1
|
Zhang Y, Li Z, Chen X. The role of galectin-3 in bone homeostasis: A review. Int J Biol Macromol 2024; 278:134882. [PMID: 39168209 DOI: 10.1016/j.ijbiomac.2024.134882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The skeletal system maintains a delicate balance known as bone homeostasis, which is essential for the lifelong preservation of bone mass, shape, and integrity. This equilibrium relies on a complex interplay between bone marrow mesenchymal stem cells (BMSCs), osteoblasts, osteocytes, and osteoclasts. Galectin-3 (Gal-3), a chimeric galectin with a unique N-terminal tail and a conserved carbohydrate recognition domain (CRD) at its C-terminus, has emerged as a critical regulator in bone homeostasis. The CRD of Gal-3 mediates carbohydrate binding, while its N-terminal tail is implicated in oligomerization and phase separation, which are vital for its functionality. Gal-3's multivalency is central to its role in a range of cellular activities, including inflammation, immune response, apoptosis, cell adhesion, and migration. Imbalances in bone homeostasis often arise from disruptions in osteoblast differentiation and activity, increased osteoclast differentiation and activity. Gal-3's influence on these processes suggests its significant role in the regulation of bone remodeling. This review will examine the molecular mechanisms through which Gal-3 contributes to bone remodeling and discuss its potential as a therapeutic target for the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Yanchao Zhang
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China
| | - Zhiyong Li
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China
| | - Xueqing Chen
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China.
| |
Collapse
|
2
|
Chen S, Lei J, Mou H, Zhang W, Jin L, Lu S, Yinwang E, Xue Y, Shao Z, Chen T, Wang F, Zhao S, Chai X, Wang Z, Zhang J, Zhang Z, Ye Z, Li B. Multiple influence of immune cells in the bone metastatic cancer microenvironment on tumors. Front Immunol 2024; 15:1335366. [PMID: 38464516 PMCID: PMC10920345 DOI: 10.3389/fimmu.2024.1335366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Bone is a common organ for solid tumor metastasis. Malignant bone tumor becomes insensitive to systemic therapy after colonization, followed by poor prognosis and high relapse rate. Immune and bone cells in situ constitute a unique immune microenvironment, which plays a crucial role in the context of bone metastasis. This review firstly focuses on lymphatic cells in bone metastatic cancer, including their function in tumor dissemination, invasion, growth and possible cytotoxicity-induced eradication. Subsequently, we examine myeloid cells, namely macrophages, myeloid-derived suppressor cells, dendritic cells, and megakaryocytes, evaluating their interaction with cytotoxic T lymphocytes and contribution to bone metastasis. As important components of skeletal tissue, osteoclasts and osteoblasts derived from bone marrow stromal cells, engaging in 'vicious cycle' accelerate osteolytic bone metastasis. We also explain the concept tumor dormancy and investigate underlying role of immune microenvironment on it. Additionally, a thorough review of emerging treatments for bone metastatic malignancy in clinical research, especially immunotherapy, is presented, indicating current challenges and opportunities in research and development of bone metastasis therapies.
Collapse
Affiliation(s)
- Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiangchu Lei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Senxu Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhenxuan Shao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiahao Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Xu Y, Li X, Zhang S, Tang M, Yu R, Liao X, Li Z, Li M, Chen S, Qian W, Song L, Ke Z, Li J. CircMMP2(6,7) Cooperates with β-Catenin and PRMT5 to Disrupt Bone Homeostasis and Promote Breast Cancer Bone Metastasis. Cancer Res 2024; 84:328-343. [PMID: 37963200 DOI: 10.1158/0008-5472.can-23-1899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
The bone is the most common site of distant metastasis of breast cancer, which leads to serious skeletal complications and mortality. Understanding the mechanisms underlying breast cancer bone metastasis would provide potential strategies for the prevention and treatment of breast cancer bone metastasis. In this study, we identified a circular RNA that we named circMMP2(6,7) that was significantly upregulated in bone metastatic breast cancer tissues and correlated with breast cancer-bone metastasis. Upregulation of circMMP2(6,7) dramatically enhanced the metastatic capability of breast cancer cells to the bone via inducing bone metastatic niche formation by disrupting bone homeostasis. Mechanistically, circMMP2(6,7) specifically bound to the promoters of bone-remodeling factors calcium-binding protein S100A4 and carbohydrate-binding protein LGALS3 and formed a complex with β-catenin and arginine methyltransferase PRMT5, eliciting histone H3R2me1/H3R2me2s-induced transcriptional activation. Treatment with GSK591, a selective PRMT5 inhibitor, effectively inhibited circMMP2(6,7)/β-catenin/PRMT5 complex-induced breast cancer bone metastasis. These findings reveal a role for circMMP2(6,7) in bone homeostasis disruption and shed light on the mechanisms driving breast cancer bone metastasis. SIGNIFICANCE Upregulation of bone-remodeling factors S100A4 and LGALS3 mediated by a circMMP2(6,7)/β-catenin/PRMT5 complex generates a niche that supports breast cancer bone metastasis, identifying PRMT5 as a promising target for treating metastasis.
Collapse
Affiliation(s)
- Yingru Xu
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Medical College of Jiaying University, Meizhou, China
| | - Xincheng Li
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine Sun Yat-sen University Guangzhou, China
| | - Shuxia Zhang
- Department of Oncology, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Miaoling Tang
- Department of Oncology, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ruyuan Yu
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Medical College of Jiaying University, Meizhou, China
| | - Xinyi Liao
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine Sun Yat-sen University Guangzhou, China
| | - Ziwen Li
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine Sun Yat-sen University Guangzhou, China
| | - Man Li
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine Sun Yat-sen University Guangzhou, China
| | - Suwen Chen
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine Sun Yat-sen University Guangzhou, China
| | - Wanying Qian
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine Sun Yat-sen University Guangzhou, China
| | - Libing Song
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zunfu Ke
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine Sun Yat-sen University Guangzhou, China
| |
Collapse
|
4
|
Yang S, He Z, Wu T, Wang S, Dai H. Glycobiology in osteoclast differentiation and function. Bone Res 2023; 11:55. [PMID: 37884496 PMCID: PMC10603120 DOI: 10.1038/s41413-023-00293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023] Open
Abstract
Glycans, either alone or in complex with glycan-binding proteins, are essential structures that can regulate cell biology by mediating protein stability or receptor dimerization under physiological and pathological conditions. Certain glycans are ligands for lectins, which are carbohydrate-specific receptors. Bone is a complex tissue that provides mechanical support for muscles and joints, and the regulation of bone mass in mammals is governed by complex interplay between bone-forming cells, called osteoblasts, and bone-resorbing cells, called osteoclasts. Bone erosion occurs when bone resorption notably exceeds bone formation. Osteoclasts may be activated during cancer, leading to a range of symptoms, including bone pain, fracture, and spinal cord compression. Our understanding of the role of protein glycosylation in cells and tissues involved in osteoclastogenesis suggests that glycosylation-based treatments can be used in the management of diseases. The aims of this review are to clarify the process of bone resorption and investigate the signaling pathways mediated by glycosylation and their roles in osteoclast biology. Moreover, we aim to outline how the lessons learned about these approaches are paving the way for future glycobiology-focused therapeutics.
Collapse
Affiliation(s)
- Shufa Yang
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Ziyi He
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Tuo Wu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Shunlei Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
| |
Collapse
|
5
|
Jeong H, Kim D, Montagne K, Ushida T, Furukawa KS. Differentiation-inducing effect of osteoclast microgrooves for the purpose of three-dimensional design of regenerated bone. Acta Biomater 2023; 168:174-184. [PMID: 37392936 DOI: 10.1016/j.actbio.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
In vivo bone remodeling is promoted by the balance between osteoclast and osteoblast activity. Conventional research on bone regeneration has mainly focused on increasing osteoblast activity, with limited studies on the effects of scaffold topography on cell differentiation. Here, we examined the effect of microgroove-patterned substrate with spacings ranging from 1 to 10 μm on the differentiation of rat bone marrow-derived osteoclast precursors. Tartrate-resistant acid phosphatase (TRAP) staining and relative gene expression quantification showed that osteoclast differentiation was enhanced in substrate with 1 µm microgroove spacing compared with that in the other groups. Additionally, the ratio of podosome maturation stages in substrate with 1 μm microgroove spacing exhibited a distinct pattern, which was characterized by an increase in the ratio of belts and rings and a decrease in that of clusters. However, myosin II abolished the effects of topography on osteoclast differentiation. Overall, these showed that the reduction of myosin II tension in the podosome core by an integrin vertical vector increased podosome stability and promoted osteoclast differentiation in substrates with 1 μm microgroove spacing, including that microgroove design plays an important role in scaffolds for bone regeneration. STATEMENT OF SIGNIFICANCE: Reduction of myosin II tension in the podosome core, facilitated by an integrin vertical vector, resulted in an enhanced osteoclast differentiation, concomitant with an increase in podosome stability within 1-μm-spaced microgrooves. These findings are anticipated to serve as valuable indicators for the regulation of osteoclast differentiation through the manipulation of biomaterial surface topography in tissue engineering. Furthermore, this study contributes to the lucidation of the underlying mechanisms governing cellular differentiation by providing insights into the impact of the microtopographical environment.
Collapse
Affiliation(s)
- Heonuk Jeong
- Department of Bioengineering, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Dain Kim
- Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Kevin Montagne
- Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Takashi Ushida
- Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Katsuko S Furukawa
- Department of Bioengineering, School of Engineering, University of Tokyo, Tokyo, Japan; Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Archer Goode E, Wang N, Munkley J. Prostate cancer bone metastases biology and clinical management (Review). Oncol Lett 2023; 25:163. [PMID: 36960185 PMCID: PMC10028493 DOI: 10.3892/ol.2023.13749] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/09/2023] [Indexed: 03/25/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prominent causes of cancer-related mortality in the male population. A highly impactful prognostic factor for patients diagnosed with PCa is the presence or absence of bone metastases. The formation of secondary tumours at the bone is the most commonly observed site for the establishment of PCa metastases and is associated with reduced survival of patients in addition to a cohort of life-debilitating symptoms, including mobility issues and chronic pain. Despite the prevalence of this disease presentation and the high medical relevance of bone metastases, the mechanisms underlying the formation of metastases to the bone and the understanding of what drives the osteotropism exhibited by prostate tumours remain to be fully elucidated. This lack of in-depth understanding manifests in limited effective treatment options for patients with advanced metastatic PCa and culminates in the low rate of survival observed for this sub-set of patients. The present review aims to summarise the most recent promising advances in the understanding of how and why prostate tumours metastasise to the bone, with the ultimate aim of highlighting novel treatment and prognostic targets, which may provide the opportunity to improve the diagnosis and treatment of patients with PCa with bone metastases.
Collapse
Affiliation(s)
- Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, International Centre for Life, Newcastle NE1 3BZ, UK
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2RX, UK
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, International Centre for Life, Newcastle NE1 3BZ, UK
| |
Collapse
|
7
|
Lima T, Perpétuo L, Henrique R, Fardilha M, Leite-Moreira A, Bastos J, Vitorino R. Galectin-3 in prostate cancer and heart diseases: a biomarker for these two frightening pathologies? Mol Biol Rep 2023; 50:2763-2778. [PMID: 36583779 PMCID: PMC10011345 DOI: 10.1007/s11033-022-08207-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Galectin-3 (Gal-3) belongs to galectin protein family, a type of β-galactose-binding lectin having more than one evolutionarily conserved domain of carbohydrate recognition. Gal-3 is mainly located in the cytoplasm, but it also enters the nucleus and is secreted into the extracellular environment and biological fluids such as urine, saliva, and serum. It plays an important role in many biological functions, such as angiogenesis, apoptosis, cell differentiation, cell growth, fibrosis, inflammation, host defense, cellular modification, splicing of pre-mRNA, and transformation. Many previous studies have shown that Gal-3 can be used as a diagnostic or prognostic biomarker for heart ailments, kidney diseases, and other major illnesses including cancer. Moreover, it may also play a major role in risk stratification in different diseases, and in this review, we have summarized the potential roles and application of Gal-3 as diagnostic, prognostic, and risk stratifying biomarker from previously reported studies in heart diseases and cancer, with special emphasis on prostate cancer.
Collapse
Affiliation(s)
- Tânia Lima
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
| | - Luís Perpétuo
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, UnIC, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050‑313, Porto, Portugal
| | - Margarida Fardilha
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Adelino Leite-Moreira
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, UnIC, Porto, Portugal
| | - Jose Bastos
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, UnIC, Porto, Portugal
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
8
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
9
|
Kapetanakis NI, Busson P. Galectins as pivotal components in oncogenesis and immune exclusion in human malignancies. Front Immunol 2023; 14:1145268. [PMID: 36817445 PMCID: PMC9935586 DOI: 10.3389/fimmu.2023.1145268] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Galectins are galactoside-binding proteins, exerting numerous functions inside and outside the cell, particularly conferring adaptation to stress factors. For most of them, aberrant expression profiles have been reported in the context of cancer. Albeit not being oncogenic drivers, galectins can be harnessed to exacerbate the malignant phenotype. Their impact on disease establishment and progression is not limited to making cancer cells resistant to apoptosis, but is prominent in the context of the tumor microenvironment, where it fosters angiogenesis, immune escape and exclusion. This review focuses mainly on Gal-1, Gal-3 and Gal-9 for which the involvement in cancer biology is best known. It presents the types of galectin dysregulations, attempts to explain the mechanisms behind them and analyzes the different ways in which they favor tumour growth. In an era where tumour resistance to immunotherapy appears as a major challenge, we highlight the crucial immunosuppressive roles of galectins and the potential therapeutic benefits of combinatorial approaches including galectin inhibition.
Collapse
Affiliation(s)
| | - Pierre Busson
- Host-Tumor Interactions in Head and Neck Carcinoma: Exploration and Therapeutic Modulations, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche(UMR) 9018 - METabolic and SYstemic aspects of oncogenesis for new therapeutic approaches (METSY), Gustave Roussy and Université Paris-Saclay, Villejuif, France
| |
Collapse
|
10
|
Li H, Cao Z, Wang L, Li J, Cheng X, Tang Y, Xing M, Yao P. Chronic high-fat diet induces galectin-3 and TLR4 to activate NLRP3 inflammasome in NASH. J Nutr Biochem 2023; 112:109217. [PMID: 36402251 DOI: 10.1016/j.jnutbio.2022.109217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 05/01/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome activation triggers inflammation progression in some metabolism disorders, frequently accompanying the up-regulation of galectin-3 (Gal-3). However, the precise mechanisms of Gal-3 activating NLRP3 inflammasome remain unclear in nonalcoholic steatohepatitis (NASH). Here, male C57BL/6J mice were fed by high-fat diet (HFD) for 32 weeks to induce NASH and then the hepatic damage, cytokines, Gal-3 and TLR4 expression, and NLRP3 inflammasome activation were examined. Such indicators were similarly determined when HepG2 cells were co-incubated with palmitic acid (PA, 200 μM), β-lactose, and TAK-242, or pre-transfected with TLR4. Immunofluorescence, immunohistochemistry, and co-immunoprecipitation were conducted to confirm the potential interaction between Gal-3 and TLR4. To further identify the inflammatory regulation roles of Gal-3 and its terminals in TLR4/NLRP3, HepG2 cells were transfected with Gal-3 and its variants. Chronic HFD induced sustained hepatic steatosis and inflammatory injury, with increased inflammatory cytokines, Gal-3 and TLR4 expression, and NLRP3 inflammasome activation. Similar changes were found in PA-dosed HepG2 cells, which were rescued by β-lactose but deteriorated with TLR4 overexpression. However, TAK-242 treatment decreased AST, ALT, cytokines, and normalized NLRP3, caspase-1, and ASC expression. Furthermore, TLR4 was pulled down when Gal-3 was enriched. Only full-length Gal-3 and its carbohydrate recognition domain (CRD) promoted cytokines, TLR4 expression, and NLRP3 inflammasome activation. Thus, gal-3 may induce chronic HFD-derived NASH progression by activating TLR4-mediating NLRP3 inflammasome via its CRD, which sheds new light on candidate target for the treatment and prevention of NASH inflammation despite further research for its precise roles in the future.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueer Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyou Xing
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Fei F, Zhang M, Tarighat SS, Joo EJ, Yang L, Heisterkamp N. Galectin-1 and Galectin-3 in B-Cell Precursor Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:ijms232214359. [PMID: 36430839 PMCID: PMC9694201 DOI: 10.3390/ijms232214359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Acute lymphoblastic leukemias arising from the malignant transformation of B-cell precursors (BCP-ALLs) are protected against chemotherapy by both intrinsic factors as well as by interactions with bone marrow stromal cells. Galectin-1 and Galectin-3 are lectins with overlapping specificity for binding polyLacNAc glycans. Both are expressed by bone marrow stromal cells and by hematopoietic cells but show different patterns of expression, with Galectin-3 dynamically regulated by extrinsic factors such as chemotherapy. In a comparison of Galectin-1 x Galectin-3 double null mutant to wild-type murine BCP-ALL cells, we found reduced migration, inhibition of proliferation, and increased sensitivity to drug treatment in the double knockout cells. Plant-derived carbohydrates GM-CT-01 and GR-MD-02 were used to inhibit extracellular Galectin-1/-3 binding to BCP-ALL cells in co-culture with stromal cells. Treatment with these compounds attenuated migration of the BCP-ALL cells to stromal cells and sensitized human BCP-ALL cells to vincristine and the targeted tyrosine kinase inhibitor nilotinib. Because N-glycan sialylation catalyzed by the enzyme ST6Gal1 can regulate Galectin cell-surface binding, we also compared the ability of BCP-ALL wild-type and ST6Gal1 knockdown cells to resist vincristine treatment when they were co-cultured with Galectin-1 or Galectin-3 knockout stromal cells. Consistent with previous results, stromal Galectin-3 was important for maintaining BCP-ALL fitness during chemotherapy exposure. In contrast, stromal Galectin-1 did not significantly contribute to drug resistance, and there was no clear effect of ST6Gal1-catalysed N-glycan sialylation. Taken together, our results indicate a complicated joint contribution of Galectin-1 and Galectin-3 to BCP-ALL survival, with different roles for endogenous and stromal produced Galectins. These data indicate it will be important to efficiently block both extracellular and intracellular Galectin-1 and Galectin-3 with the goal of reducing BCP-ALL persistence in the protective bone marrow niche during chemotherapy.
Collapse
Affiliation(s)
- Fei Fei
- Section of Molecular Carcinogenesis, Department of Pediatrics, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital, Los Angeles, CA 90027, USA
| | - Mingfeng Zhang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
| | - Somayeh S. Tarighat
- Section of Molecular Carcinogenesis, Department of Pediatrics, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital, Los Angeles, CA 90027, USA
| | - Eun Ji Joo
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
- Correspondence: ; Tel.: +1-626-218-7503
| |
Collapse
|
12
|
Abudourousuli A, Chen S, Hu Y, Qian W, Liao X, Xu Y, Song L, Zhang S, Li J. NKX2-8/PTHrP Axis-Mediated Osteoclastogenesis and Bone Metastasis in Breast Cancer. Front Oncol 2022; 12:907000. [PMID: 35707355 PMCID: PMC9189290 DOI: 10.3389/fonc.2022.907000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Bone metastasis is one of the most common distant metastasis of breast cancer, which could cause serious skeletal disease and increased cancer-related death. Therefore, identification of novel target(s) to develop therapeutics would improve patient outcomes. The role of NKX2-8 in modulation of bone remodeling was determined using osteoclastogenesis and micro-CT assays. The expression of NKX2-8 was examined via immunohistochemistry analysis in 344 breast cancer tissues. The mechanism underlying NKX2-8-mediated PTHrP downregulation was investigated using biotinylated deactivated Cas9 capture analysis, chromatin immunoprecipitation, co-immunoprecipitation assays. A bone-metastatic mouse model was used to examine the effect of NKX2-8 dysregulation on breast cancer bone metastasis and the impact of three PTHrP inhibitor on prevention of breast cancer bone metastasis. The downregulated expression of NKX2-8 was significantly correlated with breast cancer bone metastasis. In vivo bone-metastatic mouse model indicated that silencing NKX2-8 promoted, but overexpressing NKX2-8 inhibited, breast cancer osteolytic bone metastasis and osteoclastogenesis. Mechanistically, NKX2-8 directly interacted with HDAC1 on the PTHrP promoter, which resulted in a reduction of histone H3K27 acetylation, consequently transcriptionally downregulated PTHrP expression in breast cancer cells. Furthermore, targeting PTHrP effectively inhibited NKX2-8-downregulation-mediated breast cancer bone metastasis. Taken together, our results uncover a novel mechanism underlying NKX2-8 downregulation-mediated breast cancer bone metastasis and represent that the targeting PTHrP might be a tailored treatment for NKX2-8 silencing-induced breast cancer bone metastasis.
Collapse
Affiliation(s)
- Ainiwaerjiang Abudourousuli
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Suwen Chen
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yameng Hu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanying Qian
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinyi Liao
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingru Xu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuxia Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jun Li, ; Shuxia Zhang,
| | - Jun Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jun Li, ; Shuxia Zhang,
| |
Collapse
|
13
|
Lima T, Ferreira R, Freitas M, Henrique R, Vitorino R, Fardilha M. Integration of Automatic Text Mining and Genomic and Proteomic Analysis to Unravel Prostate Cancer Biomarkers. J Proteome Res 2022; 21:447-458. [DOI: 10.1021/acs.jproteome.1c00763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tânia Lima
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine─iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, Institute of Biomedicine─iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marina Freitas
- Department of Medical Sciences, Institute of Biomedicine─iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513 Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine─iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Cardiovascular Research Centre (UnIC), Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine─iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Butler W, Huang J. Glycosylation Changes in Prostate Cancer Progression. Front Oncol 2021; 11:809170. [PMID: 35004332 PMCID: PMC8739790 DOI: 10.3389/fonc.2021.809170] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate Cancer (PCa) is the most commonly diagnosed malignancy and second leading cause of cancer-related mortality in men. With the use of next generation sequencing and proteomic platforms, new biomarkers are constantly being developed to both improve diagnostic sensitivity and specificity and help stratify patients into different risk groups for optimal management. In recent years, it has become well accepted that altered glycosylation is a hallmark of cancer progression and that the glycan structures resulting from these mechanisms show tremendous promise as both diagnostic and prognostic biomarkers. In PCa, a wide range of structural alterations to glycans have been reported such as variations in sialylation and fucosylation, changes in branching, altered levels of Lewis and sialyl Lewis antigens, as well as the emergence of high mannose "cryptic" structures, which may be immunogenic and therapeutically relevant. Furthermore, aberrant expression of galectins, glycolipids, and proteoglycans have also been reported and associated with PCa cell survival and metastasis. In this review, we discuss the findings from various studies that have explored altered N- and O-linked glycosylation in PCa tissue and body fluids. We further discuss changes in O-GlcNAcylation as well as altered expression of galectins and glycoconjugates and their effects on PCa progression. Finally, we emphasize the clinical utility and potential impact of exploiting glycans as both biomarkers and therapeutic targets to improve our ability to diagnose clinically relevant tumors as well as expand treatment options for patients with advanced disease.
Collapse
Affiliation(s)
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
15
|
Galectin-3 Contributes to the Inhibitory Effect of lα,25-(OH) 2D 3 on Osteoclastogenesis. Int J Mol Sci 2021; 22:ijms222413334. [PMID: 34948130 PMCID: PMC8708238 DOI: 10.3390/ijms222413334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The active form of vitamin D, 1α,25-(OH)2D3, not only promotes intestinal calcium absorption, but also regulates the formation of osteoclasts (OCs) and their capacity for bone mineral dissolution. Gal-3 is a newly discovered bone metabolic regulator involved in the proliferation, differentiation, and apoptosis of various cells. However, the role of galectin-3 (gal-3) in OC formation and the regulatory effects of 1α,25-(OH)2D3 have yet to be explored. To confirm whether gal-3 contributes to the regulatory effects of 1α,25-(OH)2D3 on osteoclastogenesis, osteoclast precursors (OCPs) were induced by macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). TRAP staining and bone resorption analyses were used to verify the formation and activation of OCs. qPCR, Western blotting, co-immunoprecipitation, and immunofluorescence assays were used to detect gene and protein expression. The regulatory effects of gal-3 in OC formation after treatment with 1α,25-(OH)2D3 were evaluated using gal-3 siRNA. The results showed that 1α,25-(OH)2D3 significantly increased gal-3 expression and inhibited OC formation and bone resorption. Expression levels of OC-related genes and proteins, matrix metalloproteinase 9 (MMP-9), nuclear factor of activated T cells 1 (NFATc1), and cathepsin K (Ctsk) were also inhibited by 1α,25-(OH)2D3. Gal-3 knockdown attenuated the inhibitory effects of 1α,25-(OH)2D3 on OC formation, activation, and gene and protein expression. In addition, gal-3 was co-localized with the vitamin D receptor (VDR). These data suggest that gal-3 contributes to the osteoclastogenesis inhibitory effect of lα,25-(OH)2D3, which is involved in bone and calcium homeostasis.
Collapse
|
16
|
Keizman D, Frenkel M, Peer A, Kushnir I, Rosenbaum E, Sarid D, Leibovitch I, Mano R, Yossepowitch O, Margel D, Wolf I, Geva R, Dresler H, Rouvinov K, Rapoport N, Eliaz I. Modified Citrus Pectin Treatment in Non-Metastatic Biochemically Relapsed Prostate Cancer: Results of a Prospective Phase II Study. Nutrients 2021; 13:nu13124295. [PMID: 34959847 PMCID: PMC8706421 DOI: 10.3390/nu13124295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Optimal therapy of biochemically relapsed prostate cancer (BRPC) after local treatment is elusive. An established modified citrus pectin (PectaSol®, P-MCP), a dietary polysaccharide, is an established antagonist of galectin-3, a carbohydrate-binding protein involved in cancer pathogenesis. Based on PSA dynamics, we report on the safety and the primary outcome analysis of a prospective phase II study of P-MCP in non-metastatic BRPC based. Sixty patients were enrolled, and one patient withdrew after a month. Patients (n = 59) were given P-MCP, 4.8 grams X 3/day, for six months. The primary endpoint was the rate without PSA progression and improved PSA doubling time (PSADT). Secondary endpoints were the rate without radiologic progression and toxicity. Patients that did not progress by PSA and radiologically at six months continued for an additional twelve months. After six months, 78% (n = 46) responded to therapy, with a decreased/stable PSA in 58% (n = 34), or improvement of PSADT in 75% (n = 44), and with negative scans, and entered the second twelve months treatment phase. Median PSADT improved significantly (p = 0.003). Disease progression during the first 6 months was noted in only 22% (n = 13), with PSA progression in 17% (n = 10), and PSA and radiologic progression in 5% (n = 3). No patients developed grade 3 or 4 toxicity.
Collapse
Affiliation(s)
- Daniel Keizman
- Department of Oncology, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (D.S.); (I.W.); (R.G.)
- Correspondence:
| | - Moshe Frenkel
- Department of Oncology, Rambam Medical Center, Haifa 3109601, Israel; (M.F.); (A.P.)
| | - Avivit Peer
- Department of Oncology, Rambam Medical Center, Haifa 3109601, Israel; (M.F.); (A.P.)
| | - Igal Kushnir
- Department of Oncology, Meir Medical Center and Sackler School of Medicine, Tel-Aviv University, Kfar-Saba 4428164, Israel; (I.K.); (N.R.)
| | - Eli Rosenbaum
- Department of Oncology, Rabin Medical Center, Petah-Tikva 4941492, Israel;
| | - David Sarid
- Department of Oncology, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (D.S.); (I.W.); (R.G.)
| | - Ilan Leibovitch
- Department of Urology, Meir Medical Center, Kfar-Saba 4439246, Israel;
| | - Roy Mano
- Department of Urology, Tel-Aviv Sourasky Medical Center, Tel-Aviv 69978, Israel; (R.M.); (O.Y.)
| | - Ofer Yossepowitch
- Department of Urology, Tel-Aviv Sourasky Medical Center, Tel-Aviv 69978, Israel; (R.M.); (O.Y.)
| | - David Margel
- Department of Urology, Rabin Medical Center, Petah-Tikva 4941492, Israel;
| | - Ido Wolf
- Department of Oncology, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (D.S.); (I.W.); (R.G.)
| | - Ravit Geva
- Department of Oncology, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (D.S.); (I.W.); (R.G.)
| | - Hadas Dresler
- Department of Oncology, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
| | - Keren Rouvinov
- Department of Oncology, Soroka Medical Center, Beer-Sheva 8428760, Israel;
| | - Noa Rapoport
- Department of Oncology, Meir Medical Center and Sackler School of Medicine, Tel-Aviv University, Kfar-Saba 4428164, Israel; (I.K.); (N.R.)
| | - Isaac Eliaz
- Amitabha Medical Clinic and Healing Center, Santa Rosa, CA 95401, USA;
| |
Collapse
|
17
|
Tarighat SS, Fei F, Joo EJ, Abdel-Azim H, Yang L, Geng H, Bum-Erdene K, Grice ID, von Itzstein M, Blanchard H, Heisterkamp N. Overcoming Microenvironment-Mediated Chemoprotection through Stromal Galectin-3 Inhibition in Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:12167. [PMID: 34830047 PMCID: PMC8624256 DOI: 10.3390/ijms222212167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Environmentally-mediated drug resistance in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) significantly contributes to relapse. Stromal cells in the bone marrow environment protect leukemia cells by secretion of chemokines as cues for BCP-ALL migration towards, and adhesion to, stroma. Stromal cells and BCP-ALL cells communicate through stromal galectin-3. Here, we investigated the significance of stromal galectin-3 to BCP-ALL cells. We used CRISPR/Cas9 genome editing to ablate galectin-3 in stromal cells and found that galectin-3 is dispensable for steady-state BCP-ALL proliferation and viability. However, efficient leukemia migration and adhesion to stromal cells are significantly dependent on stromal galectin-3. Importantly, the loss of stromal galectin-3 production sensitized BCP-ALL cells to conventional chemotherapy. We therefore tested novel carbohydrate-based small molecule compounds (Cpd14 and Cpd17) with high specificity for galectin-3. Consistent with results obtained using galectin-3-knockout stromal cells, treatment of stromal-BCP-ALL co-cultures inhibited BCP-ALL migration and adhesion. Moreover, these compounds induced anti-leukemic responses in BCP-ALL cells, including a dose-dependent reduction of viability and proliferation, the induction of apoptosis and, importantly, the inhibition of drug resistance. Collectively, these findings indicate galectin-3 regulates BCP-ALL cell responses to chemotherapy through the interactions between leukemia cells and the stroma, and show that a combination of galectin-3 inhibition with conventional drugs can sensitize the leukemia cells to chemotherapy.
Collapse
Affiliation(s)
- Somayeh S. Tarighat
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
| | - Fei Fei
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
| | - Eun Ji Joo
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA;
| | - Hisham Abdel-Azim
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA;
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA;
| | - Khuchtumur Bum-Erdene
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD 4222, Australia; (K.B.-E.); (I.D.G.); (M.v.I.); (H.B.)
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD 4222, Australia; (K.B.-E.); (I.D.G.); (M.v.I.); (H.B.)
- School of Medical Science, Griffith University, Gold Coast, Southport, QLD 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD 4222, Australia; (K.B.-E.); (I.D.G.); (M.v.I.); (H.B.)
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD 4222, Australia; (K.B.-E.); (I.D.G.); (M.v.I.); (H.B.)
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Nora Heisterkamp
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA;
| |
Collapse
|
18
|
The Role of Galectin-3 in 1α,25(OH) 2D 3-Regulated Osteoclast Formation from White Leghorn Chickens In Vitro. Vet Sci 2021; 8:vetsci8100234. [PMID: 34679063 PMCID: PMC8537632 DOI: 10.3390/vetsci8100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Bones play an important role in maintaining the level of calcium in blood. They provide support for soft tissues and hematopoiesis and undergo continuous renewal throughout life. In addition, vitamin D is involved in regulating bone and calcium homeostasis. Galectin-3 (Gal-3) is a β-galactoside-binding protein that can regulate bone cell differentiation and function. Here, we aimed to study the regulatory effects of Gal-3 on vitamin-D-regulated osteoclastogenesis and bone resorption in chicken. Gal-3 expression in bone marrow stromal cells (BMSCs) from 18-day-old chicken embryos was inhibited or overexpressed. BMSCs were then co-cultured with bone marrow monocytes/macrophages (BMMs) with or without addition of 1α,25(OH)2D3. The results showed that 1α,25(OH)2D3 upregulated the expression of Gal-3 mRNA and receptor activator of nuclear-factor κB ligand (RANKL) expression in BMSCs and promoted osteoclastogenesis, as shown by the upregulated expression of osteoclast (OC) markers (CtsK, CAII, MMP-9, and TRAP) and increased bone resorption, a method for measuring the bone resorption area in vitro. Knockdown of Gal-3 by small-interfering RNA (siRNA) in BMSCs downregulated the expression of RANKL mRNA and attenuated the effects of 1α,25(OH)2D3 on osteoclastogenesis and bone resorption. Conversely, overexpression of Gal-3 in BMSCs enhanced the effects of osteoclastogenesis and bone resorption by increasing the expression of RANKL mRNA. These results demonstrated that Gal-3 mediates the differentiation and bone resorption of osteoclasts regulated by 1α,25(OH)2D3.
Collapse
|
19
|
Galectins in Cancer and the Microenvironment: Functional Roles, Therapeutic Developments, and Perspectives. Biomedicines 2021; 9:biomedicines9091159. [PMID: 34572346 PMCID: PMC8465754 DOI: 10.3390/biomedicines9091159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in cell growth and metabolism are affected by the surrounding environmental factors to adapt to the cell’s most appropriate growth model. However, abnormal cell metabolism is correlated with the occurrence of many diseases and is accompanied by changes in galectin (Gal) performance. Gals were found to be some of the master regulators of cell–cell interactions that reconstruct the microenvironment, and disordered expression of Gals is associated with multiple human metabolic-related diseases including cancer development. Cancer cells can interact with surrounding cells through Gals to create more suitable conditions that promote cancer cell aggressiveness. In this review, we organize the current understanding of Gals in a systematic way to dissect Gals’ effect on human disease, including how Gals’ dysregulated expression affects the tumor microenvironment’s metabolism and elucidating the mechanisms involved in Gal-mediated diseases. This information may shed light on a more precise understanding of how Gals regulate cell biology and facilitate the development of more effective therapeutic strategies for cancer treatment by targeting the Gal family.
Collapse
|
20
|
IL-3 inhibits rat osteoclast differentiation induced by TNF-α and other pro-osteoclastogenic cytokines. J Biosci 2021. [DOI: 10.1007/s12038-021-00181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Nakajima K, Kidani T, Miura H. Molecular profiling of bone remodeling occurring in musculoskeletal tumors. J Orthop Res 2021; 39:1402-1410. [PMID: 33034913 DOI: 10.1002/jor.24879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 02/04/2023]
Abstract
Musculoskeletal malignancy is often accompanied by aberrant bone remodeling, leading to tumor cell invasion into skeletal tissues and causing severe pain. BMPs, FGF-2, and RANKL have been identified as promising regulators in physiological bone remodeling. In this study, we explored the expressional profile of BMPs, FGF-2, and RANKL in 1361 patients with 22 varieties of musculoskeletal tumors. Notably, the expression of FGF-2 and RANKL was under detected in all patients. Among BMP1 to BMP15, we found that BMP1, BMP2, BMP4, BMP5, BMP6, and BMP7 were prevalent. In comparison with normal bones, osteosarcoma highly expressed BMP1, BMP2, BMP4, and BMP7 with statistical significance. Synovial sarcoma upregulated BMP4, BMP5, and BMP7; rhabdomyosarcoma increased BMP1 and BMP4; and alveolar soft part sarcoma upregulated BMP1, BMP4, and BMP7. To visualize the BMP-oriented interactions in a bone tumor microenvironment, we have developed novel software that analyzes numerous cell-to-cell and ligand-to-receptor interactions, that is, Environmentome, delineating that osteosarcoma-secreted BMP-4 and synovial sarcoma-secreted BMP7 potently interact with osteoblasts, osteocytes, osteoclast precursors, and mature osteoclasts. Specifically, quantification analysis revealed that the relationship between osteosarcoma and mature osteoclast/precursor, BMP4-BMPR2 and BMP4-ACVR2A interactions were most potent. Regarding the association between osteosarcoma and osteocyte/osteoblast, BMP4-ACVR1 and BMP4-BMPR2 were the key interactions. In the connection between synovial sarcoma and mature osteoclast/precursor, BMP7-ACVR2A and BMP7-BMPR2 interactions were most remarkable. With regard to the cellular link between synovial sarcoma and osteocyte/osteoblast, BMP7-BMPR2 was identified as a potent interaction. In conclusion, our new outlook suggests delivering the pathological events that clinically underlie behind severe skeletal pain or fracture in musculoskeletal tumors.
Collapse
Affiliation(s)
- Kosei Nakajima
- Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Division of Veterinary Oncology and Orthopedic Surgery, Faculty of Veterinary Medicine, Imabari Campus, Okayama University of Science, Imabari, Ehime, Japan
| | - Teruki Kidani
- Department of Bone and Joint Surgery, Ehime University, Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiromasa Miura
- Department of Bone and Joint Surgery, Ehime University, Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
22
|
Reprogramming the tumor metastasis cascade by targeting galectin-driven networks. Biochem J 2021; 478:597-617. [PMID: 33600595 DOI: 10.1042/bcj20200167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/31/2022]
Abstract
A sequence of interconnected events known as the metastatic cascade promotes tumor progression by regulating cellular and molecular interactions between tumor, stromal, endothelial, and immune cells both locally and systemically. Recently, a new concept has emerged to better describe this process by defining four attributes that metastatic cells should undergo. Every individual hallmark represents a unique trait of a metastatic cell that impacts directly in the outcome of the metastasis process. These critical features, known as the hallmarks of metastasis, include motility and invasion, modulation of the microenvironment, cell plasticity and colonization. They are hierarchically regulated at different levels by several factors, including galectins, a highly conserved family of β-galactoside-binding proteins abundantly expressed in tumor microenvironments and sites of metastasis. In this review, we discuss the role of galectins in modulating each hallmark of metastasis, highlighting novel therapeutic opportunities for treating the metastatic disease.
Collapse
|
23
|
Velickovic M, Arsenijevic A, Acovic A, Arsenijevic D, Milovanovic J, Dimitrijevic J, Todorovic Z, Milovanovic M, Kanjevac T, Arsenijevic N. Galectin-3, Possible Role in Pathogenesis of Periodontal Diseases and Potential Therapeutic Target. Front Pharmacol 2021; 12:638258. [PMID: 33815121 PMCID: PMC8017193 DOI: 10.3389/fphar.2021.638258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontal diseases are chronic inflammatory diseases that occur due to the imbalance between microbial communities in the oral cavity and the immune response of the host that lead to destruction of tooth supporting structures and finally to alveolar bone loss. Galectin-3 is a β-galactoside-binding lectin with important roles in numerous biological processes. By direct binding to microbes and modulation of their clearence, Galectin-3 can affect the composition of microbial community in the oral cavity. Galectin-3 also modulates the function of many immune cells in the gingiva and gingival sulcus and thus can affect immune homeostasis. Few clinical studies demonstrated increased expression of Galectin-3 in different forms of periodontal diseases. Therefore, the objective of this mini review is to discuss the possible effects of Galectin-3 on the process of immune homeostasis and the balance between oral microbial community and host response and to provide insights into the potential therapeutic targeting of Gal-3 in periodontal disease.
Collapse
Affiliation(s)
- Milica Velickovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Acovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Dimitrijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
24
|
Nakajima K, Raz A. T-cell infiltration profile in musculoskeletal tumors. J Orthop Res 2021; 39:536-542. [PMID: 33095470 DOI: 10.1002/jor.24890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023]
Abstract
Immunotherapy of musculoskeletal tumors remains clinically challenging and requires the development of gene-engineered/adoptive exogenous immune cells or the identification of new molecular target(s) that can be therapeutically exploited to improve patient outcome. Recently, endogenous B-cell infiltration into tumor microenvironments appears to be an essential promising prognostic factor controlling tumor progression in musculoskeletal malignancy. Here, we explored the level of T-cell infiltration by analyzing expression profiles of CD3E, CD4, and CD8A in 1366 patients and 23 histological types. The data revealed that CD3E and CD8A expressions were predominantly inhibited in bone tumors when compared with normal bone. CD4 expression was upregulated in limited types of tumors, including chondrosarcoma and giant cell tumor of bone, whereas other tumors demonstrated relatively lower expressions. Similarly, regarding soft tissue sarcoma, the expression of T-cell-related molecules was largely inhibited. Only in patients with rhabdomyosarcoma, CD3E and CD8A expressions were significantly upregulated, showing the nature of immune-active tumor. To visualize the immunological microenvironment of rhabdomyosarcoma, we have developed a novel software aimed at analyzing numerous cell-to-cell and ligand-to-receptor interactions, that is, Environmentome. It has led to the identification of molecular interactions between CD8+ T cell and rhabdomyosarcoma via Galectin3-LAG3 binding, which is a novel immune checkpoint recently identified. In conclusion, musculoskeletal tumors may be defined as immune-quiescent tumors, whereby targeting Galectin-3 and/or immune-infiltrative agents could be crucial in these immunologically noninflamed musculoskeletal tumors, accelerating immunotherapeutic response.
Collapse
Affiliation(s)
- Kosei Nakajima
- Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chuo-ku, Tokyo, Japan.,Division of Veterinary Oncology and Surgery, Faculty of Veterinary Medicine, Imabari Campus, Okayama University of Science, Imabari, Ehime, Japan
| | - Abraham Raz
- Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA.,Department of Pathology, Karmanos Cancer Institute, Detroit, Michigan, USA
| |
Collapse
|
25
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
26
|
Zhang S, Xu Y, Xie C, Ren L, Wu G, Yang M, Wu X, Tang M, Hu Y, Li Z, Yu R, Liao X, Mo S, Wu J, Li M, Song E, Qi Y, Song L, Li J. RNF219/ α-Catenin/LGALS3 Axis Promotes Hepatocellular Carcinoma Bone Metastasis and Associated Skeletal Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001961. [PMID: 33643786 PMCID: PMC7887580 DOI: 10.1002/advs.202001961] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Indexed: 05/10/2023]
Abstract
The incidence of bone metastases in hepatocellular carcinoma (HCC) has increased prominently over the past decade owing to the prolonged overall survival of HCC patients. However, the mechanisms underlying HCC bone-metastasis remain largely unknown. In the current study, HCC-secreted lectin galactoside-binding soluble 3 (LGALS3) is found to be significantly upregulated and correlates with shorter bone-metastasis-free survival of HCC patients. Overexpression of LGALS3 enhances the metastatic capability of HCC cells to bone and induces skeletal-related events by forming a bone pre-metastatic niche via promoting osteoclast fusion and podosome formation. Mechanically, ubiquitin ligaseRNF219-meidated α-catenin degradation prompts YAP1/β-catenin complex-dependent epigenetic modifications of LGALS3 promoter, resulting in LGALS3 upregulation and metastatic bone diseases. Importantly, treatment with verteporfin, a clinical drug for macular degeneration, decreases LGALS3 expression and effectively inhibits skeletal complications of HCC. These findings unveil a plausible role for HCC-secreted LGALS3 in pre-metastatic niche and can suggest a promising strategy for clinical intervention in HCC bone-metastasis.
Collapse
Affiliation(s)
- Shuxia Zhang
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Yingru Xu
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Chan Xie
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Liangliang Ren
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Geyan Wu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Meisongzhu Yang
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Xingui Wu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Miaoling Tang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Yameng Hu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ziwen Li
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ruyuan Yu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Xinyi Liao
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Shuang Mo
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Jueheng Wu
- Department of MicrobiologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Mengfeng Li
- Department of MicrobiologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Erwei Song
- Department of Breast OncologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yanfei Qi
- Centenary InstituteUniversity of SydneySydney2000Australia
| | - Libing Song
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Jun Li
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| |
Collapse
|
27
|
IgE Antibodies against Cancer: Efficacy and Safety. Antibodies (Basel) 2020; 9:antib9040055. [PMID: 33081206 PMCID: PMC7709114 DOI: 10.3390/antib9040055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Immunoglobulin E (IgE) antibodies are well known for their role in allergic diseases and for contributions to antiparasitic immune responses. Properties of this antibody class that mediate powerful effector functions may be redirected for the treatment of solid tumours. This has led to the rise of a new class of therapeutic antibodies to complement the armamentarium of approved tumour targeting antibodies, which to date are all IgG class. The perceived risk of type I hypersensitivity reactions following administration of IgE has necessitated particular consideration in the development of these therapeutic agents. Here, we bring together the properties of IgE antibodies pivotal to the hypothesis for superior antitumour activity compared to IgG, observations of in vitro and in vivo efficacy and mechanisms of action, and a focus on the safety considerations for this novel class of therapeutic agent. These include in vitro studies of potential hypersensitivity, selection of and observations from appropriate in vivo animal models and possible implications of the high degree of glycosylation of IgE. We also discuss the use of ex vivo predictive and monitoring clinical tools, as well as the risk mitigation steps employed in, and the preliminary outcomes from, the first-in-human clinical trial of a candidate anticancer IgE therapeutic.
Collapse
|
28
|
Galectin-3: an immune checkpoint target for musculoskeletal tumor patients. Cancer Metastasis Rev 2020; 40:297-302. [PMID: 32929561 PMCID: PMC7897198 DOI: 10.1007/s10555-020-09932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/04/2020] [Indexed: 10/25/2022]
Abstract
In the past decade, the development of immune checkpoint inhibitors in oncological clinical settings was in the forefront. However, the interest in musculoskeletal tumor patients as candidates for checkpoint inhibition remains underserved. Here, we are forwarding evidence proposing that galectin-3 (Gal-3) is an additional immune factor in the checkpoint processes. This review is the result of a large-scale cohort study depicting that overexpression of Gal-3 was widely prevalent in patients with musculoskeletal tumors, whereas T cell infiltrations were generally suppressed in the tumor microenvironment. Targeting Gal-3 would serve as a novel immune checkpoint inhibitor candidate in patients afflicted with aggressive musculoskeletal tumors.
Collapse
|
29
|
Autocrine motility factor and its receptor expression in musculoskeletal tumors. J Bone Oncol 2020; 24:100318. [PMID: 33101887 PMCID: PMC7574284 DOI: 10.1016/j.jbo.2020.100318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
Discovery of Autocrine Motility factor (AMF) and its receptor (AMFR), both triggering tumor invasion and metastasis, may alter the therapeutic concept. Here, in this review, we show a novel outlook suggesting a cross-talking between musculoskeletal tumors and the skeletal milieu regulated by AMF-AMFR signaling. This review will highlight the pharmacological need for AMF and AMFR inhibitors for patients with malignant musculoskeletal tumors.
Management of aggressive malignant musculoskeletal tumors is clinically challenging and awaits the identification of regulator(s) that can be therapeutically used to improve patient outcome. Autocrine motility factor (AMF), a secreted cytokine, is known to alter the bone microenvironment by linking to its receptor AMFR (AMF Receptor), leading to tumor progression. It was noted that both the ligand and its receptor belong to the moonlighting family of proteins, as they contribute to intracellular metabolic function such as glycolysis and gluconeogenesis by expressing glucose-6-phosphate isomerase AMF/GPI and higher protein degradation by expressing AMFR/gp78 functioning as ubiquitin ligase activity. Thus, AMF/GPI and AMFR/gp78 contribute to higher metabolic turnover of protein and glucose. Recently, a large-scale cohort study including 23 different histological types of musculoskeletal tumors revealed that patients with osteosarcoma, multiple myeloma, rhabdomyosarcoma, and angiosarcoma tend to express higher levels of AMF, whereas multiple myeloma patients expressed high levels of AMFR. Consistently, the cellular data showed that a variety of musculoskeletal tumors express AMF and components of bone microenvironment express AMFR. Thus, a novel outlook suggests a cellular link and cross-talk between musculoskeletal tumors and the skeletal milieu are regulated by AMF-AMFR signaling. This review will highlight the pharmacological need for AMF and AMFR inhibitors as unmet medical needs for patients with malignant musculoskeletal tumors.
Collapse
|
30
|
Caputo S, Grioni M, Brambillasca CS, Monno A, Brevi A, Freschi M, Piras IS, Elia AR, Pieri V, Baccega T, Lombardo A, Galli R, Briganti A, Doglioni C, Jachetti E, Bellone M. Galectin-3 in Prostate Cancer Stem-Like Cells Is Immunosuppressive and Drives Early Metastasis. Front Immunol 2020; 11:1820. [PMID: 33013832 PMCID: PMC7516304 DOI: 10.3389/fimmu.2020.01820] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Galectin-3 (Gal-3) is an extracellular matrix glycan-binding protein with several immunosuppressive and pro-tumor functions. The role of Galectin-3 in cancer stem-like cells (CSCs) is poorly investigated. Here, we show that prostate CSCs also colonizing prostate-draining lymph nodes of transgenic adenocarcinoma of the mouse prostate (TRAMP) mice overexpress Gal-3. Gal-3 contributes to prostate CSC-mediated immune suppression because either Gal-3 silencing in CSCs, or co-culture of CSCs and T cells in the presence of the Gal-3 inhibitor N-Acetyl-D-lactosamine rescued T cell proliferation. N-Acetyl-D-lactosamine also rescued the proliferation of T cells in prostate-draining lymph nodes of TRAMP mice affected by prostate intraepithelial neoplasia. Additionally, Gal-3 impacted prostate CSC tumorigenic and metastatic potential in vivo, as Gal-3 silencing in prostate CSCs reduced both primary tumor growth and secondary invasion. Gal-3 was also found expressed in more differentiated prostate cancer cells, but with different intracellular distribution as compared to CSCs, which suggests different functions of Gal-3 in the two cell populations. In fact, the prevalent nuclear and cytoplasmic distribution of Gal-3 in prostate CSCs made them less susceptible to apoptosis, when compared to more differentiated prostate cancer cells, in which Gal-3 was predominantly intra-cytoplasmic. Finally, we found Gal-3 expressed in human and mouse prostate intraepithelial neoplasia lesions and in metastatic lymph nodes. All together, these findings identify Gal-3 as a key molecule and a potential therapeutic target already in the early phases of prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- Sara Caputo
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Grioni
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara S Brambillasca
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Monno
- Innate Immunity and Tissue Remodeling Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Brevi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Freschi
- NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ignazio S Piras
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Angela R Elia
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Pieri
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Tania Baccega
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Lombardo
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Briganti
- NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Unit of Urology and URI, Division of Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Claudio Doglioni
- NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Jachetti
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
31
|
Galectin-3 favours tumour metastasis via the activation of β-catenin signalling in hepatocellular carcinoma. Br J Cancer 2020; 123:1521-1534. [PMID: 32801345 PMCID: PMC7653936 DOI: 10.1038/s41416-020-1022-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/29/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023] Open
Abstract
Background High probability of metastasis limited the long-term survival of patients with hepatocellular carcinoma (HCC). Our previous study revealed that Galectin-3 was closely associated with poor prognosis in HCC patients. Methods The effects of Galectin-3 on tumour metastasis were investigated in vitro and in vivo, and the underlying biological and molecular mechanisms involved in this process were evaluated. Results Galectin-3 showed a close correlation with vascular invasion and poor survival in a large-scale study in HCC patients from multiple sets. Galectin-3 was significantly involved in diverse metastasis-related processes in HCC cells, such as angiogenesis and epithelial-to-mesenchymal transition (EMT). Mechanistically, Galectin-3 activated the PI3K-Akt-GSK-3β-β-catenin signalling cascade; the β-catenin/TCF4 transcriptional complex directly targeted IGFBP3 and vimentin to regulate angiogenesis and EMT, respectively. In animal models, Galectin-3 enhanced the tumorigenesis and metastasis of HCC cells via β-catenin signalling. Moreover, molecular deletion of Galectin-3-β-catenin signalling synergistically improved the antitumour effect of sorafenib. Conclusions The Galectin-3-β-catenin-IGFBP3/vimentin signalling cascade was determined as a central mechanism controlling HCC metastasis, providing possible biomarkers for predicating vascular metastasis and sorafenib resistance, as well as potential therapeutic targets for the treatment of HCC patients.
Collapse
|
32
|
Nakajima K, Raz A. Amplification of autocrine motility factor and its receptor in multiple myeloma and other musculoskeletal tumors. J Bone Oncol 2020; 23:100308. [PMID: 32714781 PMCID: PMC7378681 DOI: 10.1016/j.jbo.2020.100308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022] Open
Abstract
This study is a large scale cohort of the patients with malignant musculoskeletal tumors to determine the expression levels of Autocrine Motility factor (AMF) and its receptor (AMFR). We Visualization of amplified Autocrine motility factor (AMF) and its receptor (AMFR) in musculoskeletal tumors. A novel software aimed at analyzing numerous cell-to-cell and ligand-to-receptor interactions was developed, which lead to visualization of bone tumor microenvironment.
Autocrine motility factor (AMF: GPI) and its receptor AMFR (AMF Receptor: gp78) regulate the metastatic process. Here, we have tested the expression levels of AMF, AMFR, and AMF × AMFR in 1348 patients with musculoskeletal tumor. The results depicted here identified that multiple myeloma highly express AMF × AMFR value as compared with normal bone samples (p < 0.00001). To visualize the AMF × AMFR autocrine amplification in multiple myeloma microenvironment, we have developed a novel software aimed at analyzing numerous cell-to-cell and ligand-to-receptor interactions, i.e., Environmentome. It has led to the identification that myeloma-associated interactions with normal bone cells including osteoblast, osteoclast, immunological components, and others in a paracrine manner. In conclusion, the data showed that AMF × AMFR amplification is a clinical manifestation in bone microenvironment of multiple myeloma.
Collapse
Affiliation(s)
- Kosei Nakajima
- Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Research Institute. 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan.,Division of Veterinary Oncology and Surgery, Faculty of Veterinary Medicine, Imabari Campus, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Avraham Raz
- Departments of Oncology and Pathology, School of Medicine, Wayne State University and Barbara Ann Karmanos Cancer Institute, 4100 John R St, Detroit, MI 48201, United States
| |
Collapse
|
33
|
Maupin KA, Dick D, Lee J, Williams BO. Loss of Lgals3 Protects Against Gonadectomy-Induced Cortical Bone Loss in Mice. Calcif Tissue Int 2020; 106:283-293. [PMID: 31745588 DOI: 10.1007/s00223-019-00630-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/01/2019] [Indexed: 11/28/2022]
Abstract
Sex hormone deprivation commonly occurs following menopause in women or after androgen-depletion during prostate cancer therapy in men, resulting in rapid bone turnover and loss of bone mass. There is a need to identify novel therapies to improve bone mass in these conditions. Previously, we identified age- and sex-dependent effects on bone mass in mice with deletion of the gene encoding the β-galactoside binding lectin, galectin-3 (Lgals3-KO). Due to the influence of sex on the phenotype, we tested the role of sex hormones, estrogen (β-estradiol; E2), and androgen (5α-dihydroxytestosterone; DHT) in Lgals3-KO mice. To address this, we subjected male and female wild-type and Lgals3-KO mice to gonadectomy ± E2 or DHT rescue and compared differential responses in bone mass and bone formation. Following gonadectomy, male and female Lgals3-KO mice had greater cortical bone expansion (increased total area; T.Ar) and reduced loss of bone area (B.Ar). While T.Ar and B.Ar were increased in response to DHT in wild-type mice, DHT did not alter these parameters in Lgals3-KO mice. E2 rescue more strongly increased B.Ar in Lgals3-KO compared to wild-type female mice due to a failure of E2 to repress the increase in T.Ar following gonadectomy. Lgals3-KO mice had more osteoblasts relative to bone surface when compared to wild-type animals in sham, gonadectomy, and E2 rescue groups. DHT suppressed this increase. This study revealed a mechanism for the sex-dependency of the Lgals3-KO aging bone phenotype and supports targeting galectin-3 to protect against bone loss associated with decreased sex hormone production.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Daniel Dick
- Program for Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Johan Lee
- Program for Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Bart O Williams
- Program for Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
34
|
Galectins in prostate and bladder cancer: tumorigenic roles and clinical opportunities. Nat Rev Urol 2020; 16:433-445. [PMID: 31015643 DOI: 10.1038/s41585-019-0183-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced prostate and bladder cancer are two outstanding unmet medical needs for urological oncologists. The high prevalence of these tumours, lack of effective biomarkers and limited effective treatment options highlight the importance of basic research in these diseases. Galectins are a family of β-galactoside-binding proteins that are frequently altered (upregulated or downregulated) in a wide range of tumours and have roles in different stages of tumour development and progression, including immune evasion. In particular, altered expression levels of different members of the galectin family have been reported in prostate and bladder cancers, which, together with the aberrant glycosylation patterns found in tumour cells and the constituent cell types of the tumour microenvironment, can result in malignant transformation and tumour progression. Understanding the roles of galectin family proteins in the development and progression of prostate and bladder cancer could yield key insights to inform the clinical management of these diseases.
Collapse
|
35
|
Jonasson E, Ghannoum S, Persson E, Karlsson J, Kroneis T, Larsson E, Landberg G, Ståhlberg A. Identification of Breast Cancer Stem Cell Related Genes Using Functional Cellular Assays Combined With Single-Cell RNA Sequencing in MDA-MB-231 Cells. Front Genet 2019; 10:500. [PMID: 31191614 PMCID: PMC6541172 DOI: 10.3389/fgene.2019.00500] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
Breast cancer tumors display different cellular phenotypes. A growing body of evidence points toward a population of cancer stem cells (CSCs) that is important for metastasis and treatment resistance, although the characteristics of these cells are incomplete. We used mammosphere formation assay and label-retention assay as functional cellular approaches to enrich for cells with different degree of CSC properties in the breast cancer cell line MDA-MB-231 and performed single-cell RNA sequencing. We clustered the cells based on their gene expression profiles and identified three subpopulations, including a CSC-like population. The cell clustering into these subpopulations overlapped with the cellular enrichment approach applied. To molecularly define these groups, we identified genes differentially expressed between the three subpopulations which could be matched to enriched gene sets. We also investigated the transition process from CSC-like cells into more differentiated cell states. In the CSC population we found 14 significantly upregulated genes. Some of these potential breast CSC markers are associated to reported stem cell properties and clinical survival data, but further experimental validation is needed to confirm their cellular functions. Detailed characterization of CSCs improve our understanding of mechanisms for tumor progression and contribute to the identification of new treatment targets.
Collapse
Affiliation(s)
- Emma Jonasson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Salim Ghannoum
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Emma Persson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Joakim Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Thomas Kroneis
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Göran Landberg
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Scott E, Munkley J. Glycans as Biomarkers in Prostate Cancer. Int J Mol Sci 2019; 20:E1389. [PMID: 30893936 PMCID: PMC6470778 DOI: 10.3390/ijms20061389] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men, claiming over350,000 lives worldwide annually. Current diagnosis relies on prostate-specific antigen (PSA)testing, but this misses some aggressive tumours, and leads to the overtreatment of non-harmfuldisease. Hence, there is an urgent unmet clinical need to identify new diagnostic and prognosticbiomarkers. As prostate cancer is a heterogeneous and multifocal disease, it is likely that multiplebiomarkers will be needed to guide clinical decisions. Fluid-based biomarkers would be ideal, andattention is now turning to minimally invasive liquid biopsies, which enable the analysis oftumour components in patient blood or urine. Effective diagnostics using liquid biopsies willrequire a multifaceted approach, and a recent high-profile review discussed combining multipleanalytes, including changes to the tumour transcriptome, epigenome, proteome, and metabolome.However, the concentration on genomics-based paramaters for analysing liquid biopsies ispotentially missing a goldmine. Glycans have shown huge promise as disease biomarkers, anddata suggests that integrating biomarkers across multi-omic platforms (including changes to theglycome) can improve the stratification of patients with prostate cancer. A wide range ofalterations to glycans have been observed in prostate cancer, including changes to PSAglycosylation, increased sialylation and core fucosylation, increased O-GlcNacylation, theemergence of cryptic and branched N-glyans, and changes to galectins and proteoglycans. In thisreview, we discuss the huge potential to exploit glycans as diagnostic and prognostic biomarkersfor prostate cancer, and argue that the inclusion of glycans in a multi-analyte liquid biopsy test forprostate cancer will help maximise clinical utility.
Collapse
Affiliation(s)
- Emma Scott
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
37
|
Myosins in Osteoclast Formation and Function. Biomolecules 2018; 8:biom8040157. [PMID: 30467281 PMCID: PMC6317158 DOI: 10.3390/biom8040157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/16/2023] Open
Abstract
Skeletal quantity and quality are determined by processes of bone modeling and remodeling, which are undertaken by cells that build and resorb bone as they respond to mechanical, hormonal, and other external and internal signals. As the sole bone resorptive cell type, osteoclasts possess a remarkably dynamic actin cytoskeleton that drives their function in this enterprise. Actin rearrangements guide osteoclasts’ capacity for precursor fusion during differentiation, for migration across bone surfaces and sensing of their composition, and for generation of unique actin superstructures required for the resorptive process. In this regard, it is not surprising that myosins, the superfamily of actin-based motor proteins, play key roles in osteoclast physiology. This review briefly summarizes current knowledge of the osteoclast actin cytoskeleton and describes myosins’ roles in osteoclast differentiation, migration, and actin superstructure patterning.
Collapse
|
38
|
Nangia-Makker P, Hogan V, Raz A. Galectin-3 and cancer stemness. Glycobiology 2018; 28:172-181. [PMID: 29315388 DOI: 10.1093/glycob/cwy001] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
Over the last few decades galectin-3, a carbohydrate binding protein, with affinity for N-acetyllactosamine residues, has been unique due to the regulatory roles it performs in processes associated with tumor progression and metastasis such as cell proliferation, homotypic/heterotypic aggregation, dynamic cellular transformation, migration and invasion, survival and apoptosis. Structure-function association of galectin-3 reveals that it consists of a short amino terminal motif, which regulates its nuclear-cytoplasmic shuttling; a collagen α-like domain, susceptible to cleavage by matrix metalloproteases and prostate specific antigen; accountable for its oligomerization and lattice formation, and a carbohydrate-recognition/binding domain containing the anti-death motif of the Bcl2 protein family. This structural complexity permits galectin-3 to associate with numerous molecules utilizing protein-protein and/or protein-carbohydrate interactions in the extra-cellular as well as intracellular milieu and regulate diverse signaling pathways, a number of which appear directed towards epithelial-mesenchymal transition and cancer stemness. Self-renewal, differentiation, long-term culturing and drug-resistance potential characterize cancer stem cells (CSCs), a small cell subpopulation within the tumor that is thought to be accountable for heterogeneity, recurrence and metastasis of tumors. Despite the fact that association of galectin-3 to the tumor stemness phenomenon is still in its infancy, there is sufficient direct evidence of its regulatory roles in CSC-associated phenotypes and signaling pathways. In this review, we have highlighted the available data on galectin-3 regulated functions pertinent to cancer stemness and explored the opportunities of its exploitation as a CSC marker and a therapeutic target.
Collapse
Affiliation(s)
- Pratima Nangia-Makker
- Department of Oncology, School of Medicine, Wayne State University, Karmanos Cancer Institute, 421 East Canfield, Detroit, MI 48201, USA.,Karmanos Cancer Institute, 421 East Canfield, Wayne State University, Detroit, MI 48201, USA
| | - Victor Hogan
- Department of Oncology, School of Medicine, Wayne State University, Karmanos Cancer Institute, 421 East Canfield, Detroit, MI 48201, USA
| | - Avraham Raz
- Department of Oncology, School of Medicine, Wayne State University, Karmanos Cancer Institute, 421 East Canfield, Detroit, MI 48201, USA.,Karmanos Cancer Institute, 421 East Canfield, Wayne State University, Detroit, MI 48201, USA.,Department of Pathology, School of Medicine, 540 East Canfield, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
39
|
Weinmann D, Kenn M, Schmidt S, Schmidt K, Walzer SM, Kubista B, Windhager R, Schreiner W, Toegel S, Gabius HJ. Galectin-8 induces functional disease markers in human osteoarthritis and cooperates with galectins-1 and -3. Cell Mol Life Sci 2018; 75:4187-4205. [PMID: 29934665 PMCID: PMC6182346 DOI: 10.1007/s00018-018-2856-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/24/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
The reading of glycan-encoded signals by tissue lectins is considered a major route of the flow of biological information in many (patho)physiological processes. The arising challenge for current research is to proceed from work on a distinct protein to family-wide testing of lectin function. Having previously identified homodimeric galectin-1 and chimera-type galectin-3 as molecular switches in osteoarthritis progression, we here provide proof-of-principle evidence for an intra-network cooperation of galectins with three types of modular architecture. We show that the presence of tandem-repeat-type galectin-8 significantly correlated with cartilage degeneration and that it is secreted by osteoarthritic chondrocytes. Glycan-inhibitable surface binding of galectin-8 to these cells increased gene transcription and the secretion of functional disease markers. The natural variant galectin-8 (F19Y) was less active than the prevalent form. Genome-wide array analysis revealed induction of a pro-degradative/inflammatory gene signature, largely under control of NF-κB signaling. This signature overlapped with respective gene-expression patterns elicited by galectins-1 and -3, but also presented supplementary features. Functional assays with mixtures of galectins that mimic the pathophysiological status unveiled cooperation between the three galectins. Our findings shape the novel concept to consider individual galectins as part of a so far not realized teamwork in osteoarthritis pathogenesis, with relevance beyond this disease.
Collapse
Affiliation(s)
- Daniela Weinmann
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Michael Kenn
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Biosimulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | - Sebastian Schmidt
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Katy Schmidt
- Center for Anatomy and Cell Biology, Department for Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Sonja M Walzer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Bernd Kubista
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wolfgang Schreiner
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Biosimulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Ludwig Boltzmann Cluster for Arthritis and Rehabilitation, Vienna, Austria.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
40
|
Zhao W, Ajani JA, Sushovan G, Ochi N, Hwang R, Hafley M, Johnson RL, Bresalier RS, Logsdon CD, Zhang Z, Song S. Galectin-3 Mediates Tumor Cell-Stroma Interactions by Activating Pancreatic Stellate Cells to Produce Cytokines via Integrin Signaling. Gastroenterology 2018; 154:1524-1537.e6. [PMID: 29274868 DOI: 10.1053/j.gastro.2017.12.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is characterized by activated pancreatic stellate cells (PSCs), abundance of extracellular matrix (ECM), and production of cytokines and chemokines. Galectin 3 (GAL3), a β-galactoside-specific lectin, contributes to PDAC development but its effects on the stroma and cytokine production are unclear. METHODS The effect of recombinant human GAL3 (rGAL3) on activation of PSCs, production of cytokines, and ECM proteins was determined by proliferation, invasion, cytokine array, and quantitative polymerase chain reaction. We assessed co-cultures of PDAC cells with GAL3 genetic alterations with PSCs. Production of interleukin 8 (IL8) and activities of nuclear factor (NF)-κB were determined by enzyme-linked immunosorbent assay and luciferase reporter analyses. We studied the effects of inhibitors of NF-κB and integrin-linked kinase (ILK) on pathways activated by rGAL3. RESULTS In analyses of the Gene Expression Omnibus database and our dataset, we observed higher levels of GAL3, IL8, and other cytokines in PDAC than in nontumor tissues. Production of IL8, granulocyte-macrophage colony-stimulating factor, chemokine ligand 1, and C-C motif chemokine ligand 2 increased in PSCs exposed to rGAL3 compared with controls. Culture of PSCs with PDAC cells that express different levels of GAL3 resulted in proliferation and invasion of PSCs that increased with level of GAL3. GAL3 stimulated transcription of IL8 through integrin subunit beta 1 (ITGB1) on PSCs, which activates NF-κB through ILK. Inhibitors of ILK or NF-κB or a neutralizing antibody against ITGB1 blocked transcription and production of IL8 from PSCs induced by rGAL3. The GAL3 inhibitor significantly reduced growth and metastases of orthotopic tumors that formed from PDAC and PSC cells co-implanted in mice. CONCLUSION GAL3 activates PSC cells to produce inflammatory cytokines via ITGB1signaling to ILK and activation of NF-κB. Inhibition of this pathway reduced growth and metastases of pancreatic orthotopic tumors in mice.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China; Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| | - Guha Sushovan
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Nobuo Ochi
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Rosa Hwang
- Department of Breast Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Margarete Hafley
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Randy L Johnson
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Zhiqian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
41
|
Cymbaluk-Płoska A, Chudecka-Głaz A, Jagodzińska A, Pius-Sadowska E, Sompolska-Rzechuła A, Machaliński B, Menkiszak J. Evaluation of biologically active substances promoting the development of or protecting against endometrial cancer. Onco Targets Ther 2018; 11:1363-1372. [PMID: 29559794 PMCID: PMC5856062 DOI: 10.2147/ott.s155942] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction Adipose tissue is considered an endocrine organ and produces a number of biologically active substances. Aims To consider the role that four adipokines – leptin, omentin-1, vaspin, and galectin-3 – play in the diagnosis of endometrium cancer and to investigate the association between serum concentrations of adipose tissue metabolism products and the diagnostics and prognosis in endometrial cancer. Patients and methods The study included 168 patients with body mass index (BMI) >20 kg/m2 admitted due to post-menopausal bleeding. Results A receiver operating characteristic curves test was performed to determine the diagnostic values of the proteins tested. For leptin and galectin-3 the area under the curve (AUC) values were 0.79/0.68, while for vaspin and omentin-1 the AUC values were 0.82/0.86 for all study patients. The final model identified the following independent risk factors: glucose concentration, BMI, waist circumference, leptin, and vaspin concentrations. Diagnostic values of leptin and galectin-3 with regard to differentiation between high (Fédération Internationale de Gynécologie Obstétrique [FIGO] III and IV) and low (FIGO I and II) stages of clinical tumor advancement and prediction of tumor grading (G1 vs G3) based on the AUC curve were 0.82/0.70 and 0.80/0.74. The AUC values for vaspin and omentin-1 with respect to differentiation between histopathological advancement and grading were 0.86/0.81 and 0.83/0.77, respectively. Significantly lower values of mean omentin-1 and vaspin concentrations were also demonstrated in cases of lymphatic vessel invasion, lymph node metastases, or deep endometrial infiltration (p=0.002, p=0.01, p=0.003, respectively). Conclusion It appears that elevated concentrations of leptin, vaspin, and omentin-1 may indicate the presence of endometrial cancer. Furthermore, leptin serum level and vaspin appear to be useful tools in the assessment of clinical staging of endometrial cancer.
Collapse
Affiliation(s)
- Aneta Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Anita Chudecka-Głaz
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Anna Jagodzińska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Pius-Sadowska
- General Pathology Department, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Janusz Menkiszak
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
42
|
Positive associations between galectin-3 and PSA levels in prostate cancer patients: a prospective clinical study-I. Oncotarget 2018; 7:82266-82272. [PMID: 27741512 PMCID: PMC5347690 DOI: 10.18632/oncotarget.12619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/20/2016] [Indexed: 01/28/2023] Open
Abstract
Galectin-3 (Gal-3), an oncogenic pro-inflammatory protein, has been suggested as a possible complementary diagnostic candidate to prostate specific antigen (PSA) blood test for prostate cancer patients. The presence of the proteins in the circulation (biomarkers) may elicit an intrinsic humoral immune reaction by generating autoantibodies, which consequently could alter the detection levels. Here, we report the associations of the two prostate cancer biomarkers, Gal-3 and PSA in patients at different clinical states of prostate cancer while taking into account the autoantibody levels. A blind, prospective, single institution, pilot study was conducted. A total of 95 men were classified into 5 groups: healthy controls (Group1), newly diagnosed patients (Group2), no recurrence after local therapy (Group3), rising PSA after local therapy (Group4), and metastatic patients (Group5). Gal-3 and PSA level were divided by their respective autoantibodies, which yielded relative PSA and relative Gal-3 levels. After the adjustments, Spearman's rank correlations and linear regression modeling revealed the positive associations between relative Gal-3 and relative PSA levels among all 95 men combined (rho = 0.446, P < 0.0001; fitted slope 0.448, P < 0.0001), in Group2 (rho = 0.616, P = 0.0050; fitted slope 0.438, P =0.0011), and Group3 (rho = 0.484, P = 0.0360; fitted slope 0.470, P = 0.0187). The data show positive associations of relative Gal-3 and relative PSA levels in prostate cancer patients, notably at early clinical time course. Allowing for the influence of autoantibodies, Gal-3 level might be considered as a potential biomarker since it is positively associated with PSA level.
Collapse
|
43
|
Farhad M, Rolig AS, Redmond WL. The role of Galectin-3 in modulating tumor growth and immunosuppression within the tumor microenvironment. Oncoimmunology 2018; 7:e1434467. [PMID: 29872573 PMCID: PMC5980349 DOI: 10.1080/2162402x.2018.1434467] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 01/11/2023] Open
Abstract
The efficacy of cancer immunotherapy is limited, in part, by the multitude of immunosuppressive mechanisms present within the tumor microenvironment (TME). Galectin-3 (Gal-3) is a lectin that contributes to TME immunosuppression and regulates diverse functions including cellular homeostasis and cancer biology. Increased Gal-3 expression during cancer progression augments tumor growth, invasiveness, metastatic potential, and immune suppression, which highlights the potential use of Gal-3 as a therapeutic target capable of modulating anti-tumor immunity. Here, we discuss the mechanisms by which Gal-3 regulates lymphocytes, the role of Gal-3 in lung and prostate tumors, and the contribution of Gal-3 to TME immunosuppression.
Collapse
Affiliation(s)
- Mohammad Farhad
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR.,Cell, Developmental, and Cancer Biology Department, Oregon Health and Science University, Portland, OR
| | - Annah S Rolig
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR
| | - William L Redmond
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR
| |
Collapse
|
44
|
Gao J, Li T, Mo Z, Hu Y, Yi Q, He R, Zhu X, Zhou X, She S, Chen Y. Overexpression of the galectin-3 during tumor progression in prostate cancer and its clinical implications. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:839-846. [PMID: 31938173 PMCID: PMC6958038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/13/2017] [Indexed: 06/10/2023]
Abstract
Management of prostate cancer, especially advanced prostate cancer, remains clinically challenging and requires the identification of new biomarkers and therapeutic targets that can be exploited to improve patient outcome. Galectin-3 (gal-3) is a carbohydrate-binding protein involved in cancer progression and metastasis, including prostate tissues. Gal-3 function is regulated by proteolytic cleavage and the cleaved gal-3 is implicated in tumor progression. This study is the first to determine gal-3 expressions with two monoclonal anti-gal-3 antibodies in prostate tissues to distinguish expression patterns between intact and cleaved gal-3 and analyze their clinical relevance. Our results showed gal-3 cleavage occurred in prostate cancer but not normal prostate. Gal-3 presented in tumor tissues was mainly the cleaved form that can be detected by the anti-gal-3 antibody targeting C terminal. The cleaved gal-3, but not the intact gal-3, was increased in prostate cancer compared to normal prostate tissues and positively associated with malignance, tumor progression and metastasis. In addition, the expression of cleaved gal-3 was closely related to PSA level, indicating a PSA-mediated degradation of intact gal-3 in prostate cancer. In summary, our findings suggested the cleaved gal-3 could be a valuable diagnostic biomarker and a therapeutic target for the treatment of prostate cancer, especially advanced metastatic prostate cancer.
Collapse
Affiliation(s)
- Jiamin Gao
- Center for Genomic and Personalized Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized MedicineNanning, Guangxi Zhuang Autonomous Region, China
| | - Tianyu Li
- Center for Genomic and Personalized Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
- Department of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
- Department of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized MedicineNanning, Guangxi Zhuang Autonomous Region, China
| | - Yanling Hu
- Center for Genomic and Personalized Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized MedicineNanning, Guangxi Zhuang Autonomous Region, China
| | - Qiaoyong Yi
- Center for Genomic and Personalized Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized MedicineNanning, Guangxi Zhuang Autonomous Region, China
| | - Rongquan He
- Center for Genomic and Personalized Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized MedicineNanning, Guangxi Zhuang Autonomous Region, China
| | - Xiujuan Zhu
- Center for Genomic and Personalized Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized MedicineNanning, Guangxi Zhuang Autonomous Region, China
| | - Xianguo Zhou
- Center for Genomic and Personalized Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized MedicineNanning, Guangxi Zhuang Autonomous Region, China
| | - Shangyang She
- Clinical Laboratory, Guangxi Maternal and Child Health HospitalNanning, Guangxi Zhuang Autonomous Region, China
| | - Yingchun Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized MedicineNanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
45
|
Sundqvist M, Welin A, Elmwall J, Osla V, Nilsson UJ, Leffler H, Bylund J, Karlsson A. Galectin-3 type-C self-association on neutrophil surfaces; The carbohydrate recognition domain regulates cell function. J Leukoc Biol 2018; 103:341-353. [PMID: 29345346 DOI: 10.1002/jlb.3a0317-110r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/17/2017] [Accepted: 10/16/2017] [Indexed: 11/09/2022] Open
Abstract
Galectin-3 is an endogenous β-galactoside-binding lectin comprising a carbohydrate recognition domain (CRD) linked to a collagen-like N-domain. Both domains are required for galectin-3 to induce cellular effects; a C-terminal fragment of galectin-3, galectin-3C, containing the CRD but lacking the N-domain, binds cell surface glycoconjugates but does not induce cellular effects since cross-linking promoted by the N-domain is thought to be required. Instead, galectin-3C is proposed to antagonize the effects of galectin-3 by competing for binding sites. The aim of this study was to investigate the effects of galectin-3C on galectin-3 interactions with human neutrophils. Recombinant galectin-3C inhibited galectin-3-induced production of reactive oxygen species in primed neutrophils. Surprisingly, this inhibition was not due to competitive inhibition of galectin-3 binding to the cells. In contrast, galectin-3C potentiated galectin-3 binding, in line with emerging evidence that galectin-3 can aggregate not only through the N-domain but also through the CRD. The cell surface interaction between galectin-3C and galectin-3 was corroborated by colocalization of fluorescently labeled galectin-3 and galectin-3C. Galectin-3C can be generated in vivo through cleavage of galectin-3 by proteases. Indeed, in circulation, galectin-3 and galectin-3C were both attached to the cell surface of neutrophils, which displayed great capacity to bind additional galectin-3 and galectin-3C. In conclusion, galectin-3C enhances galectin-3 binding to neutrophils by nonactivating type-C self-association, in parallel to inhibiting neutrophil activation by galectin-3 (induced by type-N self-association). This implicates type-C self-association as a termination system for galectin-3-induced cell activation, with the purpose of avoiding oxidant-dependent tissue damage.
Collapse
Affiliation(s)
- Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Amanda Welin
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jonas Elmwall
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Veronica Osla
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Karlsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
A selective cyclin-dependent kinase 4, 6 dual inhibitor, Ribociclib (LEE011) inhibits cell proliferation and induces apoptosis in aggressive thyroid cancer. Cancer Lett 2018; 417:131-140. [PMID: 29306020 DOI: 10.1016/j.canlet.2017.12.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 12/23/2022]
Abstract
The RB-E2F1 pathway is an important mechanism of cell-cycle control, and deregulation of this pathway is one of the key factors contributing to tumorigenesis. Cyclin-dependent kinases (CDKs) and Cyclin D have been known to increase in aggressive thyroid cancer. However, there has been no study to investigate effects of a selective CDK 4/6 inhibitor, Ribociclib (LEE011), in thyroid cancer. Performing Western blotting, we found that RB phosphorylation and the expression of Cyclin D are significantly higher in papillary thyroid cancer (PTC) cell lines as well as anaplastic thyroid cancer (ATC) cell lines, compared with normal thyroid cell line and follicular thyroid cancer cell line. LEE011 dose-dependently inhibited RB phosphorylation and also decreased the expressions of its target genes such as FOXM1, Cyclin A1, and Myc in ATC. Furthermore, LEE011 induced cell cycle arrest in G0-G1 phase and cell apoptosis, and inhibited cell proliferation in ATC. Consistently, oral administration of LEE011 to ATC xenograft models strongly inhibited tumor growth with decreased expressions of pRB, pAKT and Ki-67, and also significantly increased tumor cell apoptosis. Taken together, our data support the rationale for clinical development of the CDK4/6 inhibitor as a therapy for patients with aggressive thyroid cancer.
Collapse
|
47
|
Nakajima K, Heilbrun LK, Smith D, Hogan V, Raz A, Heath E. The influence of PSA autoantibodies in prostate cancer patients: a prospective clinical study-II. Oncotarget 2017; 8:17643-17650. [PMID: 27741522 PMCID: PMC5392275 DOI: 10.18632/oncotarget.12620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/07/2016] [Indexed: 02/04/2023] Open
Abstract
The U.S. Preventive Services Task Force (USPSTF) has recommended against PSA-based screening for prostate cancer due to potential possibilities of false-results. Since no alternative test is available to replace it, we have initiated a trial with the purpose of establishing whether Galectin-3 (Gal-3) serum level and/or the patients immune response to PSA and Gal-3 antigens could complement the PSA test as diagnostic tools for prostate cancer patients. A blind, prospective, single institution, pilot study was conducted. A total of 95 men were recruited and classified into 5 different groups: healthy controls (Group1), newly diagnosed patients (Group2), no recurrence after local therapy (Group3), rising PSA after local therapy (Group4), and metastatic patients (Group5). The primary endpoints were the levels of serum PSA, PSA autoantibodies (AAPSA), Gal-3, and Gal-3 autoantibodies (AAGal-3). Data were analyzed by Spearmans rank correlation (rho) and least squares linear regression modeling. The expression levels of PSA, AAPSA, Gal-3, and AAGal-3 were determined in both healthy controls and prostate cancer patients. Negative correlations were observed between PSA and AAPSA levels among all 95 men combined (rho = −0.321, P = 0.0021; fitted slope −0.288, P = 0.0048), and in metastatic patients (rho = −0.472, P = 0.0413; fitted slope −1.145, P = 0.0061). We suggest an association between PSA and AAPSA, whereby the AAPSA may alter PSA levels. It provides a novel outlook for prostate cancer diagnosis, and should serve as a basis for an all-inclusive diagnostic trial centering on patients with metastasis.
Collapse
Affiliation(s)
- Kosei Nakajima
- Department of Oncology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan, USA.,Department of Pathology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Lance K Heilbrun
- Department of Oncology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan, USA.,Biostatistics Core, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | - Daryn Smith
- Department of Oncology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan, USA.,Biostatistics Core, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | - Victor Hogan
- Department of Oncology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan, USA.,Department of Pathology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Avraham Raz
- Department of Oncology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan, USA.,Department of Pathology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Elisabeth Heath
- Department of Oncology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
48
|
Quantitative proteomics reveal the anti-tumour mechanism of the carbohydrate recognition domain of Galectin-3 in Hepatocellular carcinoma. Sci Rep 2017; 7:5189. [PMID: 28701735 PMCID: PMC5507876 DOI: 10.1038/s41598-017-05419-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/30/2017] [Indexed: 01/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a serious threat to human health. The carbohydrate recognition domain of Galectin-3 (Gal3C) has been reported to be an anti-tumour molecule. In this study, we aim to explore effects of Gal3C in HCC and its possible molecular mechanism with quantitative proteomics approach. We found that rGal3C stimulation could inhibit cell viability, migration and invasion of HepG2. After rGal3C stimulating, 190 proteins were differentially expressed. Eighty up-regulated proteins located mainly in extracellular exosome and involved in cell adhesion and metabolism, and 110 down-regulated proteins located in mitochondria and extracellular exosome, and related to processes of metabolism and oxidation-reduction. Of the differentially expressed proteins, CLU, NDRG1, CD166, S100A11 and Galectin-1 were carcinoma-related proteins affected by rGal3C. Potential receptors of rGal3C were explored by an UV cross-linking capture strategy. We showed that rGal3C could induce dephosphorylating of FAK/SRC. Blocking of the FAK/SRC pathway resulted in down-regulation of NDRG1. Immunofluorescence suggested that rGal3C could disrupt integrin clustering. Our study provides valuable insight into the anti-tumour mechanism of rGal3C in HCC on a proteomics level and is the first to reveal the possible mechanism involving integrin/FAK/SRC pathway and NDRG1. These results provide useful guidance of developing new therapies for HCC.
Collapse
|
49
|
Jensen‐Jarolim E, Bax HJ, Bianchini R, Capron M, Corrigan C, Castells M, Dombrowicz D, Daniels‐Wells TR, Fazekas J, Fiebiger E, Gatault S, Gould HJ, Janda J, Josephs DH, Karagiannis P, Levi‐Schaffer F, Meshcheryakova A, Mechtcheriakova D, Mekori Y, Mungenast F, Nigro EA, Penichet ML, Redegeld F, Saul L, Singer J, Spicer JF, Siccardi AG, Spillner E, Turner MC, Untersmayr E, Vangelista L, Karagiannis SN. AllergoOncology - the impact of allergy in oncology: EAACI position paper. Allergy 2017; 72:866-887. [PMID: 28032353 PMCID: PMC5498751 DOI: 10.1111/all.13119] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
Th2 immunity and allergic immune surveillance play critical roles in host responses to pathogens, parasites and allergens. Numerous studies have reported significant links between Th2 responses and cancer, including insights into the functions of IgE antibodies and associated effector cells in both antitumour immune surveillance and therapy. The interdisciplinary field of AllergoOncology was given Task Force status by the European Academy of Allergy and Clinical Immunology in 2014. Affiliated expert groups focus on the interface between allergic responses and cancer, applied to immune surveillance, immunomodulation and the functions of IgE-mediated immune responses against cancer, to derive novel insights into more effective treatments. Coincident with rapid expansion in clinical application of cancer immunotherapies, here we review the current state-of-the-art and future translational opportunities, as well as challenges in this relatively new field. Recent developments include improved understanding of Th2 antibodies, intratumoral innate allergy effector cells and mediators, IgE-mediated tumour antigen cross-presentation by dendritic cells, as well as immunotherapeutic strategies such as vaccines and recombinant antibodies, and finally, the management of allergy in daily clinical oncology. Shedding light on the crosstalk between allergic response and cancer is paving the way for new avenues of treatment.
Collapse
Affiliation(s)
- E. Jensen‐Jarolim
- The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaViennaAustria
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - H. J. Bax
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
| | - R. Bianchini
- The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaViennaAustria
| | - M. Capron
- LIRIC‐Unité Mixte de Recherche 995 INSERMUniversité de Lille 2CHRU de LilleLilleFrance
| | - C. Corrigan
- Division of Asthma, Allergy and Lung BiologyMedical Research Council and Asthma UK Centre in Allergic Mechanisms in AsthmaKing's College LondonLondonUK
| | - M. Castells
- Division of Rheumatology, Immunology and AllergyDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - D. Dombrowicz
- INSERMCHU LilleEuropean Genomic Institute of DiabetesInstitut Pasteur de LilleU1011 – récepteurs nucléaires, maladies cardiovasculaires et diabèteUniversité de LilleLilleFrance
| | - T. R. Daniels‐Wells
- Division of Surgical OncologyDepartment of SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - J. Fazekas
- The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaViennaAustria
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - E. Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition ResearchDepartment of Medicine ResearchChildren's University Hospital BostonBostonMAUSA
| | - S. Gatault
- LIRIC‐Unité Mixte de Recherche 995 INSERMUniversité de Lille 2CHRU de LilleLilleFrance
| | - H. J. Gould
- Division of Asthma, Allergy and Lung BiologyMedical Research Council and Asthma UK Centre in Allergic Mechanisms in AsthmaKing's College LondonLondonUK
- Randall Division of Cell and Molecular BiophysicsKing's College LondonLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| | - J. Janda
- Center PigmodInstitute of Animal Physiology and GeneticsAcademy of Sciences of Czech RepublicLibechovCzech Republic
| | - D. H. Josephs
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
| | - P. Karagiannis
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| | - F. Levi‐Schaffer
- Pharmacology and Experimental Therapeutics UnitFaculty of MedicineSchool of PharmacyThe Institute for Drug ResearchThe Hebrew University of JerusalemJerusalemIsrael
| | - A. Meshcheryakova
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - D. Mechtcheriakova
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - Y. Mekori
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - F. Mungenast
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - E. A. Nigro
- IRCCS San Raffaele Scientific InstituteMilanItaly
| | - M. L. Penichet
- Division of Surgical OncologyDepartment of SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Microbiology, Immunology, and Molecular GeneticsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Jonsson Comprehensive Cancer CenterUniversity of CaliforniaLos AngelesCAUSA
| | - F. Redegeld
- Division of PharmacologyFaculty of ScienceUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - L. Saul
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
| | - J. Singer
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - J. F. Spicer
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| | | | - E. Spillner
- Immunological EngineeringDepartment of EngineeringAarhus UniversityAarhusDenmark
| | - M. C. Turner
- ISGlobalCentre for Research in Environmental Epidemiology (CREAL)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
- McLaughlin Centre for Population Health Risk AssessmentUniversity of OttawaOttawaONCanada
| | - E. Untersmayr
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - L. Vangelista
- Department of Biomedical SciencesNazarbayev University School of MedicineAstanaKazakhstan
| | - S. N. Karagiannis
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| |
Collapse
|
50
|
Nakajima K, Kho DH, Yanagawa T, Zimel M, Heath E, Hogan V, Raz A. Galectin-3 in bone tumor microenvironment: a beacon for individual skeletal metastasis management. Cancer Metastasis Rev 2017; 35:333-46. [PMID: 27067726 DOI: 10.1007/s10555-016-9622-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The skeleton is frequently a secondary growth site of disseminated cancers, often leading to painful and devastating clinical outcomes. Metastatic cancer distorts bone marrow homeostasis through tumor-derived factors, which shapes different bone tumor microenvironments depending on the tumor cells' origin. Here, we propose a novel insight on tumor-secreted Galectin-3 (Gal-3) that controls the induction of an inflammatory cascade, differentiation of osteoblasts, osteoclasts, and bone marrow cells, resulting in bone destruction and therapeutic failure. In the approaching era of personalized medicine, the current treatment modalities targeting bone metastatic environments are provided to the patient with limited consideration of the cancer cells' origin. Our new outlook suggests delivering individual tumor microenvironment treatments based on the expression level/activity/functionality of tumor-derived factors, rather than utilizing a commonly shared therapeutic umbrella. The notion of "Gal-3-associated bone remodeling" could be the first step toward a specific personalized therapy for each cancer type generating a different bone niche in patients afflicted with non-curable bone metastasis.
Collapse
Affiliation(s)
- Kosei Nakajima
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, 48201, USA
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, 48201, USA
| | - Dong Hyo Kho
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, 48201, USA
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, 48201, USA
| | - Takashi Yanagawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Melissa Zimel
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, 48201, USA
| | - Elisabeth Heath
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, 48201, USA
| | - Victor Hogan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, 48201, USA
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, 48201, USA
| | - Avraham Raz
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, 48201, USA.
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, 48201, USA.
| |
Collapse
|