neoplasia type 1 (MEN1) syndrome, a hereditary condition associated with tumors of the endocrine glands. However, menin is also critical for leukemogenesis in subsets driven by rearrangement of the Lysine Methyltransferase 2A (KMT2A) gene, previously known as mixed-lineage leukemia (MLL), which encodes an epigenetic modifier. These seemingly opposing functions of menin can be explained by its various roles in gene regulation. Therefore, leukemias with rearrangement of KMT2A are predicted to respond to menin inhibition with early clinical data validating this proof-of-concept. These leukemias affect infants, children and adults, and lead to adverse outcomes with current standard therapies. Recent studies have identified novel targets in acute leukemia that are susceptible to menin inhibition, such as mutated Nucleophosmin 1 (NPM1), the most common genetic alteration in adult acute myeloid leukemia (AML). In addition to these alterations, other leukemia subsets with similar transcriptional dependency could be targeted through menin inhibition. This led to rationally designed clinical studies, investigating small-molecule oral menin inhibitors in relapsed acute leukemias with promising early results. Herein, we discuss the physiologic and malignant biology of menin, the mechanisms of leukemia in these susceptible subsets, and future therapeutic strategies using these inhibitors in acute leukemia.
Collapse
|
15
|
Gavory G, Baril C, Laberge G, Bidla G, Koonpaew S, Sonea T, Sauvageau G, Therrien M. A genetic screen in Drosophila uncovers the multifaceted properties of the NUP98-HOXA9 oncogene. PLoS Genet 2021; 17:e1009730. [PMID: 34383740 PMCID: PMC8384169 DOI: 10.1371/journal.pgen.1009730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/24/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Acute myeloid leukemia (AML) underlies the uncontrolled accumulation of immature myeloid blasts. Several cytogenetic abnormalities have been associated with AML. Among these is the NUP98-HOXA9 (NA9) translocation that fuses the Phe-Gly repeats of nucleoporin NUP98 to the homeodomain of the transcription factor HOXA9. The mechanisms enabling NA9-induced leukemia are poorly understood. Here, we conducted a genetic screen in Drosophila for modifiers of NA9. The screen uncovered 29 complementation groups, including genes with mammalian homologs known to impinge on NA9 activity. Markedly, the modifiers encompassed a diversity of functional categories, suggesting that NA9 perturbs multiple intracellular events. Unexpectedly, we discovered that NA9 promotes cell fate transdetermination and that this phenomenon is greatly influenced by NA9 modifiers involved in epigenetic regulation. Together, our work reveals a network of genes functionally connected to NA9 that not only provides insights into its mechanism of action, but also represents potential therapeutic targets. Acute myeloid leukemia or AML is a cancer of blood cells. Despite significant progress in recent years, a majority of afflicted individuals still succumbs to the disease. A variety of genetic defects have been associated to AML. Among these are chromosomal translocations, which entail the fusion of two genes, leading to the production of cancer-inducing chimeric proteins. A representative example is the NUP98-HOXA9 oncoprotein, which results from the fusion of the NUP98 and HOXA9 genes. The mechanism of action of NUP98-HOXA9 remains poorly understood. Given the evolutionarily conservation of NUP98 and HOXA9 as well as basic cellular processes across multicellular organisms, we took advantage of Drosophila fruit flies as a genetic tool to identify genes that impinge on the activity of human NUP98-HOXA9. Surprisingly, this approach identified a relatively large spectrum of conserved genes that engaged in functional interplay with NUP98-HOXA9, which indicated the pervasive effects that this oncogene has on basic cellular events. While some genes have been previously linked to NUP98-HOXA9, thus validating our experimental approach, several others are novel and as such represent potentially new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Gwenaëlle Gavory
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Caroline Baril
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Gino Laberge
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Gawa Bidla
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Surapong Koonpaew
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Thomas Sonea
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.,Département de médecine, Université de Montréal, Montréal, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.,Département de pathologie et de biologie cellulaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
16
|
Lu J, Chen M, Hua H, Qin W, Zhang R, Lu X, Chao H. Additional mutations in IDH1/2-mutated patients with acute myeloid leukemia. Int J Lab Hematol 2021; 43:1483-1490. [PMID: 34270876 DOI: 10.1111/ijlh.13648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Somatic mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) frequently emerge in acute myeloid leukemia (AML), but the clinical features and molecular characteristics of IDH mutational status and other coexisting mutations have not been investigated in a large extensively characterized AML series. The aim of this study was to gain insight into the mutational profile of IDH-mutated patients, such as the frequency and clinical characteristics of coexisting mutated genes. MATERIALS AND METHODS We investigated 485 newly diagnosed AML patients (range 18-81 years). DNA was extracted from bone marrow samples at the time of diagnosis. All samples were investigated with a panel of 49 mutational genes using next-generation sequencing (NGS). FLT3-ITD, NPM1, and CEBPA mutations were detected by Sanger PCR sequencing. RESULTS We found 84 patients (17.3%) with IDH1 or IDH2 mutations. There were 40 IDH1R132 , 15 IDH2R140Q , 17 IDH2R172K , and 12 uncommon mutations. No patient was found to have both IDH1 and IDH2 mutations. Patients with IDH2R140Q mutations were more frequently older and presented with significantly lower average platelet counts, while IDH2R172K -mutated patients had significantly lower white blood cell (WBC) counts. On the background of IDH mutations, the presence of a normal karyotype showed a balanced distribution. The four most frequently coexisting mutated genes were NPM1, DNMT3A, TET2, and FLT3-ITD. The majority of coexisting mutated genes were involved in regulating transcription and DNA methylation. IDH mutation status had no effect on the CR rate, regardless of other molecular abnormalities. CONCLUSION Isocitrate dehydrogenases mutations are associated with a complex coexisting mutation cluster in AML. Future investigation is needed to reveal the association between IDH mutations and other genetic abnormalities, which may have an impact on the progression and prognosis of disease.
Collapse
Affiliation(s)
- Jingtao Lu
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, China
| | - Meiyu Chen
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, China
| | - Haiying Hua
- Department of Hematology, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wei Qin
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, China
| | - Ri Zhang
- Department of Hematology, The First Affiliated Hospital of Suzhou University, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Xuzhang Lu
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, China
| | - Hongying Chao
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
17
|
Specific patterns of H3K79 methylation influence genetic interaction of oncogenes in AML. Blood Adv 2021; 4:3109-3122. [PMID: 32634241 DOI: 10.1182/bloodadvances.2020001922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding mechanisms of cooperation between oncogenes is critical for the development of novel therapies and rational combinations. Acute myeloid leukemia (AML) cells with KMT2A-fusions and KMT2A partial tandem duplications (KMT2APTD) are known to depend on the histone methyltransferase DOT1L, which methylates histone 3 lysine 79 (H3K79). About 30% of KMT2APTD AMLs carry mutations in IDH1/2 (mIDH1/2). Previous studies showed that 2-hydroxyglutarate produced by mIDH1/2 increases H3K79 methylation, and mIDH1/2 patient samples are sensitive to DOT1L inhibition. Together, these findings suggested that stabilization or increases in H3K79 methylation associated with IDH mutations support the proliferation of leukemias dependent on this mark. However, we found that mIDH1/2 and KMT2A alterations failed to cooperate in an experimental model. Instead, mIDH1/2 and 2-hydroxyglutarate exert toxic effects, specifically on KMT2A-rearranged AML cells (fusions/partial tandem duplications). Mechanistically, we uncover an epigenetic barrier to efficient cooperation; mIDH1/2 expression is associated with high global histone 3 lysine 79 dimethylation (H3K79me2) levels, whereas global H3K79me2 is obligate low in KMT2A-rearranged AML. Increasing H3K79me2 levels, specifically in KMT2A-rearrangement leukemias, resulted in transcriptional downregulation of KMT2A target genes and impaired leukemia cell growth. Our study details a complex genetic and epigenetic interaction of 2 classes of oncogenes, IDH1/2 mutations and KMT2A rearrangements, that is unexpected based on the high percentage of IDH mutations in KMT2APTD AML. KMT2A rearrangements are associated with a trend toward lower response rates to mIDH1/2 inhibitors. The substantial adaptation that has to occur for 2 initially counteracting mutations to be tolerated within the same leukemic cell may provide at least a partial explanation for this observation.
Collapse
|
18
|
Zhang H, Zhang Y, Zhou X, Wright S, Hyle J, Zhao L, An J, Zhao X, Shao Y, Xu B, Lee HM, Chen T, Zhou Y, Chen X, Lu R, Li C. Functional interrogation of HOXA9 regulome in MLLr leukemia via reporter-based CRISPR/Cas9 screen. eLife 2020; 9:e57858. [PMID: 33001025 PMCID: PMC7599066 DOI: 10.7554/elife.57858] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022] Open
Abstract
Aberrant HOXA9 expression is a hallmark of most aggressive acute leukemias, notably those with KMT2A (MLL) gene rearrangements. HOXA9 overexpression not only predicts poor diagnosis and outcome but also plays a critical role in leukemia transformation and maintenance. However, our current understanding of HOXA9 regulation in leukemia is limited, hindering development of therapeutic strategies. Here, we generated the HOXA9-mCherry knock-in reporter cell lines to dissect HOXA9 regulation. By utilizing the reporter and CRISPR/Cas9 screens, we identified transcription factors controlling HOXA9 expression, including a novel regulator, USF2, whose depletion significantly down-regulated HOXA9 expression and impaired MLLr leukemia cell proliferation. Ectopic expression of Hoxa9 rescued impaired leukemia cell proliferation upon USF2 loss. Cut and Run analysis revealed the direct occupancy of USF2 at HOXA9 promoter in MLLr leukemia cells. Collectively, the HOXA9 reporter facilitated the functional interrogation of the HOXA9 regulome and has advanced our understanding of the molecular regulation network in HOXA9-driven leukemia.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| | - Xinyue Zhou
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| | - Lianzhong Zhao
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Jie An
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Xujie Zhao
- Department of Pharmaceutical Sciences, St. Jude Children’s Research HospitalMemphisUnited States
| | - Ying Shao
- Department of Computational Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Hyeong-Min Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research HospitalMemphisUnited States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research HospitalMemphisUnited States
| | - Yang Zhou
- Department of Biomedical Engineering School of Engineering, University of Alabama at BirminghamBirminghamUnited States
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Rui Lu
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| |
Collapse
|
19
|
Blast phenotype and comutations in acute myeloid leukemia with mutated NPM1 influence disease biology and outcome. Blood Adv 2020; 3:3322-3332. [PMID: 31698462 DOI: 10.1182/bloodadvances.2019000328] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/01/2019] [Indexed: 12/29/2022] Open
Abstract
Recent work has identified distinct molecular subgroups of acute myeloid leukemia (AML) with implications for disease classification and prognosis. AML with mutated NPM1 (AML-NPM1) represents a distinct entity in the revised 2017 World Health Organization classification, but relatively little work has examined the clinical significance of phenotypic and genetic heterogeneity within this group. A multi-institutional cohort of 239 AML-NPM1 cases included 3 phenotypic groups: cases with blasts showing monocytic differentiation (n = 93; monocytic AML-NPM1), cases lacking monocytic differentiation (n = 72; myeloid AML-NPM1), and cases where blasts were negative for both CD34 and HLA-DR (n = 74; double-negative [DN] AML-NPM1). Genotypic diversity typical of AML-NPM1 was seen, with comutations occurring most commonly in DNA methylation genes (81% of cases), FLT3 (48%; including internal tandem duplication and tyrosine kinase domain mutations), and RAS pathway genes (30%). However, the comutation pattern differed by blast phenotype. TET2 and IDH1/2 mutations were significantly more common in DN AML-NPM1 (96% of cases) than in myeloid (39%) or monocytic AML-NPM1 (48%; P < .0001). Conversely, DNMT3A mutations were significantly less common in DN AML-NPM1 (27%) than in myeloid (44%) or monocytic cases (54%; P = .002). Furthermore, the 3 phenotypic groups showed significant differences in outcome, with DN AML-NPM1 showing significantly longer relapse-free (RFS) and overall survival (OS) (64.7 and 66.5 months, respectively) than monocytic AML-NPM1 (RFS, 20.6 months; OS, 44.3 months) or myeloid AML-NPM1 (RFS, 8.4 months; OS, 20.2 months; P < .0001 and P = .01 for RFS and OS, respectively). Our findings highlight biologic differences within immunophenotypically defined subgroups of NPM1-mutated AML that may impart prognostic significance.
Collapse
|
20
|
Testa U, Castelli G, Pelosi E. Isocitrate Dehydrogenase Mutations in Myelodysplastic Syndromes and in Acute Myeloid Leukemias. Cancers (Basel) 2020; 12:E2427. [PMID: 32859092 PMCID: PMC7564409 DOI: 10.3390/cancers12092427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease generated by the acquisition of multiple genetic and epigenetic aberrations which impair the proliferation and differentiation of hematopoietic progenitors and precursors. In the last years, there has been a dramatic improvement in the understanding of the molecular alterations driving cellular signaling and biochemical changes determining the survival advantage, stimulation of proliferation, and impairment of cellular differentiation of leukemic cells. These molecular alterations influence clinical outcomes and provide potential targets for drug development. Among these alterations, an important role is played by two mutant enzymes of the citric acid cycle, isocitrate dehydrogenase (IDH), IDH1 and IDH2, occurring in about 20% of AMLs, which leads to the production of an oncogenic metabolite R-2-hydroxy-glutarate (R-2-HG); this causes a DNA hypermethylation and an inhibition of hematopoietic stem cell differentiation. IDH mutations differentially affect prognosis of AML patients following the location of the mutation and other co-occurring genomic abnormalities. Recently, the development of novel therapies based on the specific targeting of mutant IDH may contribute to new effective treatments of these patients. In this review, we will provide a detailed analysis of the biological, clinical, and therapeutic implications of IDH mutations.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.C.); (E.P.)
| | | | | |
Collapse
|
21
|
Deng M, Zha J, Zhao H, Jia X, Shi Y, Li Z, Fu G, Yu L, Fang Z, Xu B. Apatinib exhibits cytotoxicity toward leukemia cells by targeting VEGFR2-mediated prosurvival signaling and angiogenesis. Exp Cell Res 2020; 390:111934. [PMID: 32126236 DOI: 10.1016/j.yexcr.2020.111934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Vascular permeability contributes to disease progression and drug resistance in hematological malignancies, including AML. Thus, targeting angiogenic signaling is a promising treatment strategy, especially for relapsed and resistant AML. The aim of this study was to evaluate the efficacy of apatinib, a novel receptor tyrosine kinase inhibitor that selectively targets VEGFR2. METHODS Several AML cell lines were exposed to various concentrations of apatinib, and then CCK8 and Annexin V/PI assays were performed to determine IC50 values and apoptosis, respectively. The effect of apatinib against primary AML cells from 57 adult patients and 11 normal controls was also analyzed utilizing an apoptosis assay. Next, we tested the underlying mechanism of apatinib in AML using western blotting and mass cytometry (CyTOF). Finally, the activity of apatinib against tumor growth and angiogenesis was further evaluated in vivo in xenograft models. RESULTS We found apatinib significantly inhibited growth and promoted apoptosis in AML cell lines in vitro. Similarly, apatinib showed cytotoxicity against primary AML cells but didn't affect normal BMMCs. Its effect was highly correlated with several clinical features, such as NPM1 mutation, extramedullary infiltration, relapsed/refractory disease, and M2 and M5 FAB subtypes. In addition, apatinib suppressed AML growth and attenuated angiogenesis in xenograft models. Mechanistically, apatinib-induced cytotoxicity was closely associated with inhibition of the VEGFR2-mediated Src/STAT3 and AKT/mTOR pathways and induction of mitochondria-mediated apoptosis. CONCLUSION Apatinib exerts antileukemia effects by targeting VEGFR2-induced prosurvival signaling and angiogenesis, thus providing a rationale for the application of apatinib in AML.
Collapse
Affiliation(s)
- Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China
| | - Haijun Zhao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China
| | - Xian Jia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China
| | - Zhifeng Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Lian Yu
- Department of Hematology and Rheumatology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, PR China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China.
| |
Collapse
|
22
|
Machida Y, Nakagawa M, Matsunaga H, Yamaguchi M, Ogawara Y, Shima Y, Yamagata K, Katsumoto T, Hattori A, Itoh M, Seki T, Nishiya Y, Nakamura K, Suzuki K, Imaoka T, Baba D, Suzuki M, Sampetrean O, Saya H, Ichimura K, Kitabayashi I. A Potent Blood-Brain Barrier-Permeable Mutant IDH1 Inhibitor Suppresses the Growth of Glioblastoma with IDH1 Mutation in a Patient-Derived Orthotopic Xenograft Model. Mol Cancer Ther 2019; 19:375-383. [PMID: 31727689 DOI: 10.1158/1535-7163.mct-18-1349] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/16/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022]
Abstract
Gliomas are the second most common primary brain tumors in adults. They are treated with combination therapies, including surgery, radiotherapy, and chemotherapy. There are currently limited treatment options for recurrent gliomas, and new targeted therapies need to be identified, especially in glioblastomas, which have poor prognosis. Isocitrate dehydrogenase (IDH) mutations are detected in various tumors, including gliomas. Most patients with IDH mutant glioma harbor the IDH1R132H subtype. Mutant IDH catalyzes the conversion of α-ketoglutarate to the oncometabolite 2-hydroxyglutarate (2-HG), which induces aberrant epigenetic status and contributes to malignant progression, and is therefore a potential therapeutic target for IDH mutant tumors. The present study describes a novel, orally bioavailable selective mutant IDH1 inhibitor, DS-1001b. The drug has high blood-brain barrier (BBB) permeability and inhibits IDH1R132H. Continuous administration of DS-1001b impaired tumor growth and decreased 2-HG levels in subcutaneous and intracranial xenograft models derived from a patient with glioblastoma with IDH1 mutation. Moreover, the expression of glial fibrillary acidic protein was strongly induced by DS-1001b, suggesting that inhibition of mutant IDH1 promotes glial differentiation. These results reveal the efficacy of BBB-permeable DS-1001b in orthotopic patient-derived xenograft models and provide a preclinical rationale for the clinical testing of DS-1001b in recurrent gliomas.
Collapse
Affiliation(s)
- Yukino Machida
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan.,Department of Veterinary Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Makoto Nakagawa
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Masayuki Yamaguchi
- Division of Functional Imaging, Research Center for Innovative Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Yoko Ogawara
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Yutaka Shima
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazutsune Yamagata
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuo Katsumoto
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Ayuna Hattori
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Masato Itoh
- Oncology Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Takahiko Seki
- Oncology Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yumi Nishiya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Koichi Nakamura
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kanae Suzuki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Tomoki Imaoka
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Daichi Baba
- Post-Marketing Regulatory Affairs Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Makoto Suzuki
- Structure-Based Drug Design Group, Organic Synthesis Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, School of Medicine, Keio University, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, School of Medicine, Keio University, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
23
|
Aberrant activation of RPB1 is critical for cell overgrowth in acute myeloid leukemia. Exp Cell Res 2019; 384:111653. [DOI: 10.1016/j.yexcr.2019.111653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
|
24
|
The Role of the HOXA Gene Family in Acute Myeloid Leukemia. Genes (Basel) 2019; 10:genes10080621. [PMID: 31426381 PMCID: PMC6723066 DOI: 10.3390/genes10080621] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 01/12/2023] Open
Abstract
The HOXA gene family is associated with various cancer types. However, the role of HOXA genes in acute myeloid leukemia (AML) have not been comprehensively studied. We compared the transcriptional expression, survival data, and network analysis of HOXA-associated signaling pathways in patients with AML using the ONCOMINE, GEPIA, LinkedOmics, cBioPortal, and Metascape databases. We observed that HOXA2-10 mRNA expression levels were significantly upregulated in AML and that high HOXA1-10 expression was associated with poor AML patient prognosis. The HOXA genes were altered in ~18% of the AML samples, either in terms of amplification, deep deletion, or elevated mRNA expression. The following pathways were modulated by HOXA gene upregulation: GO:0048706: embryonic skeletal system development; R-HSA-5617472: activation of HOX genes in anterior hindbrain development during early embryogenesis; GO:0060216: definitive hemopoiesis; hsa05202: transcriptional mis-regulation in cancer; and GO:0045638: negative regulation of myeloid cell differentiation, and they were significantly regulated due to alterations affecting the HOXA genes. This study identified HOXA3-10 genes as potential AML therapeutic targets and prognostic markers.
Collapse
|
25
|
Nakagawa M, Nakatani F, Matsunaga H, Seki T, Endo M, Ogawara Y, Machida Y, Katsumoto T, Yamagata K, Hattori A, Fujita S, Aikawa Y, Ishikawa T, Soga T, Kawai A, Chuman H, Yokoyama N, Fukushima S, Yahiro K, Kimura A, Shimada E, Hirose T, Fujiwara T, Setsu N, Matsumoto Y, Iwamoto Y, Nakashima Y, Kitabayashi I. Selective inhibition of mutant IDH1 by DS-1001b ameliorates aberrant histone modifications and impairs tumor activity in chondrosarcoma. Oncogene 2019; 38:6835-6849. [DOI: 10.1038/s41388-019-0929-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/06/2019] [Accepted: 07/18/2019] [Indexed: 01/25/2023]
|
26
|
Lambert M, Alioui M, Jambon S, Depauw S, Van Seuningen I, David-Cordonnier MH. Direct and Indirect Targeting of HOXA9 Transcription Factor in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11060837. [PMID: 31213012 PMCID: PMC6627208 DOI: 10.3390/cancers11060837] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
HOXA9 (Homeobox A9) is a homeotic transcription factor known for more than two decades to be associated with leukemia. The expression of HOXA9 homeoprotein is associated with anterior-posterior patterning during embryonic development, and its expression is then abolished in most adult cells, with the exception of hematopoietic progenitor cells. The oncogenic function of HOXA9 was first assessed in human acute myeloid leukemia (AML), particularly in the mixed-phenotype associated lineage leukemia (MPAL) subtype. HOXA9 expression in AML is associated with aggressiveness and a poor prognosis. Since then, HOXA9 has been involved in other hematopoietic malignancies and an increasing number of solid tumors. Despite this, HOXA9 was for a long time not targeted to treat cancer, mainly since, as a transcription factor, it belongs to a class of protein long considered to be an "undruggable" target; however, things have now evolved. The aim of the present review is to focus on the different aspects of HOXA9 targeting that could be achieved through multiple ways: (1) indirectly, through the inhibition of its expression, a strategy acting principally at the epigenetic level; or (2) directly, through the inhibition of its transcription factor function by acting at either the protein/protein interaction or the protein/DNA interaction interfaces.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Meryem Alioui
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Samy Jambon
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Sabine Depauw
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Isabelle Van Seuningen
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
| | - Marie-Hélène David-Cordonnier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| |
Collapse
|
27
|
Fujiwara H, Tateishi K, Kato H, Nakatsuka T, Yamamoto K, Tanaka Y, Ijichi H, Takahara N, Mizuno S, Kogure H, Matsubara S, Nakai Y, Koike K. Isocitrate dehydrogenase 1 mutation sensitizes intrahepatic cholangiocarcinoma to the BET inhibitor JQ1. Cancer Sci 2018; 109:3602-3610. [PMID: 30156013 PMCID: PMC6215870 DOI: 10.1111/cas.13784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma is a life‐threatening disease with a poor prognosis. Although genome analysis unraveled some genetic mutation profiles in cholangiocarcinoma, it remains unknown whether such genetic abnormalities relate to the effects of anticancer drugs. Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) are exclusively found in almost 20% of intrahepatic cholangiocarcinoma (ICC). Recently, the anticancer effects of BET inhibitors including JQ1 have been shown in various tumors. In the present study, we report that the antigrowth effect of JQ1 differs among ICC cells and IDH1 mutation sensitizes ICC cells to JQ1. RBE cells harboring IDH1 mutation was more sensitive to JQ1 than HuCCT1 or HuH28 cells with wild‐type IDH1. JQ1 induced apoptosis only in RBE cells through the upregulation of proapoptotic genes BAX and BIM. We found that the antigrowth effect was not attributed to downregulation of the MYC gene as a well‐known target of JQ1 in various cancer cells. Notably, the forced expression of mutant IDH1 successfully sensitized HuCCT1 cells to JQ1. In addition, AGI‐5198, a selective inhibitor of mutant IDH1 partially reversed the decrease in viability after JQ1 treatment and also suppressed the JQ1‐induced apoptosis in RBE cells. These data suggest that IDH1 mutation contributed to the growth inhibitory effect of JQ1 in RBE cells. Furthermore, given that the effect of mutant IDH1 was not recapitulated in glioblastoma cells, the enhancement of JQ1 sensitivity by IDH1 mutation seems to be specific for ICC cells. Our findings propose a new stratified therapeutic strategy based on IDH1 mutation in ICC.
Collapse
Affiliation(s)
- Hiroaki Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideaki Ijichi
- Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, Tokyo, Japan
| | - Naminatsu Takahara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Suguru Mizuno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Kogure
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Saburo Matsubara
- Department of Gastroenterology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Heuser M, Yun H, Thol F. Epigenetics in myelodysplastic syndromes. Semin Cancer Biol 2018; 51:170-179. [PMID: 28778402 PMCID: PMC7116652 DOI: 10.1016/j.semcancer.2017.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Epigenetic regulators are the largest group of genes mutated in MDS patients. Most mutated genes belong to one of three groups of genes with normal functions in DNA methylation, in H3K27 methylation/acetylation or in H3K4 methylation. Mutations in the majority of epigenetic regulators disrupt their normal function and induce a loss-of-function phenotype. The transcriptional consequences are often failure to repress differentiation programs and upregulation of self-renewal pathways. However, the mechanisms how different epigenetic regulators result in similar transcriptional consequences are not well understood. Hypomethylating agents are active in higher risk MDS patients, but their efficacy does not correlate with mutations in epigenetic regulators and the median duration of hematologic response is limited to 10-13 months. Inhibitors of histone deacetylases (HDAC) yielded disappointing results so far, questioning this approach in MDS patients. We review the clinical relevance of epigenetic mutations in MDS, discuss their functional consequences and highlight the role of epigenetic therapies in this difficult to treat disease.
Collapse
Affiliation(s)
- Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| | - Haiyang Yun
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke's Hospital, UK; Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Lin P, Luo Y, Zhu S, Maggio D, Yang H, Hu C, Wang J, Zhang H, Ren Y, Zhou X, Mei C, Ma L, Xu W, Ye L, Zhuang Z, Jin J, Tong H. Isocitrate dehydrogenase 2 mutations correlate with leukemic transformation and are predicted by 2-hydroxyglutarate in myelodysplastic syndromes. J Cancer Res Clin Oncol 2018; 144:1037-1047. [PMID: 29549529 DOI: 10.1007/s00432-018-2627-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 12/01/2022]
Abstract
PURPOSE The myelodysplastic syndromes (MDS) are a group of hematologic disorders characterized by the presence of somatically mutated hematopoietic stem cells (HSCs) that increase the risk of progression to secondary acute myeloid leukemia (sAML). Mutations in isocitrate dehydrogenase (IDHmut) are thought to correlate with the increased production of the oncogenic protein 2-hydroxyglutarate (2-HG) in AML. The aim of this study was to examine whether serum 2-HG has utility as a prognostic biomarker, and whether elevated 2-HG levels are predictive of IDH mutations in patients with MDS. METHODS Genetic profiling was utilized to determine the genetic composition of a large cohort of MDS patients, including the presence or absence of IDH1 or IDH2 mutations (n = 281). Serum 2-HG levels were detected by liquid chromatography-tandem mass spectrometry. RESULTS In the current study of MDS patients, elevated serum 2-HG levels were predictive of inferior overall- and leukemia-free survival irrespective of IPSS risk grouping. Higher serum 2-HG levels predicted the presence of IDH mutations. IDH2mut patients had a higher risk of leukemic transformation. The co-occurrence of DNMT3A or SRSF2 mutations was found to be increased in IDH2mut patients. IDH2 mutations were associated with significantly worse OS and LFS amongst patients with low-risk MDS by IPSS grouping. CONCLUSIONS The noted predictive value of serum 2-HG levels and IDH2 mutations on OS and LFS support the use of biomarkers and/or underlying cytogenetics in novel prognostic scoring systems for MDS.
Collapse
Affiliation(s)
- Peipei Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yingwan Luo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Shuanghong Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Dominic Maggio
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Haiyang Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chao Hu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hua Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xinping Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Liya Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Weilai Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China. .,Myelodysplastic Syndromes Diagnosis and Therapy center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
30
|
Abstract
Isocitrate dehydrogenases (IDHs) are enzymes involved in multiple metabolic and epigenetic cellular processes. Mutations in IDH1 or IDH2 are detected in approximately 20% of patients with acute myeloid leukemia (AML) and induce amino acid changes in conserved residues resulting in neomorphic enzymatic function and production of an oncometabolite, 2-hydroxyglutarate (R-2-HG). This leads to DNA hypermethylation, aberrant gene expression, cell proliferation and abnormal differentiation. IDH mutations diversely affect prognosis of patients with AML based on the location of the mutation and other co-occurring genomic abnormalities. Recently, novel therapies specifically targeting mutant IDH have opened new avenues of therapy for these patients. In the present review, we will provide an overview of the biological, clinical and therapeutic implications of IDH mutations in AML.
Collapse
Affiliation(s)
- Guillermo Montalban-Bravo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Courtney D DiNardo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
31
|
Johansen S, Brenner AK, Bartaula-Brevik S, Reikvam H, Bruserud Ø. The Possible Importance of β3 Integrins for Leukemogenesis and Chemoresistance in Acute Myeloid Leukemia. Int J Mol Sci 2018; 19:ijms19010251. [PMID: 29342970 PMCID: PMC5796198 DOI: 10.3390/ijms19010251] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy where the immature leukemia cells communicate with neighboring cells through constitutive cytokine release and through their cell surface adhesion molecules. The primary AML cells express various integrins. These heterodimeric molecules containing an α and a β chain are cell surface molecules that bind extracellular matrix molecules, cell surface molecules and soluble mediators. The β3 integrin (ITGB3) chain can form heterodimers only with the two α chains αIIb and αV. These integrins are among the most promiscuous and bind to a large number of ligands, including extracellular matrix molecules, cell surface molecules and soluble mediators. Recent studies suggest that the two β3 integrins are important for leukemogenesis and chemosensitivity in human AML. Firstly, αIIb and β3 are both important for adhesion of AML cells to vitronectin and fibronectin. Secondly, β3 is important for the development of murine AML and also for the homing and maintenance of the proliferation for xenografted primary human AML cells, and for maintaining a stem cell transcriptional program. These last effects seem to be mediated through Syk kinase. The β3 expression seems to be regulated by HomeboxA9 (HoxA9) and HoxA10, and the increased β3 expression then activates spleen tyrosine kinase (Syk) and thereby contributes to cytokine hypersensitivity and activation of β2 integrins. Finally, high integrin αV/β3 expression is associated with an adverse prognosis in AML and decreased sensitivity to the kinase inhibitor sorafenib; this integrin can also be essential for osteopontin-induced sorafenib resistance in AML. In the present article, we review the experimental and clinical evidence for a role of β3 integrins for leukemogenesis and chemosensitivity in AML.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Integrin beta3/chemistry
- Integrin beta3/genetics
- Integrin beta3/metabolism
- Integrins/chemistry
- Integrins/genetics
- Integrins/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Ligands
- Multigene Family
- Prognosis
- Protein Binding
- Signal Transduction
Collapse
Affiliation(s)
- Silje Johansen
- Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Annette K Brenner
- Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway.
| | - Sushma Bartaula-Brevik
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway.
| | - Håkon Reikvam
- Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway.
| | - Øystein Bruserud
- Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway.
| |
Collapse
|
32
|
Liang J, Yang F, Zhao L, Bi C, Cai B. Physiological and pathological implications of 5-hydroxymethylcytosine in diseases. Oncotarget 2018; 7:48813-48831. [PMID: 27183914 PMCID: PMC5217052 DOI: 10.18632/oncotarget.9281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Gene expression is the prerequisite of proteins. Diverse stimuli result in alteration of gene expression profile by base substitution for quite a long time. However, during the past decades, accumulating studies proved that bases modification is involved in this process. CpG islands (CGIs) are DNA fragments enriched in CpG repeats which mostly locate in promoters. They are frequently modified, methylated in most conditions, thereby suggesting a role of methylation in profiling gene expression. DNA methylation occurs in many conditions, such as cancer, embryogenesis, nervous system diseases etc. Recently, 5-hydroxymethylcytosine (5hmC), the product of 5-methylcytosine (5mC) demethylation, is emerging as a novel demethylation marker in many disorders. Consistently, conversion of 5mC to 5hmC has been proved in many studies. Here, we reviewed recent studies concerning demethylation via 5hmC conversion in several conditions and progress of therapeutics-associated with it in clinic. We aimed to unveil its physiological and pathological significance in diseases and to provide insight into its clinical application potential.
Collapse
Affiliation(s)
- Jing Liang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Fan Yang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Liang Zhao
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Chongwei Bi
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Benzhi Cai
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China.,Institute of Clinical Pharmacy and Medicine, Academics of Medical Sciences of Heilongjiang Province, Harbin, China
| |
Collapse
|
33
|
MEIS-1 level in unresectable hepatocellular carcinoma can predict the post-treatment outcomes of radiofrequency ablation. Oncotarget 2018; 9:15252-15265. [PMID: 29632641 PMCID: PMC5880601 DOI: 10.18632/oncotarget.24165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Radiofrequency ablation (RFA) is a local-ablative therapy for unresectable hepatocellular carcinoma (HCC). At present, there is no predictive marker for RFA treatment outcomes. This work aimed to valuate myeloid ecotropic viral integration site 1 (MEIS-1) in predicting post-RFA treatment outcomes of unresectable HCC patients. The time to progression (TTP) and overall survival (OS) of 81 HCC patients who received RFA treatment were measured. The protein level of MEIS-1 in tumor specimens was measured by western blot. The role of MEIS-1 in RFA-treating HCC in vivo growth nude mouse model was examined via PET/CT imaging. Higher level of MEIS-1 in tumor tissue is associated with better RFA treatment outcomes. The median TTP was 9.0 (95% confidence interval [CI]: 6.8–11.3) months in patients with high MEIS-1 expression (n = 43) versus 6.0 (95% CI: 4.6–7.4) months in patients with low MEIS-1 expression (n = 38). Moreover, in rodent HCC model we found overexpression of MEIS-1 enhanced the anti-tumor effect of RFA treatment. We conclude that high level of MEIS-1 expression predicts better RFA treatment outcome in HCC.
Collapse
|
34
|
Impact of DNA methylation programming on normal and pre-leukemic hematopoiesis. Semin Cancer Biol 2017; 51:89-100. [PMID: 28964938 DOI: 10.1016/j.semcancer.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022]
Abstract
Epigenome regulation is a critical mechanism that governs cell identity, lineage specification and developmental cell fates. With the advent of low-input and single-cell technologies as well as sophisticated cell labeling techniques, our understanding of transcriptional and epigenetic regulation of hematopoiesis is currently undergoing dramatic changes. Increasingly, evidence suggests that the epigenome conformation acts as a critical decision-making mechanism that instructs self-renewal, differentiation and developmental fates of hematopoietic progenitor cells. When dysregulated, this leads to the evolution of disease states such as leukemia. Indeed, aberrations in DNA methylation, histone modifications and genome architecture are characteristic features of many hematopoietic neoplasms in which epigenetic enzymes are frequently mutated. Sequencing studies and characterization of the epigenetic landscape in lymphomas, leukemias and in aged healthy individuals with clonal hematopoiesis have been indispensible to identify epigenetic regulators that play a role in transformation or pre-disposition to hematopoietic malignancies. In this review, we outline the current view of the hematopoietic system and the epigenetic mechanisms regulating hematopoiesis under homeostatic conditions, with a particular focus on the role of DNA methylation in this process. We will also summarize the current knowledge on the mechanisms underlying dysregulated DNA methylation in hematologic malignancies and how this contributes to our understanding of the physiological functions of epigenetic regulators in hematopoiesis.
Collapse
|
35
|
M Gagné L, Boulay K, Topisirovic I, Huot MÉ, Mallette FA. Oncogenic Activities of IDH1/2 Mutations: From Epigenetics to Cellular Signaling. Trends Cell Biol 2017; 27:738-752. [PMID: 28711227 DOI: 10.1016/j.tcb.2017.06.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/11/2017] [Accepted: 06/13/2017] [Indexed: 01/03/2023]
Abstract
Gliomas and leukemias remain highly refractory to treatment, thus highlighting the need for new and improved therapeutic strategies. Mutations in genes encoding enzymes involved in the tricarboxylic acid (TCA) cycle, such as the isocitrate dehydrogenases 1 and 2 (IDH1/2), are frequently encountered in astrocytomas and secondary glioblastomas, as well as in acute myeloid leukemias; however, the precise molecular mechanisms by which these mutations promote tumorigenesis remain to be fully characterized. Gain-of-function mutations in IDH1/2 have been shown to stimulate production of the oncogenic metabolite R-2-hydroxyglutarate (R-2HG), which inhibits α-ketoglutarate (αKG)-dependent enzymes. We review recent advances on the elucidation of oncogenic functions of IDH1/2 mutations, and of the associated oncometabolite R-2HG, which link altered metabolism of cancer cells to epigenetics, RNA methylation, cellular signaling, hypoxic response, and DNA repair.
Collapse
Affiliation(s)
- Laurence M Gagné
- Centre de Recherche sur le Cancer de l'Université Laval, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval Québec, QC, G1V 0A6, Canada; Centre Hospitalier Universitaire (CHU) de Québec - Axe Oncologie (Hôtel-Dieu de Québec), Québec City, QC, G1R 3S3, Canada
| | - Karine Boulay
- Département de Biochimie et Médecine Moléculaire, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada; Chromatin Structure and Cellular Senescence Research Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, H1T 2M4, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, H3T 1E2, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, H3T 1E2, Canada; Gerald Bronfman Department of Oncology, and Departments of Experimental Medicine, and Biochemistry, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Marc-Étienne Huot
- Centre de Recherche sur le Cancer de l'Université Laval, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval Québec, QC, G1V 0A6, Canada; Centre Hospitalier Universitaire (CHU) de Québec - Axe Oncologie (Hôtel-Dieu de Québec), Québec City, QC, G1R 3S3, Canada.
| | - Frédérick A Mallette
- Département de Biochimie et Médecine Moléculaire, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada; Chromatin Structure and Cellular Senescence Research Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, H1T 2M4, Canada; Département de Médecine, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
36
|
Vitamin C-induced epigenomic remodelling in IDH1 mutant acute myeloid leukaemia. Leukemia 2017; 32:11-20. [PMID: 28663574 PMCID: PMC5770587 DOI: 10.1038/leu.2017.171] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/19/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
The genomes of myeloid malignancies are characterized by epigenomic abnormalities. Heterozygous, inactivating ten-eleven translocation 2 (TET2) mutations and neomorphic isocitrate dehydrogenase (IDH) mutations are recurrent and mutually exclusive in acute myeloid leukaemia genomes. Ascorbic acid (vitamin C) has been shown to stimulate the catalytic activity of TET2 in vitro and thus we sought to explore its effect in a leukaemic model expressing IDH1R132H. Vitamin C treatment induced an IDH1R132H-dependent reduction in cell proliferation and an increase in expression of genes involved in leukocyte differentiation. Vitamin C induced differentially methylated regions that displayed a significant overlap with enhancers implicated in myeloid differentiation and were enriched in sequence elements for the haematopoietic transcription factors CEBPβ, HIF1α, RUNX1 and PU.1. Chromatin immunoprecipitation sequencing of PU.1 and RUNX1 revealed a significant loss of PU.1 and increase of RUNX1-bound DNA elements accompanied by their demethylation following vitamin C treatment. In addition, vitamin C induced an increase in H3K27ac flanking sites bound by RUNX1. On the basis of these data we propose a model of vitamin C-induced epigenetic remodelling of transcription factor-binding sites driving differentiation in a leukaemic model.
Collapse
|
37
|
Zhu J, Cui L, Xu A, Yin X, Li F, Gao J. MEIS1 inhibits clear cell renal cell carcinoma cells proliferation and in vitro invasion or migration. BMC Cancer 2017; 17:176. [PMID: 28270206 PMCID: PMC5341457 DOI: 10.1186/s12885-017-3155-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/23/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Myeloid ecotropic viral integration site 1 (MEIS1) protein plays a synergistic causative role in acute myeloid leukemia (AML). However, MEIS1 has also shown to be a potential tumor suppressor in some other cancers, such as non-small-cell lung cancer (NSCLC) and prostate cancer. Although multiple roles of MEIS1 in cancer development and progression have been identified, there is an urgent demand to discover more functions of this molecule for further therapeutic design. METHODS MEIS1 was overexpressed via adenovirus vector in clear cell renal cell carcinoma (ccRCC) cells. Western blot and real-time qPCR (quantitative Polymerase Chain Reaction) was performed to examine the protein and mRNA levels of MEIS1. Cell proliferation, survival, in vitro migration and invasion were tested by MTT, colony formation, soft-agar, transwell (in vitro invasion/migration) assays, and tumor in vivo growthwas measured on nude mice model. In addition, flow-cytometry analysis was used to detect cell cycle arrest or non-apoptotic cell death of ccRCC cells induced by MEIS1. RESULTS MEIS1 exhibits a decreased expression in ccRCC cell lines than that in non-tumor cell lines. MEIS1 overexpression inhibits ccRCC cells proliferation and induces G1/S arrest concomitant with marked reduction of G1/S transition regulators, Cyclin D1 and Cyclin A. Moreover, MEIS1-1 overexpression also induces non-apoptotic cell death of ccRCC cells via decreasing the levels of pro-survival regulators Survivin and BCL-2. Transwell migration assay (TMA) shows that MEIS1 attenuates in vitro invasion and migration of ccRCC cells with down-regulated epithelial-mesenchymal transition (EMT) process. Further, in nude mice model, MEIS1 inhibits the in vivo growth of Caki-1 cells. CONCLUSIONS By investigating the role of MEIS1 in ccRCC cells' survival, proliferation, anchorage-independent growth, cell cycle progress, apoptosis and metastasis, in the present work, we propose that MEIS1 may play an important role in clear cell renal cell carcinoma (ccRCC) development.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Liang Cui
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
- Department of Urology, Civil Aviation General Hospital/Civil Aviation Medical College of Peking University, Beijing, 100123 People’s Republic of China
| | - Axiang Xu
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Xiaotao Yin
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Fanglong Li
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Jiangping Gao
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| |
Collapse
|
38
|
Rychtarcikova Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, Zjablovskaja P, Alberich-Jorda M, Neuzil J, Truksa J. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget 2017; 8:6376-6398. [PMID: 28031527 PMCID: PMC5351639 DOI: 10.18632/oncotarget.14093] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
Abstract
The importance of iron in the growth and progression of tumors has been widely documented. In this report, we show that tumor-initiating cells (TICs), represented by spheres derived from the MCF7 cell line, exhibit higher intracellular labile iron pool, mitochondrial iron accumulation and are more susceptible to iron chelation. TICs also show activation of the IRP/IRE system, leading to higher iron uptake and decrease in iron storage, suggesting that level of properly assembled cytosolic iron-sulfur clusters (FeS) is reduced. This finding is confirmed by lower enzymatic activity of aconitase and FeS cluster biogenesis enzymes, as well as lower levels of reduced glutathione, implying reduced FeS clusters synthesis/utilization in TICs. Importantly, we have identified specific gene signature related to iron metabolism consisting of genes regulating iron uptake, mitochondrial FeS cluster biogenesis and hypoxic response (ABCB10, ACO1, CYBRD1, EPAS1, GLRX5, HEPH, HFE, IREB2, QSOX1 and TFRC). Principal component analysis based on this signature is able to distinguish TICs from cancer cells in vitro and also Leukemia-initiating cells (LICs) from non-LICs in the mouse model of acute promyelocytic leukemia (APL). Majority of the described changes were also recapitulated in an alternative model represented by MCF7 cells resistant to tamoxifen (TAMR) that exhibit features of TICs. Our findings point to the critical importance of redox balance and iron metabolism-related genes and proteins in the context of cancer and TICs that could be potentially used for cancer diagnostics or therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Biological Transport
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Iron/metabolism
- Iron Chelating Agents/pharmacology
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/genetics
- MCF-7 Cells
- Male
- Mice, Transgenic
- Mitochondria/enzymology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Phenotype
- Principal Component Analysis
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Spheroids, Cellular
- Tamoxifen/pharmacology
- Transcriptome
Collapse
Affiliation(s)
- Zuzana Rychtarcikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Sandra Lettlova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Sciences, Prague, Czech Republic
| | - Veronika Tomkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Sciences, Prague, Czech Republic
| | - Vlasta Korenkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Langerova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ekaterina Simonova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Polina Zjablovskaja
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- School of Medical Science, Menzies Health Institute Queensland, Southport, Queensland, Australia
| | - Jaroslav Truksa
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
39
|
Gao A, Zheng YW, Cheng T. [Modification of DNA methylation in leukemia development]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:1003-1007. [PMID: 27995891 PMCID: PMC7348520 DOI: 10.3760/cma.j.issn.0253-2727.2016.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/16/2022]
|
40
|
Oxidative stress and hypoxia in normal and leukemic stem cells. Exp Hematol 2016; 44:540-60. [PMID: 27179622 DOI: 10.1016/j.exphem.2016.04.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/20/2022]
Abstract
The main hematopoietic stem cell (HSC) functions, self-renewal and differentiation, are finely regulated by both intrinsic mechanisms such as transcriptional and epigenetic regulators and extrinsic signals originating in the bone marrow microenvironment (HSC niche) or in the body (humoral mediators). The interaction between regulatory signals and cellular metabolism is an emerging area. Several metabolic pathways function differently in HSCs compared with progenitors and differentiated cells. Hypoxia, acting through hypoxia-inducing factors, has emerged as a key regulator of stem cell biology and acts by maintaining HSC quiescence and a condition of metabolic dormancy based on anaerobic glycolytic energetic metabolism, with consequent low production reactive oxygen species (ROS) and high antioxidant defense. Hematopoietic cell differentiation is accompanied by changes in oxidative metabolism (decrease of anaerobic glycolysis and increase of oxidative phosphorylation) and increased levels of ROS. Leukemic stem cells, defined as the cells that initiate and maintain the leukemic process, show peculiar metabolic properties in that they are more dependent on oxidative respiration than on glycolysis and are more sensitive to oxidative stress than normal HSCs. Several mitochondrial abnormalities have been described in acute myeloid leukemia (AML) cells, explaining the shift to aerobic glycolysis observed in these cells and offering the unique opportunity for therapeutic metabolic targeting. Finally, frequent mutations of the mitochondrial isocitrate dehydrogenase-2 (IDH2) enzyme are observed in AML cells, in which the mutated enzyme acts as an oncogenic driver and can be targeted using specific inhibitors under clinical evaluation with promising results.
Collapse
|
41
|
Clark O, Yen K, Mellinghoff IK. Molecular Pathways: Isocitrate Dehydrogenase Mutations in Cancer. Clin Cancer Res 2016; 22:1837-42. [PMID: 26819452 PMCID: PMC4834266 DOI: 10.1158/1078-0432.ccr-13-1333] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/28/2015] [Indexed: 11/16/2022]
Abstract
IDH1 and IDH2 are homodimeric enzymes that catalyze the conversion of isocitrate to α-ketoglutarate (α-KG) and concomitantly produce reduced NADPH from NADP(+) Mutations in the genes encoding IDH1 and IDH2 have recently been found in a variety of human cancers, most commonly glioma, acute myeloid leukemia (AML), chondrosarcoma, and intrahepatic cholangiocarcinoma. The mutant protein loses its normal enzymatic activity and gains a new ability to produce the "oncometabolite" R(-)-2-hydroxyglutarate (R-2-HG). R-2-HG competitively inhibits α-KG-dependent enzymes which play crucial roles in gene regulation and tissue homeostasis. Expression of mutant IDH impairs cellular differentiation in various cell lineages and promotes tumor development in cooperation with other cancer genes. First-generation inhibitors of mutant IDH have entered clinical trials, and have shown encouraging results in patients with IDH-mutant AML. This article summarizes recent progress in our understanding of the role of mutant IDH in tumorigenesis.Clin Cancer Res; 22(8); 1837-42. ©2016 AACR.
Collapse
Affiliation(s)
- Owen Clark
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | - Ingo K Mellinghoff
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York. Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York. Department of Pharmacology, Weill-Cornell Graduate School of Biomedical Sciences, New York, New York.
| |
Collapse
|
42
|
Wiktorin HG, Nilsson T, Jansson A, Palmqvist L, Martner A. Mutated NPM1 in combination with overexpression of Meis1 or Hoxa9 is not sufficient to induce acute myeloid leukemia. Exp Hematol Oncol 2015; 5:25. [PMID: 27525194 PMCID: PMC4982317 DOI: 10.1186/s40164-016-0053-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/02/2016] [Indexed: 11/17/2022] Open
Abstract
Background Acute myeloid leukemia (AML) carrying nucleophosmin 1 (NPM1) mutations (NPMc+) is regarded as a separate entity of myeloid neoplasms due to its distinct biological and clinical features. However, NPMc+ alone displays low leukemogenic activity and cooperating events appear crucial for AML to develop. Dysregulation of homeobox genes, such as HOXA9 and MEIS1, is a common transcriptional signature of NPMc+ AML. Furthermore, the pathogenic role for NPMc+ in AML remains incompletely understood. Aim To elucidate if NPMc+ collaborates with Meis1 or Hoxa9 in the evolvement of AML. Methods Murine bone marrow cells were genetically engineered to express mutated NPM1 variant A in combination with overexpression of Meis1 or Hoxa9. The capacity of the transduced cells to transform in vitro and to cause leukemia in vivo was then assessed. Findings and conclusion There was no synergy between NPMc+ and Meis1 or Hoxa9 in causing leukemogenic transformation of murine bone marrow cells, or in inducing AML in a transplantation model. Hence, overexpression of Meis1 or Hoxa9 in combination with NPMc+ expression was not sufficient to generate an NPMc+ AML mouse model.
Collapse
Affiliation(s)
- Hanna Grauers Wiktorin
- Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tina Nilsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, 413 45 Gothenburg, Sweden
| | - Ann Jansson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, 413 45 Gothenburg, Sweden
| | - Lars Palmqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, 413 45 Gothenburg, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|