1
|
Yang J, Yang C, Yang G, Wang R, Li J, Song Y. Pan-cancer analysis of the prognostic and immunological role of hippo-YAP signaling pathway. Discov Oncol 2024; 15:504. [PMID: 39333438 PMCID: PMC11436565 DOI: 10.1007/s12672-024-01212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/01/2024] [Indexed: 09/29/2024] Open
Abstract
The Hippo-Yes-associated protein (Hippo-YAP) signaling pathway, a conserved pathway that regulates organ size, participates in tumor progression. However, there are few comprehensive analyses of tumor prognosis and immunity. In the present study, TCGA, GTEx, GEO, TIMER2, STRING, GSCA, ImmuCellAI, and other bioinformatics tools were used to reveal the involvement of the Hippo-YAP signaling pathway in the prognosis and immunity of pan-cancers. The obtained results showed that mRNA expression differences of Hippo-YAP pathway genes between normal samples and tumor samples in pan-cancers and some genes (such as TEAD4, MAP4K4, and STK3) might affect the prognosis of patients with skin cutaneous melanoma (SKCM) and pancreatic adenocarcinoma (PAAD). Furthermore, mutation and methylation of the Hippo-YAP signaling pathway genes in normal and primary tumor tissues differ in various cancers (KIRP, BRCA). Additionally, the relationship between the tumor microenvironment, molecular pathways, and the Hippo-YAP pathway indicated that it might lead to a suppressive immune microenvironment that affects the efficacy of immunotherapy. This is a pan-cancer overview of the Hippo-YAP signaling pathway genes, which explores the aberrant expression or mutation of this pathway that regulates the tumor microenvironment and immunotherapy.
Collapse
Affiliation(s)
- Jing Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Guang Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
2
|
Schiavoni G, Messina B, Scalera S, Memeo L, Colarossi C, Mare M, Blandino G, Ciliberto G, Bon G, Maugeri-Saccà M. Role of Hippo pathway dysregulation from gastrointestinal premalignant lesions to cancer. J Transl Med 2024; 22:213. [PMID: 38424512 PMCID: PMC10903154 DOI: 10.1186/s12967-024-05027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND First identified in Drosophila melanogaster, the Hippo pathway is considered a major regulatory cascade controlling tissue homeostasis and organ development. Hippo signaling components include kinases whose activity regulates YAP and TAZ final effectors. In response to upstream stimuli, YAP and TAZ control transcriptional programs involved in cell proliferation, cytoskeletal reorganization and stemness. MAIN TEXT While fine tuning of Hippo cascade components is essential for maintaining the balance between proliferative and non-proliferative signals, pathway signaling is frequently dysregulated in gastrointestinal cancers. Also, YAP/TAZ aberrant activation has been described in conditions characterized by chronic inflammation that precede cancer development, suggesting a role of Hippo effectors in triggering carcinogenesis. In this review, we summarize the architecture of the Hippo pathway and discuss the involvement of signaling cascade unbalances in premalignant lesions of the gastrointestinal tract, providing a focus on the underlying molecular mechanisms. CONCLUSIONS The biology of premalignant Hippo signaling dysregulation needs further investigation in order to elucidate the evolutionary trajectories triggering cancer inititation and develop effective early therapeutic strategies targeting the Hippo/YAP pathway.
Collapse
Affiliation(s)
- Giulia Schiavoni
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Beatrice Messina
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
| | | | - Marzia Mare
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
3
|
Li XM, Yang Y, Jiang FQ, Hu G, Wan S, Yan WY, He XS, Xiao F, Yang XM, Guo X, Lu JH, Yang XQ, Chen JJ, Ye WL, Liu Y, He K, Duan HX, Zhou YJ, Gan WJ, Liu F, Wu H. Histone lactylation inhibits RARγ expression in macrophages to promote colorectal tumorigenesis through activation of TRAF6-IL-6-STAT3 signaling. Cell Rep 2024; 43:113688. [PMID: 38245869 DOI: 10.1016/j.celrep.2024.113688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Macrophages are phenotypically and functionally diverse in the tumor microenvironment (TME). However, how to remodel macrophages with a protumor phenotype and how to manipulate them for therapeutic purposes remain to be explored. Here, we show that in the TME, RARγ is downregulated in macrophages, and its expression correlates with poor prognosis in patients with colorectal cancer (CRC). In macrophages, RARγ interacts with tumor necrosis factor receptor-associated factor 6 (TRAF6), which prevents TRAF6 oligomerization and autoubiquitination, leading to inhibition of nuclear factor κB signaling. However, tumor-derived lactate fuels H3K18 lactylation to prohibit RARγ gene transcription in macrophages, consequently enhancing interleukin-6 (IL-6) levels in the TME and endowing macrophages with tumor-promoting functions via activation of signal transducer and activator of transcription 3 (STAT3) signaling in CRC cells. We identified that nordihydroguaiaretic acid (NDGA) exerts effective antitumor action by directly binding to RARγ to inhibit TRAF6-IL-6-STAT3 signaling. This study unravels lactate-driven macrophage function remodeling by inhibition of RARγ expression and highlights NDGA as a candidate compound for treating CRC.
Collapse
Affiliation(s)
- Xiu-Ming Li
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China
| | - Yun Yang
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China
| | - Fu-Quan Jiang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Guang Hu
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Shan Wan
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Ying Yan
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Xiao-Shun He
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China
| | - Fei Xiao
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Xue-Mei Yang
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China
| | - Xin Guo
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China
| | - Jun-Hou Lu
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China
| | - Xiao-Qin Yang
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Jun-Jie Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Wen-Long Ye
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China
| | - Yue Liu
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China
| | - Kuang He
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China
| | - Han-Xiao Duan
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China
| | - Yu-Jia Zhou
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Juan Gan
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China.
| | - Feng Liu
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China.
| | - Hua Wu
- Department of Pathology, Medical Center of Soochow University and Suzhou Medical College of Soochow University and YongDing Clinical Institute of Soochow University, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Yu H, Hu X, Zhang Y, Wang J, Ni Z, Wang Y, Zhu H. GLDC promotes colorectal cancer metastasis through epithelial-mesenchymal transition mediated by Hippo signaling pathway. Med Oncol 2023; 40:293. [PMID: 37668829 DOI: 10.1007/s12032-023-02076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/08/2023] [Indexed: 09/06/2023]
Abstract
Cancer metastasis remains a major cause of death in cancer patients, and epithelial-mesenchymal transition (EMT) plays a decisive role in cancer metastasis. Recently, abnormal expression of Glycine Decarboxylase (GLDC) has been demonstrated in tumor progression, and GLDC is up-regulated in cancers, such as lung, prostate, bladder, and cervical cancers. However, the exact role of GLDC in colorectal cancer (CRC) progression remains to be elucidated. The aim of our study was to explore the role of GLDC in CRC metastasis. The GSE75117 database was used to investigate GLDC expression in tumor center and invasive front tissues and we found that GLDC expression levels were higher in the invasive front tissue. GLDC expression levels were negatively correlated with the prognosis of CRC patients. In vitro studies have showed that GLDC can promote invasion and migration of CRC cells by inhibiting the Hippo signaling pathway and regulating the EMT process. Blocking the Hippo signaling pathway with Verteporfin reduced the effect of GLDC on CRC metastasis. In vivo metastasis assays further confirmed that tail vein injection of GLDC+/+ cells induced more lung metastasis, compared to normal CRC cells. The results of this study suggest that GLDC promotes EMT through the Hippo signaling pathway, providing a new therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Hao Yu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiajia Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhongya Ni
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Huirong Zhu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Lavudi K, Nuguri SM, Olverson Z, Dhanabalan AK, Patnaik S, Kokkanti RR. Targeting the retinoic acid signaling pathway as a modern precision therapy against cancers. Front Cell Dev Biol 2023; 11:1254612. [PMID: 37645246 PMCID: PMC10461636 DOI: 10.3389/fcell.2023.1254612] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Retinoic acid (RA) is a vital metabolite derived from vitamin A. RA plays a prominent role during development, which helps in embryological advancement and cellular differentiation. Mechanistically, RA binds to its definite nuclear receptors including the retinoic acid receptor and retinoid X receptor, thus triggering gene transcription and further consequences in gene regulation. This functional heterodimer activation later results in gene activation/inactivation. Several reports have been published related to the detailed embryonic and developmental role of retinoic acids and as an anti-cancer drug for specific cancers, including acute promyelocytic leukemia, breast cancer, and prostate cancer. Nonetheless, the other side of all-trans retinoic acid (ATRA) has not been explored widely yet. In this review, we focused on the role of the RA pathway and its downstream gene activation in relation to cancer progression. Furthermore, we explored the ways of targeting the retinoic acid pathway by focusing on the dual role of aldehyde dehydrogenase (ALDH) family enzymes. Combination strategies by combining RA targets with ALDH-specific targets make the tumor cells sensitive to the treatment and improve the progression-free survival of the patients. In addition to the genomic effects of ATRA, we also highlighted the role of ATRA in non-canonical mechanisms as an immune checkpoint inhibitor, thus targeting the immune oncological perspective of cancer treatments in the current era. The role of ATRA in activating independent mechanisms is also explained in this review. This review also highlights the current clinical trials of ATRA in combination with other chemotherapeutic drugs and explains the future directional insights related to ATRA usage.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Shreya Madhav Nuguri
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Zianne Olverson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anantha Krishna Dhanabalan
- Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Rekha Rani Kokkanti
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, India
| |
Collapse
|
6
|
Xu Y, Yu X, Guo W, He Y. Emerging role of interaction between m6A and main ncRNAs in gastrointestinal (GI) cancers. Front Immunol 2023; 14:1129298. [PMID: 36875073 PMCID: PMC9982029 DOI: 10.3389/fimmu.2023.1129298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
As a prevalent epigenetic modification, the role of m6A has been increasingly highlighted in the alteration of numerous RNAs implicated with multiple biological processes, such as formation, export, translation, and degradation. With further the understanding of m6A, accumulating evidence shows that m6A modification similarly affects metabolic process of non-coding genes. But the specifical interplay of m6A and ncRNAs (non-coding RNAs) in gastrointestinal cancers still lacks complete discussion. Thus, we analyzed and summarized how ncRNAs affect the regulators of m6A and by what means the expression of ncRNAs is altered via m6A in gastrointestinal cancers. We focused on the effect of the interaction of m6A and ncRNAs on the molecular mechanisms of malignant behavior in gastrointestinal cancers, revealing more possibilities of ncRNAs for diagnosis and treatment in term of epigenetic modification.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Ji K, Dou W, Zhang N, Wen B, Zhong M, Zhang Q, Xu S, Zhou J, Liu J. Retinoic acid receptor gamma is required for proliferation of pancreatic cancer cells. Cell Biol Int 2023; 47:144-155. [PMID: 36183362 DOI: 10.1002/cbin.11917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023]
Abstract
Despite the expectation that retinoic acid receptor could be the potential therapeutic targets for pancreatic cancers, there has been the lack of information about the role and the impact of retinoic acid receptor gamma (RARγ, RARG) on pancreatic cancer, unlike other two RARs. Herein, we applied TCGA and GEO database to show that the expression and prognosis of RARG is closely related to pancreatic cancer, which demonstrates that RARG is commonly overexpressed in human pancreatic cancer and is an independent diagnostic marker predicting the poor prognosis of pancreatic cancer patients. In addition, we demonstrated that the reduction in the expression of RARG in human pancreatic cancer cells dramatically suppress their proliferation and tumor growth in vivo, partially attributable to the downregulation of tumor-supporting biological processes such as cell proliferation, antiapoptosis and metabolism and the decreased expression of various oncogenes like MYC and STAT3. Mechanistically, RARG binds on the promoters of MYC, STAT3, and SLC2A1 which is distinguished from well-known conventional Retinotic acid response elements (RAREs) and that the binding is likely to be responsible for the epigenetic activation in the level of chromatin, assessed by the measurement of deposition of the gene activation marker histone H3 K27 acetylation (H3K27ac) using ChIP-qPCR. In this study, we reveal that RARG plays important role in the tumorigenesis of pancreatic cancer and represents new therapeutic targets for human pancreatic cancer.
Collapse
Affiliation(s)
- Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenlong Dou
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ningfang Zhang
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingyan Zhong
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qianbing Zhang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuxiang Xu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianlong Zhou
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Jingfeng Liu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.,Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Xiu L, Zhao Y, Li N, Zeng J, Liu J, Fu Y, Gao Q, Wu L. High expression of RARG accelerates ovarian cancer progression by regulating cell proliferation. Front Oncol 2022; 12:1063031. [PMID: 36523991 PMCID: PMC9746340 DOI: 10.3389/fonc.2022.1063031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/04/2022] [Indexed: 08/13/2023] Open
Abstract
PURPOSE To explore the relationship between retinoic acid receptor gamma (RARG) and ovarian cancer (OC) cell proliferation and the prognosis of patients. METHODS The transcriptome and clinical information of 379 OC and 88 normal ovarian samples were downloaded from the Cancer Genome Atlas (TCGA) database and the Genotype Tissue Expression (GTEx) database. We compared the mRNA level of RARG between ovrian normal and tumor tissues with the Wilcoxon rank sum test.The R package "limma" was used to analyze the differences in RARG expression between different clinical subgroups. Kaplan-Meier analysis was applied to evaluate the correlation between RARG and prognosis of patients. A nomogram was established to predict the effect of RARG on prognosis of OC patients. Immunohistochemistry and qRT-PCR experiments were conducted to determine the differential expression of RARG between ovarian normal and tumor tissues. Finally, we altered RARG expression using specific siRNA and lentiviral expression vectors to explore the function of RARG by CCK-8, cell cycle, colony formation, and xenograft assays in nude mice. RESULTS RARG was highly expressed in ovarian tumors and was an independent predictor of poor overall survival outcomes. Subgroup analysis showed the high expression of RARG was related to FIGO stage III-IV (P=0.027), overall survival time <5 years (P=0.013) and dead status (P=0.041). The Kaplan-Meier curve indicated that patients with high RARG expression level had poor prognosis. The area under the curve (AUC) of RAGR expression for predicting patient survival rates at 1, 5 and 9 years were 0.659, 0.616 and 0.627, respectively. The GSEA enrichment analysis revealed that RARG was involved in ovarian cancer progression through multiple pathways. In cellular experiments in vitro, downregulation of RARG expression significantly suppressed the proliferation and colony formation capacity of OC cells. In cellular experiments in vivo, knockdown of RARG significantly reduced tumor growth in nude mice, decreased expression levels of Ki-67 and proliferation cell nuclear antigen (PCNA). CONCLUSIONS High expression of RARG could promote OC cell proliferation and was an independent predictor of poor prognosis. RARG might work as a potential molecular target and biomarker for individualized diagnosis and treatment in OC patients.
Collapse
Affiliation(s)
- Lin Xiu
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxi Zhao
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Li
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Zeng
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Liu
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongliang Fu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Gao
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lingying Wu
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
10
|
He XS, Ye WL, Zhang YJ, Yang XQ, Liu F, Wang JR, Ding XL, Yang Y, Zhang RN, Zhao YY, Bi HX, Guo LC, Gan WJ, Wu H. Oncogenic potential of BEST4 in colorectal cancer via activation of PI3K/Akt signaling. Oncogene 2022; 41:1166-1177. [PMID: 35058597 DOI: 10.1038/s41388-021-02160-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
BEST4 is a member of the bestrophin protein family that plays a critical role in human intestinal epithelial cells. However, its role and mechanism in colorectal cancer (CRC) remain largely elusive. Here, we investigated the role and clinical significance of BEST4 in CRC. Our results demonstrate that BEST4 expression is upregulated in clinical CRC samples and its high-level expression correlates with advanced TNM (tumor, lymph nodes, distant metastasis) stage, LNM (lymph node metastasis), and poor survival. Functional studies revealed that ectopic expression of BEST4 promoted CRC cell proliferation and metastasis, whereas the depletion of BEST4 had the opposite effect both in vitro and in vivo. Mechanistically, BEST4 binds to the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K) and promotes p110 kinase activity; this leads to activation of Akt signaling and expression of MYC and CCND1, which are critical regulators of cell proliferation and metastasis. In clinical samples, the expression of BEST4 is positively associated with the expression of phosphorylated Akt, MYC and CCND1. Pharmacological inhibition of Akt activity markedly repressed BEST4-mediated Akt signaling and proliferation and metastasis of CRC cells. Importantly, the interaction between BEST4 and p85α was also enhanced by epidermal growth factor (EGF) in CRC cells. Therapeutically, BEST4 suppression effectively sensitized CRC cells to gefitinib treatment in vivo. Taken together, our findings indicate the oncogenic potential of BEST4 in colorectal carcinogenesis and metastasis by modulating BEST4/PI3K/Akt signaling, highlighting a potential strategy for CRC therapy.
Collapse
Affiliation(s)
- Xiao-Shun He
- Department of Pathology, Medical College of Soochow University & The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Wen-Long Ye
- Department of Pathology, Medical College of Soochow University & The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Yu-Juan Zhang
- Department of Pathology, Medical College of Soochow University & The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Xiao-Qin Yang
- Department of Bioinformatics, Medical College of Soochow University, Soochow University, Suzhou, 215123, China
| | - Feng Liu
- Department of General Surgery, Canglang Hospital of Suzhou, Suzhou, 215009, China
| | - Jing-Ru Wang
- Department of Pathology, Medical College of Soochow University & The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Xiao-Lu Ding
- Department of Pathology, Medical College of Soochow University & The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Yun Yang
- Department of Pathology, Medical College of Soochow University & The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Ruo-Nan Zhang
- Department of Pathology, Medical College of Soochow University & The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Yuan-Yuan Zhao
- Department of Pathology, Medical College of Soochow University & The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Hai-Xia Bi
- Department of Pathology, Medical College of Soochow University & The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China
| | - Ling-Chuan Guo
- Department of Pathology, Medical College of Soochow University & The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China.
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated to Soochow University, Soochow University, Suzhou, 215124, China.
- Department of Pathology, Medical Center of Soochow University, Soochow University, Suzhou, 215124, China.
| | - Hua Wu
- Department of Pathology, Medical College of Soochow University & The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China.
- Department of Pathology, Dushu Lake Hospital Affiliated to Soochow University, Soochow University, Suzhou, 215124, China.
| |
Collapse
|
11
|
Jaslove JM, Goodwin K, Sundarakrishnan A, Spurlin JW, Mao S, Košmrlj A, Nelson CM. Transmural pressure signals through retinoic acid to regulate lung branching. Development 2022; 149:274047. [PMID: 35051272 PMCID: PMC8917413 DOI: 10.1242/dev.199726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/10/2021] [Indexed: 01/22/2023]
Abstract
During development, the mammalian lung undergoes several rounds of branching, the rate of which is tuned by the relative pressure of the fluid within the lumen of the lung. We carried out bioinformatics analysis of RNA-sequencing of embryonic mouse lungs cultured under physiologic or sub-physiologic transmural pressure and identified transcription factor-binding motifs near genes whose expression changes in response to pressure. Surprisingly, we found retinoic acid (RA) receptor binding sites significantly overrepresented in the promoters and enhancers of pressure-responsive genes. Consistently, increasing transmural pressure activates RA signaling, and pharmacologically inhibiting RA signaling decreases airway epithelial branching and smooth muscle wrapping. We found that pressure activates RA signaling through the mechanosensor Yap. A computational model predicts that mechanical signaling through Yap and RA affects lung branching by altering the balance between epithelial proliferation and smooth muscle wrapping, which we test experimentally. Our results reveal that transmural pressure signals through RA to balance the relative rates of epithelial growth and smooth muscle differentiation in the developing mouse lung and identify RA as a previously unreported component in the mechanotransduction machinery of embryonic tissues.
Collapse
Affiliation(s)
- Jacob M. Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Aswin Sundarakrishnan
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - James W. Spurlin
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA,Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Sheng Mao
- Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, People's Republic of China,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA,Princeton Institute for the Science & Technology of Materials, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA,Author for correspondence ()
| |
Collapse
|
12
|
Yadav P, Bhatt B, Balaji KN. Selective Activation of MST1/2 Kinases by Retinoid Agonist Adapalene Abrogates AURKA-Regulated Septic Arthritis. THE JOURNAL OF IMMUNOLOGY 2021; 206:2888-2899. [PMID: 34031150 DOI: 10.4049/jimmunol.2001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/04/2021] [Indexed: 11/19/2022]
Abstract
Septic arthritis is a chronic inflammatory disorder caused by Staphylococcus aureus invasion of host synovium, which often progresses to impairment of joint functions. Although it is known that disease progression is intricately dependent on dysregulated inflammation of the knee joint, identification of molecular events mediating such imbalance during S. aureus-induced septic arthritis still requires detailed investigation. In this article, we report that Aurora kinase A (AURKA) responsive WNT signaling activates S. aureus infection-triggered septic arthritis, which results in inflammation of the synovium. In this context, treatment with adapalene, a synthetic retinoid derivative, in a mouse model for septic arthritis shows significant reduction of proinflammatory mediators with a simultaneous decrease in bacterial burden and prevents cartilage loss. Mechanistically, adapalene treatment inhibits WNT signaling with concomitant activation of HIPPO signaling, generating alternatively activated macrophages. Collectively, we establish adapalene as a promising strategy to suppress S. aureus-induced irreversible joint damage.
Collapse
Affiliation(s)
- Preeti Yadav
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
13
|
Bauzone M, Souidi M, Dessein AF, Wisztorski M, Vincent A, Gimeno JP, Monté D, Van Seuningen I, Gespach C, Huet G. Cross-talk between YAP and RAR-RXR Drives Expression of Stemness Genes to Promote 5-FU Resistance and Self-Renewal in Colorectal Cancer Cells. Mol Cancer Res 2021; 19:612-622. [PMID: 33472949 DOI: 10.1158/1541-7786.mcr-20-0462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
The mechanisms whereby the Hippo pathway effector YAP regulates cancer cell stemness, plasticity, and chemoresistance are not fully understood. We previously showed that in 5-fluorouracil (5-FU)-resistant colorectal cancer cells, the transcriptional coactivator YAP is differentially regulated at critical transitions connected with reversible quiescence/dormancy to promote metastasis. Here, we found that experimental YAP activation in 5-FU-sensitive and 5-FU-resistant HT29 colorectal cancer cells enhanced nuclear YAP localization and the transcript levels of the retinoic acid (RA) receptors RARα/γ and RAR target genes CYP26A1, ALDH1A3, and LGR5 through RA Response Elements (RARE). In these two cell models, constitutive YAP activation reinforced the expression of the stemness biomarkers and regulators ALDH1A3, LGR5, and OCT4. Conversely, YAP silencing, RAR/RXR inhibition by the pan-RAR antagonist BMS493, and vitamin A depletion downregulated stemness traits and self-renewal. Regarding the mechanisms engaged, proximity-dependent labeling, nuclear YAP pulldown coupled with mass spectrometry, and chromatin immunoprecipitation (ChIP)/re-ChIP experiments revealed: (i) the nuclear colocalization/interaction of YAP with RARγ and RXRs; and (ii) combined genomic co-occupancy of YAP, RARα/γ, and RXRα interactomes at proximal RAREs of LGR5 and ALDH1A3 promoters. Moreover, activation of the YAP/RAR-RXR cross-talk in colorectal cancer cells promoted RAR self-activation loops via vitamin A metabolism, RA, and active RAR ligands generated by ALDH1A3. Together, our data identify YAP as a bona fide RAR-RXR transcriptional coactivator that acts through RARE-activated stemness genes. IMPLICATIONS: Targeting the newly identified YAP/RAR-RXR cross-talk implicated in cancer cell stemness maintenance may lead to multitarget combination therapies for patients with colorectal cancer.
Collapse
Affiliation(s)
- Marjolaine Bauzone
- Université Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Mouloud Souidi
- Université Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Anne-Frédérique Dessein
- Université Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,Centre de Biopathologie, Lille CHU, Lille, France
| | - Maxence Wisztorski
- Université Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Audrey Vincent
- Université Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Jean-Pascal Gimeno
- Université Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Didier Monté
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Université Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Isabelle Van Seuningen
- Université Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Christian Gespach
- Sorbonne Université, Inserm U938, Team TGFβ Signaling in Cellular Plasticity and Cancer, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Guillemette Huet
- Université Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France. .,Centre de Biopathologie, Lille CHU, Lille, France
| |
Collapse
|
14
|
Drexler R, Fahy R, Küchler M, Wagner KC, Reese T, Ehmke M, Feyerabend B, Kleine M, Oldhafer KJ. Association of subcellular localization of TEAD transcription factors with outcome and progression in pancreatic ductal adenocarcinoma. Pancreatology 2021; 21:170-179. [PMID: 33317954 DOI: 10.1016/j.pan.2020.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Transcriptional enhanced associated domain (TEAD) transcription factors are nuclear effectors of several oncogenic signalling pathways including Hippo, WNT, TGF-ß and EGFR pathways that interact with various cancer genes. The subcellular localization of TEAD regulates the functional output of these pathways affecting tumour progression and patient outcome. However, the impact of the TEAD family on pancreatic ductal adenocarcinoma (PDAC) and its clinical progression remain elusive. METHODS A cohort of 81 PDAC patients who had undergone surgery was established. Cytoplasmic and nuclear localization of TEAD1, TEAD2, TEAD3 and TEAD4 was evaluated with the immunoreactive score (IRS) by immunohistochemistry (IHC) using paraffin-embedded tissue. Results were correlated with clinicopathological data, disease-free and overall survival. RESULTS Nuclear staining of all four TEADs was increased in pancreatic cancer tissue. Patients suffering from metastatic disease at time of surgery showed a strong nuclear staining of TEAD2 and TEAD3 (p < 0.05). Furthermore, a nuclear > cytoplasmic ratio of TEAD2 and TEAD3 was associated with a shorter overall survival and TEAD2 emerged as an independent prognostic factor for disease-free survival. CONCLUSION Our study underlines the importance of TEAD transcription factors in PDAC as a nuclear localization was found to be associated with metastatic disease and an unfavourable prognosis after surgical resection.
Collapse
Affiliation(s)
- Richard Drexler
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany.
| | - Rebecca Fahy
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Mirco Küchler
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Kim C Wagner
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Tim Reese
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Mareike Ehmke
- Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | | | - Moritz Kleine
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Karl J Oldhafer
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| |
Collapse
|
15
|
YAP/TAZ Signalling in Colorectal Cancer: Lessons from Consensus Molecular Subtypes. Cancers (Basel) 2020; 12:cancers12113160. [PMID: 33126419 PMCID: PMC7692643 DOI: 10.3390/cancers12113160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is a heterogeneous disease that can be divided into 4 consensus molecular subtypes (CMS) according to molecular profiling. The CMS classification is now considered as a reference framework for understanding the heterogeneity of CRC and for the implementation of precision medicine. Although the contribution of YAP/TAZ signalling to CRC has been intensively studied, there is little information on its role within each CMS subtype. This article aims to provide an overview of our knowledge of YAP/TAZ in CRC through the lens of the CMS classification. Abstract Recent advance in the characterization of the heterogeneity of colorectal cancer has led to the definition of a consensus molecular classification within four CMS subgroups, each associated with specific molecular and clinical features. Investigating the signalling pathways that drive colorectal cancer progression in relation to the CMS classification may help design therapeutic strategies tailored for each CMS subtype. The two main effectors of the Hippo pathway YAP and its paralogue TAZ have been intensively scrutinized for their contribution to colon carcinogenesis. Here, we review the knowledge of YAP/TAZ implication in colorectal cancer from the perspective of the CMS framework. We identify gaps in our current understanding and delineate research avenues for future work.
Collapse
|
16
|
Duan L, Yang W, Feng W, Cao L, Wang X, Niu L, Li Y, Zhou W, Zhang Y, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Molecular mechanisms and clinical implications of miRNAs in drug resistance of colorectal cancer. Ther Adv Med Oncol 2020; 12:1758835920947342. [PMID: 32922521 PMCID: PMC7450467 DOI: 10.1177/1758835920947342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic chemotherapy is identified as a curative approach to prolong the survival time of patients with colorectal cancer (CRC). Although great progress in therapeutic approaches has been achieved during the last decades, drug resistance still extensively persists and serves as a major hurdle to effective anticancer therapy for CRC. The mechanism of multidrug resistance remains unclear. Recently, mounting evidence suggests that a great number of microRNAs (miRNAs) may contribute to drug resistance in CRC. Certain of these miRNAs may thus be used as promising biomarkers for predicting drug response to chemotherapy or serve as potential targets to develop personalized therapy for patients with CRC. This review mainly summarizes recent advances in miRNAs and the molecular mechanisms underlying miRNA-mediated chemoresistance in CRC. We also discuss the potential role of drug resistance-related miRNAs as potential biomarkers (diagnostic and prognostic value) and envisage the future orientation and challenges in translating the findings on miRNA-mediated chemoresistance of CRC into clinical applications.
Collapse
Affiliation(s)
- Lili Duan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Weibo Feng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Lu Cao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liaoran Niu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Xie W, Zhang Y, Wang B, Hu Y, Zhan B, Wei F, Tang J, Lian J. Tripartite motif containing 24 regulates cell proliferation in colorectal cancer through YAP signaling. Cancer Med 2020; 9:6367-6376. [PMID: 32677374 PMCID: PMC7476840 DOI: 10.1002/cam4.3310] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022] Open
Abstract
The protein, tripartite motif containing 24 (TRIM24) is a member of the TRIM protein family, and acts as a critical co‐regulator of multiple nuclear receptors. TRIM24 is dysregulated in many cancers, including colorectal carcinoma. However, its biological functions and molecular mechanisms with respect to colorectal carcinoma are still largely unknown. In the current study, we found that TRIM24 promotes YAP signaling for driving cell proliferation in colorectal cancer. TRIM24 was significantly upregulated in colorectal carcinoma, and its expression was negatively correlated with the survival of patients. Depletion of TRIM24 impaired the ability of the cancer cells to proliferate and form colonies. Furthermore, this study also revealed the mechanism underlying the recruitment of TRIM24 by the DANCR/KAT6A complex, which is bound to acetylated lysine 23 of histone H3 (H3K23), resulting in binding to the YAP promoter and activation of YAP transcription that ultimately enhances the proliferation of colorectal cancer cells. Our results revealed a novel mechanism involving TRIM24‐YAP signaling for the regulation of colorectal cancer. We also identified TRIM24 as a potential therapeutic molecule for targeting colorectal cancer.
Collapse
Affiliation(s)
- Wenlin Xie
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Yingqiang Zhang
- Department of Interventional Radiology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Bingyang Wang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Yuting Hu
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Bohui Zhan
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Fangqiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People' s Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Jianming Tang
- Department of Radiation Oncology, Zhejiang Provincial People' s Hospital, People' s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Jiayan Lian
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
18
|
Wang X, Wang G, Qu J, Yuan Z, Pan R, Li K. Calcipotriol Inhibits NLRP3 Signal Through YAP1 Activation to Alleviate Cholestatic Liver Injury and Fibrosis. Front Pharmacol 2020; 11:200. [PMID: 32296329 PMCID: PMC7136474 DOI: 10.3389/fphar.2020.00200] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cholestasis is common in multiple clinical circumstances. The NOD-like receptor protein 3 (NLRP3) inflammasome pathway has been demonstrated to play an important role in liver injury and fibrosis induced by cholestasis. We previously proved that MCC950, a selective NLRP3 inhibitor, alleviates liver fibrosis and injury in experimental liver cholestasis induced by bile-duct ligation (BDL) in mice. Herein, we investigate the role of calcipotriol, a potent vitamin D receptor agonist, in experimental liver cholestasis, test its therapeutic efficacy, and explore its potential protective mechanism. C57BL/6 mice were made to undergo BDL or fed the 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to establish two classic cholestatic models. Calcipotriol was administered intraperitoneally to these mice daily. Serum makers of liver damage and integrity, liver histological changes, levels of liver pro-fibrotic markers, bile acid synthetases and transporters were measured in vivo. The underlying mechanism by which calcipotriol alleviates cholestatic liver injury and fibrosis was further investigated. The results of the current study demonstrated that calcipotriol supplement significantly alleviate cholestatic liver injury and fibrosis. Moreover, calcipotriol supplement markedly inhibited NLRP3 inflammasome pathway activation to alleviate liver injury and fibrosis in vivo and inhibit hepatic stellate cell (HSC) activation in vitro. In addition, VDR agonist calcipotriol exert inhibitory effect on NLRP3 inflammasome activation through activating yes-associated protein 1 (YAP1). In conclusion, our findings proved that calcipotriol suppressed the NLRP3 signal by activating YAP1 to alleviate liver injury and retard fibrogenesis in cholestasis.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guiyang Wang
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Second Military Medical University, Shanghai, China
| | - Junwen Qu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqing Yuan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruogu Pan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kewei Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Thompson BJ. YAP/TAZ: Drivers of Tumor Growth, Metastasis, and Resistance to Therapy. Bioessays 2020; 42:e1900162. [DOI: 10.1002/bies.201900162] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/11/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Barry J. Thompson
- EMBL AustraliaJohn Curtin School of Medical ResearchThe Australian National University 131 Garran Rd, Acton 2602 Canberra ACT Australia
| |
Collapse
|
20
|
Zinatizadeh MR, Miri SR, Zarandi PK, Chalbatani GM, Rapôso C, Mirzaei HR, Akbari ME, Mahmoodzadeh H. The Hippo Tumor Suppressor Pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in cancer metastasis. Genes Dis 2019; 8:48-60. [PMID: 33569513 PMCID: PMC7859453 DOI: 10.1016/j.gendis.2019.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Hippo Tumor Suppressor Pathway is the main pathway for cell growth that regulates tissue enlargement and organ size by limiting cell growth. This pathway is activated in response to cell cycle arrest signals (cell polarity, transduction, and DNA damage) and limited by growth factors or mitogens associated with EGF and LPA. The major pathway consists of the central kinase of Ste20 MAPK (Saccharomyces cerevisiae), Hpo (Drosophila melanogaster) or MST kinases (mammalian) that activates the mammalian AGC kinase dmWts or LATS effector (MST and LATS). YAP in the nucleus work as a cofactor for a wide range of transcription factors involved in proliferation (TEA domain family, TEAD1-4), stem cells (Oct4 mononuclear factor and SMAD-related TGFβ effector), differentiation (RUNX1), and Cell cycle/apoptosis control (p53, p63, and p73 family members). This is due to the diverse roles of YAP and may limit tumor progression and establishment. TEAD also coordinates various signal transduction pathways such as Hippo, WNT, TGFβ and EGFR, and effects on lack of regulation of TEAD cancerous genes, such as KRAS, BRAF, LKB1, NF2 and MYC, which play essential roles in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. However, RAS signaling is a pivotal factor in the inactivation of Hippo, which controls EGFR-RAS-RAF-MEK-ERK-mediated interaction of Hippo signaling. Thus, the loss of the Hippo pathway may have significant consequences on the targets of RAS-RAF mutations in cancer.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences State University of Campinas – UNICAMP Campinas, SP, Brazil
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohadae Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Habibollah Mahmoodzadeh
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
21
|
Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, Liu J, Che L, Li J. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m 6A reader YTHDF3. Mol Cancer 2019; 18:143. [PMID: 31619268 PMCID: PMC6794841 DOI: 10.1186/s12943-019-1079-y] [Citation(s) in RCA: 420] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background YAP activation is crucial for cancer development including colorectal cancer (CRC). Nevertheless, it remains unclear whether N6-Methyladenosine (m6A) modified transcripts of long noncoding RNAs (lncRNAs) can regulate YAP activation in cancer progression. We investigated the functional link between lncRNAs and the m6A modification in YAP signaling and CRC progression. Methods YAP interacting lncRNAs were screened by RIP-sequencing, RNA FISH and immunofluorescence co-staining assays. Interaction between YAP and lncRNA GAS5 was studied by biochemical methods. MeRIP-sequencing combined with lncRNA-sequencing were used to identify the m6A modified targets of YTHDF3 in CRC. Gain-of-function and Loss-of-function analysis were performed to measure the function of GAS5-YAP-YTHDF3 axis in CRC progression in vitro and in vivo. Results GAS5 directly interacts with WW domain of YAP to facilitate translocation of endogenous YAP from the nucleus to the cytoplasm and promotes phosphorylation and subsequently ubiquitin-mediated degradation of YAP to inhibit CRC progression in vitro and in vivo. Notably, we demonstrate the m6A reader YTHDF3 not only a novel target of YAP but also a key player in YAP signaling by facilitating m6A-modified lncRNA GAS5 degradation, which profile a new insight into CRC progression. Clinically, lncRNA GAS5 expressions is negatively correlated with YAP and YTHDF3 protein levels in tumors from CRC patients. Conclusions Our study uncovers a negative functional loop of lncRNA GAS5-YAP-YTHDF3 axis, and identifies a new mechanism for m6A-induced decay of GAS5 on YAP signaling in progression of CRC which may offer a promising approach for CRC treatment.
Collapse
Affiliation(s)
- Wen Ni
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Su Yao
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yunxia Zhou
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuanyuan Liu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Piao Huang
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Aijun Zhou
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jingwen Liu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Liheng Che
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianming Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
22
|
Two Opposing Faces of Retinoic Acid: Induction of Stemness or Induction of Differentiation Depending on Cell-Type. Biomolecules 2019; 9:biom9100567. [PMID: 31590252 PMCID: PMC6843238 DOI: 10.3390/biom9100567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cells have the capacity of self-renewal and, through proliferation and differentiation, are responsible for the embryonic development, postnatal development, and the regeneration of tissues in the adult organism. Cancer stem cells, analogous to the physiological stem cells, have the capacity of self-renewal and may account for growth and recurrence of tumors. Development and regeneration of healthy tissues and tumors depend on the balance of different genomic and nongenomic signaling pathways that regulate stem cell quiescence, proliferation, and differentiation. During evolution, this balance became dependent on all-trans retinoic acid (RA), a molecule derived from the environmental factor vitamin A. Here we summarize some recent findings on the prominent role of RA on the proliferation of stem and progenitor cells, in addition to its well-known function as an inductor of cell differentiation. A better understanding of the regulatory mechanisms of stemness and cell differentiation by RA may improve the therapeutic options of this molecule in regenerative medicine and cancer.
Collapse
|
23
|
Huh HD, Kim DH, Jeong HS, Park HW. Regulation of TEAD Transcription Factors in Cancer Biology. Cells 2019; 8:E600. [PMID: 31212916 PMCID: PMC6628201 DOI: 10.3390/cells8060600] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Transcriptional enhanced associate domain (TEAD) transcription factors play important roles during development, cell proliferation, regeneration, and tissue homeostasis. TEAD integrates with and coordinates various signal transduction pathways including Hippo, Wnt, transforming growth factor beta (TGFβ), and epidermal growth factor receptor (EGFR) pathways. TEAD deregulation affects well-established cancer genes such as KRAS, BRAF, LKB1, NF2, and MYC, and its transcriptional output plays an important role in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. To date, TEADs have been recognized to be key transcription factors of the Hippo pathway. Therefore, most studies are focused on the Hippo kinases and YAP/TAZ, whereas the Hippo-dependent and Hippo-independent regulators and regulations governing TEAD only emerged recently. Deregulation of the TEAD transcriptional output plays important roles in tumor progression and serves as a prognostic biomarker due to high correlation with clinicopathological parameters in human malignancies. In addition, discovering the molecular mechanisms of TEAD, such as post-translational modifications and nucleocytoplasmic shuttling, represents an important means of modulating TEAD transcriptional activity. Collectively, this review highlights the role of TEAD in multistep-tumorigenesis by interacting with upstream oncogenic signaling pathways and controlling downstream target genes, which provides unprecedented insight and rationale into developing TEAD-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- Hyunbin D Huh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Dong Hyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
24
|
Retinoic acid signaling in ovarian folliculogenesis and steroidogenesis. Reprod Toxicol 2019; 87:32-41. [PMID: 31059772 DOI: 10.1016/j.reprotox.2019.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/13/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
Abstract
Retinoids are essential for reproduction. Most research has focused on the role of retinoic acid signaling in the regulation of meiosis during early fetal germ cell development. However, less attention has been paid to the possible effects of retinoic acid signaling in adult female gonads. Retinoic acid, its receptors, and the key enzymes required for retinoic acid synthesis are expressed in the ovaries and they are involved in the regulation of folliculogenesis and steroidogenesis. Exposure to compounds that can interfere with normal retinoic acid signaling is associated with adverse ovarian outcomes, including altered steroidogenesis and reduction in indicators of ovarian reserve in women and laboratory animal models. These observations call for more attention to retinoids as regulators of adult ovarian physiology and as possible targets of endocrine disruption by environmental chemicals. In this review, we summarize the current knowledge of retinoids in folliculogenesis and steroidogenesis in post-pubertal mammalian ovaries.
Collapse
|
25
|
Wang L, Li B, Zhang L, Li Q, He Z, Zhang X, Huang X, Xu Z, Xia Y, Zhang Q, Li Q, Xu J, Sun G, Xu Z. miR-664a-3p functions as an oncogene by targeting Hippo pathway in the development of gastric cancer. Cell Prolif 2019; 52:e12567. [PMID: 30883979 PMCID: PMC6536452 DOI: 10.1111/cpr.12567] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES It has been accounted that miR-664a-3p has different functions in several malignancies; however, the precise role and underlying mechanism in gastric cancer have not been elucidated. Our study aims to explore the function of miR-664a-3p on the progression of gastric cancer (GC). METHODS qRT-PCR was applied to detect the expression of miR-664a-3p in GC tissues and cells. The functions of miR-664a-3p on GC in vitro were examined by cell proliferation assay, and transwell assay. Related proteins of epithelial-mesenchymal transition (EMT) and signal pathway were evaluated by Western blot and immunofluorescence analysis. The bioinformatic, dual-luciferase assay or ChIP assay were employed to identify the interaction between miR-664a-3p and its target gene or Foxp3. The effects in vivo were investigated through a mouse tumorigenicity model. RESULTS miR-664a-3p was frequently upregulated in GC tissues and cells. Elevated expression of miR-664a-3p significantly promoted proliferation and invasion in vitro and in vivo. MOB1A was confirmed to be a target of miR-664a-3p and restoration of MOB1A attenuated the effects of miR-664a-3p. A series of investigations indicated that miR-664a-3p contributed to EMT process and inactivated the Hippo pathway by downregulating MOB1A. CONCLUSION Taken together, we revealed that miR-664a-3p functions as an oncogene by targeting Hippo pathway in the development of gastric cancer.
Collapse
Affiliation(s)
- Lu Wang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Bowen Li
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lu Zhang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qing Li
- School of MedicineSoutheast UniversityNanjingChina
| | - Zhongyuan He
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xuan Zhang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiaoxu Huang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhipeng Xu
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yiwen Xia
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qiang Zhang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qiang Li
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jianghao Xu
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Guangli Sun
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zekuan Xu
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public HealthNanjing Medical UniversityNanjingChina
| |
Collapse
|
26
|
Wu H, Lu XX, Wang JR, Yang TY, Li XM, He XS, Li Y, Ye WL, Wu Y, Gan WJ, Guo PD, Li JM. TRAF6 inhibits colorectal cancer metastasis through regulating selective autophagic CTNNB1/β-catenin degradation and is targeted for GSK3B/GSK3β-mediated phosphorylation and degradation. Autophagy 2019; 15:1506-1522. [PMID: 30806153 DOI: 10.1080/15548627.2019.1586250] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Aberrant CTNNB1 signaling is one of the fundamental processes in cancers, especially colorectal cancer (CRC). Here, we reported that TRAF6, an E3 ubiquitin ligase important for inflammatory signaling, inhibited epithelial-mesenchymal transition (EMT) and CRC metastasis through driving a selective autophagic CTNNB1 degradation machinery. Mechanistically, TRAF6 interacted with MAP1LC3B/LC3B through its LC3-interacting region 'YxxL' and catalyzed K63-linked polyubiquitination of LC3B. The K63-linked ubiquitination of LC3B promoted the formation of the LC3B-ATG7 complex and was critical to the subsequent recognition of CTNNB1 by LC3B for the selective autophagic degradation. However, TRAF6 was phosphorylated at Thr266 by GSK3B in most clinical CRC, which triggered K48-linked polyubiquitination and degradation of TRAF6 and thereby attenuated its inhibitory activity towards the autophagy-dependent CTNNB1 signaling. Clinically, decreased expression of TRAF6 was associated with elevated GSK3B protein levels and activity and reduced overall survival in CRC patients. Pharmacological inhibition of GSK3B activity stabilized the TRAF6 protein, promoted CTNNB1 degradation, and effectively suppressed EMT and CRC metastasis. Thus, targeting TRAF6 and its pathway may be meaningful for treating advanced CRC. Abbreviations: AMBRA1: autophagy and beclin 1 regulator 1; AOM: azoxymethane; ATG5: autophagy related 5; ATG7: autophagy related 7; Baf A1: bafilomycin A1; BECN1: beclin 1; CoIP: co-immunoprecipitation; CQ: chloroquine; CRC: colorectal cancer; CTNNB1/β-catenin: catenin beta 1; DSS: dextran sodium sulfate; EMT: epithelial-mesenchymal transition; FBS: fetal bovine serum; GFP: green fluorescent protein; GSK3B/GSK3β: glycogen synthase kinase 3 beta; IgG: Immunoglobulin G; IHC: immunohistochemistry; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; RFP: red fluorescent protein; RT: room temperature; shRNA: short hairpin RNA; siRNA: small interfering RNA; TRAF6: TNF receptor-associated factor 6; WT: wild-type; ZEB1: zinc finger E-box binding homeobox 1.
Collapse
Affiliation(s)
- Hua Wu
- a Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou , China.,b Department of Pathology, Soochow University , Suzhou , China
| | - Xing-Xing Lu
- b Department of Pathology, Soochow University , Suzhou , China
| | - Jing-Ru Wang
- c Department of Pathology, The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Tian-Yu Yang
- b Department of Pathology, Soochow University , Suzhou , China
| | - Xiu-Ming Li
- b Department of Pathology, Soochow University , Suzhou , China
| | - Xiao-Shun He
- c Department of Pathology, The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Yi Li
- b Department of Pathology, Soochow University , Suzhou , China
| | - Wen-Long Ye
- b Department of Pathology, Soochow University , Suzhou , China
| | - Yong Wu
- d Department of General Surgery, The Second Affiliated Hospital, Soochow University , Suzhou , China
| | - Wen-Juan Gan
- c Department of Pathology, The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Peng-Da Guo
- b Department of Pathology, Soochow University , Suzhou , China
| | - Jian-Ming Li
- a Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou , China.,b Department of Pathology, Soochow University , Suzhou , China
| |
Collapse
|
27
|
Qi L, Shi C, Li J, Xu S, Han Y, Li J, Zhang L. Yes-associated protein promotes cell migration via activating Wiskott-Aldrich syndrome protein family member 1 in oral squamous cell carcinoma. J Oral Pathol Med 2019; 48:290-298. [PMID: 30697796 DOI: 10.1111/jop.12833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/12/2019] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Yes-associated protein (YAP) is a candidate oncogene in various cancers including oral squamous cell carcinoma (OSCC). Our previous study demonstrated that TNF-alpha could inhibit cell proliferation and invasion by YAP phosphorylation in OSCC. However, the role of YAP in OSCC is not yet clear. The objective of the present study was to elucidate the function of YAP in promoting migration in OSCC and to explore the possible mechanism with a novel YAP inhibitor CA3. METHODS A total of 68 OSCC patients were enrolled, and the expression levels of YAP were investigated in tissue specimens by immunohistochemical staining. The inhibitory effects of CA3, a novel inhibitor of YAP, were demonstrated by immunofluorescence, Western blotting, and transwell assays. A human PCR motility array was performed to screen the changes in the gene expression profiles of the cells. In addition, shRNA interference, YAP re-expression, and WAVE1 overexpression plasmids were used to detect the regulatory mechanism of YAP and its relationship with cell migration. RESULTS Yes-associated protein nuclear expression levels were associated with metastasis and 5-year overall survival rate. CA3 exhibited potent inhibitory effects on OSCC migration. YAP knockdown significantly suppressed tumor cell migration in OSCC. These effects were rescued when YAP was re-expressed and during WAVE1 overexpression in YAP-shRNA stable cells. CONCLUSIONS The present study revealed that YAP was associated with cell migration and that this process was regulated by YAP/WAVE1. We also demonstrated that CA3 exhibited marked inhibitory effects on YAP expression and that it could be considered a potential therapeutic target for the treatment of OSCC.
Collapse
Affiliation(s)
- Lei Qi
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Chaoji Shi
- National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.,Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Li
- National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.,Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengming Xu
- National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.,Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Han
- National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.,Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Li
- National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.,Departmentof Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
28
|
Gao F, Yu X, Meng R, Wang J, Jia L. STARD13 is positively correlated with good prognosis and enhances 5-FU sensitivity via suppressing cancer stemness in hepatocellular carcinoma cells. Onco Targets Ther 2018; 11:5371-5381. [PMID: 30214243 PMCID: PMC6126513 DOI: 10.2147/ott.s170775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background STARD13 has been revealed to suppress tumor progression. However, the roles in regulating the stemness of hepatocellular carcinoma (HCC) cells are unclear. Methods Quantitative real-time PCR (qRT-PCR) was used to detect STARD13 expression in HCC tissues and normal adjacent tissues. Kaplan Meier (KM)-plotter analysis was performed to analyze the correlation between STARD13 expression and overall survival of HCC patients. Cell spheroid formation and ALDH1 activity analysis were carried out to detect the effects of STARD13 on the stemness of HCC cells. Furthermore, immunofluorescent, luciferase reporter, RhoA GTPase and F-actin visualization assays were performed to explore the mechanisms contributing to STARD13-mediated effects. Results STARD13 expression was significantly downregulated in HCC tissues compared with normal adjacent tissues, and was positively correlated with the overall survival of HCC patients. Functionally, overexpression of STARD13 inhibited cells stemness and enhanced 5-FU sensitivity in HCC cells. Mechanistically, STRAD13 overexpression suppressed RhoGTPase signaling and thus inhibited transcriptional factor YAP translocation from nuclear to cytoplasm, leading to the downregulation of transcriptional activity of YAP. Notably, the inhibitory effects of STARD13 on HCC cells stemness and 5-FU sensitivity were rescued by RhoA or YAP-5SA overexpression. Conclusion Our results indicate that STARD13 could enhances 5-FU sensitivity by suppressing cancer stemness in hepatocellular carcinoma cells via attenuating YAP transcriptional activity.
Collapse
Affiliation(s)
- Fei Gao
- Department of Oncology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, People's Republic of China,
| | - Xiaolin Yu
- Department of Oncology, AVIC 363 Hospital, Chengdu, People's Republic of China
| | - Rongqin Meng
- Department of Oncology, AVIC 363 Hospital, Chengdu, People's Republic of China
| | - Jisheng Wang
- Department of Oncology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, People's Republic of China,
| | - Lin Jia
- Department of Oncology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, People's Republic of China,
| |
Collapse
|
29
|
Chen ZP, Wei JC, Wang Q, Yang P, Li WL, He F, Chen HC, Hu H, Zhong JB, Cao J. Long non‑coding RNA 00152 functions as a competing endogenous RNA to regulate NRP1 expression by sponging with miRNA‑206 in colorectal cancer. Int J Oncol 2018; 53:1227-1236. [PMID: 29956750 DOI: 10.3892/ijo.2018.4451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/21/2018] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer; however, the molecular mechanisms underlying colorectal tumor metastasis and growth remain elusive. Recently, accumulating evidence has indicated that long non‑coding RNAs (lncRNAs) play a critical role in CRC progression and metastasis; however, the biological role and clinical significance of lncRNA 00152 (lnc00152) in CRC remains largely unknown. Thus, in this study, lnc00152 expression was measured in 80 human CRC tissue samples, 40 non‑cancerous tissue samples, and 3 CRC cell lines (SW480, SW620 and LoVo) using RT‑qPCR. We examined the effects of lnc00152 on CRC cells following transfection with lnc00152 overexpression plasmid or respective siRNA in vitro and in vivo. Luciferase assays revealed the mechanism driving competitive endogenous RNA (ceRNA). We identified that lnc00152 was aberrantly overexpressed in colorectal tumors and cancer cells and that lnc00152 was modulated by miRNA‑206. lnc00152 overexpression enhanced the proliferative and invasive ability of CRC cells in vitro, promoted tumor growth in vivo, and was associated with the shorter overall survival of patients with CRC. In addition, lnc00152 overexpression promoted epithelial-mesenchymal transition (EMT) and increased neuropilin‑1 (NRP1) expression in the CRC cells. By contrast, lnc00152 silencing exerted a counteractive effect. Collectively, these findings demonstrate the critical role of lnc00152 in tumor growth and progression in CRC, and identify a novel therapeutic target associated with CRC development and progression.
Collapse
Affiliation(s)
- Zhuan-Peng Chen
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Jian-Chang Wei
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Qiang Wang
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Ping Yang
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Wang-Lin Li
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Feng He
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Hua-Cui Chen
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - He Hu
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Jun-Bin Zhong
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Jie Cao
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| |
Collapse
|
30
|
Zheng L, Xiang C, Li X, Guo Q, Gao L, Ni H, Xia Y, Xi T. STARD13-correlated ceRNA network-directed inhibition on YAP/TAZ activity suppresses stemness of breast cancer via co-regulating Hippo and Rho-GTPase/F-actin signaling. J Hematol Oncol 2018; 11:72. [PMID: 29848346 PMCID: PMC5977742 DOI: 10.1186/s13045-018-0613-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
Background Targeting cancer stem cells is critical for suppressing cancer progression and recurrence. Finding novel markers or related pathways could help eradicate or diagnose cancer in clinic. Methods By constructing STARD13-correlated ceRNA 3′UTR stable overexpression or knockdown breast cancer cells, we aimed to explore the effects of STARD13-correlated ceRNA network on breast cancer stemness in vitro and in vivo. Further RNA-sequencing was used to analyze transcriptome change in combination with functional studies on candidate signaling. Clinical samples obtained from The Cancer Genome Atlas data were used to validate the correlation between STARD13 and related pathways. Finally, in vitro and in vivo experiments were used to examine the effects of STARD13-correlated ceRNA network on chemotherapy sensitivity/resistance. Results Here, we revealed that this ceRNA network inhibited stemness of breast cancer. Mechanistically, we found that activation of STARD13-correlated ceRNA network was negatively correlated with YAP/TAZ activity in breast cancer. Specifically, this ceRNA network attenuated YAP/TAZ nuclear accumulation and transcriptional activity via collectively modulating Hippo and Rho-GTPase/F-actin signaling. Finally, we demonstrated that YAP/TAZ transcriptional activity regulated by this ceRNA network was involved in chemoresistance. Conclusions Our results uncover a novel mechanism of YAP/TAZ activation in breast cancer and propose the possibility to drive STARD13-correlated ceRNA network to inhibit breast cancer stem cell traits. Electronic supplementary material The online version of this article (10.1186/s13045-018-0613-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Chenxi Xiang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qianqian Guo
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Lanlan Gao
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Haiwei Ni
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yufeng Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
31
|
Yu M, Chen Y, Li X, Yang R, Zhang L, Huangfu L, Zheng N, Zhao X, Lv L, Hong Y, Liang H, Shan H. YAP1 contributes to NSCLC invasion and migration by promoting Slug transcription via the transcription co-factor TEAD. Cell Death Dis 2018; 9:464. [PMID: 29700328 PMCID: PMC5920099 DOI: 10.1038/s41419-018-0515-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/01/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023]
Abstract
Yes-associated protein 1 (YAP1) contributes to the development of multiple tumors, but the mechanism underlying YAP1 deregulation in non-small cell lung cancer (NSCLC) remains unclear. By performing immunohistochemistry (IHC) assays, we found that YAP1 was significantly upregulated in NSCLC compared with adjacent tissues; therefore, we sought to elucidate whether the upregulation of YAP1 contributes to NSCLC progression. MTT and transwell assays showed that YAP1 overexpression promoted proliferation, migration, and invasion in the NSCLC cell lines A549 and H460; YAP1 overexpression also promoted the significant differential expression of epithelial-mesenchymal transition (EMT)-related markers. Nevertheless, YAP1 knockdown alleviated TGF-β1-induced EMT and proliferation, migration, and invasion in NSCLC. Furthermore, western blotting showed that the co-transcription complex YAP1/TEAD was impaired by YAPS94A (a YAP1 mutant without the TEAD binding site), and verteporfin (a small molecular inhibitor of YAP1) inhibited A549 and H460 cell metastasis and EMT-related markers expression, indicating that TEAD mediated the NSCLC aggressiveness induced by YAP1. Moreover, sequence analysis and ChIP and luciferase assays confirmed that YAP1 transcriptionally activated Slug expression by binding to TEAD. Importantly, silencing YAP1 inhibited A549 cell tumorigenesis and EMT and downregulated Slug expression in vivo. Overall, our findings revealed that YAP1 is a driver of NSCLC metastasis because YAP1 promoted the EMT program by inducing Slug transcription.
Collapse
Affiliation(s)
- Mengxue Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China
| | - Yingzhun Chen
- Department of Pathology, the 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China
| | - Rui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China
| | - Lijia Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China
| | - Longtao Huangfu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China
| | - Nan Zheng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China
| | - Xiaoguang Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China
| | - Lifang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China
| | - Yaozhen Hong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China. .,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China.
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China. .,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, 150081, Harbin, Heilongjiang, P. R. China.
| |
Collapse
|
32
|
Warren JSA, Xiao Y, Lamar JM. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers (Basel) 2018; 10:cancers10040115. [PMID: 29642615 PMCID: PMC5923370 DOI: 10.3390/cancers10040115] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) have both emerged as important drivers of cancer progression and metastasis. YAP and TAZ are often upregulated or nuclear localized in aggressive human cancers. There is abundant experimental evidence demonstrating that YAP or TAZ activation promotes cancer formation, tumor progression, and metastasis. In this review we summarize the evidence linking YAP/TAZ activation to metastasis, and discuss the roles of YAP and TAZ during each step of the metastatic cascade. Collectively, this evidence strongly suggests that inappropriate YAP or TAZ activity plays a causal role in cancer, and that targeting aberrant YAP/TAZ activation is a promising strategy for the treatment of metastatic disease. To this end, we also discuss several potential strategies for inhibiting YAP/TAZ activation in cancer and the challenges each strategy poses.
Collapse
Affiliation(s)
- Janine S A Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
33
|
Lin KC, Park HW, Guan KL. Deregulation and Therapeutic Potential of the Hippo Pathway in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kimberly C. Lin
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
34
|
Liu Y, Lu Z, Shi Y, Sun F. AMOT is required for YAP function in high glucose induced liver malignancy. Biochem Biophys Res Commun 2018; 495:1555-1561. [DOI: 10.1016/j.bbrc.2017.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/02/2017] [Indexed: 12/25/2022]
|
35
|
Que K, Tong Y, Que G, Li L, Lin H, Huang S, Wang R, Tang L. Downregulation of miR-874-3p promotes chemotherapeutic resistance in colorectal cancer via inactivation of the Hippo signaling pathway. Oncol Rep 2017; 38:3376-3386. [PMID: 29039607 PMCID: PMC5783584 DOI: 10.3892/or.2017.6041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022] Open
Abstract
Overcoming resistance to chemotherapy is an arduous challenge in the treatment of colorectal cancer (CRC), particularly since the underlying molecular mechanisms remain obscure. In the present study, we reported that miR-874-3p was markedly downregulated in CRC tissues compared with that in adjacent normal colorectal epithelial tissues. Upregulation of miR-874-3p attenuated the chemoresistance of CRC cells to 5-fluorouracil (5-FU) in vitro and in vivo. Conversely, inhibition of miR-874-3p yielded an opposite effect. Furthermore, our results demonstrated that miR-874-3p directly inhibited the expression of transcriptional co-activators YAP and TAZ of the Hippo signaling pathway, resulting in the inactivation of the TEAD transcription. Thus, our findings clarify a novel mechanism by which miR-874-3p restores chemotherapeutic sensitivity of CRC to 5-FU, indicating that offering miR-874-3p mimics in combination with 5-FU may serve as a new therapeutic strategy to circumvent the chemoresistance in CRC.
Collapse
Affiliation(s)
- Kaiqian Que
- Department of Radiation and Chemotherapy Oncology, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, Fujian, P.R. China
| | - Yuanhe Tong
- Department of Radiation and Chemotherapy Oncology, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, Fujian, P.R. China
| | - Ganbo Que
- Department of Critical Care Medicine, The Second Hospital of Longyan, Longyan, Fujian, P.R. China
| | - Li Li
- Department of Pelvic Floor Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, P.R. China
| | - Hongcheng Lin
- Department of Chinese Integrative Medicine Anorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, P.R. China
| | - Shuai Huang
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, P.R. China
| | - Ruoyu Wang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, P.R. China
| | - Langlang Tang
- Department of Radiology, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, Fujian 364000, P.R. China
| |
Collapse
|
36
|
Zhang X, Sun F, Qiao Y, Zheng W, Liu Y, Chen Y, Wu Q, Liu X, Zhu G, Chen Y, Yu Y, Pan Q, Wang J. TFCP2 Is Required for YAP-Dependent Transcription to Stimulate Liver Malignancy. Cell Rep 2017; 21:1227-1239. [DOI: 10.1016/j.celrep.2017.10.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/30/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022] Open
|
37
|
Shi C, Cai Y, Li Y, Li Y, Hu N, Ma S, Hu S, Zhu P, Wang W, Zhou H. Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways. Redox Biol 2017; 14:59-71. [PMID: 28869833 PMCID: PMC5582718 DOI: 10.1016/j.redox.2017.08.013] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
Despite the increasingly important role of Hippo-Yap in hepatocellular carcinoma (HCC) development and progression, little insight is available at the time regarding the specifics interaction of Yap and cancer cells migration. Here, we identified the mechanism by which tumor-intrinsic Yap deletion resulted in HCC migratory inhibition. Yap was greatly upregulated in HCC and its expression promoted the cells migration. Functional studies found that knockdown of Yap induced JNK phosphorylation which closely bound to the Bnip3 promoter and contributed to Bnip3 expression. Higher Bnip3 employed excessive mitophagy leading to mitochondrial dysfunction and ATP shortage. The insufficient ATP inactivated SERCA and consequently triggered intracellular calcium overload. As the consequence of calcium oscillation, Ca/calmodulin-dependent protein kinases II (CaMKII) was signaled and subsequently inhibited cofilin activity via phosphorylated modification. The phosphorylated cofilin failed to manipulate F-actin polymerization and lamellipodium formation, resulting into the impairment of lamellipodium-based migration. Collectively, our results identified Hippo-Yap as the tumor promoter in hepatocellular carcinoma that mediated via activation of cofilin/F-actin/lamellipodium axis by limiting JNK-Bnip3-SERCA-CaMKII pathways, with potential application to HCC therapy involving cancer metastasis. Yap is upregulated in the hepatocellular carcinoma and promotes cancer cell migration. Loss of Yap impairs cell mobility via inhibiting cofilin/F-actin/lamellipodium by activation of JNK-Bnip3-SERCA-CaMKII. Loss of Yap enhances JNK phosphorylation which triggers Bnip3-required mitophagy. Excessive mitophagy induces mitochondrial energy disorder which blunts SERCA and causes calcium overload. The calcium overload drives CaMKII which inactivates cofilin, leading to F-actin degradation and lamellipodium collapse.
Collapse
Affiliation(s)
- Chen Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yong Cai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ye Li
- Department of Oncology, PLA General Hospital Cancer Center, Beijing, China
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Sai Ma
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shunying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Weihu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Hao Zhou
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
38
|
The long non-coding RNA NONHSAT062994 inhibits colorectal cancer by inactivating Akt signaling. Oncotarget 2017; 8:68696-68706. [PMID: 28978149 PMCID: PMC5620289 DOI: 10.18632/oncotarget.19827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022] Open
Abstract
The aberrant expression of long noncoding RNAs (lncRNAs) is implicated in cancer development and progression. However, the clinical significance and mechanism by which NONHSAT062994 regulates colorectal cancer (CRC) is unknown. We here reported that NONHSAT062994 was significantly downregulated in human CRC tissues and cell lines. Moreover, its expression was inversely correlated with tumor size and overall survival (OS) time in CRC patients. In CRC cells, the overexpression and knockdown of NONHSAT062994 inhibited and enhanced CRC cell growth, respectively, in vitro and in vivo. Mechanistically, NONHSAT062994 functioned as a tumor suppressor to inhibit CRC cell growth by inactivating Akt signaling. Notably, the NONHSAT062994 expression status was negatively correlated with the Akt downstream targets c-Myc and Cyclin D1 in clinical CRC samples. The current findings suggest that NONHSAT062994 plays a critical role in the development of CRC by regulating Akt signaling, and identified a candidate prognostic biomarker or potential therapeutic target for CRC patients.
Collapse
|
39
|
Li XM, Yang TY, He XS, Wang JR, Gan WJ, Zhang S, Li JM, Wu H. Orphan nuclear receptor Nur77 inhibits poly (I:C)-triggered acute liver inflammation by inducing the ubiquitin-editing enzyme A20. Oncotarget 2017; 8:61025-61035. [PMID: 28977843 PMCID: PMC5617403 DOI: 10.18632/oncotarget.17731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Abstract
Inflammation is a key contributor to various types of acute and chronic liver disease. We recently reported that lack of Nur77, an orphan nuclear receptor, contributes to the pathogenesis of inflammatory diseases including inflammatory bowel disease and sepsis. However, whether Nur77 plays a critical role in liver inflammation remains to be fully understood. Employing in vivo acute liver inflammation model in wild-type (Nur77+/+) and Nur77-/- mice, we here found that Nur77 deficiency dramatically increased the production of pro-inflammatory cytokines and accelerated liver injury induced by poly (I:C)/D-GalN in Nur77-/- mice. Mechanistically, Nur77 acts as a negative regulator of NF-κB signaling by inducing the expression of ubiquitin-editing enzyme A20, a novel target gene of Nur77. Notably, in inflammatory cells, overexpression of A20 enhanced, whereas knockdown of A20 by siRNA approach impaired, the inhibitory effect of Nur77 on poly (I:C)-triggered inflammation. Collectively, our data suggest that the orphan nuclear receptor Nur77 plays a protective role in poly (I:C)-triggered liver inflammation by inducing A20, thus making it a promising target for the prevention and treatment of liver inflammation.
Collapse
Affiliation(s)
- Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou 215123, China
| | - Tian-Yu Yang
- Pathology Center and Department of Pathology, Soochow University, Suzhou 215123, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou 215123, China
| | - Wen-Juan Gan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou 215123, China
| | - Jian-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou 215123, China
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou 215123, China
| |
Collapse
|
40
|
12-O-Tetradecanoylphorbol-13-acetate (TPA) is anti-tumorigenic in liver cancer cells via inhibiting YAP through AMOT. Sci Rep 2017; 7:44940. [PMID: 28322318 PMCID: PMC5359578 DOI: 10.1038/srep44940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/15/2017] [Indexed: 12/22/2022] Open
Abstract
TPA stimulates carcinogenesis in various types of cancers. However, we found that TPA inhibits transformative phenotypes in liver cancer cells via the translocation of YAP from the nucleus, where it functions as a transcriptional co-factor, to the cytoplasm. Such effects led to a separation of YAP from its dependent transcription factors. The inhibitory effects of TPA on YAP were AMOT dependent. Without AMOT, TPA was unable to alter YAP activity. Importantly, the depletion of YAP and AMOT blocked the TPA-reduced transformative phenotypes. In sum, TPA has been established as an anti-tumorigenic drug in liver cancer cells via YAP and AMOT.
Collapse
|
41
|
Li XM, Wang JR, Shen T, Gao SS, He XS, Li JN, Yang TY, Zhang S, Gan WJ, Li JM, Wu H. Nur77 deficiency in mice accelerates tumor invasion and metastasis by facilitating TNFα secretion and lowering CSF-1R expression. PLoS One 2017; 12:e0171347. [PMID: 28170411 PMCID: PMC5295676 DOI: 10.1371/journal.pone.0171347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Nur77, an orphan member of the nuclear receptor superfamily, plays critical roles in inflammation and immunity. However, the role of Nur77 in tumor microenvironment remains elusive. Results showed that deletion of Nur77 strikingly enhanced tumor metastasis compared to WT mice. Additionally, compared to the conditioned media derived from Nur77+/+ peritoneal macrophages (CM1), the conditioned media derived from Nur77-/- peritoneal macrophages (CM2) significantly promoted the EMT of cancer cells, and greatly enhanced the migratory and invasive abilities of cancer cells. Moreover, studies using TNF-α blocking antibody demonstrated that pro-inflammatory cytokine TNF-α was indispensable in supporting CM2-induced EMT to drive cancer cells migration and invasion. Furthermore, we found that Nur77 promoted the expression of CSF-1R, a novel downstream target gene of Nur77, and subsequently enhanced the migration of inflammatory cells. Notably, infiltration of inflammatory cells in the tumors of Nur77-/- mice was markedly abrogated compared to Nur77+/+ mice. Collectively, these results revealed that host Nur77 expression was pivotal in antitumor immune response, and in inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Tong Shen
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Shang-Shang Gao
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang-Nan Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Tian-Yu Yang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Wen-Juan Gan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ming Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- * E-mail: (HW); (JML)
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
- * E-mail: (HW); (JML)
| |
Collapse
|
42
|
Janse van Rensburg HJ, Yang X. The roles of the Hippo pathway in cancer metastasis. Cell Signal 2016; 28:1761-72. [DOI: 10.1016/j.cellsig.2016.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 01/08/2023]
|
43
|
Gan WJ, Wang JR, Zhu XL, He XS, Guo PD, Zhang S, Li XM, Li JM, Wu H. RARγ-induced E-cadherin downregulation promotes hepatocellular carcinoma invasion and metastasis. J Exp Clin Cancer Res 2016; 35:164. [PMID: 27756432 PMCID: PMC5069892 DOI: 10.1186/s13046-016-0441-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Aberrant expression of Retinoic acid receptor γ (RARγ) is implicated in cancer development. Our previous study identified that RARγ functions as a tumor promoter to drive hepatocellular carcinoma (HCC) growth. However, its contribution to HCC invasion and metastasis remains unclear. METHODS RARγ expression in clinical HCC samples was detected by western blot and immunohistochemistry. The relationship between RARγ expression levels and the clinical characteristics were evaluated. HCC cell line MHCC-97H were stably knocked down RARγ using a lentivirus vector-based shRNA technique. The cells were analyzed by migration and invasion assays, and injected into nude mice to assess tumor metastasis. E-cadherin expression regulated by RARγ was examined by qPCR, western blot and immunofluorescence staining. RESULTS The expression of RARγ is significantly upregulated in human HCC tissues. Moreover, its expression positively correlates with tumor size, distant metastasis and TNM stage, and negatively correlates with length of survival of HCC patients. Knockdown of RARγ markedly inhibits HCC cell invasion and metastasis both in vitro and in vivo. Mechanistic investigations reveal that RARγ functions through regulation of NF-κB-mediated E-cadherin downregulation to promote HCC invasion and metastasis. Notably, RARγ expression status negatively correlates with E-cadherin expression in HCC cell lines and clinical HCC samples. CONCLUSIONS These findings demonstrate that RARγ could promote HCC invasion and metastasis by regulating E-cadherin reduction, and implicate new strategies to aggressively treat HCC through targeting RARγ/E-cadherin signaling axis.
Collapse
Affiliation(s)
- Wen-Juan Gan
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Xiao-Li Zhu
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Xiao-Shun He
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Peng-Da Guo
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Jian-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| |
Collapse
|