1
|
Tankoua WLD, Nkwengoua EZT, Desiré S, Ndogo Eteme O, Tchana Satchet EM, de Araujo RSA, Nayarisseri A, de Lima MDCA, de Aquino TM, Barthélémy N, Mendonça-Junior FJB. Spectroscopic exploration of mode of binding of ctDNA and BSA with acridone alkaloids isolated from Zanthoxylum leprieurii (Rutaceae). Nat Prod Res 2024:1-15. [PMID: 39467251 DOI: 10.1080/14786419.2024.2421908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
Zanthoxylum leprieurii is a medicinal plant widely studied due to its great phytochemical diversity, especially its acrinonic alkaloids, which have shown to be promising anticancer candidates. The aim of this work was to promote the isolation of acridonic alkaloids from fruits of Z. leprieurii and carried out absorption and fluorescence spectroscopy studies with calf thymus DNA and BSA. Five acridone alkaloids have been isolated, including the first description of 3-desmethoxy arborinine (2). In the study of interaction with biomacromolecules it was observed that all compounds show interaction with calf thymus DNA and BSA. Compound 2 promoted the bigger increase in BSA fluorescence (3.01%) with a lower fluorescence quenching constant (Ksv = 0.13 × 104). Taken together, these results reaffirm the great phytochemical diversity of Z. leprieurii, and show that acridonic alkaloids have an affinity with both DNA and BSA, therefore providing clues to their mechanisms of action related to their anticancer activities.
Collapse
Affiliation(s)
- Whistler Lucain Dibahteu Tankoua
- Laboratory of Medicinal Chemistry, Department of Organic Chemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Ernestine Zondegoumba T Nkwengoua
- Laboratory of Medicinal Chemistry, Department of Organic Chemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, João Pessoa-Paraíba, Brazil
| | - Soh Desiré
- Laboratory of Medicinal Chemistry, Department of Organic Chemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Olivier Ndogo Eteme
- Laboratory of Medicinal Chemistry, Department of Organic Chemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Emmanuella Marthe Tchana Satchet
- Laboratory of Medicinal Chemistry, Department of Organic Chemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Rodrigo Santos A de Araujo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, João Pessoa-Paraíba, Brazil
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa-Paraíba, Brazil
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore, Madhya Pradesh India
| | | | - Thiago Mendonça de Aquino
- Grupo de Pesquisa em Estratégias Terapêuticas, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Brasil
| | - Nyassé Barthélémy
- Laboratory of Medicinal Chemistry, Department of Organic Chemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Francisco J B Mendonça-Junior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa-Paraíba, Brazil
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore, Madhya Pradesh India
| |
Collapse
|
2
|
Yu T, Lok BH. Strategies to Target Chemoradiotherapy Resistance in Small Cell Lung Cancer. Cancers (Basel) 2024; 16:3438. [PMID: 39456533 PMCID: PMC11506711 DOI: 10.3390/cancers16203438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Small cell lung cancer (SCLC) is a lethal form of lung cancer with few treatment options and a high rate of relapse. While SCLC is initially sensitive to first-line DNA-damaging chemo- and radiotherapy, relapse disease is almost universally therapy-resistant. As a result, there has been interest in understanding the mechanisms of therapeutic resistance in this disease. Conclusions: Progress has been made in elucidating these mechanisms, particularly as they relate to the DNA damage response and SCLC differentiation and transformation, leading to many clinical trials investigating new therapies and combinations. Yet there remain many gaps in our understanding, such as the effect of epigenetics or the tumor microenvironment on treatment response, and no single mechanism has been found to be ubiquitous, suggesting a significant heterogeneity in the mechanisms of acquired resistance. Nevertheless, the advancement of techniques in the laboratory and the clinic will improve our ability to study this disease, especially in patient populations, and identify methods to surmount therapeutic resistance.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Benjamin H. Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2M9, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 6 Queen’s Park Crescent, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
3
|
Elhassan YS, Appenzeller S, Landwehr LS, Lippert J, Popat D, Gilligan LC, Abdi L, Goh E, Diaz-Cano S, Kircher S, Gramlich S, Sutcliffe RP, Thangaratinam S, Chan LF, Fassnacht M, Arlt W, Ronchi CL. Primary unilateral macronodular adrenal hyperplasia with concomitant glucocorticoid and androgen excess and KDM1A inactivation. Eur J Endocrinol 2024; 191:334-344. [PMID: 39171930 PMCID: PMC11378072 DOI: 10.1093/ejendo/lvae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/20/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Primary bilateral macronodular adrenal hyperplasia (PBMAH) is a rare cause of Cushing's syndrome. Individuals with PBMAH and glucose-dependent insulinotropic polypeptide (GIP)-dependent Cushing's syndrome due to ectopic expression of the GIP receptor (GIPR) typically harbor inactivating KDM1A sequence variants. Primary unilateral macronodular adrenal hyperplasia (PUMAH) with concomitant glucocorticoid and androgen excess has never been encountered or studied. METHODS We investigated a woman with a large, heterogeneous adrenal mass and severe adrenocorticotropic hormone-independent glucocorticoid and androgen excess, a biochemical presentation typically suggestive of adrenocortical carcinoma. The patient presented during pregnancy (22nd week of gestation) and reported an 18-month history of oligomenorrhea, hirsutism, and weight gain. We undertook an exploratory study with detailed histopathological and genetic analysis of the resected adrenal mass and leukocyte DNA collected from the patient and her parents. RESULTS Histopathology revealed benign macronodular adrenal hyperplasia. Imaging showed a persistently normal contralateral adrenal gland. Whole-exome sequencing of 4 representative nodules detected KDM1A germline variants, benign NM_001009999.3:c.136G > A:p.G46S, and likely pathogenic NM_001009999.3:exon6:c.865_866del:p.R289Dfs*7. Copy number variation analysis demonstrated an additional somatic loss of the KDM1A wild-type allele on chromosome 1p36.12 in all nodules. RNA sequencing of a representative nodule showed low/absent KDM1A expression and increased GIPR expression compared with 52 unilateral sporadic adenomas and 4 normal adrenal glands. Luteinizing hormone/chorionic gonadotropin receptor expression was normal. Sanger sequencing confirmed heterozygous KDM1A variants in both parents (father: p.R289Dfs*7 and mother: p.G46S) who showed no clinical features suggestive of glucocorticoid or androgen excess. CONCLUSIONS We investigated the first PUMAH associated with severe Cushing's syndrome and concomitant androgen excess, suggesting pathogenic mechanisms involving KDM1A.
Collapse
Affiliation(s)
- Yasir S Elhassan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, University Hospitals Birmingham NHS Foundation Trust, Birmingham Health Partners, Birmingham, United Kingdom
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Laura-Sophie Landwehr
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Juliane Lippert
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Dillon Popat
- Faculty of Medicine and Dentistry, Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Lida Abdi
- MRC Laboratory of Medical Sciences, London, United Kingdom
| | - Edwina Goh
- Birmingham Women's Hospital, Birmingham, United Kingdom
| | - Salvador Diaz-Cano
- Department of Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Stefan Kircher
- Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Susanne Gramlich
- Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Robert P Sutcliffe
- The Liver Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Shakila Thangaratinam
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Birmingham Women's Hospital, Birmingham, United Kingdom
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| | - Li F Chan
- Faculty of Medicine and Dentistry, Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Martin Fassnacht
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- MRC Laboratory of Medical Sciences, London, United Kingdom
- Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Cristina L Ronchi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, University Hospitals Birmingham NHS Foundation Trust, Birmingham Health Partners, Birmingham, United Kingdom
| |
Collapse
|
4
|
Cai W, Xiao C, Fan T, Deng Z, Wang D, Liu Y, Li C, He J. Targeting LSD1 in cancer: Molecular elucidation and recent advances. Cancer Lett 2024; 598:217093. [PMID: 38969160 DOI: 10.1016/j.canlet.2024.217093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Histones are the main components of chromatin, functioning as an instructive scaffold to maintain chromosome structure and regulate gene expression. The dysregulation of histone modification is associated with various pathological processes, especially cancer initiation and development, and histone methylation plays a critical role. However, the specific mechanisms and potential therapeutic targets of histone methylation in cancer are not elucidated. Lys-specific demethylase 1A (LSD1) was the first identified demethylase that specifically removes methyl groups from histone 3 at lysine 4 or lysine 9, acting as a repressor or activator of gene expression. Recent studies have shown that LSD1 promotes cancer progression in multiple epigenetic regulation or non-epigenetic manners. Notably, LSD1 dysfunction is correlated with repressive cancer immunity. Many LSD1 inhibitors have been developed and clinical trials are exploring their efficacy in monotherapy, or combined with other therapies. In this review, we summarize the oncogenic mechanisms of LSD1 and the current applications of LSD1 inhibitors. We highlight that LSD1 is a promising target for cancer treatment. This review will provide the latest theoretical references for further understanding the research progress of oncology and epigenetics, deepening the updated appreciation of epigenetics in cancer.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Zhang J, Zeng X, Guo Q, Sheng Z, Chen Y, Wan S, Zhang L, Zhang P. Small cell lung cancer: emerging subtypes, signaling pathways, and therapeutic vulnerabilities. Exp Hematol Oncol 2024; 13:78. [PMID: 39103941 DOI: 10.1186/s40164-024-00548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by early metastasis, rapid tumor growth and poor prognosis. In recent decades, the epidemiology, initiation and mutation characteristics of SCLC, as well as abnormal signaling pathways contributing to its progression, have been widely studied. Despite extensive investigation, fewer drugs have been approved for SCLC. Recent advancements in multi-omics studies have revealed diverse classifications of SCLC that are featured by distinct characteristics and therapeutic vulnerabilities. With the accumulation of SCLC samples, different subtypes of SCLC and specific treatments for these subtypes were further explored. The identification of different molecular subtypes has opened up novel avenues for the treatment of SCLC; however, the inconsistent and uncertain classification of SCLC has hindered the translation from basic research to clinical applications. Therefore, a comprehensives review is essential to conclude these emerging subtypes and related drugs targeting specific therapeutic vulnerabilities within abnormal signaling pathways. In this current review, we summarized the epidemiology, risk factors, mutation characteristics of and classification, related molecular pathways and treatments for SCLC. We hope that this review will facilitate the translation of molecular subtyping of SCLC from theory to clinical application.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Xiaoping Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qiji Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhenxin Sheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shiyue Wan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lele Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Pehlivanoglu B, Araya JC, Lawrence S, Roa JC, Balci S, Andersen JB, Rashid A, Hsing AW, Zhu B, Gao YT, Koshiol J, Adsay V. TPPP-BRD9 fusion-related gallbladder carcinomas are frequently associated with intracholecystic neoplasia, neuroendocrine carcinoma, and a distinctive small tubular-type adenocarcinoma commonly accompanied with a syringomatous pattern. Hum Pathol 2024; 150:67-73. [PMID: 38972607 DOI: 10.1016/j.humpath.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
A fusion between tubulin polymerization-promoting protein (TPPP), a regulatory cytoskeletal gene, and the chromatin remodeling factor, bromodomain-containing protein 9 (BRD9), TPPP-BRD9 fusion has been found in rare cancer cases, including lung and gallbladder cancers (GBC). In this study, we investigated the histopathological features of 16 GBCs previously shown by RNA sequencing to harbor the TPPP-BRD9 fusion. Findings in the fusion-positive GBCs were compared with 645 GBC cases from the authors' database. Among the 16 TPPP-BRD9 fusion-positive GBC cases, most were females (F:M = 7:1) of Chinese ethnicity (12/16), whereas the remaining cases were from Chile. The histopathological examination showed the following findings: 1) Intracholecystic neoplasm (ICN) in 7/15 (47% vs. 7% 645 reference GBCs, p < 0.001), all with gastro-pancreatobiliary phenotype, often with clear cell change, and in the background of pyloric gland metaplasia and extensive high-grade dysplasia. 2) Neuroendocrine carcinoma (NEC) morphology: 3 cases (27% vs. 4.6% in the reference database, p = 0.001) showed a sheet-like and nested/trabecular growth pattern of monotonous cells with salt-and-pepper chromatin characteristic of NECs. Two were large cell type, one had prominent clear cell features, a rare finding in GBNECs; the other one had relatively bland, well-differentiated morphology, and the remaining case was small cell type. 3) Adenocarcinoma identified in 8 cases had a distinctive pattern characterized by widely separated small, round tubular units with relatively uniform nuclei in a fashion seen in mesonephric adenocarcinomas, including hobnail-like arrangement and apical snouts, reminiscent of tubular carcinomas of the breast in many areas. In some foci, the epithelium was attenuated, and glands were elongated, some with comma shapes, which along with the mucinous/necrotic intraluminal debris created a "syringoid" appearance. 4) Other occasional patterns included the cribriform, glomeruloid patterns, and metaplastic tubular-spindle cell pattern accompanied by hemorrhage. In conclusion, TPPP-BRD9 fusion-positive GBCs often develop through intracholecystic neoplasms (adenoma-carcinoma sequence) of gastro-pancreatobiliary lineage, appear more prone to form NEC morphology and have a propensity to display clear cell change. Invasive adenocarcinomas arising in this setting often seem to display a distinctive appearance that we tentatively propose as the TPPP-BRD9 fusion-positive pattern of GBC.
Collapse
Affiliation(s)
- Burcin Pehlivanoglu
- Department of Pathology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Juan Carlos Araya
- Department of Pathology, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Scott Lawrence
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Serdar Balci
- Department of Pathology, Memorial Hospital, Istanbul, Turkey
| | - Jesper B Andersen
- Biotech Research and Innovation Center, Department of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ann W Hsing
- Stanford Cancer Institute and Stanford Prevention Research Center, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, Biostatistics Branch, NIH, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, NIH, USA
| | - Volkan Adsay
- Department of Pathology, Koç University Hospital, Istanbul, Turkey; Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
| |
Collapse
|
7
|
Liu HM, Zhou Y, Chen HX, Wu JW, Ji SK, Shen L, Wang SP, Liu HM, Liu Y, Dai XJ, Zheng YC. LSD1 in drug discovery: From biological function to clinical application. Med Res Rev 2024; 44:833-866. [PMID: 38014919 DOI: 10.1002/med.22000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/18/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) is a flavin adenine dinucleotide (FAD) dependent monoamine oxidase (MAO) that erases the mono-, and dimethylation of histone 3 lysine 4 (H3K4), resulting in the suppression of target gene transcriptions. Besides, it can also demethylate some nonhistone substrates to regulate their biological functions. As reported, LSD1 is widely upregulated and plays a key role in several kinds of cancers, pharmacological or genetic ablation of LSD1 in cancer cells suppresses cell aggressiveness by several distinct mechanisms. Therefore, numerous LSD1 inhibitors, including covalent and noncovalent, have been developed and several of them have entered clinical trials. Herein, we systemically reviewed and discussed the biological function of LSD1 in tumors, lymphocytes as well as LSD1-targeting inhibitors in clinical trials, hoping to benefit the field of LSD1 and its inhibitors.
Collapse
Affiliation(s)
- Hui-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Zhou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - He-Xiang Chen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiang-Wan Wu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shi-Kun Ji
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Shen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shao-Peng Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Department of Pharmacy, Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xing-Jie Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Mandl A, Jasmine S, Krueger T, Kumar R, Coleman IM, Dalrymple SL, Antony L, Rosen DM, Jing Y, Hanratty B, Patel RA, Jin-Yih L, Dias J, Celatka CA, Tapper AE, Kleppe M, Kanayama M, Speranzini V, Wang YZ, Luo J, Corey E, Sena LA, Casero RA, Lotan T, Trock BJ, Kachhap SK, Denmeade SR, Carducci MA, Mattevi A, Haffner MC, Nelson PS, Rienhoff HY, Isaacs JT, Brennen WN. LSD1 inhibition suppresses ASCL1 and de-represses YAP1 to drive potent activity against neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576106. [PMID: 38328141 PMCID: PMC10849473 DOI: 10.1101/2024.01.17.576106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Lysine-specific demethylase 1 (LSD1 or KDM1A ) has emerged as a critical mediator of tumor progression in metastatic castration-resistant prostate cancer (mCRPC). Among mCRPC subtypes, neuroendocrine prostate cancer (NEPC) is an exceptionally aggressive variant driven by lineage plasticity, an adaptive resistance mechanism to androgen receptor axis-targeted therapies. Our study shows that LSD1 expression is elevated in NEPC and associated with unfavorable clinical outcomes. Using genetic approaches, we validated the on-target effects of LSD1 inhibition across various models. We investigated the therapeutic potential of bomedemstat, an orally bioavailable, irreversible LSD1 inhibitor with low nanomolar potency. Our findings demonstrate potent antitumor activity against CRPC models, including tumor regressions in NEPC patient-derived xenografts. Mechanistically, our study uncovers that LSD1 inhibition suppresses the neuronal transcriptional program by downregulating ASCL1 through disrupting LSD1:INSM1 interactions and de-repressing YAP1 silencing. Our data support the clinical development of LSD1 inhibitors for treating CRPC - especially the aggressive NE phenotype. Statement of Significance Neuroendocrine prostate cancer presents a clinical challenge due to the lack of effective treatments. Our research demonstrates that bomedemstat, a potent and selective LSD1 inhibitor, effectively combats neuroendocrine prostate cancer by downregulating the ASCL1- dependent NE transcriptional program and re-expressing YAP1.
Collapse
|
9
|
Liu H, Zhou R, Li S, Dong J, Fang Y, Luo Y, Su H, Lai B, Liang L, Zhang D, Zhang Y, Shyy JYJ, Zhou B, Yuan Z, Wang Y. Epigenetic repression of Cend1 by lysine-specific demethylase 1 is essential for murine heart development. iScience 2024; 27:108722. [PMID: 38226173 PMCID: PMC10788269 DOI: 10.1016/j.isci.2023.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
Epigenetic regulation of heart development remains incompletely understood. Here we show that LSD1, a histone demethylase, plays a crucial role in regulating cardiomyocyte proliferation during heart development. Cardiomyocyte-specific deletion of Lsd1 in mice inhibited cardiomyocyte proliferation, causing severe growth defect of embryonic and neonatal heart. In vivo RNA-seq and in vitro functional studies identified Cend1 as a target suppressed by LSD1. Lsd1 loss resulted in elevated Cend1 transcription associated with increased active histone mark H3K4me2 at Cend1 promoter. Cend1 knockdown relieved the cell-cycle arrest and proliferation defect caused by LSD1 inhibition in primary rat cardiomyocytes. Moreover, genetic deletion of Cend1 rescued cardiomyocyte proliferation defect and embryonic lethality in Lsd1 null embryos. Consistently, LSD1 promoted the cell cycle of cardiomyocytes derived from human-induced pluripotent stem cells by repressing CEND1. Together, these findings reveal an epigenetic regulatory mechanism involving the LSD1-CEND1 axis that controls cardiomyocyte proliferation essential for murine heart development.
Collapse
Affiliation(s)
- Huahua Liu
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Xi’an Jiaotong University, Xi’an, China
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Rui Zhou
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Affiliated Children’s Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shanshan Li
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Xi’an Jiaotong University, Xi’an, China
| | - Jinling Dong
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yuan Fang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yuru Luo
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Hongyu Su
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Baochang Lai
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Lingli Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Donghong Zhang
- Department of Cardiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yanmin Zhang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Affiliated Children’s Hospital, Xi’an Jiaotong University, Xi’an, China
| | - John Y-J. Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, CA, USA
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Zuyi Yuan
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Xi’an Jiaotong University, Xi’an, China
| | - Yidong Wang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Department of Cardiology, First Affiliated Hospital, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Cardiometabolic Innovation Center of Ministry of Education, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Knodel F, Pinter S, Kroll C, Rathert P. Fluorescent Reporter Systems to Investigate Chromatin Effector Proteins in Living Cells. Methods Mol Biol 2024; 2842:225-252. [PMID: 39012599 DOI: 10.1007/978-1-0716-4051-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenetic research faces the challenge of the high complexity and tight regulation in chromatin modification networks. Although many isolated mechanisms of chromatin-mediated gene regulation have been described, solid approaches for the comprehensive analysis of specific processes as parts of the bigger epigenome network are missing. In order to expand the toolbox of methods by a system that will help to capture and describe the complexity of transcriptional regulation, we describe here a robust protocol for the generation of stable reporter systems for transcriptional activity and summarize their applications. The system allows for the induced recruitment of a chromatin regulator to a fluorescent reporter gene, followed by the detection of transcriptional changes using flow cytometry. The reporter gene is integrated into an endogenous chromatin environment, thus enabling the detection of regulatory dependencies of the investigated chromatin regulator on endogenous cofactors. The system allows for an easy and dynamic readout at the single-cell level and the ability to compensate for cell-to-cell variances of transcription. The modular design of the system enables the simple adjustment of the method for the investigation of different chromatin regulators in a broad panel of cell lines. We also summarize applications of this technology to characterize the silencing velocity of different chromatin effectors, removal of activating histone modifications, analysis of stability and reversibility of epigenome modifications, the investigation of the effects of small molecule on chromatin effectors and of functional effector-coregulator relationships. The presented method allows to investigate the complexity of transcriptional regulation by epigenetic effector proteins in living cells.
Collapse
Affiliation(s)
- Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Sabine Pinter
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Carolin Kroll
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
11
|
Meng FW, Murphy KE, Makowski CE, Delatte B, Murphy PJ. Competition for H2A.Z underlies the developmental impacts of repetitive element de-repression. Development 2023; 150:dev202338. [PMID: 37938830 PMCID: PMC10651094 DOI: 10.1242/dev.202338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Abstract
The histone variant H2A.Z is central to early embryonic development, determining transcriptional competency through chromatin regulation of gene promoters and enhancers. In addition to genic loci, we find that H2A.Z resides at a subset of evolutionarily young repetitive elements, including DNA transposons, long interspersed nuclear elements and long terminal repeats, during early zebrafish development. Moreover, increases in H2A.Z occur when repetitive elements become transcriptionally active. Acquisition of H2A.Z corresponds with a reduction in the levels of the repressive histone modification H3K9me3 and a moderate increase in chromatin accessibility. Notably, however, de-repression of repetitive elements also leads to a significant reduction in H2A.Z over non-repetitive genic loci. Genic loss of H2A.Z is accompanied by transcriptional silencing at adjacent coding sequences, but remarkably, these impacts are mitigated by augmentation of total H2A.Z protein via transgenic overexpression. Our study reveals that levels of H2A.Z protein determine embryonic sensitivity to de-repression of repetitive elements, that repetitive elements can function as a nuclear sink for epigenetic factors and that competition for H2A.Z greatly influences overall transcriptional output during development. These findings uncover general mechanisms in which counteractive biological processes underlie phenotypic outcomes.
Collapse
Affiliation(s)
- Fanju W. Meng
- University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | - Benjamin Delatte
- Advanced Research Laboratory, Active Motif, 1914 Palomar Oaks Way STE 150, Carlsbad, CA 92008, USA
| | | |
Collapse
|
12
|
Okonechnikov K, Camgöz A, Chapman O, Wani S, Park DE, Hübner JM, Chakraborty A, Pagadala M, Bump R, Chandran S, Kraft K, Acuna-Hidalgo R, Reid D, Sikkink K, Mauermann M, Juarez EF, Jenseit A, Robinson JT, Pajtler KW, Milde T, Jäger N, Fiesel P, Morgan L, Sridhar S, Coufal NG, Levy M, Malicki D, Hobbs C, Kingsmore S, Nahas S, Snuderl M, Crawford J, Wechsler-Reya RJ, Davidson TB, Cotter J, Michaiel G, Fleischhack G, Mundlos S, Schmitt A, Carter H, Michealraj KA, Kumar SA, Taylor MD, Rich J, Buchholz F, Mesirov JP, Pfister SM, Ay F, Dixon JR, Kool M, Chavez L. 3D genome mapping identifies subgroup-specific chromosome conformations and tumor-dependency genes in ependymoma. Nat Commun 2023; 14:2300. [PMID: 37085539 PMCID: PMC10121654 DOI: 10.1038/s41467-023-38044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
Ependymoma is a tumor of the brain or spinal cord. The two most common and aggressive molecular groups of ependymoma are the supratentorial ZFTA-fusion associated and the posterior fossa ependymoma group A. In both groups, tumors occur mainly in young children and frequently recur after treatment. Although molecular mechanisms underlying these diseases have recently been uncovered, they remain difficult to target and innovative therapeutic approaches are urgently needed. Here, we use genome-wide chromosome conformation capture (Hi-C), complemented with CTCF and H3K27ac ChIP-seq, as well as gene expression and DNA methylation analysis in primary and relapsed ependymoma tumors, to identify chromosomal conformations and regulatory mechanisms associated with aberrant gene expression. In particular, we observe the formation of new topologically associating domains ('neo-TADs') caused by structural variants, group-specific 3D chromatin loops, and the replacement of CTCF insulators by DNA hyper-methylation. Through inhibition experiments, we validate that genes implicated by these 3D genome conformations are essential for the survival of patient-derived ependymoma models in a group-specific manner. Thus, this study extends our ability to reveal tumor-dependency genes by 3D genome conformations even in tumors that lack targetable genetic alterations.
Collapse
Affiliation(s)
- Konstantin Okonechnikov
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aylin Camgöz
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Owen Chapman
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Sameena Wani
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Donglim Esther Park
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Jens-Martin Hübner
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Abhijit Chakraborty
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Meghana Pagadala
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Rosalind Bump
- Peptide Biology Labs, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sahaana Chandran
- Peptide Biology Labs, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Katerina Kraft
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Rocio Acuna-Hidalgo
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Derek Reid
- Arima Genomics, Inc, San Diego, CA, 92121, USA
| | | | - Monika Mauermann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Edwin F Juarez
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Anne Jenseit
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - James T Robinson
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Kristian W Pajtler
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- CCU Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Petra Fiesel
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- CCU Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ling Morgan
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Sunita Sridhar
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Nicole G Coufal
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Pediatrics, University of California, San Diego, San Diego, CA, 92093, USA
| | - Michael Levy
- Neurosurgery, University of California San Diego - Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Denise Malicki
- Pathology, University of California San Diego - Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Charlotte Hobbs
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Stephen Kingsmore
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Shareef Nahas
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health, NYU Grossman School of Medicine, 550 First Ave, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - John Crawford
- Department of Neurosciences, University of California San Diego - Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Robert J Wechsler-Reya
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Pediatrics, University of California, San Diego, San Diego, CA, 92093, USA
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Tom Belle Davidson
- Division of Hematology-Oncology, Cancer and Blood Disease Institute and Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Jennifer Cotter
- Division of Hematology-Oncology, Cancer and Blood Disease Institute and Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - George Michaiel
- Division of Hematology-Oncology, Cancer and Blood Disease Institute and Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Gudrun Fleischhack
- German Cancer Consortium (DKTK), West German Cancer Center, Pediatrics III, University Hospital Essen, Essen, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Hannah Carter
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Kulandaimanuvel Antony Michealraj
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, ONT, Canada
| | - Sachin A Kumar
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, ONT, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, ONT, Canada
| | - Jeremy Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Frank Buchholz
- National Center for Tumor Diseases (NCT): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site Dresden, Dresden, Germany
| | - Jill P Mesirov
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ferhat Ay
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, San Diego, CA, 92093, USA
| | - Jesse R Dixon
- Peptide Biology Labs, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Lukas Chavez
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA.
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92123, USA.
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
13
|
Das ND, Niwa H, Umehara T. Chemical Inhibitors Targeting the Histone Lysine Demethylase Families with Potential for Drug Discovery. EPIGENOMES 2023; 7:epigenomes7010007. [PMID: 36975603 PMCID: PMC10048553 DOI: 10.3390/epigenomes7010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The dynamic regulation of histone methylation and demethylation plays an important role in the regulation of gene expression. Aberrant expression of histone lysine demethylases has been implicated in various diseases including intractable cancers, and thus lysine demethylases serve as promising therapeutic targets. Recent studies in epigenomics and chemical biology have led to the development of a series of small-molecule demethylase inhibitors that are potent, specific, and have in vivo efficacy. In this review, we highlight emerging small-molecule inhibitors targeting the histone lysine demethylases and their progress toward drug discovery.
Collapse
|
14
|
Dai XJ, Xue LP, Ji SK, Zhou Y, Gao Y, Zheng YC, Liu HM, Liu HM. Triazole-fused pyrimidines in target-based anticancer drug discovery. Eur J Med Chem 2023; 249:115101. [PMID: 36724635 DOI: 10.1016/j.ejmech.2023.115101] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
In recent decades, the development of targeted drugs has featured prominently in the treatment of cancer, which is among the major causes of mortality globally. Triazole-fused pyrimidines, a widely-used class of heterocycles in medicinal chemistry, have attracted considerable interest as potential anticancer agents that target various cancer-associated targets in recent years, demonstrating them as valuable templates for discovering novel anticancer candidates. The current review concentrates on the latest advancements of triazole-pyrimidines as target-based anticancer agents, including works published between 2007 and the present (2007-2022). The structure-activity relationships (SARs) and multiple pathways are also reviewed to shed light on the development of more effective and biotargeted anticancer candidates.
Collapse
Affiliation(s)
- Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Lei-Peng Xue
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Shi-Kun Ji
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ying Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
15
|
Agboyibor C, Dong J, Effah CY, Drokow EK, Ampomah-Wireko M, Pervaiz W, Sangmor A, Ma X, Li J, Liu HM, Zhang P. Epigenetic compounds targeting pharmacological target lysine specific demethylase 1 and its impact on immunotherapy, chemotherapy and radiotherapy for treatment of tumor recurrence and resistance. Biomed Pharmacother 2023; 157:113934. [PMID: 36395607 DOI: 10.1016/j.biopha.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
It has been proven that metastatic recurrence and therapeutic resistance are linked. Due to the variability of individuals and tumors, as well as the tumor's versatility in avoiding therapies, therapy resistance is more difficult to treat. Therapy resistance has significantly restricted the clinical feasibility and efficacy of tumor therapy, despite the discovery of novel compounds and therapy combinations with increasing efficacy. In several tumors, lysine specific demethylase 1 (LSD1) has been associated to metastatic recurrence and therapeutic resistance. For researchers to better comprehend how LSD1-mediated tumor therapy resistance occurs and how to overcome it in various tumors, this study focused on the role of LSD1 in tumor recurrence and therapeutic resistance. The importance of therapeutically targeted LSD1 was also discussed. Most gene pathway signatures are related to LSD1 inhibitor sensitivity. However, some gene pathway signatures, especially in AML, negatively correlate with LSD1 inhibitor sensitivity, but targeting LSD1 makes the therapy-resistant tumor sensitive to physiological doses of conventional therapy. We propose that combining LSD1 inhibitor with traditional tumor therapy can help patients attain a complete response and prevent cancer relapse.
Collapse
Affiliation(s)
- Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Emmanuel Kwateng Drokow
- Department of Oncology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | | | - Waqar Pervaiz
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Augustina Sangmor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China.
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan province, PR China 450008.
| |
Collapse
|
16
|
Kirk NA, Kim KB, Park KS. Effect of chromatin modifiers on the plasticity and immunogenicity of small-cell lung cancer. Exp Mol Med 2022; 54:2118-2127. [PMID: 36509828 PMCID: PMC9794818 DOI: 10.1038/s12276-022-00905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
Tumor suppressor genes (TSGs) are often involved in maintaining homeostasis. Loss of tumor suppressor functions causes cellular plasticity that drives numerous types of cancer, including small-cell lung cancer (SCLC), an aggressive type of lung cancer. SCLC is largely driven by numerous loss-of-function mutations in TSGs, often in those encoding chromatin modifiers. These mutations present a therapeutic challenge because they are not directly actionable. Alternatively, understanding the resulting molecular changes may provide insight into tumor intervention strategies. We hypothesize that despite the heterogeneous genomic landscape in SCLC, the impacts of mutations in patient tumors are related to a few important pathways causing malignancy. Specifically, alterations in chromatin modifiers result in transcriptional dysregulation, driving mutant cells toward a highly plastic state that renders them immune evasive and highly metastatic. This review will highlight studies in which imbalance of chromatin modifiers with opposing functions led to loss of immune recognition markers, effectively masking tumor cells from the immune system. This review also discusses the role of chromatin modifiers in maintaining neuroendocrine characteristics and the role of aberrant transcriptional control in promoting epithelial-to-mesenchymal transition during tumor development and progression. While these pathways are thought to be disparate, we highlight that the pathways often share molecular drivers and mediators. Understanding the relationships among frequently altered chromatin modifiers will provide valuable insights into the molecular mechanisms of SCLC development and progression and therefore may reveal preventive and therapeutic vulnerabilities of SCLC and other cancers with similar mutations.
Collapse
Affiliation(s)
- Nicole A. Kirk
- grid.27755.320000 0000 9136 933XDepartment of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| | - Kee-Beom Kim
- grid.258803.40000 0001 0661 1556BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Kwon-Sik Park
- grid.27755.320000 0000 9136 933XDepartment of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| |
Collapse
|
17
|
He X, Zhang B, Cao P, Wang H, Wu S, Wang G, Yang F, Leng A, Liang G, Li D. Biotransformation of dihydrocapsaicin by human intestinal fungi and the inhibitory effects of metabolites against LSD1. Heliyon 2022; 8:e12325. [PMID: 36578383 PMCID: PMC9791335 DOI: 10.1016/j.heliyon.2022.e12325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Dihydrocapsaicin is the main bioactive component in Capsicum plants, which is widely used in China and India as a food drug and additive. In this study, the biotransformation of dihydrocapsaicin was performed using four cultivated human intestinal fungal strains in vitro. Eight metabolites, including seven previously undescribed metabolites (1 and 3-8) and one known analog (2), were obtained. Numerous spectroscopic data, such as NMR and HRESIMS, were collected to determine their structures. Based on the structures of the dihydrocapsaicin metabolites, the main biotransformation reactions were revealed to be hydroxylation, alcohol oxidation, and lactylation. In particular, the lactylation of hydroxyl groups is mainly mediated by Rhizopus oryzae R2701. In addition, metabolite 1 showed significant inhibitory effect on lysine-specific demethylase 1 (LSD1) (IC50 1.99 μM). Therefore, the biotransformation of dihydrocapsaicin by intestinal fungi afforded various derivatives, which were important resources for developing LSD1 inhibitors and potential application in cancer treatment.
Collapse
Affiliation(s)
- Xin He
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China,College of Pharmacy, Dalian Medical University, Dalian 116044, China,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baojing Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Peng Cao
- General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Department of Neurosurgery, Shenyang 110016, China
| | - Honglei Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China,College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Shan Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Gang Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Fangyu Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China,General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Department of Neurosurgery, Shenyang 110016, China
| | - Aijing Leng
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guobiao Liang
- General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Department of Neurosurgery, Shenyang 110016, China,Corresponding author.
| | - Dawei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China,Corresponding author.
| |
Collapse
|
18
|
Hiatt JB, Sandborg H, Garrison SM, Arnold HU, Liao SY, Norton JP, Friesen TJ, Wu F, Sutherland KD, Rienhoff HY, Martins R, Houghton AM, Srivastava S, MacPherson D. Inhibition of LSD1 with Bomedemstat Sensitizes Small Cell Lung Cancer to Immune Checkpoint Blockade and T-Cell Killing. Clin Cancer Res 2022; 28:4551-4564. [PMID: 35920742 PMCID: PMC9844673 DOI: 10.1158/1078-0432.ccr-22-1128] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE The addition of immune checkpoint blockade (ICB) to platinum/etoposide chemotherapy changed the standard of care for small cell lung cancer (SCLC) treatment. However, ICB addition only modestly improved clinical outcomes, likely reflecting the high prevalence of an immunologically "cold" tumor microenvironment in SCLC, despite high mutational burden. Nevertheless, some patients clearly benefit from ICB and recent reports have associated clinical responses to ICB in SCLC with (i) decreased neuroendocrine characteristics and (ii) activation of NOTCH signaling. We previously showed that inhibition of the lysine-specific demethylase 1a (LSD1) demethylase activates NOTCH and suppresses neuroendocrine features of SCLC, leading us to investigate whether LSD1 inhibition would enhance the response to PD-1 inhibition in SCLC. EXPERIMENTAL DESIGN We employed a syngeneic immunocompetent model of SCLC, derived from a genetically engineered mouse model harboring Rb1/Trp53 inactivation, to investigate combining the LSD1 inhibitor bomedemstat with anti-PD-1 therapy. In vivo experiments were complemented by cell-based studies in murine and human models. RESULTS Bomedemstat potentiated responses to PD-1 inhibition in a syngeneic model of SCLC, resulting in increased CD8+ T-cell infiltration and strong tumor growth inhibition. Bomedemstat increased MHC class I expression in mouse SCLC tumor cells in vivo and augmented MHC-I induction by IFNγ and increased killing by tumor-specific T cells in cell culture. CONCLUSIONS LSD1 inhibition increased MHC-I expression and enhanced responses to PD-1 inhibition in vivo, supporting a new clinical trial to combine bomedemstat with standard-of-care PD-1 axis inhibition in SCLC.
Collapse
Affiliation(s)
- Joseph B. Hiatt
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Veterans Affairs Puget Sound Healthcare System - Seattle Branch, Seattle, Washington 98108, USA,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Holly Sandborg
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sarah M. Garrison
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Henry U. Arnold
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sheng-You Liao
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Justin P. Norton
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Travis J. Friesen
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Feinan Wu
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Kate D. Sutherland
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | - Renato Martins
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - A. McGarry Houghton
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Pulmonary and Critical Care Division, University of Washington, Seattle, Washington, USA
| | - Shivani Srivastava
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - David MacPherson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
19
|
Maiques-Diaz A, Nicosia L, Basma NJ, Romero-Camarero I, Camera F, Spencer GJ, Amaral FMR, Simeoni F, Wingelhofer B, Williamson AJK, Pierce A, Whetton AD, Somervaille TCP. HMG20B stabilizes association of LSD1 with GFI1 on chromatin to confer transcription repression and leukemia cell differentiation block. Oncogene 2022; 41:4841-4854. [PMID: 36171271 PMCID: PMC7613766 DOI: 10.1038/s41388-022-02471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022]
Abstract
Pharmacologic inhibition of LSD1 induces molecular and morphologic differentiation of blast cells in acute myeloid leukemia (AML) patients harboring MLL gene translocations. In addition to its demethylase activity, LSD1 has a critical scaffolding function at genomic sites occupied by the SNAG domain transcription repressor GFI1. Importantly, inhibitors block both enzymatic and scaffolding activities, in the latter case by disrupting the protein:protein interaction of GFI1 with LSD1. To explore the wider consequences of LSD1 inhibition on the LSD1 protein complex we applied mass spectrometry technologies. We discovered that the interaction of the HMG-box protein HMG20B with LSD1 was also disrupted by LSD1 inhibition. Downstream investigations revealed that HMG20B is co-located on chromatin with GFI1 and LSD1 genome-wide; the strongest HMG20B binding co-locates with the strongest GFI1 and LSD1 binding. Functional assays demonstrated that HMG20B depletion induces leukemia cell differentiation and further revealed that HMG20B is required for the transcription repressor activity of GFI1 through stabilizing LSD1 on chromatin at GFI1 binding sites. Interaction of HMG20B with LSD1 is through its coiled-coil domain. Thus, HMG20B is a critical component of the GFI1:LSD1 transcription repressor complex which contributes to leukemia cell differentiation block.
Collapse
Affiliation(s)
- Alba Maiques-Diaz
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Luciano Nicosia
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Naseer J Basma
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Isabel Romero-Camarero
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Francesco Camera
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Fabrizio Simeoni
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Bettina Wingelhofer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Andrew J K Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Wolfson Molecular Imaging Centre, 27 Palatine Road, Manchester, M20 3LJ, UK
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Wolfson Molecular Imaging Centre, 27 Palatine Road, Manchester, M20 3LJ, UK
- School of Medical and Health Sciences, College of Human Sciences, Fron Heulog Bangor University, Bangor, LL57 2TH, UK
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Wolfson Molecular Imaging Centre, 27 Palatine Road, Manchester, M20 3LJ, UK
- School of Veterinary Medicine and School of Biosciences and Medicine, University of Surrey, VSM Building, University of Surrey, Guildford, GU2 7AL, UK
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| |
Collapse
|
20
|
Chen C, Lan MS. Interplay: The Essential Role between INSM1 and N-Myc in Aggressive Neuroblastoma. BIOLOGY 2022; 11:biology11101376. [PMID: 36290282 PMCID: PMC9598261 DOI: 10.3390/biology11101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Neuroblastoma (NB) is a cancer that starts in certain very early forms of nerve cells of the sympathetic nervous system, most often found in an embryo or fetus. Symptoms may include bone pain, an abdominal mass, frequent urination, limping, anemia, spinal cord weakness, or bruising of the eye area. N-Myc is a key driver of high-risk NB. An elevated expression of N-Myc often predicts a poorer prognosis, in both time to tumor progression and overall survival rate. We discovered a transcription factor, insulinoma-associated-1 (INSM1), as the downstream target gene of N-Myc. INSM1 has emerged as a novel NB biomarker that plays a critical role in facilitating NB tumor cell development. Both N-Myc and INSM1 demonstrate high clinical relevance to NB. Therefore, further understanding the association of INSM1 and N-Myc functions in aggressive NB should be beneficial for future NB treatment. Abstract An aggressive form of neuroblastoma (NB), a malignant childhood cancer derived from granule neuron precursors and sympathoadrenal lineage, frequently comprises MYCN amplification/elevated N-Myc expression, which contributes to the development of neural crest-derived embryonal malignancy. N-Myc is an oncogenic driver in NB. Persistent N-Myc expression during the maturation of SA precursor cells can cause blockage of the apoptosis and induce abnormal proliferation, resulting in NB development. An insulinoma-associated-1 (INSM1) zinc-finger transcription factor has emerged as an NB biomarker that plays a critical role in facilitating tumor cell growth and transformation. INSM1 plays an essential role in sympathoadrenal cell differentiation. N-Myc activates endogenous INSM1 through an E2-box of the INSM1 proximal promoter, whereas INSM1 enhances N-Myc stability via RAC-α-serine/threonine protein kinase (AKT) phosphorylation in NB. The ectopic expression of INSM1 stimulates NB tumor growth in contrast to the knockdown of INSM1 that inhibits NB cell proliferation. The clinical pathological result and bioinformatics analysis show that INSM1 is a strong diagnostic and a prognostic biomarker for the evaluation of NB progression. The INSM1/N-Myc expression shows high clinical relevance in NB. Therefore, targeting the INSM1/N-Myc-associated signaling axis should be a feasible approach to identifying new drugs for the suppression of NB tumor growth.
Collapse
Affiliation(s)
| | - Michael S. Lan
- Correspondence: ; Tel.: +1-504-568-2437; Fax: +1-504-568-8500
| |
Collapse
|
21
|
Lazo PA. Targeting Histone Epigenetic Modifications and DNA Damage Responses in Synthetic Lethality Strategies in Cancer? Cancers (Basel) 2022; 14:cancers14164050. [PMID: 36011043 PMCID: PMC9406467 DOI: 10.3390/cancers14164050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 12/18/2022] Open
Abstract
Synthetic lethality strategies are likely to be integrated in effective and specific cancer treatments. These strategies combine different specific targets, either in similar or cooperating pathways. Chromatin remodeling underlies, directly or indirectly, all processes of tumor biology. In this context, the combined targeting of proteins associated with different aspects of chromatin remodeling can be exploited to find new alternative targets or to improve treatment for specific individual tumors or patients. There are two major types of proteins, epigenetic modifiers of histones and nuclear or chromatin kinases, all of which are druggable targets. Among epigenetic enzymes, there are four major families: histones acetylases, deacetylases, methylases and demethylases. All these enzymes are druggable. Among chromatin kinases are those associated with DNA damage responses, such as Aurora A/B, Haspin, ATM, ATR, DNA-PK and VRK1-a nucleosomal histone kinase. All these proteins converge on the dynamic regulation chromatin organization, and its functions condition the tumor cell viability. Therefore, the combined targeting of these epigenetic enzymes, in synthetic lethality strategies, can sensitize tumor cells to toxic DNA-damage-based treatments, reducing their toxicity and the selective pressure for tumor resistance and increasing their immunogenicity, which will lead to an improvement in disease-free survival and quality of life.
Collapse
Affiliation(s)
- Pedro A. Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
22
|
Insulinoma-Associated Protein 1 (INSM1): Diagnostic, Prognostic, and Therapeutic Use in Small Cell Lung Cancer. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Small cell lung carcinoma (SCLC) is an aggressive and difficult to treat cancer. Although immunohistochemistry is not mandatory for a SCLC diagnosis, it might be required, especially in small samples. Insulinoma-associated protein 1 (INSM1) is expressed in endocrine and nervous tissues during embryogenesis, generally absent in adults and re-expressed in SCLC and other neuroendocrine neoplasms. Its high specificity propelled its use as diagnostic biomarker and an attractive therapeutic target. Herein, we aim to provide a systematic and critical review on the use of INSM1 for diagnosis, prognostication and the treatment of SCLC. An extensive bibliographic search was conducted in PubMed® focusing on articles published since 2015. According to the literature, INSM1 is a highly sensitive (75–100%) and specific (82–100%) neuroendocrine immunohistochemical marker for SCLC diagnosis. It can be used in histological and cytological samples. Although advantageous, its standalone use is currently not recommended. Studies correlating INSM1 expression and prognosis have disclosed contrasting results, although the expression seemed to entail a worse survival. Targeting INSM1 effectively suppressed SCLC growth either as a suicide gene therapy regulator or as an indirect target of molecular-targeted therapy. INSM1 represents a valuable biomarker for a SCLC diagnosis that additionally offers vast opportunities for the development of new prognostic and therapeutic strategies.
Collapse
|
23
|
Yang C, Li D, Zang S, Zhang L, Zhong Z, Zhou Y. Mechanisms of carcinogenic activity triggered by lysine-specific demethylase 1A. Front Pharmacol 2022; 13:955218. [PMID: 36059955 PMCID: PMC9428822 DOI: 10.3389/fphar.2022.955218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022] Open
Abstract
Epigenetics has emerged as a prime focus area in the field of cancer research. Lysine-specific demethylase 1A (LSD1), the first discovered histone demethylase, is mainly responsible for catalysing demethylation of histone 3 lysine 4 (H3K4) and H3K9 to activate or inhibit gene transcription. LSD1 is abnormally expressed in various cancers and participates in cancer proliferation, apoptosis, metastasis, invasion, drug resistance and other processes by interacting with regulatory factors. Therefore, it may serve as a potential therapeutic target for cancer. This review summarises the major oncogenic mechanisms mediated by LSD1 and provides a reference for developing novel and efficient anticancer strategies targeting LSD1.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohong Zang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Lei Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yingtang Zhou,
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Zhangfeng Zhong, ; Yingtang Zhou,
| |
Collapse
|
24
|
Dong J, Pervaiz W, Tayyab B, Li D, Kang L, Zhang H, Gong H, Ma X, Li J, Agboyibor C, Bi Y, Liu H. A comprehensive comparative study on LSD1 in different cancers and tumor specific LSD1 inhibitors. Eur J Med Chem 2022; 240:114564. [PMID: 35820351 DOI: 10.1016/j.ejmech.2022.114564] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 01/14/2023]
Abstract
LSD1 was significantly over-expressed in several cancer types, and its aberrant overexpression was revealed to play a crucial role in the initiation and progression of cancer. Several LSD1 inhibitors that were discovered and developed so far were found to be effective in attenuating tumor growth in both in vivo and in vitro studies. However, the major challenge associated with the development of cancer therapies is personalized treatment. Therefore, it is essential to look in detail at how LSD1 plays its part in carcinogenesis and whether there are any different expression levels of LSD1 in different tumors. Here in this review, fresh insight into a list of function correlated LSD1 binding proteins are provided, and we tried to figure out the role of LSD1 in different cancer types, including hematological malignancies and solid tumors. A critical description of mutation preference for LSD1 in different tumors was also discussed. Recent research findings clearly showed that the abrogation of LSD1 demethylase activity via LSD1 inhibitors markedly reduced the growth of cancer cells. But there are still many ambiguities regarding the role of LSD1 in different cancers. Therefore, targeting LSD1 for treating different cancers is still reductionist, and many challenges need to be met to improve the therapeutic outcomes of LSD1 inhibitors.
Collapse
Affiliation(s)
- Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
| | - Waqar Pervaiz
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Bilal Tayyab
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Dié Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Kang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Huimin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Huimin Gong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Clement Agboyibor
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefeng Bi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hongmin Liu
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
25
|
Abstract
Small cell lung cancer (SCLC) is a rapidly growing, highly metastatic, and relatively immune-cold lung cancer subtype. Historically viewed in the laboratory and clinic as a single disease, new discoveries suggest that SCLC comprises multiple molecular subsets. Expression of MYC family members and lineage-related transcription factors ASCL1, NEUROD1, and POU2F3 (and, in some studies, YAP1) define unique molecular states that have been associated with distinct responses to a variety of therapies. However, SCLC tumors exhibit a high degree of intratumoral heterogeneity, with recent studies suggesting the existence of tumor cell plasticity and phenotypic switching between subtype states. While SCLC plasticity is correlated with, and likely drives, therapeutic resistance, the mechanisms underlying this plasticity are still largely unknown. Subtype states are also associated with immune-related gene expression, which likely impacts response to immune checkpoint blockade and may reveal novel targets for alternative immunotherapeutic approaches. In this review, we synthesize recent discoveries on the mechanisms of SCLC plasticity and how these processes may impinge on antitumor immunity.
Collapse
Affiliation(s)
- Kate D Sutherland
- Australian Cancer Research Foundation (ACRF) Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
26
|
Yuan B, Liu H, Pan X, Dong X, Qu LF, Sun J, Pan LL. LSD1 downregulates p21 expression in vascular smooth muscle cells and promotes neointima formation. Biochem Pharmacol 2022; 198:114947. [PMID: 35143753 DOI: 10.1016/j.bcp.2022.114947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 01/10/2023]
Abstract
Neointima formation is characterized by the proliferation of vascular smooth muscle cells (VSMC). Although lysine-specific demethylase 1 (LSD1) has critical functions in several diseases, its role in neointima formation remains to be clarified. In this study, we aimed to explore the crucial role of LSD1 on neointima formation using a carotid artery injury model in mice. We observed that aberrant LSD1 expression was increased in human and mouse stenotic arteries and platelet-derived growth factor-BB (PDGF-BB)-treated VSMC. Furthermore, LSD1 knockdown significantly mitigated neointima formation in vivo and inhibited PDGF-BB-induced VSMC proliferation in vitro. We further uncovered that LSD1 overexpression exhibited opposite phenotypes in vivo and in vitro. Finally, LSD1 knockdown inhibited VSMC proliferation by increasing p21 expression, which is associated with LSD1 mediated di-methylated histone H3 on lysine 4 (H3K4me2) modification. Taken together, our data suggest that LSD1 may be a potential therapeutic target for the treatment of neointima formation.
Collapse
Affiliation(s)
- Baohui Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - He Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoliang Dong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Le-Feng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
27
|
Sacilotto N, Dessanti P, Lufino MMP, Ortega A, Rodríguez-Gimeno A, Salas J, Maes T, Buesa C, Mascaró C, Soliva R. Comprehensive in Vitro Characterization of the LSD1 Small Molecule Inhibitor Class in Oncology. ACS Pharmacol Transl Sci 2021; 4:1818-1834. [PMID: 34927013 DOI: 10.1021/acsptsci.1c00223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 01/10/2023]
Abstract
Lysine-specific demethylase 1 (LSD1 or KDM1A) is a chromatin modifying enzyme playing a key role in the cell cycle and cell differentiation and proliferation through the demethylation of histones and nonhistone substrates. In addition to its enzymatic activity, LSD1 plays a fundamental scaffolding role as part of transcription silencing complexes such as rest co-repressor (CoREST) and nucleosome remodeling and deacetylase (NuRD). A host of classical amine oxidase inhibitors such as tranylcypromine, pargyline, and phenelzine together with LSD1 tool compounds such as SP-2509 and GSK-LSD1 have been extensively utilized in LSD1 mechanistic cancer studies. Additionally, several optimized new chemical entities have reached clinical trials in oncology such as ORY-1001 (iadademstat), GSK2879552, SP-2577 (seclidemstat), IMG-7289 (bomedemstat), INCB059872, and CC-90011 (pulrodemstat). Despite this, no single study exists that characterizes them all under the same experimental conditions, preventing a clear interpretation of published results. Herein, we characterize the whole LSD1 small molecule compound class as inhibitors of LSD1 catalytic activity, disruptors of SNAIL/GFI1 (SNAG)-scaffolding protein-protein interactions, inducers of cell differentiation, and potential anticancer treatments for hematological and solid tumors to yield an updated, unified perspective of this field. Our results highlight significant differences in potency and selectivity among the clinical compounds with iadademstat being the most potent and reveal that most of the tool compounds have very low activity and selectivity, suggesting some conclusions derived from their use should be taken with caution.
Collapse
Affiliation(s)
- Natalia Sacilotto
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Paola Dessanti
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Michele M P Lufino
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Alberto Ortega
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | | | - Jordi Salas
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Tamara Maes
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Carlos Buesa
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Cristina Mascaró
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Robert Soliva
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| |
Collapse
|
28
|
Faletti S, Osti D, Ceccacci E, Richichi C, Costanza B, Nicosia L, Noberini R, Marotta G, Furia L, Faretta MR, Brambillasca S, Quarto M, Bertero L, Boldorini R, Pollo B, Gandini S, Cora D, Minucci S, Mercurio C, Varasi M, Bonaldi T, Pelicci G. LSD1-directed therapy affects glioblastoma tumorigenicity by deregulating the protective ATF4-dependent integrated stress response. Sci Transl Med 2021; 13:eabf7036. [PMID: 34878824 DOI: 10.1126/scitranslmed.abf7036] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Stefania Faletti
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Daniela Osti
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Elena Ceccacci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Cristina Richichi
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Brunella Costanza
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Luciano Nicosia
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Giulia Marotta
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Mario R Faretta
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Silvia Brambillasca
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), Milan 20139, Italy
| | - Micaela Quarto
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), Milan 20139, Italy
| | - Luca Bertero
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Renzo Boldorini
- Department of Health Science, University of Piemonte Orientale (UPO), Novara 28100, Italy
| | - Bianca Pollo
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Davide Cora
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara 28100, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Ciro Mercurio
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), Milan 20139, Italy
| | - Mario Varasi
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), Milan 20139, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy.,Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy
| |
Collapse
|
29
|
Chasseloup F, Bourdeau I, Tabarin A, Regazzo D, Dumontet C, Ladurelle N, Tosca L, Amazit L, Proust A, Scharfmann R, Mignot T, Fiore F, Tsagarakis S, Vassiliadi D, Maiter D, Young J, Lecoq AL, Deméocq V, Salenave S, Lefebvre H, Cloix L, Emy P, Dessailloud R, Vezzosi D, Scaroni C, Barbot M, de Herder W, Pattou F, Tétreault M, Corbeil G, Dupeux M, Lambert B, Tachdjian G, Guiochon-Mantel A, Beau I, Chanson P, Viengchareun S, Lacroix A, Bouligand J, Kamenický P. Loss of KDM1A in GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome: a multicentre, retrospective, cohort study. Lancet Diabetes Endocrinol 2021; 9:813-824. [PMID: 34655521 DOI: 10.1016/s2213-8587(21)00236-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome is caused by aberrant expression of the GIP receptor in adrenal lesions. The bilateral nature of this disease suggests germline genetic predisposition. We aimed to identify the genetic driver event responsible for GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome. METHODS We conducted a multicentre, retrospective, cohort study at endocrine hospitals and university hospitals in France, Canada, Italy, Greece, Belgium, and the Netherlands. We collected blood and adrenal samples from patients who had undergone unilateral or bilateral adrenalectomy for GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome. Adrenal samples from patients with primary bilateral macronodular adrenal hyperplasia who had undergone an adrenalectomy for overt or mild Cushing's syndrome without evidence of food-dependent cortisol production and those with GIP-dependent unilateral adrenocortical adenomas were used as control groups. We performed whole genome, whole exome, and targeted next generation sequencing, and copy number analyses of blood and adrenal DNA from patients with familial or sporadic disease. We performed RNA sequencing on adrenal samples and functional analyses of the identified genetic defect in the human adrenocortical cell line H295R. FINDINGS 17 patients with GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome were studied. The median age of patients was 43·3 (95% CI 38·8-47·8) years and most patients (15 [88%]) were women. We identified germline heterozygous pathogenic or most likely pathogenic variants in the KDM1A gene in all 17 patients. We also identified a recurrent deletion in the short p arm of chromosome 1 harboring the KDM1A locus in adrenal lesions of these patients. None of the 29 patients in the control groups had KDM1A germline or somatic alterations. Concomitant genetic inactivation of both KDM1A alleles resulted in loss of KDM1A expression in adrenal lesions. Global gene expression analysis showed GIP receptor upregulation with a log2 fold change of 7·99 (95% CI 7·34-8·66; p=4·4 × 10-125), and differential regulation of several other G protein-coupled receptors in GIP-dependent primary bilateral macronodular hyperplasia samples compared with control samples. In vitro pharmacological inhibition and inactivation of KDM1A by CRISPR-Cas9 genome editing resulted in an increase of GIP receptor transcripts and protein in human adrenocortical H295R cells. INTERPRETATION We propose that GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome results from a two-hit inactivation of KDM1A, consistent with the tumour suppressor gene model of tumorigenesis. Genetic testing and counselling should be offered to these patients and their relatives. FUNDING Agence Nationale de la Recherche, Fondation du Grand défi Pierre Lavoie, and the French National Cancer Institute.
Collapse
Affiliation(s)
- Fanny Chasseloup
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Antoine Tabarin
- Department of Endocrinology, Diabetes, and Nutrition, Hôpital Haut Lévêque, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Daniela Regazzo
- Endocrinology Unit, Department of Medicine, Hospital-University of Padua, Padua, Italy
| | - Charles Dumontet
- Université Claude Bernard Lyon 1, UMR INSERM 1052, CNRS 5286, Centre de Recherche de Cancérologie de Lyon, Lyon, France
| | - Nataly Ladurelle
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Lucie Tosca
- Service d'Histologie, Embryologie et Cytogénétique, Assistance Publique-Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart, France
| | - Larbi Amazit
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; UMS 44, Institut Biomédical du Val de Bièvre, Le Kremlin-Bicêtre, France
| | - Alexis Proust
- Service de Génétique Moléculaire et d'Hormonologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Tiphaine Mignot
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Frédéric Fiore
- US12 Centre d'immunophénomique, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Stylianos Tsagarakis
- Department of Endocrinology, Diabetes, and Metabolism, Evangelismos Hospital, Athens, Greece
| | - Dimitra Vassiliadi
- Department of Endocrinology, Diabetes, and Metabolism, Evangelismos Hospital, Athens, Greece
| | - Dominique Maiter
- Department of Endocrinology and Nutrition, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jacques Young
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Anne-Lise Lecoq
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Vianney Deméocq
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Sylvie Salenave
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Hervé Lefebvre
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Univ, Rouen University Hospital, Rouen, France
| | - Lucie Cloix
- CHR Orleans, Service d'Endocrinologie, Diabète et Nutrition, Orleans, France
| | - Philippe Emy
- CHR Orleans, Service d'Endocrinologie, Diabète et Nutrition, Orleans, France
| | - Rachel Dessailloud
- Department of Endocrinology, Diabetes, and Nutrition, and PériTox, UMR-I 01 INERIS, Université de Picardie Jules Verne, Amiens, France
| | | | - Carla Scaroni
- Endocrinology Unit, Department of Medicine, Hospital-University of Padua, Padua, Italy
| | - Mattia Barbot
- Department of Neuroscience, Hospital-University of Padua, Padua, Italy
| | - Wouter de Herder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - François Pattou
- Service de Chirurgie Générale et Endocrinienne, Univ Lille, Institut Pasteur de Lille, INSERM U1190, Translational Research Laboratory for Diabetes, CHU Lille, Lille, France
| | - Martine Tétreault
- Department of Neurosciences, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Gilles Corbeil
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Margot Dupeux
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Benoit Lambert
- Service de Chirurgie Digestive et Endocrinienne, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Gérard Tachdjian
- Service d'Histologie, Embryologie et Cytogénétique, Assistance Publique-Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart, France
| | - Anne Guiochon-Mantel
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service de Génétique Moléculaire et d'Hormonologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Isabelle Beau
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Philippe Chanson
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Say Viengchareun
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Jérôme Bouligand
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service de Génétique Moléculaire et d'Hormonologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.
| |
Collapse
|
30
|
Yan W, Chung CY, Xie T, Ozeck M, Nichols TC, Frey J, Udyavar AR, Sharma S, Paul TA. Intrinsic and acquired drug resistance to LSD1 inhibitors in small cell lung cancer occurs through a TEAD4-driven transcriptional state. Mol Oncol 2021; 16:1309-1328. [PMID: 34669238 PMCID: PMC8936524 DOI: 10.1002/1878-0261.13124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/20/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a heterogeneous disease, consisting of intratumoral and intertumoral neuroendocrine (ASCL1 and/or NEUROD1), mesenchymal-like, and YAP-driven transcriptional states. Lysine-specific demethylase 1 (LSD1; also known as KDM1A) inhibitors have recently been progressed to clinical trials in SCLC based on a promising preclinical antitumor activity. A potential clinical limitation of LSD1 inhibitors is the heterogeneous drug responses that have been observed in SCLC cell lines and patient-derived models. Based on these observations, we studied molecular and transcriptional signatures that predict patient response to this class of drug. Employing SCLC patient-derived transcriptional signatures, we define that SCLC cell lines sensitive to LSD1 inhibitors are enriched in neuroendocrine transcriptional markers, whereas cell lines enriched in a mesenchymal-like transcriptional program demonstrate intrinsic resistance to LSD1 inhibitors. We have identified a reversible, adaptive resistance mechanism to LSD1 inhibitors through epigenetic reprogramming to a TEAD4-driven mesenchymal-like state. Our data suggest that only a segment of SCLC patients, with a defined neuroendocrine differentiation state, will likely benefit from LSD1 inhibitors. It provides novel evidence for the selection of a TEAD4-driven mesenchymal-like subpopulation resistant to LSD1 inhibitors in SCLC patients that may require effective drug combinations to sustain effective clinical responses.
Collapse
Affiliation(s)
- Wen Yan
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Chi-Yeh Chung
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Tao Xie
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Mark Ozeck
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Timothy C Nichols
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Jessica Frey
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | | | - Shikhar Sharma
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Thomas A Paul
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| |
Collapse
|
31
|
Hao Z, Sekkath Veedu J. Current Strategies for Extensive Stage Small Cell Lung Cancer Beyond First-line Therapy. Clin Lung Cancer 2021; 23:14-20. [PMID: 34656433 DOI: 10.1016/j.cllc.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Extensive stage small cell lung cancer carries extremely poor prognosis and adding immune checkpoint inhibitor to platinum etoposide combination in first line only improved outcomes modestly. Once disease recurs, treatment response is only transient in nature. Various strategies that are being explored include dual checkpoint blockade, BiTE and CAR-T cell approaches. Immune checkpoint inhibitors are being combined with PARP inhibitors. Other approaches currently being investigated include liposomal irinotecan and combining known active agents for SCLC in relapsed setting such as newly approved lurbinectedin with doxorubicin, paclitaxel, irinotecan or topotecan with ATR inhibitor (Berzosertib). Temozolomide has also been tested in combination with a Parp inhibitor. New antibody or small molecule drug conjugates are being actively investigated, so is a biomarker based approach. Better understanding of small cell lung cancer disease biology via high through-put genomic, proteomic and methylation profiling offer glimpse of hope in our efforts to contain this deadly disease. A table of representative molecular targets under investigation is provided in the end.
Collapse
Affiliation(s)
- Zhonglin Hao
- Division of Medical Oncology, Department of Medicine, Markey Cancer Center, College of Medicine, University of Kentucky, Lexington KY.
| | - Janeesh Sekkath Veedu
- Division of Medical Oncology, Department of Medicine, Markey Cancer Center, College of Medicine, University of Kentucky, Lexington KY
| |
Collapse
|
32
|
Che D, Wang M, Sun J, Li B, Xu T, Lu Y, Pan H, Lu Z, Gu X. KRT6A Promotes Lung Cancer Cell Growth and Invasion Through MYC-Regulated Pentose Phosphate Pathway. Front Cell Dev Biol 2021; 9:694071. [PMID: 34235156 PMCID: PMC8255478 DOI: 10.3389/fcell.2021.694071] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 12/25/2022] Open
Abstract
Keratin 6A (KRT6A) belongs to the keratin protein family which is a critical component of cytoskeleton in mammalian cells. Although KRT6A upregulation in non-small cell lung cancer (NSCLC) has been reported, the regulatory mechanism and functional role of KRT6A in NSCLC development have been less well investigated. In this study, KRT6A was confirmed to be highly expressed in NSCLC tissue samples, and its high expression correlated with poor patient prognosis. Furthermore, overexpression of KRT6A promotes NSCLC cell proliferation and invasion. Mechanistically, KRT6A overexpression is sufficient to upregulate glucose-6-phosphate dehydrogenase (G6PD) levels and increase the pentose phosphate pathway flux, an essential metabolic pathway to support cancer cell growth and invasion. In addition, we discovered that lysine-specific demethylase 1A (LSD1) functions upstream to promote KRT6A gene expression. We also found that the MYC family members c-MYC/MYCN are involved in KRT6A-induced G6PD upregulation. Therefore, this study reveals an underappreciated mechanism that KRT6A acts downstream of LSD1 and functions as a pivotal driver for NSCLC progression by upregulating G6PD through the MYC signaling pathway. Together, KRT6A and LSD1 may serve as potential prognostic indictors and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Di Che
- Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mingshuo Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Juan Sun
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bo Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Xu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuxiong Lu
- Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haiyan Pan
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhaoliang Lu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoqiong Gu
- Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Chu Y, Xiao Z, Jing N, Yan W, Wang S, Ma B, Zhang J, Li Y. Arborinine, a potential LSD1 inhibitor, inhibits epithelial-mesenchymal transition of SGC-7901 cells and adriamycin-resistant gastric cancer SGC-7901/ADR cells. Invest New Drugs 2021; 39:627-635. [PMID: 33215324 DOI: 10.1007/s10637-020-01016-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Arborinine is a natural product isolated from G. parva leaf extracts, which displays potentially antiproliferative activity against human cervical cancer cells. In contrast, its anticancer effects against gastric cancer cells and drug-resistant gastric cancer cells remain unknown. In this work, arborinine was evaluated as a broad-spectrum antiproliferative agent, and it exhibited potently inhibitory activity against NCI-N87 (IC50 = 5.67 μM), BGC-823 (IC50 = 7.26 μM), MGC803 (IC50 = 4.75 μM), SGC-7901 (IC50 = 1.96 μM), HGC-27 (IC50 = 5.70 μM), SGC-7901/ADR (IC50 = 0.24 μM), SGC-7901/VCR (IC50 = 1.09 μM), and MGC803/PTX (IC50 = 1.32 μM) cell lines. Subsequent target verification experiments demonstrated that arborinine selectively and reversibly inhibited LSD1 in a time-dependent manner. Furthermore, it was found that arborinine suppressed the epithelial-mesenchymal transition of gastric cancer cell line SGC-7901 and adriamycin-resistant gastric cancer cell line SGC-7901/ADR in a dose-dependent manner. The in vivo antitumor study further indicated that arborinine can significantly reduce the growth of tumors both in SGC-7901 and SGC-7901/ADR xenograft mouse models. Overall, we demonstrated the potential of arborinine as an effective treatment for gastric cancer and adriamycin-resistant gastric cancer.
Collapse
Affiliation(s)
- Yafei Chu
- Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Zheng Xiao
- Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Nan Jing
- Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Wenjuan Yan
- Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Shanmei Wang
- Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Bing Ma
- Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Jiangfeng Zhang
- Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yi Li
- Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
34
|
Miller SA, Policastro RA, Sriramkumar S, Lai T, Huntington TD, Ladaika CA, Kim D, Hao C, Zentner GE, O'Hagan HM. LSD1 and Aberrant DNA Methylation Mediate Persistence of Enteroendocrine Progenitors That Support BRAF-Mutant Colorectal Cancer. Cancer Res 2021; 81:3791-3805. [PMID: 34035083 DOI: 10.1158/0008-5472.can-20-3562] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
Despite the connection of secretory cells, including goblet and enteroendocrine (EEC) cells, to distinct mucus-containing colorectal cancer histologic subtypes, their role in colorectal cancer progression has been underexplored. Here, our analysis of The Cancer Genome Atlas (TCGA) and single-cell RNA-sequencing data demonstrates that EEC progenitor cells are enriched in BRAF-mutant colorectal cancer patient tumors, cell lines, and patient-derived organoids. In BRAF-mutant colorectal cancer, EEC progenitors were blocked from differentiating further by DNA methylation and silencing of NEUROD1, a key gene required for differentiation of intermediate EECs. Mechanistically, secretory cells and the factors they secrete, such as trefoil factor 3, promoted colony formation and activation of cell survival pathways in the entire cell population. Lysine-specific demethylase 1 (LSD1) was identified as a critical regulator of secretory cell specification in vitro and in a colon orthotopic xenograft model, where LSD1 loss blocks formation of EEC progenitors and reduces tumor growth and metastasis. These findings reveal an important role for EEC progenitors in supporting colorectal cancer. SIGNIFICANCE: This study establishes enteroendocrine progenitors as a targetable population that promotes BRAF-mutant colorectal cancer and can be blocked by LSD1 inhibition to suppress tumor growth.
Collapse
Affiliation(s)
- Samuel A Miller
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Robert A Policastro
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana
| | - Shruthi Sriramkumar
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana.,Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Tim Lai
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana.,Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana.,Department of Mathematics, Indiana University, Bloomington, Indiana
| | - Thomas D Huntington
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Christopher A Ladaika
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Daeho Kim
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chunhai Hao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Gabriel E Zentner
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Heather M O'Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana. .,Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
35
|
Schwendenwein A, Megyesfalvi Z, Barany N, Valko Z, Bugyik E, Lang C, Ferencz B, Paku S, Lantos A, Fillinger J, Rezeli M, Marko-Varga G, Bogos K, Galffy G, Renyi-Vamos F, Hoda MA, Klepetko W, Hoetzenecker K, Laszlo V, Dome B. Molecular profiles of small cell lung cancer subtypes: therapeutic implications. Mol Ther Oncolytics 2021; 20:470-483. [PMID: 33718595 PMCID: PMC7917449 DOI: 10.1016/j.omto.2021.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Small cell lung cancer (SCLC; accounting for approximately 13%-15% of all lung cancers) is an exceptionally lethal malignancy characterized by rapid doubling time and high propensity to metastasize. In contrast to the increasingly personalized therapies in other types of lung cancer, SCLC is still regarded as a homogeneous disease and the prognosis of SCLC patients remains poor. Recently, however, substantial progress has been made in our understanding of SCLC biology. Advances in genomics and development of new preclinical models have facilitated insights into the intratumoral heterogeneity and specific genetic alterations of this disease. This worldwide resurgence of studies on SCLC has ultimately led to the development of novel subtype-specific classifications primarily based on the neuroendocrine features and distinct molecular profiles of SCLC. Importantly, these biologically distinct subtypes might define unique therapeutic vulnerabilities. Herein, we summarize the current knowledge on the molecular profiles of SCLC subtypes with a focus on their potential clinical implications.
Collapse
Affiliation(s)
- Anna Schwendenwein
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Nandor Barany
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Zsuzsanna Valko
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Edina Bugyik
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Bence Ferencz
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Sandor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Andras Lantos
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Janos Fillinger
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Gyorgy Marko-Varga
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Krisztina Bogos
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Gabriella Galffy
- Torokbalint County Institute of Pulmonology, 2045 Torokbalint, Hungary
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Viktoria Laszlo
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| |
Collapse
|
36
|
Fang Y, Yang C, Teng D, Su S, Luo X, Liu Z, Liao G. Discovery of higenamine as a potent, selective and cellular active natural LSD1 inhibitor for MLL-rearranged leukemia therapy. Bioorg Chem 2021; 109:104723. [PMID: 33618250 DOI: 10.1016/j.bioorg.2021.104723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022]
Abstract
Natural products are a rich source of lead compounds and have shown promise for epigenetic drug discovery. In this work, we discovered higenamine from our natural product library as a potent, selective and cellular active natural LSD1 inhibitor. Higenamine shows acceptable potency against LSD1 and high selectivity towards LSD1 over MAOA/B. Higenamine significantly increases expression of LSD1 substrates H3K4me1 and H3K4me2 in MLL-rearranged leukemia cells MV4-11 and MOLM-13, but nearly had no effect on LSD1 and H3K4Me3. Meanwhile, higenamine dose-dependently suppresses the levels of HOXA9 and MEIS1 that are overexpressed in leukemia cell lines. Notably, higenamine induces cell differentiation of MV4-11 and MOLM-13 cells accompanying by increased expression of CD11b, CD14 and CD86. Higenamine promotes cell apoptosis, inhibits colony formation, but does not inhibit proliferation of leukemia cells significantly. In addition, the expression levels of p53 are dramatically changed by higenamine in an LSD1-dependent manner in MV4-11 cells. Taken together, higenamine could be employed as a starting point for the development of more selective and potent LSD1 inhibitors. Our work firstly reveals the non-classical epigenetic regulation mechanism of higenamine in cancers, and also demonstrates the efficacy of higenamine for MLL-rearranged leukemia therapy.
Collapse
Affiliation(s)
- Yuan Fang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Chao Yang
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Dehong Teng
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Shiwei Su
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Xiang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
37
|
DeCaprio JA. Molecular Pathogenesis of Merkel Cell Carcinoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:69-91. [PMID: 33228463 DOI: 10.1146/annurev-pathmechdis-012419-032817] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin with two distinct etiologies. Clonal integration of Merkel cell polyomavirus DNA into the tumor genome with persistent expression of viral T antigens causes at least 60% of all MCC. UV damage leading to highly mutated genomes causes a nonviral form of MCC. Despite these distinct etiologies, both forms of MCC are similar in presentation, prognosis, and response to therapy. At least three oncogenic transcriptional programs feature prominently in both forms of MCC driven by the virus or by mutation. Both forms of MCC have a high proliferative growth rate with increased levels of cell cycle-dependent genes due to inactivation of the tumor suppressors RB and p53, a strong MYC signature due to MYCL activation by the virus or gene amplification, and an attenuated neuroendocrine differentiation program driven by the ATOH1 transcription factor.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; .,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
38
|
Khan P, Siddiqui JA, Maurya SK, Lakshmanan I, Jain M, Ganti AK, Salgia R, Batra SK, Nasser MW. Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Semin Cancer Biol 2020; 83:57-76. [PMID: 33220460 PMCID: PMC8218609 DOI: 10.1016/j.semcancer.2020.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar Kishor Ganti
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
39
|
Kanouni T, Severin C, Cho RW, Yuen NYY, Xu J, Shi L, Lai C, Del Rosario JR, Stansfield RK, Lawton LN, Hosfield D, O’Connell S, Kreilein MM, Tavares-Greco P, Nie Z, Kaldor SW, Veal JM, Stafford JA, Chen YK. Discovery of CC-90011: A Potent and Selective Reversible Inhibitor of Lysine Specific Demethylase 1 (LSD1). J Med Chem 2020; 63:14522-14529. [DOI: 10.1021/acs.jmedchem.0c00978] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Toufike Kanouni
- Fount Therapeutics, LLC, San Diego, California 92130, United States
| | - Christophe Severin
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Robert W. Cho
- Quanticel Pharmaceuticels, San Francisco, California 94158, United States
| | - Natalie Y.-Y. Yuen
- Oric Pharmaceuticals, South San Francisco, California 94080, United States
| | - Jiangchun Xu
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Lihong Shi
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Chon Lai
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Joselyn R. Del Rosario
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | | | - Lee N. Lawton
- Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - David Hosfield
- University of Chicago, Chicago, Illinois 60637, United States
| | | | | | | | - Zhe Nie
- Schrödinger, Inc., San Diego, California 92121, United States
| | | | - James M. Veal
- 858 Therapeutics, Inc., San Diego, California 92121, United States
| | | | - Young K. Chen
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| |
Collapse
|
40
|
Herrlinger E, Hau M, Redhaber DM, Greve G, Willmann D, Steimle S, Müller M, Lübbert M, Miething CC, Schüle R, Jung M. Nitroreductase-Mediated Release of Inhibitors of Lysine-Specific Demethylase 1 (LSD1) from Prodrugs in Transfected Acute Myeloid Leukaemia Cells. Chembiochem 2020; 21:2329-2347. [PMID: 32227662 PMCID: PMC7497180 DOI: 10.1002/cbic.202000138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/29/2020] [Indexed: 12/14/2022]
Abstract
Lysine-specific demethylase 1 (LSD1) has evolved as a promising therapeutic target for cancer treatment, especially in acute myeloid leukaemia (AML). To approach the challenge of site-specific LSD1 inhibition, we developed an enzyme-prodrug system with the bacterial nitroreductase NfsB (NTR) that was expressed in the virally transfected AML cell line THP1-NTR+ . The cellular activity of the NTR was proven with a new luminescent NTR probe. We synthesised a diverse set of nitroaromatic prodrugs that by design do not affect LSD1 and are reduced by the NTR to release an active LSD1 inhibitor. The emerging side products were differentially analysed using negative controls, thereby revealing cytotoxic effects. The 2-nitroimidazolyl prodrug of a potent LSD1 inhibitor emerged as one of the best prodrug candidates with a pronounced selectivity window between wild-type and transfected THP1 cells. Our prodrugs are selectively activated and release the LSD1 inhibitor locally, proving their suitability for future targeting approaches.
Collapse
Affiliation(s)
- Eva‐Maria Herrlinger
- Department of Chemistry and Pharmacy, University of FreiburgInstitute of Pharmaceutical SciencesAlbertstrasse 2579104FreiburgGermany
| | - Mirjam Hau
- Department of Chemistry and Pharmacy, University of FreiburgInstitute of Pharmaceutical SciencesAlbertstrasse 2579104FreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling StudiesUniversity of FreiburgSchänzlestrasse 1879104FreiburgGermany
| | - Desiree Melanie Redhaber
- Division of Hematology, Oncology and Stem Cell TransplantationUniversity of Freiburg Medical CenterHugstetter Strasse 5579106FreiburgGermany
| | - Gabriele Greve
- Division of Hematology, Oncology and Stem Cell TransplantationUniversity of Freiburg Medical CenterHugstetter Strasse 5579106FreiburgGermany
| | - Dominica Willmann
- Department of Urology and Center for Clinical ResearchUniversity of Freiburg Medical CenterBreisacher Strasse 6679106FreiburgGermany
| | - Simon Steimle
- Department of Chemistry and Pharmacy, University of FreiburgInstitute of Pharmaceutical SciencesAlbertstrasse 2579104FreiburgGermany
| | - Michael Müller
- Department of Chemistry and Pharmacy, University of FreiburgInstitute of Pharmaceutical SciencesAlbertstrasse 2579104FreiburgGermany
| | - Michael Lübbert
- Division of Hematology, Oncology and Stem Cell TransplantationUniversity of Freiburg Medical CenterHugstetter Strasse 5579106FreiburgGermany
- German Cancer Consortium (DKTK)FreiburgGermany
- German Cancer Research Center (DKFZ)
| | - Christoph Cornelius Miething
- Division of Hematology, Oncology and Stem Cell TransplantationUniversity of Freiburg Medical CenterHugstetter Strasse 5579106FreiburgGermany
| | - Roland Schüle
- CIBSS – Centre for Integrative Biological Signalling StudiesUniversity of FreiburgSchänzlestrasse 1879104FreiburgGermany
- Department of Urology and Center for Clinical ResearchUniversity of Freiburg Medical CenterBreisacher Strasse 6679106FreiburgGermany
| | - Manfred Jung
- Department of Chemistry and Pharmacy, University of FreiburgInstitute of Pharmaceutical SciencesAlbertstrasse 2579104FreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling StudiesUniversity of FreiburgSchänzlestrasse 1879104FreiburgGermany
- German Cancer Consortium (DKTK)FreiburgGermany
- German Cancer Research Center (DKFZ)
| |
Collapse
|
41
|
Peng W, Zhang H, Tan S, Li Y, Zhou Y, Wang L, Liu C, Li Q, Cen X, Yang S, Zhao Y. Synergistic antitumor effect of 5-fluorouracil with the novel LSD1 inhibitor ZY0511 in colorectal cancer. Ther Adv Med Oncol 2020; 12:1758835920937428. [PMID: 32754230 PMCID: PMC7378962 DOI: 10.1177/1758835920937428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/21/2020] [Indexed: 02/05/2023] Open
Abstract
Background Lysine-specific histone demethylase 1 (LSD1) is a potential target of cancer therapy. In the present study, we aimed to investigate the combined antitumor activity of a novel LSD1 inhibitor (ZY0511) with 5-fluorouracil (5-FU) and elucidate the underlying mechanism in colorectal cancer (CRC). Methods We evaluated LSD1 expression in CRC tissues from patients who received 5-FU treatment. The synergistic antitumor effect of 5-FU with ZY0511 against human CRC cells was detected both in vitro and in vivo. The underlying mechanism was explored based on mRNA sequencing (mRNA-seq) technology. Results Overexpression of LSD1 was observed in human CRC tissues, and correlated with CRC development and 5-FU resistance. ZY0511, a novel LSD1 inhibitor, effectively inhibited CRC cells proliferation, both in vitro and in vivo. Notably, the combination of ZY0511 and 5-FU synergistically reduced CRC cells viability and migration in vitro. It also suppressed Wnt/β-catenin signaling and DNA synthesis pathways, which finally induced apoptosis of CRC cells. In addition, the combination of ZY0511 with 5-FU significantly reduced CRC xenograft tumor growth, along with lung and liver metastases in vivo. Conclusions Our findings identify LSD1 as a potential marker for 5-FU resistance in CRC. ZY0511 is a promising candidate for CRC therapy as it potentiates 5-FU anticancer effects, thereby providing a new combinatorial strategy for treating CRC.
Collapse
Affiliation(s)
- Wen Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Huaqing Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Shisheng Tan
- Department of Oncology, The People's Hospital of Guizhou Province, Guiyang, China
| | - Yan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Liang Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Chunqi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Qiu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiaobo Cen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, 17#, 3rd Section, Ren min South Road, Chengdu 610041, China
| |
Collapse
|
42
|
Long M, Zhu Y, Chen Z, Lin S, Peng X, Luo D, Li H, Tan L. Lysine-Specific Demethylase 1 Affects the Progression of Papillary Thyroid Carcinoma via HIF1α and microRNA-146a. J Clin Endocrinol Metab 2020; 105:5821525. [PMID: 32303750 DOI: 10.1210/clinem/dgaa182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/17/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT Lysine-specific demethylase 1 (LSD1) stabilizes hypoxia-inducible factor 1α (HIF1α) to advance tumor progression, while HIF1α functions as a transcription factor to increase the expression of microRNA-146a (miR-146a). OBJECTIVE We aim to investigate whether LSD1 affects the development of papillary thyroid carcinoma (PTC) via HIF1α and miR-146a. DESIGN In vitro assays were performed with Nthy-ori 3-1, BHP5-16, BCPAP, K1, and BHP2-7 cell lines. In vivo assays were conducted with established xenograft tumors in nude mice. SETTING This study was conducted at our lab. PATIENTS AND MATERIALS PTC tissues and corresponding adjacent normal tissues were obtained from 45 patients hospitalized in Sun Yat-Sen Memorial Hospital. Assays were conducted using Nthy-ori 3-1, BHP5-16, BCPAP, K1, and BHP2-7 cell lines, as well as 50 male BALB/c nude mice. INTERVENTION Cells were transfected with sh-LSD1, sh-GABPA, oe-LSD1, oe-HIF1α, miR-146a mimic, and miR-146a inhibitor. In addition, K1 cells expressing lv-oe-LSD1, lv-miR-146a inhibitor, lv-oe-LSD1 or miR-146a inhibitor were injected into the right side of the mice. LSD1 gene and protein expression patterns were analyzed in 45 clinical PTC tissue samples. MAIN OUTCOME MEASURE Expression of LSD1, HIF1α, miR-146a, and GA-binding protein transcription factor alpha (GABPA), as well as their effects on PTC. RESULTS LSD1 was highly expressed in clinical PTC tissues. LSD1 stabilized HIF1α and inhibited the degradation of its ubiquitin proteasome. HIF1α was enriched in the promoter region of miR-146a, an upregulated miRNA in PTC. HIF1α increased miR-146a expression to promote PTC progression in vitro, which was achieved by inhibiting GABPA, a target gene of miR-146a. LSD1 upregulated miR-146a to enhance the development and metastasis of PTC in nude mice. CONCLUSION Our results show that LSD1 functions as an oncogene in PTC by upregulating HIF1α and miR-146a, elucidating an understanding of undefined mechanisms associated with tumor progression in PTC.
Collapse
Affiliation(s)
- Miaoyun Long
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhu
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zuhe Chen
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaojian Lin
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinzhi Peng
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dingyuan Luo
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Honghao Li
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Langping Tan
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
43
|
Taniguchi H, Sen T, Rudin CM. Targeted Therapies and Biomarkers in Small Cell Lung Cancer. Front Oncol 2020; 10:741. [PMID: 32509576 PMCID: PMC7251180 DOI: 10.3389/fonc.2020.00741] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy characterized by rapid growth, early metastasis, and acquired therapeutic resistance. A majority of patients with SCLC have extensive-stage (ES) disease, defined as the presence of metastatic disease outside the hemithorax at first diagnosis. SCLC has been considered “a graveyard for drug development,” with chemotherapy remaining the standard treatment for first- and second-line management until quite recently. In contrast to NSCLC, identifying therapeutic targets in SCLC has been challenging, partly because driver mutations are primarily loss of function, involving the tumor suppressor genes RB1 and TP53 or currently untargetable (e.g., amplification of MYC family members). Recent gene expression profiling of SCLC cells lines, patient samples and representative murine models, have led to a proposed delineation of four major subtypes for SCLC distinguished by differential expression of four key transcriptional regulators (ASCL1, NEUROD1, POU2F3, and YAP1). Our understanding of the biology of SCLC has indeed significantly improved recently due to the continued efforts of the dedicated investigators in this field, but the therapeutic options remain dismal. While recent results from immunotherapy trials are encouraging, most patients demonstrate either primary or rapid acquired resistance to current regimens, highlighting the clear need to improve the effectiveness and expand the scope of current therapeutic strategies. In this opinion article, we will discuss recent developments in the treatment of SCLC, focused on current understanding of the signaling pathways, the role of immunotherapy and targeted therapy, and emerging biomarkers of response to therapy in SCLC.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Molecular Pharmacology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Triparna Sen
- Molecular Pharmacology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Charles M Rudin
- Molecular Pharmacology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
44
|
Park DE, Cheng J, McGrath JP, Lim MY, Cushman C, Swanson SK, Tillgren ML, Paulo JA, Gokhale PC, Florens L, Washburn MP, Trojer P, DeCaprio JA. Merkel cell polyomavirus activates LSD1-mediated blockade of non-canonical BAF to regulate transformation and tumorigenesis. Nat Cell Biol 2020; 22:603-615. [PMID: 32284543 PMCID: PMC7336275 DOI: 10.1038/s41556-020-0503-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Merkel cell carcinoma (MCC), a neuroendocrine cancer of the skin, is caused by integration of Merkel cell polyomavirus (MCV) and persistent expression of Large T antigen (LT) and Small T antigen (ST). We report that ST in complex with MYCL and the EP400 complex activates expression of LSD1 (KDM1A), RCOR2, and INSM1 to repress gene expression by the lineage transcription factor ATOH1. LSD1 inhibition reduces growth of MCC in vitro and in vivo. Through a forward-genetics CRISPR-Cas9 screen, we identified an antagonistic relationship between LSD1 and the non-canonical BAF (ncBAF) chromatin remodeling complex. Changes in gene expression and chromatin accessibility caused by LSD1 inhibition could be partially rescued by BRD9 inhibition, revealing that LSD1 and ncBAF antagonistically regulate an overlapping set of genes. Our work provides mechanistic insight into the dependence of MCC on LSD1 and a tumor suppressor role for ncBAF in cancer.
Collapse
Affiliation(s)
- Donglim Esther Park
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Matthew Y Lim
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Camille Cushman
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Michelle L Tillgren
- Experimental Therapeutics Core, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - James A DeCaprio
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Li H, Wang L, Li Z, Geng X, Li M, Tang Q, Wu C, Lu Z. SOX2 has dual functions as a regulator in the progression of neuroendocrine prostate cancer. J Transl Med 2020; 100:570-582. [PMID: 31772313 DOI: 10.1038/s41374-019-0343-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
The mechanisms underlying the lineage switching from prostate adenocarcinoma (AdPC) to lethal neuroendocrine prostate cancer (NEPC) have yet to be completely elucidated. In this study, RNA sequencing data from a unique patient-derived xenograft NEPC model and a clinical NEPC cohort were used to identify the potential genes driving NEPC progression. Enrichr analysis resulted in the identification of SRY-related HMG-box gene 2 (SOX2) as a potential repressor that causes decrease in the expression of AdPC specific genes in NEPC. Assays involving the stable overexpression of SOX2 in LNCaP and CWR22RV1 cells validated this role of SOX2 in vitro. Mechanistic studies showed that the repressor role of SOX2 was attributed to the marked global hypomethylation of histone H3, which was driven by the activation of lysine-specific demethylase 1 (LSD1). Furthermore, Enrichr also predicted SOX2 as a driver gene involved in the upregulation of NEPC specific genes. However, SOX2 alone could only marginally induce the expression of some neuroendocrine markers in vitro, which was consistent with previous reports. Moreover, we also elucidated the molecular features of LNCaP-SOX2 cells that may confer resistance to androgen-deprivation therapy (ADT) and the inclination toward neuroendocrine transdifferentiation. The results of this study reveal a novel mechanism for SOX2 in the progression of NEPC via LSD1-mediated global epigenetic modulation. This discovery suggests that LSD1 may be a selective target for the prevention of NEPC progression.
Collapse
Affiliation(s)
- Haiying Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Lili Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Zhang Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Xu Geng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Qi Tang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Chunxiao Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China.
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
46
|
Niwa H, Sato S, Handa N, Sengoku T, Umehara T, Yokoyama S. Development and Structural Evaluation of N-Alkylated trans-2-Phenylcyclopropylamine-Based LSD1 Inhibitors. ChemMedChem 2020; 15:787-793. [PMID: 32166890 DOI: 10.1002/cmdc.202000014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/21/2020] [Indexed: 01/19/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) is a flavin adenine dinucleotide (FAD)-dependent enzyme that catalyzes the demethylation of histone H3 and regulates gene expression. Because it is implicated in the regulation of diseases such as acute myeloid leukemia, potent LSD1-specific inhibitors have been pursued. Trans-2-phenylcyclopropylamine (2-PCPA)-based inhibitors featuring substitutions on the amino group have emerged, with sub-micromolar affinities toward LSD1 and high selectivities over monoamine oxidases (MAOs). We synthesized two N-alkylated 2-PCPA-based LSD1 inhibitors, S2116 and S2157, based on the previously developed S2101. S2116 and S2157 exhibited enhanced potency for LSD1 by 2.0- to 2.6-fold, as compared with S2101. In addition, they exhibited improved selectivity over MAOs. Structural analyses of LSD1 co-crystallized with S2101, S2116, S2157, or another N-alkylated inhibitor (FCPA-MPE) confirmed that the N-substituents enhance the potency of a 2-PCPA-based inhibitor of LSD1, without constituting the adduct formed with FAD.
Collapse
Affiliation(s)
- Hideaki Niwa
- RIKEN Systems and Structural Biology Center, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, 230-0045, Japan.,RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Shin Sato
- RIKEN Systems and Structural Biology Center, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, 230-0045, Japan.,RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Noriko Handa
- RIKEN Systems and Structural Biology Center, Yokohama, 230-0045, Japan
| | - Toru Sengoku
- RIKEN Systems and Structural Biology Center, Yokohama, 230-0045, Japan.,RIKEN Structural Biology Laboratory, Yokohama, 230-0045, Japan
| | - Takashi Umehara
- RIKEN Systems and Structural Biology Center, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, 230-0045, Japan.,RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama, 230-0045, Japan.,RIKEN Structural Biology Laboratory, Yokohama, 230-0045, Japan.,RIKEN Yokoyama Laboratory, Yokohama, 230-0045, Japan
| |
Collapse
|
47
|
Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nat Rev Clin Oncol 2020; 17:360-371. [PMID: 32152485 DOI: 10.1038/s41571-020-0340-z] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Lineage plasticity, the ability of cells to transition from one committed developmental pathway to another, has been proposed as a source of intratumoural heterogeneity and of tumour adaptation to an adverse tumour microenvironment including exposure to targeted anticancer treatments. Tumour cell conversion into a different histological subtype has been associated with a loss of dependency on the original oncogenic driver, leading to therapeutic resistance. A well-known pathway of lineage plasticity in cancer - the histological transformation of adenocarcinomas to aggressive neuroendocrine derivatives - was initially described in lung cancers harbouring an EGFR mutation, and was subsequently reported in multiple other adenocarcinomas, including prostate cancer in the presence of antiandrogens. Squamous transformation is a subsequently identified and less well-characterized pathway of adenocarcinoma escape from suppressive anticancer therapy. The increased practice of tumour re-biopsy upon disease progression has increased the recognition of these mechanisms of resistance and has improved our understanding of the underlying biology. In this Review, we provide an overview of the impact of lineage plasticity on cancer progression and therapy resistance, with a focus on neuroendocrine transformation in lung and prostate tumours. We discuss the current understanding of the molecular drivers of this phenomenon, emerging management strategies and open questions in the field.
Collapse
|
48
|
Sui JSY, Martin P, Gray SG. Pre-clinical models of small cell lung cancer and the validation of therapeutic targets. Expert Opin Ther Targets 2020; 24:187-204. [PMID: 32068452 DOI: 10.1080/14728222.2020.1732353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Small-cell lung cancer (SCLC) is an aggressive form of lung cancer that has a dismal prognosis. One of the factors hindering therapeutic developments for SCLC is that most SCLC is not surgically resected resulting in a paucity of material for analysis. To address this, significant efforts have been made by investigators to develop pre-clinical models of SCLC allowing for downstream target identification in this difficult to treat cancer.Areas covered: In this review, we describe the current pre-clinical models that have been developed to interrogate SCLC, and outline the benefits and limitations associated with each. Using examples we show how each has been used to (i) improve our knowledge of this intractable cancer, and (ii) identify and validate potential therapeutic targets that (iii) are currently under development and testing within the clinic.Expert opinion: The large numbers of preclinical models that have been developed have dramatically improved the ways in which we can examine SCLC and test therapeutic targets/interventions. The newer models are rapidly providing novel avenues for the design and testing of new therapeutics. Despite this many of these models have inherent flaws that limit the possibility of their use for individualized therapy decision-making for SCLC.
Collapse
Affiliation(s)
- Jane S Y Sui
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland.,Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Petra Martin
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland.,Labmed Directorate, St. James's Hospital, Dublin, Ireland.,School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
49
|
Lysine-specific demethylase-1 regulates fibroblast activation in pulmonary fibrosis via TGF-β1/Smad3 pathway. Pharmacol Res 2020; 152:104592. [DOI: 10.1016/j.phrs.2019.104592] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/31/2019] [Accepted: 12/07/2019] [Indexed: 12/15/2022]
|
50
|
Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20246171. [PMID: 31817798 PMCID: PMC6941051 DOI: 10.3390/ijms20246171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM), a metabolic disease that develops with the increase in insulin resistance during late pregnancy, is currently one of the most common complications affecting pregnancy. The polygenic nature of GDM, together with the interplay between different genetic variants with nutritional and environmental factors has hindered the full understanding of the etiology of this disease. However, an important genetic overlap has been found with type 2 diabetes mellitus (T2DM) and, as in the case of T2DM, most of the identified loci are associated with β-cell function. Early detection of GDM and adequate interventions to control the maternal glycemia are necessary to avoid the adverse outcomes for both the mother and the offspring. The in utero exposure to the diabetic milieu predispose these children for future diseases, among them T2DM, originating a vicious circle implicated in the increased prevalence of both GDM and T2DM. The involvement of inflammatory processes in the development of GDM highlights the importance of pancreatic β-cell factors able to favor the adaptation processes required during gestation, concomitantly with the protection of the islets from an inflammatory milieu. In this regard, two members of the Pax family of transcription factors, PAX4 and PAX8, together with the chromatin remodeler factor HMG20A, have gained great relevance due to their involvement in β-cell mass adaptation together with their anti-inflammatory properties. Mutations in these factors have been associated with GDM, highlighting these as novel candidates for genetic screening analysis in the identification of women at risk of developing GDM.
Collapse
|