1
|
Di Paolo V, Paolini A, Galardi A, Gasparini P, De Cecco L, Colletti M, Lampis S, Raieli S, De Stefanis C, Miele E, Russo I, Di Ruscio V, Casanova M, Alaggio R, Masotti A, Milano GM, Locatelli F, Di Giannatale A. Plasma-derived extracellular vesicles miR-335-5p as potential diagnostic biomarkers for fusion-positive rhabdomyosarcoma. J Exp Clin Cancer Res 2024; 43:282. [PMID: 39385294 PMCID: PMC11463097 DOI: 10.1186/s13046-024-03197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma, with embryonal (ERMS) and alveolar (ARMS) representing the two most common histological subtypes. ARMS shows poor prognosis, being often metastatic at diagnosis. Thus, the discovery of novel biomarkers predictive of tumor aggressiveness represents one of the most important challenges to overcome and may help the development of tailored therapies. In the last years, miRNAs carried in extracellular vesicles (EVs), small vesicles of endocytic origin, have emerged as ideal candidate biomarkers due to their stability in plasma and their tissue specificity. METHODS EVs miRNAs were isolated from plasma of 21 patients affected by RMS and 13 healthy childrens (HC). We performed a miRNA profile using the Serum/Plasma Focus microRNA PCR panels (Qiagen), and RT-qPCR for validation analysis. Statistically significant (p < 0.05) miRNAs were obtained by ANOVA test. RESULTS We identified nine EVs miRNAs (miR-483-5p, miR-132-3p, miR-766-3p, miR-454-3p miR-197-3p, miR-335-3p, miR-17-5p, miR-486-5p and miR-484) highly upregulated in RMS patients compared to HCs. Interestingly, 4 miRNAs (miR-335-5p, miR-17-5p, miR-486-5p and miR-484) were significantly upregulated in ARMS samples compared to ERMS. In the validation analysis performed in a larger group of patients only three miRNAs (miR-483-5p, miR-335-5p and miR-484) were differentially significantly expressed in RMS patients compared to HC. Among these, mir-335-5p was significant also when compared ARMS to ERMS patients. MiR-335-5p was upregulated in RMS tumor tissues respect to normal tissues (p = 0.00202) and upregulated significantly between ARMS and ERMS (p = 0.04). Furthermore, the miRNA expression correlated with the Intergroup Rhabdomyosarcoma Study (IRS) grouping system, (p = 0.0234), and survival (OS, p = 0.044; PFS, p = 0.025). By performing in situ hybridization, we observed that miR-335-5p signal was exclusively in the cytoplasm of cancer cells. CONCLUSION We identified miR-335-5p as significantly upregulated in plasma derived EVs and tumor tissue of patients affected by ARMS. Its expression correlates to stage and survival in patients. Future studies are needed to validate miR-335-5p as prognostic biomarker and to deeply elucidate its biological role.
Collapse
Affiliation(s)
- Virginia Di Paolo
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Paolini
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Galardi
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Marta Colletti
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Lampis
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | - Evelina Miele
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ida Russo
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Di Ruscio
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Rita Alaggio
- Pathology Unit and Predictive Molecular Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Masotti
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Giuseppe Maria Milano
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Angela Di Giannatale
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Song Z, Gong B, Qu T, Chen Y, Zhao G, Jin Y, Zhao Q. Anlotinib destabilizes PAX3-FOXO1 to induce rhabdomyosarcoma cell death via upregulating NEK2. Biomed Pharmacother 2024; 177:117126. [PMID: 38996706 DOI: 10.1016/j.biopha.2024.117126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is one of the most common soft tissue sarcomas in children and adolescents, in which PAX3-FOXO1 fusion gene positive patients have very poor prognosis. PAX3-FOXO1 has been identified as an independent prognostic predictor in RMS, with no currently available targeted therapeutic intervention. The novel tyrosine kinase inhibitor anlotinib exhibits a wide range of anticancer effects in multiple types of cancers; however, there have been no relevant studies regarding its application in RMS. MATERIALS AND METHODS We investigated the effects of PAX3-FOXO1 on the therapeutic efficacy of anlotinib using the CCK-8 assay, flow cytometry, invasion assay, wound healing assay, western blotting, quantitative polymerase chain reaction(qPCR), and xenograft experiments. RNA-seq and co-immunoprecipitation assays were conducted to determine the specific mechanism by which anlotinib regulates PAX3-FOXO1 expression. RESULTS Anlotinib effectively inhibited RMS cell proliferation and promoted apoptosis and G2/M phase arrest while impeding tumor growth in vivo. Downregulation of PAX3-FOXO1 enhances the antitumor effects of anlotinib. Anlotinib upregulates protein kinase NEK2 and increases the degradation of PAX3-FOXO1 via the ubiquitin-proteasome pathway, leading to a reduction in PAX3-FOXO1 protein levels. CONCLUSION Anlotinib effectively inhibited the malignant progression of RMS and promoted degradation of the fusion protein PAX3-FOXO1. Anlotinib could be a targeted therapeutic approach to treat PAX3-FOXO1 fusion-positive RMS.
Collapse
Affiliation(s)
- Zian Song
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Baocheng Gong
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Tongyuan Qu
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yankun Chen
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Guangzong Zhao
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yan Jin
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| | - Qiang Zhao
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
3
|
Chaiyawat P, Sangkhathat S, Chiangjong W, Wongtrakoongate P, Hongeng S, Pruksakorn D, Chutipongtanate S. Targeting pediatric solid tumors in the new era of RNA therapeutics. Crit Rev Oncol Hematol 2024; 200:104406. [PMID: 38834094 DOI: 10.1016/j.critrevonc.2024.104406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Despite substantial progress in pediatric cancer treatment, poor prognosis remained for patients with recurrent or metastatic disease, given the limitations of approved targeted treatments and immunotherapies. RNA therapeutics offer significant potential for addressing a broad spectrum of diseases, including cancer. Advances in manufacturing and delivery systems are paving the way for the rapid development of therapeutic RNAs for clinical applications. This review summarizes therapeutic RNA classifications and the mechanisms of action, highlighting their potential in manipulating major cancer-related pathways and biological effects. We also focus on the pre-clinical investigation of RNA molecules with efficient delivery systems for their therapeutic potential targeting pediatric solid tumors.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Surasak Sangkhathat
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ra-mathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ra-mathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
4
|
Sheeter DA, Garza S, Park HG, Benhamou LRE, Badi NR, Espinosa EC, Kothapalli KSD, Brenna JT, Powers JT. Unsaturated Fatty Acid Synthesis Is Associated with Worse Survival and Is Differentially Regulated by MYCN and Tumor Suppressor microRNAs in Neuroblastoma. Cancers (Basel) 2024; 16:1590. [PMID: 38672672 PMCID: PMC11048984 DOI: 10.3390/cancers16081590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
MYCN amplification (MNA) and disruption of tumor suppressor microRNA (TSmiR) function are key drivers of poor outcomes in neuroblastoma (NB). While MYCN and TSmiRs regulate glucose metabolism, their role in de novo fatty acid synthesis (FAS) and unsaturated FAS (UFAS) remains poorly understood. Here, we show that FAS and UFAS (U/FAS) genes FASN, ELOVL6, SCD, FADS2, and FADS1 are upregulated in high-risk (HR) NB and that their expression is associated with lower overall survival. RNA-Seq analysis of human NB cell lines revealed parallel U/FAS gene expression patterns. Consistent with this, we found that NB-related TSmiRs were predicted to target these genes extensively. We further observed that both MYC and MYCN upregulated U/FAS pathway genes while suppressing TSmiR host gene expression, suggesting a possible U/FAS regulatory network between MYCN and TSmiRs in NB. NB cells are high in de novo synthesized omega 9 (ω9) unsaturated fatty acids and low in both ω6 and ω3, suggesting a means for NB to limit cell-autonomous immune stimulation and reactive oxygen species (ROS)-driven apoptosis from ω6 and ω3 unsaturated fatty acid derivatives, respectively. We propose a model in which MYCN and TSmiRs regulate U/FAS and play an important role in NB pathology, with implications for other MYC family-driven cancers.
Collapse
Affiliation(s)
- Dennis A. Sheeter
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Secilia Garza
- Department of Chemistry, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA;
| | - Hui Gyu Park
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Lorraine-Rana E. Benhamou
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Niharika R. Badi
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Erika C. Espinosa
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Kumar S. D. Kothapalli
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - J. Thomas Brenna
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
- Department of Chemistry, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA;
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - John T. Powers
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Hüttner SS, Henze H, Elster D, Koch P, Anderer U, von Eyss B, von Maltzahn J. A dysfunctional miR-1-TRPS1-MYOG axis drives ERMS by suppressing terminal myogenic differentiation. Mol Ther 2023; 31:2612-2632. [PMID: 37452493 PMCID: PMC10492030 DOI: 10.1016/j.ymthe.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Rhabdomyosarcoma is the most common pediatric soft tissue tumor, comprising two major subtypes: the PAX3/7-FOXO1 fusion-negative embryonal and the PAX3/7-FOXO1 fusion-positive alveolar subtype. Here, we demonstrate that the expression levels of the transcriptional repressor TRPS1 are specifically enhanced in the embryonal subtype, resulting in impaired terminal myogenic differentiation and tumor growth. During normal myogenesis, expression levels of TRPS1 have to decrease to allow myogenic progression, as demonstrated by overexpression of TRPS1 in myoblasts impairing myotube formation. Consequentially, myogenic differentiation in embryonal rhabdomyosarcoma in vitro as well as in vivo can be achieved by reducing TRPS1 levels. Furthermore, we show that TRPS1 levels in RD cells, the bona fide model cell line for embryonal rhabdomyosarcoma, are regulated by miR-1 and that TRPS1 and MYOD1 share common genomic binding sites. The myogenin (MYOG) promoter is one of the critical targets of TRPS1 and MYOD1; we demonstrate that TRPS1 restricts MYOG expression and thereby inhibits terminal myogenic differentiation. Therefore, reduction of TRPS1 levels in embryonal rhabdomyosarcoma might be a therapeutic approach to drive embryonal rhabdomyosarcoma cells into myogenic differentiation, thereby generating postmitotic myotubes.
Collapse
Affiliation(s)
- Sören S Hüttner
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Henriette Henze
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Dana Elster
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Ursula Anderer
- Department of Cell Biology and Tissue Engineering, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany; Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany.
| |
Collapse
|
6
|
Centrón-Broco A, Rossi F, Grelloni C, Garraffo R, Dattilo D, Giuliani A, Di Timoteo G, Colantoni A, Bozzoni I, Beltran Nebot M. CircAFF1 Is a Circular RNA with a Role in Alveolar Rhabdomyosarcoma Cell Migration. Biomedicines 2023; 11:1893. [PMID: 37509532 PMCID: PMC10376778 DOI: 10.3390/biomedicines11071893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Circular RNAs (circRNAs), covalently closed RNAs that originate from back-splicing events, participate in the control of several processes, including those that occur in the development of pathological conditions such as cancer. Hereby, we describe circAFF1, a circular RNA overexpressed in alveolar rhabdomyosarcoma. Using RH4 and RH30 cell lines, a classical cell line models for alveolar rhabdomyosarcoma, we demonstrated that circAFF1 is a cytoplasmatic circRNA and its depletion impacts cell homeostasis favouring cell migration through the downregulation of genes involved in cell adhesion pathways. The presented data underline the importance of this circular RNA as a new partial suppressor of the alveolar rhabdomyosarcoma tumour progression and as a putative future therapeutic target.
Collapse
Affiliation(s)
- Alvaro Centrón-Broco
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Rossi
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Chiara Grelloni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Raffaele Garraffo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Giuliani
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Manuel Beltran Nebot
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
7
|
Song YL, Yang MH, Zhang S, Wang H, Kai KL, Yao CX, Dai FF, Zhou MJ, Li JB, Wei ZR, Yin Z, Zhu WG, Xue L, Zang MX. A GRIP-1-EZH2 switch binding to GATA-4 is linked to the genesis of rhabdomyosarcoma through miR-29a. Oncogene 2022; 41:5223-5237. [PMID: 36309571 DOI: 10.1038/s41388-022-02521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022]
Abstract
Terminal differentiation failure is an important cause of rhabdomyosarcoma genesis, however, little is known about the epigenetic regulation of aberrant myogenic differentiation. Here, we show that GATA-4 recruits polycomb group proteins such as EZH2 to negatively regulate miR-29a in undifferentiated C2C12 myoblast cells, whereas recruitment of GRIP-1 to GATA-4 proteins displaces EZH2, resulting in the activation of miR-29a during myogenic differentiation of C2C12 cells. Moreover, in poorly differentiated rhabdomyosarcoma cells, EZH2 still binds to the miR-29a promoter with GATA-4 to mediate transcriptional repression of miR-29a. Interestingly, once re-differentiation of rhabdomyosarcoma cells toward skeletal muscle, EZH2 was dispelled from miR-29a promoter which is similar to that in myogenic differentiation of C2C12 cells. Eventually, this expression of miR-29a results in limited rhabdomyosarcoma cell proliferation and promotes myogenic differentiation. We thus establish that GATA-4 can function as a molecular switch in the up- and downregulation of miR-29a expression. We also demonstrate that GATA-4 acts as a tumor suppressor in rhabdomyosarcoma partly via miR-29a, which thus provides a potential therapeutic target for rhabdomyosarcoma.
Collapse
Affiliation(s)
- Yang-Liu Song
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming-Hui Yang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Si Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Kun-Lun Kai
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chun-Xia Yao
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fei-Fei Dai
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Meng-Jiao Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Biao Li
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi-Ru Wei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongnan Yin
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Cancer Center of Peking University Third Hospital, Peking University Third Hospital, Beijing, 100191, China.
| | - Ming-Xi Zang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Chadda KR, Blakey EE, Coleman N, Murray MJ. The clinical utility of dysregulated microRNA expression in paediatric solid tumours. Eur J Cancer 2022; 176:133-154. [PMID: 36215946 DOI: 10.1016/j.ejca.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are short, non-protein-coding genes that regulate the expression of numerous protein-coding genes. Their expression is dysregulated in cancer, where they may function as oncogenes or tumour suppressor genes. As miRNAs are highly resistant to degradation, they are ideal biomarker candidates to improve the diagnosis and clinical management of cancer, including prognostication. Furthermore, miRNAs dysregulated in malignancy represent potential therapeutic targets. The use of miRNAs for these purposes is a particularly attractive option to explore for paediatric malignancies, where the mutational burden is typically low, in contrast to cancers affecting adult patients. As childhood cancers are rare, it has taken time to accumulate the necessary body of evidence showing the potential for miRNAs to improve clinical management across this group of tumours. Here, we review the current literature regarding the potential clinical utility of miRNAs in paediatric solid tumours, which is now both timely and justified. Exploring such avenues is warranted to improve the management and outcomes of children affected by cancer.
Collapse
Affiliation(s)
- Karan R Chadda
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ellen E Blakey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
9
|
Rossi F, Beltran M, Damizia M, Grelloni C, Colantoni A, Setti A, Di Timoteo G, Dattilo D, Centrón-Broco A, Nicoletti C, Fanciulli M, Lavia P, Bozzoni I. Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity. Mol Cell 2022; 82:75-89.e9. [PMID: 34942120 PMCID: PMC8751636 DOI: 10.1016/j.molcel.2021.11.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
Circular RNAs (circRNAs) are widely expressed in eukaryotes and are regulated in many biological processes. Although several studies indicate their activity as microRNA (miRNA) and protein sponges, little is known about their ability to directly control mRNA homeostasis. We show that the widely expressed circZNF609 directly interacts with several mRNAs and increases their stability and/or translation by favoring the recruitment of the RNA-binding protein ELAVL1. Particularly, the interaction with CKAP5 mRNA, which interestingly overlaps the back-splicing junction, enhances CKAP5 translation, regulating microtubule function in cancer cells and sustaining cell-cycle progression. Finally, we show that circZNF609 downregulation increases the sensitivity of several cancer cell lines to different microtubule-targeting chemotherapeutic drugs and that locked nucleic acid (LNA) protectors against the pairing region on circZNF609 phenocopy such effects. These data set an example of how the small effects tuned by circZNF609/CKAP5 mRNA interaction might have a potent output in tumor growth and drug response.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Manuel Beltran
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Michela Damizia
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy; Institute of Molecular Biology and Pathology CNR, Rome 00185, Italy
| | - Chiara Grelloni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Alessio Colantoni
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
| | - Adriano Setti
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Alvaro Centrón-Broco
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Carmine Nicoletti
- DAHFMO - Section of Histology and Medical Embryology, Sapienza University of Rome, Rome 00185, Italy
| | - Maurizio Fanciulli
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology CNR, Rome 00185, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy; Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy.
| |
Collapse
|
10
|
Loss of TACC1 variant25 inducing cell proliferation and suppressing autophagy in head and neck squamous carcinoma. Cell Death Discov 2021; 7:386. [PMID: 34897285 PMCID: PMC8665927 DOI: 10.1038/s41420-021-00777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Transforming acidic coiled-coil containing protein1 (TACC1) is closely related to transcription, translation and centrosome dynamics. Dysregulation of TACC1 is associated with multiple malignancies. Alternative splicing (AS) of TACC1 produces multiple variants, which are of great significance in cancer biology. However, the expression and biological functions of TACC1 variants in head and neck squamous cell carcinoma (HNSCC) remain unclear. In this study, we found for the first time that TACC1 variants exhibited a characteristic expression pattern and that TACC1 variant25 (TACC1v25) was downregulated in HNSCC tissues and cell lines. Overexpression of TACC1v25 in Cal27 and Fadu cells significantly inhibited proliferation and promoted autophagy. Moreover, expression levels of nuclear pERK and p-mTOR were significantly decreased, while the expression of Beclin-1 and the LC3II/LC3I ratio were increased in TACC1v25-overexpressed Cal27 and Fadu cells. After the addition of AKT activator SC79 to TACC1v25-overexpressed Cal27 and Fadu cells, the autophagy levels were remarkably rescued. In conclusion, TACC1v25 inhibits HNSCC progression through the ERK and AKT/mTOR pathways by inhibiting proliferation and increasing autophagy. TACC1v25 might have potential use as a tumour suppressor in HNSCC.
Collapse
|
11
|
Pozzo E, Giarratana N, Sassi G, Elmastas M, Killian T, Wang CC, Marini V, Ronzoni F, Yustein J, Uyttebroeck A, Sampaolesi M. Upregulation of miR181a/miR212 Improves Myogenic Commitment in Murine Fusion-Negative Rhabdomyosarcoma. Front Physiol 2021; 12:701354. [PMID: 34421639 PMCID: PMC8378536 DOI: 10.3389/fphys.2021.701354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Fusion-negative rhabdomyosarcoma (FN-RMS) is the most common soft tissue sarcoma of childhood arising from undifferentiated skeletal muscle cells from uncertain origin. Currently used therapies are poorly tumor-specific and fail to tackle the molecular machinery underlying the tumorigenicity and uncontrolled proliferation of FN-RMS. We and other groups recently found that microRNAs (miRNA) network contributes to myogenic epigenetic memory and can influence pluripotent stem cell commitments. Here, we used the previously identified promyogenic miRNAs and tailored it to the murine FN-RMS. Subsequently, we addressed the effects of miRNAs in vivo by performing syngeneic transplant of pre-treated FN-RMS cell line in C57Bl/6 mice. miRNA pre-treatment affects murine FN-RMS cell proliferation in vivo as showed by bioluminescence imaging analysis, resulting in better muscle performances as highlighted by treadmill exhaustion tests. In conclusion, in our study we identified a novel miRNA combination tackling the anti-myogenic features of FN-RMS by reducing proliferation and described novel antitumorigenic therapeutic targets that can be further explored for future pre-clinical applications.
Collapse
Affiliation(s)
- Enrico Pozzo
- Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium.,Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | - Theo Killian
- VIB KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Chao-Chi Wang
- Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | | | - Flavio Ronzoni
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Jason Yustein
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, United States.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Anne Uyttebroeck
- Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Paediatric Haemato-Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium.,Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
HER Tyrosine Kinase Family and Rhabdomyosarcoma: Role in Onset and Targeted Therapy. Cells 2021; 10:cells10071808. [PMID: 34359977 PMCID: PMC8305095 DOI: 10.3390/cells10071808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
Rhabdomyosarcomas (RMS) are tumors of the skeletal muscle lineage. Two main features allow for distinction between subtypes: morphology and presence/absence of a translocation between the PAX3 (or PAX7) and FOXO1 genes. The two main subtypes are fusion-positive alveolar RMS (ARMS) and fusion-negative embryonal RMS (ERMS). This review will focus on the role of receptor tyrosine kinases of the human epidermal growth factor receptor (EGFR) family that is comprised EGFR itself, HER2, HER3 and HER4 in RMS onset and the potential therapeutic targeting of receptor tyrosine kinases. EGFR is highly expressed by ERMS tumors and cell lines, in some cases contributing to tumor growth. If not mutated, HER2 is not directly involved in control of RMS cell growth but can be expressed at significant levels. A minority of ERMS carries a HER2 mutation with driving activity on tumor growth. HER3 is frequently overexpressed by RMS and can play a role in the residual myogenic differentiation ability and in resistance to signaling-directed therapy. HER family members could be exploited for therapeutic approaches in two ways: blocking the HER member (playing a driving role for tumor growth with antibodies or inhibitors) and targeting expressed HER members to vehiculate toxins or immune effectors.
Collapse
|
13
|
Codenotti S, Marampon F, Triggiani L, Bonù ML, Magrini SM, Ceccaroli P, Guescini M, Gastaldello S, Tombolini V, Poliani PL, Asperti M, Poli M, Monti E, Fanzani A. Caveolin-1 promotes radioresistance in rhabdomyosarcoma through increased oxidative stress protection and DNA repair. Cancer Lett 2021; 505:1-12. [PMID: 33610729 DOI: 10.1016/j.canlet.2021.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
The aim of this work was to investigate whether Caveolin-1 (Cav-1), a membrane scaffolding protein widely implicated in cancer, may play a role in radiation response in rhabdomyosarcoma (RMS), a pediatric soft tissue tumor. For this purpose, we employed human RD cells in which Cav-1 expression was stably increased via gene transfection. After radiation treatment, we observed that Cav-1 limited cell cycle arrest in the G2/M phase and enhanced resistance to cell senescence and apoptosis via reduction of p21Cip1/Waf1, p16INK4a and Caspase-3 cleavage. After radiotherapy, Cav-1-mediated cell radioresistance was characterized by low accumulation of H2AX foci, as confirmed by Comet assay, marked neutralization of reactive oxygen species (ROS) and enhanced DNA repair via activation of ATM, Ku70/80 complex and DNA-PK. We found that Cav-1-overexpressing RD cells, already under basal conditions, had higher glutathione (GSH) content and greater catalase expression, which conferred protection against acute treatment with hydrogen peroxide. Furthermore, pre-treatment of Cav-1-overexpressing cells with PP2 or LY294002 compounds restored the sensitivity to radiation treatment, indicating a role for Src-kinases and Akt pathways in Cav-1-mediated radioresistance. These findings were confirmed using radioresistant RD and RH30 lines generated by hypofractionated radiotherapy protocol, which showed marked increase of Cav-1, catalase and Akt, and sensitivity to PP2 and LY294002 treatment. In conclusion, these data suggest that concerted activity of Cav-1 and catalase, in cooperation with activation of Src-kinase and Akt pathways, may represent a network of vital mechanisms that allow irradiated RMS cells to evade cell death induced by oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Marampon
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy; Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Luca Triggiani
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Marco Lorenzo Bonù
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Stefano Maria Magrini
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Paola Ceccaroli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Laishan District, Guanhai Road 346, Yantai, Shandong Province, 264003 China
| | - Vincenzo Tombolini
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy; Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
14
|
Lee HY, Son SW, Moeng S, Choi SY, Park JK. The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer. Int J Mol Sci 2021; 22:ijms22020627. [PMID: 33435156 PMCID: PMC7827914 DOI: 10.3390/ijms22020627] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a global health concern, and the prognosis of patients with cancer is associated with metastasis. Multistep processes are involved in cancer metastasis. Accumulating evidence has shown that cancer cells acquire the capacity of anoikis resistance and anchorage-independent cell growth, which are critical prerequisite features of metastatic cancer cells. Multiple cellular factors and events, such as apoptosis, survival factors, cell cycle, EMT, stemness, autophagy, and integrins influence the anoikis resistance and anchorage-independent cell growth in cancer. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are dysregulated in cancer. They regulate cellular signaling pathways and events, eventually contributing to cancer aggressiveness. This review presents the role of miRNAs and lncRNAs in modulating anoikis resistance and anchorage-independent cell growth. We also discuss the feasibility of ncRNA-based therapy and the natural features of ncRNAs that need to be contemplated for more beneficial therapeutic strategies against cancer.
Collapse
|
15
|
Sato Y, Suzuki R, Takagi T, Sugimoto M, Ohira H. Circulating extracellular vesicle-encapsulated microRNA as screening biomarkers for intraductal papillary mucinous neoplasm. Oncol Lett 2020; 20:315. [PMID: 33133251 PMCID: PMC7590436 DOI: 10.3892/ol.2020.12178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Since intraductal papillary mucinous neoplasms (IPMNs) occasionally contain pancreatic malignancies, it is vital to develop a screening program that can detect IPMNs in the general population and that can identify IPMNs with high malignant potential. The present study investigated whether microRNAs (miRNAs/miRs) in the blood may be diagnostic markers for IPMN screening. Initially, extracellular vesicle-encapsulated miRNAs (EV-miRNAs) in the serum with altered expression between IPMN, IPMN-derived carcinoma (IPMC) and control samples, were identified using microarray analysis. To validate the microarray results, the expression levels of selected EV-miRNAs were detected. Briefly, serum EV-miRNAs were extracted from 38 patients with IPMN (11 patients with IPMC and 27 patients with benign IPMN) and 21 non-tumor controls. The results of the microarray analysis revealed that the expression levels of EV-miR-22-3p, EV-miR-4539 and EV-miR-6132 were higher in the IPMN and IPMC serum samples compared with those in the control samples. With regards to discriminating IPMNs from controls, only miR-4539 exhibited a significant difference (P=0.004). In the comparison between IPMN and IPMC, carcinogenic antigen 19-9 (CA19-9) and EV-miR-6132 exhibited significant differences (P=0.01 and P=0.007, respectively). Receiver operating characteristic (ROC) curve analysis demonstrated that EV-miR-4539 could discriminate patients with IPMNs from control patients, with an area under the curve (AUC) of 0.72. Additionally, ROC analysis indicated that the markers could discriminate patients with IPMC from benign IPMN, with AUC values of 0.77 for EV-miR-6132 and 0.74 for CA19-9. In conclusion, the present study suggested that EV-miRNAs may be used as diagnostic markers for the detection of IPMNs in the general population as well as for identifying IPMNs with high malignant potential.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Rei Suzuki
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tadayuki Takagi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Mitsuru Sugimoto
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
16
|
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood mesenchymal tumor with two major molecular and histopathologic subtypes: fusion-positive (FP)RMS, characterized by the PAX3-FOXO1 fusion protein and largely of alveolar histology, and fusion-negative (FN)RMS, the majority of which exhibit embryonal tumor histology. Metastatic disease continues to be associated with poor overall survival despite intensive treatment strategies. Studies on RMS biology have provided some insight into autocrine as well as paracrine signaling pathways that contribute to invasion and metastatic propensity. Such pathways include those driven by the PAX3-FOXO1 fusion oncoprotein in FPRMS and signaling pathways such as IGF/RAS/MEK/ERK, PI3K/AKT/mTOR, cMET, FGFR4, and PDGFR in both FP and FNRMS. In addition, specific cytoskeletal proteins, G protein coupled receptors, Hedgehog, Notch, Wnt, Hippo, and p53 pathways play a role, as do specific microRNA. Paracrine factors, including secreted proteins and RMS-derived exosomes that carry cargo of protein and miRNA, have also recently emerged as potentially important players in RMS biology. This review summarizes the known factors contributing to RMS invasion and metastasis and their implications on identifying targets for treatment and a better understanding of metastatic RMS.
Collapse
|
17
|
Inhibition of the long non-coding RNA NEAT1 protects cardiomyocytes from hypoxia in vitro via decreased pri-miRNA processing. Cell Death Dis 2020; 11:677. [PMID: 32826883 PMCID: PMC7442835 DOI: 10.1038/s41419-020-02854-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
While restoration of coronary blood flow to the ischemic heart is the most effective strategy for reducing infarct size, reperfusion injury represents a significant limiting factor on clinical outcomes in myocardial infarction patients. Ischemic preconditioning (IPC) has been shown to inhibit reperfusion injury and represents an attractive model for studying cardioprotective signal transduction pathways. Long non-coding RNAs (lncRNAs) are a structurally and functionally heterogenous class of RNA transcripts with unknown roles in IPC-induced cardioprotection. Through microarray-based expression profiling of 31,423 lncRNAs in cardiac tissue from IPC mice, we identified the nuclear transcript Neat1 to be rapidly and robustly decreased in response to IPC. siRNA-mediated knock down of Neat1 reduced apoptosis and necrosis in murine cardiomyocytes (CM) and human iPS-derived CMs in response to prolonged hypoxia and hypoxia-reoxygenation, assessed with Annexin V/propidium iodide-staining, a Caspase 3/7 activity assay, LDH release, and western blot for cleaved Caspase 3. Mechanistically, Neat1 was shown to regulate processing of pro-apoptotic microRNA-22 (miR-22) in murine and human CM nuclei using a luciferase reporter assay. Hypoxia-induced downregulation of Neat1 was shown to result in accumulation of unprocessed pri-miRNA and decreased availability of biologically active miRNA, including miR-22. Addition of exogenous synthetic miR-22 reversed the protective effect of Neat1 knock down in human iPS-CM. In conclusion, we have identified the nuclear lncRNA Neat1 as part of a conserved oxygen-sensitive feedback mechanism by regulation of miRNA processing and a potential target in cardioprotection.
Collapse
|
18
|
Zheng H, Bi FR, Yang Y, Hong YG, Ni JS, Ma L, Liu MH, Hao LQ, Zhou WP, Song LH, Yan HL. Downregulation of miR-196-5p Induced by Hypoxia Drives Tumorigenesis and Metastasis in Hepatocellular Carcinoma. HORMONES & CANCER 2019; 10:177-189. [PMID: 31713780 PMCID: PMC10355717 DOI: 10.1007/s12672-019-00370-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/09/2019] [Indexed: 02/04/2023]
Abstract
In hepatocellular carcinoma (HCC), the hypoxic tumor microenvironment can drive enhance tumor malignancy and recurrence. The microRNA (miRNA) miR-196-5p has been shown to modulate the progression of several cancer types, but its roles in HCC remain uncertain. In the present report we observed significant miR-196-5p downregulation in HCC tissues and cells, and we found that the expression of this miRNA significantly impaired the proliferation and metastatic potential of HCC in vitro and in vivo. We identified high-mobility group AT-hook 2 (HMGA2) as a miR-196-5p target gene that was associated with the ability of miR-196-5p to modulate the progression of HCC. Expression of miR-196-5p and HMGA2 were correlated with the clinical characteristics and poor outcomes in patients with HCC. Finally, we found that hypoxic conditions were linked with reduced miR-196-5p expression in the context of HCC. Together these results highlight the role for miR-196-5p as an inhibitor of the proliferation and metastasis of HCC via the targeting of HMGA2, with this novel hypoxia/miR-196-5p/HMGA2 pathway serving as a potential target for future therapeutic intervention.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
- Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, 200438, People's Republic of China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, 200438, People's Republic of China
| | - Feng-Rui Bi
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yuan Yang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
- Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, 200438, People's Republic of China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, 200438, People's Republic of China
| | - Yong-Gang Hong
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jun-Sheng Ni
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
- Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, 200438, People's Republic of China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, 200438, People's Republic of China
| | - Long Ma
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ming-Hua Liu
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Li-Qiang Hao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Wei-Ping Zhou
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China.
- Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, 200438, People's Republic of China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, 200438, People's Republic of China.
| | - Li-Hua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Hong-Li Yan
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
19
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
20
|
Gasparini P, Ferrari A, Casanova M, Limido F, Massimino M, Sozzi G, Fortunato O. MiRNAs as Players in Rhabdomyosarcoma Development. Int J Mol Sci 2019; 20:ijms20225818. [PMID: 31752446 PMCID: PMC6888285 DOI: 10.3390/ijms20225818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma of childhood and adolescence, is a rare but aggressive malignancy that originates from immature mesenchymal cells committed to skeletal muscle differentiation. Although RMS is, generally, responsive to the modern multimodal therapeutic approaches, the prognosis of RMS depends on multiple variables and for some patients the outcome remains dismal. Further comprehension of the molecular and cellular biology of RMS would lead to identification of novel therapeutic targets. MicroRNAs (miRNAs) are small non-coding RNAs proved to function as key regulators of skeletal muscle cell fate determination and to play important roles in RMS pathogenesis. The purpose of this review is to better delineate the role of miRNAs as a biomarkers or functional leaders in RMS development, so to possibly elucidate some of RMS molecular mechanisms and potentially therapeutically target them to improve clinical management of pediatric RMS.
Collapse
Affiliation(s)
- Patrizia Gasparini
- Tumor Genomics Unit, Department of Research; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
- Correspondence: (O.F.); (P.G.); Tel.: +39-02-2390-3775 (O.F. & P.G.); Fax: +39-02-2390-2928 (O.F. & P.G.)
| | - Andrea Ferrari
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Michela Casanova
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Francesca Limido
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Maura Massimino
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
- Correspondence: (O.F.); (P.G.); Tel.: +39-02-2390-3775 (O.F. & P.G.); Fax: +39-02-2390-2928 (O.F. & P.G.)
| |
Collapse
|
21
|
Smith CM, Catchpoole D, Hutvagner G. Non-Coding RNAs in Pediatric Solid Tumors. Front Genet 2019; 10:798. [PMID: 31616462 PMCID: PMC6764412 DOI: 10.3389/fgene.2019.00798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Pediatric solid tumors are a diverse group of extracranial solid tumors representing approximately 40% of childhood cancers. Pediatric solid tumors are believed to arise as a result of disruptions in the developmental process of precursor cells which lead them to accumulate cancerous phenotypes. In contrast to many adult tumors, pediatric tumors typically feature a low number of genetic mutations in protein-coding genes which could explain the emergence of these phenotypes. It is likely that oncogenesis occurs after a failure at many different levels of regulation. Non-coding RNAs (ncRNAs) comprise a group of functional RNA molecules that lack protein coding potential but are essential in the regulation and maintenance of many epigenetic and post-translational mechanisms. Indeed, research has accumulated a large body of evidence implicating many ncRNAs in the regulation of well-established oncogenic networks. In this review we cover a range of extracranial solid tumors which represent some of the rarer and enigmatic childhood cancers known. We focus on two major classes of ncRNAs, microRNAs and long non-coding RNAs, which are likely to play a key role in the development of these cancers and emphasize their functional contributions and molecular interactions during tumor formation.
Collapse
Affiliation(s)
- Christopher M Smith
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Daniel Catchpoole
- School of Software, University of Technology Sydney, Sydney, Australia.,The Tumour Bank-CCRU, Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
22
|
Gasparini P, Fortunato O, De Cecco L, Casanova M, Iannó MF, Carenzo A, Centonze G, Milione M, Collini P, Boeri M, Dugo M, Gargiuli C, Mensah M, Segale M, Bergamaschi L, Chiaravalli S, Sensi ML, Massimino M, Sozzi G, Ferrari A. Age-Related Alterations in Immune Contexture Are Associated with Aggressiveness in Rhabdomyosarcoma. Cancers (Basel) 2019; 11:cancers11091380. [PMID: 31533233 PMCID: PMC6770032 DOI: 10.3390/cancers11091380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
Adolescents and young adults (AYA) with rhabdomyosarcoma (RMS) form a subgroup of patients whose optimal clinical management and access to care remain a challenge and whose survival lacks behind that of children diagnosed with histologically similar tumors. Understanding the tumor biology that differentiates children from AYA-RMS could provide critical information and drive new initiatives to improve the final outcome. MicroRNA (miRNA) and gene expression profiling (GEP) was evaluated in a RMS cohort of 49 tumor and 15 non-neoplastic tissues. miRNAs analysis identified miR-223 over-expression and miR-431 down-regulation in AYA, validated by Real-Time PCR and miRNA in situ hybridization (ISH). GEP analysis detected 793 age-correlated genes in tumors, of which 194 were anti-correlated. NOTCH2, FGFR1/2 were significantly down-modulated in AYA-RMS. miR-223 was associated with up-regulation of epithelial mesenchymal translation (EMT) and inflammatory pathways, whereas miR-431 was correlated to myogenic differentiation and muscle metabolism. GEP showed an increase in genes associated with CD4 memory resting cells and a decrease in genes associated with γδ T-cells in AYA-RMS. Immunohistochemistry (IHC) analysis demonstrated an increase of infiltrated CD4, CD8, and neutrophils in AYA-RMS tumors. Our results show that aggressiveness of AYA-RMS could be explained by differences in microenvironmental signal modulation mediated by tumor cells, suggesting a fundamental role of immune contexture in AYA-RMS development.
Collapse
Affiliation(s)
- Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Loris De Cecco
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Maria Federica Iannó
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Andrea Carenzo
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Giovanni Centonze
- Department of Diagnostic Pathology and from the Laboratory of Medicine of our Institute, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Massimo Milione
- Department of Diagnostic Pathology and from the Laboratory of Medicine of our Institute, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Paola Collini
- Department of Diagnostic Pathology and from the Laboratory of Medicine of our Institute, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Mattia Boeri
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Matteo Dugo
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Chiara Gargiuli
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Mavis Mensah
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Miriam Segale
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Luca Bergamaschi
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Maria Luisa Sensi
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| |
Collapse
|
23
|
Abstract
Although the investigation into biomarkers specific for pulmonary metastasis within osteosarcoma (OS) has recently expanded, their usage within the clinic remains sparse. The current screening protocol after any OS diagnosis includes a chest CT scan; however, metastatic lung nodules frequently go undetected and remain the primary cause of death in OS. Recently, screening technologies such as liquid biopsy and next-generation sequencing have revealed a promising array of biomarkers with predictive and diagnostic value for the pulmonary metastasis associated with OS. These biomarkers draw from genomics, transcriptomics, epigenetics, and metabolomics. When assessed in concert, their utility is most promising as OS is a highly heterogeneous cancer. Accordingly, there has been an expansion of clinical trials not only aimed at further demonstrating the significance of these individual biomarkers but to also reveal which therapies resolve the pulmonary metastasis once detected. This review will focus on the recently discovered and novel metastatic biomarkers within OS, their molecular and cellular mechanisms, the expansion of humanized OS mouse models amenable to their testing, and the associated clinical trials aimed at managing the metastatic phase of OS.
Collapse
|
24
|
Shang H, Liu Y, Li Z, Liu Q, Cui W, Zhang L, Pang Y, Liu C, Li F. MicroRNA-874 functions as a tumor suppressor in rhabdomyosarcoma by directly targeting GEFT. Am J Cancer Res 2019; 9:668-681. [PMID: 31105995 PMCID: PMC6511638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023] Open
Abstract
MicroRNA-874 (miR-874) is downregulated and acts as a tumor suppressor gene in several human cancers. Its biological function and underlying molecular mechanism in rhabdomyosarcoma (RMS), however, remain unclear. In this study, we found that miR-874 expression was downregulated in human RMS tissue samples and cell lines through quantitative real-time polymerase chain reaction (qRT-PCR). Functional studies revealed that miR-874 overexpression in RMS cells remarkably inhibited proliferation, invasion, migration, and induced apoptosis. The results of luciferase activity assay, qRT-PCR and western blot analyses showed that miR-874 inhibited GEFT translation and suppressed GEFT expression by directly targeting the 3'-untranslated region (3'-UTR) of GEFT mRNA. GEFT expression was upregulated in RMS tissue samples and cell lines and was inversely correlated with miR-874 expression. Downregulation of GEFT has similar effects to miR-874 overexpression in RMS cells. Notably, GEFT restoration partially reversed the tumor-suppressive effects of miR-874. Our results indicated that miR-874 functions as a tumor suppressor in RMS and may suppress the growth and metastasis of RMS cells partially by targeting GEFT.
Collapse
Affiliation(s)
- Hao Shang
- Department of Pathology, School of Medicine, Shihezi University and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, P. R. China
| | - Yang Liu
- Department of Pathology, School of Medicine, Shihezi University and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, P. R. China
| | - Zhenzhen Li
- Department of Pathology, School of Medicine, Shihezi University and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, P. R. China
| | - Qianqian Liu
- Department of Pathology, School of Medicine, Shihezi University and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, P. R. China
| | - Wenwen Cui
- Department of Pathology, School of Medicine, Shihezi University and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, P. R. China
| | - Liang Zhang
- Department of Pathology, School of Medicine, Shihezi University and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, P. R. China
| | - Yuwen Pang
- Department of Pathology, School of Medicine, Shihezi University and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, P. R. China
| | - Chunxia Liu
- Department of Pathology, School of Medicine, Shihezi University and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, P. R. China
| | - Feng Li
- Department of Pathology, School of Medicine, Shihezi University and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, P. R. China
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, P. R. China
| |
Collapse
|
25
|
Li Y, Gu Y, Tang N, Liu Y, Zhao Z. miR-22-Notch Signaling Pathway Is Involved in the Regulation of the Apoptosis and Autophagy in Human Ovarian Cancer Cells. Biol Pharm Bull 2018; 41:1237-1242. [PMID: 30068873 DOI: 10.1248/bpb.b18-00084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
microRNA-22 (miR-22) is a brain-enriched regulatory gene which has been reported to be involved in the development of cancers. The Notch signaling pathway exerts important functions in cell growth. This study is designed to investigate the mechanisms of miR-22-Notch signaling pathway in apoptosis and autophagy of human ovarian cancer cells. After over-expressing miR-22 in human ovarian cancer cell lines OVCAR-3 and SKOV3, cell viability is determined by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) method, cell apoptosis is observed by Flow cytometry (FCM), mRNA expression of miR-22 is measured by RNA preparation and RT-PCR, protein expression of Notch1, Hes1, Beclin1 and LC3B-II is analyzed by Western blot. It is suggested that miR-22 expression is heavily decreased in human ovarian cancer cell lines OVCAR-3 and SKOV3. Over-expression of miR-22 potently suppresses cell viability and authophagy while promotes the percentage of apoptotic cancer cells. In addition, the decreased expression level of Notch1 and its targeted gene is detected in miR-22-over-expressed cells. Moreover, followed by the block of the Notch signaling pathway using Notch1 small interference RNA (siRNA), the effects of miR-22 on the apoptosis and autophagy of human ovarian cancer cell lines OVCAR-3 and SKOV3 are obviously blocked. Together, miR-22 inhibits apoptosis and promotes autophagy of human ovarian cancer cells through the suppression of the Notch signaling pathway, indicating a potential use of miR-22 in the ovarian cancer treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, Tianjin Union Medicine Center
| | - Yanjun Gu
- Department of Pathology, Affiliated Hospital of Logistics University of People's Armed Police Force (PAPF)
| | - Na Tang
- Department of Obstetrics and Gynecology, Tianjin Union Medicine Center
| | - Yanqing Liu
- Department of Pathology, Affiliated Hospital of Logistics University of People's Armed Police Force (PAPF)
| | - Zhankao Zhao
- Department of Pathology, Affiliated Hospital of Logistics University of People's Armed Police Force (PAPF)
| |
Collapse
|
26
|
Gonçalves TM, de Almeida Regitano LC, Koltes JE, Cesar ASM, da Silva Andrade SC, Mourão GB, Gasparin G, Moreira GCM, Fritz-Waters E, Reecy JM, Coutinho LL. Gene Co-expression Analysis Indicates Potential Pathways and Regulators of Beef Tenderness in Nellore Cattle. Front Genet 2018; 9:441. [PMID: 30344530 PMCID: PMC6182065 DOI: 10.3389/fgene.2018.00441] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
Beef tenderness, a complex trait affected by many factors, is economically important to beef quality, industry, and consumer’s palatability. In this study, RNA-Seq was used in network analysis to better understand the biological processes that lead to differences in beef tenderness. Skeletal muscle transcriptional profiles from 24 Nellore steers, selected by extreme estimated breeding values (EBVs) for shear force after 14 days of aging, were analyzed and 22 differentially expressed transcripts were identified. Among these were genes encoding ribosomal proteins, glutathione transporter ATP-binding cassette, sub-family C (CFTR/MRP), member 4 (ABCC4), and synaptotagmin IV (SYT4). Complementary co-expression analyses using Partial Correlation with Information Theory (PCIT), Phenotypic Impact Factor (PIF) and the Regulatory Impact Factor (RIF) methods identified candidate regulators and related pathways. The PCIT analysis identified ubiquitin specific peptidase 2 (USP2), growth factor receptor-bound protein 10 (GBR10), anoctamin 1 (ANO1), and transmembrane BAX inhibitor motif containing 4 (TMBIM4) as the most differentially hubbed (DH) transcripts. The transcripts that had a significant correlation with USP2, GBR10, ANO1, and TMBIM4 enriched for proteasome KEGG pathway. RIF analysis identified microRNAs as candidate regulators of variation in tenderness, including bta-mir-133a-2 and bta-mir-22. Both microRNAs have target genes present in the calcium signaling pathway and apoptosis. PIF analysis identified myoglobin (MB), enolase 3 (ENO3), and carbonic anhydrase 3 (CA3) as potentially having fundamental roles in tenderness. Pathways identified in our study impacted in beef tenderness included: calcium signaling, apoptosis, and proteolysis. These findings underscore some of the complex molecular mechanisms that control beef tenderness in Nellore cattle.
Collapse
Affiliation(s)
| | | | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - Sónia Cristina da Silva Andrade
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil.,Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | | | - Gustavo Gasparin
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | | | - Elyn Fritz-Waters
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
27
|
Strub GM, Perkins JA. MicroRNAs for the pediatric otolaryngologist. Int J Pediatr Otorhinolaryngol 2018; 112:195-207. [PMID: 30055733 DOI: 10.1016/j.ijporl.2018.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
The scope of pediatric otolaryngology is broad and encompasses a wide variety of diseases in which the fundamental phenotype-causing abnormality exists at the level of gene regulation and expression. Development of novel molecular biology instruments to diagnose disease, monitor treatment response, and prevent recurrence will facilitate the delivery of appropriate surgical and adjuvant medical treatments with lower morbidity. MicroRNAs (miRNAs) have emerged as a relatively new class of molecules that directly modulate gene expression and are abnormally expressed in a multitude of disease processes including those within the scope of pediatric otolaryngology. Functionally, miRNAs control multiple cellular functions including angiogenesis, cell proliferation, cell survival, genome stability, and inflammation. These short, non-protein coding RNA molecules are present and stable in tissue, blood, saliva, and urine, making them ideal disease biomarkers. The simple structure of miRNAs and their ability to directly modulate the expression of specific genes lends exciting therapeutic potential to miRNA-based therapies. Here we review the current literature of miRNAs as it relates to diseases within the scope of pediatric otolaryngology, and discuss their potential as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Graham M Strub
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA, 98105, United States; Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Jonathan A Perkins
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA, 98105, United States; Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, 98101, United States; Division of Pediatric Otolaryngology, Department of Surgery, Seattle Children's Hospital, Seattle, WA, 98105, United States.
| |
Collapse
|
28
|
PAX3-FOXO1 drives miR-486-5p and represses miR-221 contributing to pathogenesis of alveolar rhabdomyosarcoma. Oncogene 2018; 37:1991-2007. [PMID: 29367756 PMCID: PMC5895609 DOI: 10.1038/s41388-017-0081-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023]
Abstract
Rhabdomyosarcoma is the most common soft-tissue sarcoma in childhood and histologically resembles developing skeletal muscle. Alveolar rhabdomyosarcoma (ARMS) is an aggressive subtype with a higher rate of metastasis and poorer prognosis. The majority of ARMS tumors (80%) harbor a PAX3-FOXO1 or less commonly a PAX7-FOXO1 fusion gene. The presence of either the PAX3-FOXO1 or PAX7-FOXO1 fusion gene foretells a poorer prognosis resulting in clinical re-classification as either fusion-positive (FP-RMS) or fusion-negative RMS (FN-RMS). The PAX3/7-FOXO1 fusion genes result in the production of a rogue transcription factors that drive FP-RMS pathogenesis and block myogenic differentiation. Despite knowing the molecular driver of FP-RMS, targeted therapies have yet to make an impact for patients, highlighting the need for a greater understanding of the molecular consequences of PAX3-FOXO1 and its target genes including microRNAs. Here we show FP-RMS patient-derived xenografts and cell lines display a distinct microRNA expression pattern. We utilized both loss- and gain-of function approaches in human cell lines with knockdown of PAX3-FOXO1 in FP-RMS cell lines and expression of PAX3-FOXO1 in human myoblasts and identified microRNAs both positively and negatively regulated by the PAX3-FOXO1 fusion protein. We demonstrate PAX3-FOXO1 represses miR-221/222 that functions as a tumor suppressing microRNA through the negative regulation of CCND2, CDK6, and ERBB3. In contrast, miR-486-5p is transcriptionally activated by PAX3-FOXO1 and promotes FP-RMS proliferation, invasion, and clonogenic growth. Inhibition of miR-486-5p in FP-RMS xenografts decreased tumor growth, illustrating a proof of principle for future therapeutic intervention. Therefore, PAX3-FOXO1 regulates key microRNAs that may represent novel therapeutic vulnerabilities in FP-RMS.
Collapse
|
29
|
Zhang SQ, Yang Z, Cai XL, Zhao M, Sun MM, Li J, Feng GX, Feng JY, Ye LH, Niu JQ, Zhang XD. miR-511 promotes the proliferation of human hepatoma cells by targeting the 3'UTR of B cell translocation gene 1 (BTG1) mRNA. Acta Pharmacol Sin 2017; 38:1161-1170. [PMID: 28603285 DOI: 10.1038/aps.2017.62] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
Aberrant expression of miR-511 is involved in the development of cancer, but the role of miR-511 in hepatocellular carcinoma (HCC) is not well documented. In this study, we explored the molecular mechanisms of miR-511 in hepatocarcinogenesis. Our results of bioinformatics analysis suggested that B cell translocation gene 1 (BTG1), a member of anti-proliferative gene family, was one of the putative targets of miR-511. The expression levels of miR-511 were significantly higher in 30 clinical HCC tissues than in corresponding peritumor tissues, and were negatively correlated with those of BTG1 in the HCC tissues (r=-0.6105, P<0.01). In human hepatoma cell lines HepG2 and H7402, overexpression of miR-511 dose-dependently inhibited the expression of BTG1, whereas knockdown of miR-511 dose-dependently increased the expression of BTG1. Luciferase reporter gene assays verified that miR-511 targeted the 3'UTR of BTG1 mRNA. In the hepatoma cells, overexpression of miR-511 significantly decreased BTG1-induced G1 phase arrest, which was rescued by overexpression of BTG1. Furthermore, overexpression of miR-511 promoted the proliferation of the hepatoma cells, which was rescued by overexpression of BTG1. Conversely, knockdown of miR-511 inhibited cell proliferation, which was reversed by knockdown of BTG1. In conclusion, miR-511 promotes the proliferation of human hepatoma cells in vitro by targeting the 3'UTR of BTG1 mRNA.
Collapse
|
30
|
MicroRNAs as Key Effectors in the p53 Network. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:51-90. [PMID: 28729028 DOI: 10.1016/bs.ircmb.2017.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The guardian of the genome p53 is embedded in a fine-spun network of MicroRNAs. p53 is able to activate or repress directly the transcription of MicroRNAs that are participating in the tumor-suppressive mission of p53. On the other hand, the expression of p53 is under tight control of MicroRNAs that are either targeting directly p53 or factors that are modifying its protein level or activity. Although the most important function of p53 is suggested to be transcriptional regulation, there are several nontranscriptional functions described. One of those regards the modulation of MicroRNA biogenesis. Wild-type p53 is increasing the maturation of selected MicroRNAs from the primary transcript to the precursor MiRNA by interacting with the Microprocessor complex. Furthermore, p53 is modulating the mRNA accessibility for certain MicroRNAs by association with the RISC complex and transcriptional regulation of RNA-binding proteins. In this way p53 is able to remodel the MiRNA-mRNA interaction network. As wild-type p53 is employing MicroRNAs to suppress cancer development, gain-of-function mutant p53 proteins use MicroRNAs to confer oncogenic properties like chemoresistance and the ability to drive metastasis. Like its wild-type counterpart mutant p53 is able to regulate MicroRNAs transcriptionally and posttranscriptionally. Mutant p53 affects the MiRNA processing at two cleavage steps through interfering with the Microprocessor complex and by downregulating Dicer and KSRP, a modulator of MiRNA biogenesis. Thus, MicroRNAs are essential components in the p53 pathway, contributing substantially to combat or enhance tumor development depending on the wild-type or mutant p53 context.
Collapse
|