1
|
Gao L, Liu J, Zhang R, Chen X, Wang M, Dong Y, Frasinyuk MS, Zhang W, Watt D, Meng W, Xue J, Liu C, Cheng Y, Liu X. A novel amino-pyrimidine inhibitor suppresses tumor growth via microtubule destabilization and Bmi-1 down-regulation. Biochem Pharmacol 2025; 233:116783. [PMID: 39880315 DOI: 10.1016/j.bcp.2025.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Colorectal cancer (CRC), one of the diseases posing a threat to global health, according to the latest data, is the third most common cancer globally and the second leading cause of cancer-related deaths. The development and refinement of novel structures of small molecular compounds play a crucial role in tumor treatment and overcoming drug resistance. In this study, our objective was to screen and characterize novel compounds for overcoming drug resistance via the B Lymphoma Mo-MLV insertion region 1 (Bmi-1) reporter screen assay. The stable cell line harboring the Bmi-1 reporter gene was utilized to screen 300 compounds, leading to the identification of an amino-pyrimidine compound, APD-94. In vitro, APD-94 markedly inhibited cancer cell proliferation and decreased Bmi-1 expression at both the RNA and protein levels. In vivo, APD-94 repressed the growth of HT29 cell xenografts in NOD/SCID mice without notable side effects. Flow cytometry results demonstrated that APD-94 induced G2/M phase arrest and apoptosis in cells. APD-94 was identified as a novel inhibitor of microtubule polymerization by directly targeting the tubulin. Furthermore, APD-94 was more effective in overcoming the resistance to paclitaxel in paclitaxel-resistant A549/Tax cells. This bifunctional inhibitor is a promising candidate drug for CRC treatment.
Collapse
Affiliation(s)
- Lijie Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jiawei Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Rui Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Mo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Yujia Dong
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Mykhaylo S Frasinyuk
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv 02094 Ukraine
| | - Wen Zhang
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - David Watt
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Wenxiang Meng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jun Xue
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Chunming Liu
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Yu Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China.
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
2
|
Zhang Z, Su R, Liu J, Chen K, Wu C, Sun P, Sun T. Tubulin/HDAC dual-target inhibitors: Insights from design strategies, SARs, and therapeutic potential. Eur J Med Chem 2025; 281:117022. [PMID: 39500063 DOI: 10.1016/j.ejmech.2024.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 12/02/2024]
Abstract
Microtubules, one of the cytoskeletons in eukaryotic cells, maintain the proper operation of several cellular functions. Additionally, they are regulated by the acetylation of HDAC6 and SIRT2 which affects microtubule dynamics. Given the fact that tubulin and HDAC inhibitors play a synergistic effect in the treatment of many cancers, the development of tubulin/HDAC dual-target inhibitors is conducive to addressing multiple limitations including drug resistance, dose toxicity, and unpredictable pharmacokinetic properties. At present, tubulin/HDAC dual-target inhibitors have been obtained in three main ways: uncleavable linked pharmacophores, cleavable linked pharmacophores, and modification of single-target drugs. Their therapeutic efficacy has been verified in vivo and in vitro assays. In this article, we reviewed the research progress of tubulin/HDAC dual inhibitors from design strategies, SARs, and biological activities, which may provide help for the discovery of novel tubulin/HDAC dual inhibitors.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Rui Su
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Junao Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Keyu Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Chengjun Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China.
| | - Pinghua Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, PR China.
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China.
| |
Collapse
|
3
|
Jang J, Koh B, Lee K. Discovery of benzimidazole-2-amide BNZ-111 as new tubulin inhibitor. Bioorg Med Chem Lett 2024; 113:129953. [PMID: 39270806 DOI: 10.1016/j.bmcl.2024.129953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Methyl benzimidazole-2-carbamate anthelmintics are a class of oral drugs to treat parasitic worm infections via microtubule disruption for non-systemic indications and currently in use. In order to use for anticancer treatment, the new benzimidazoles needs to improve solubility and pharmacokinetic parameters while maintaining its cellular potency as for systemic drug. Structure-activity-relationship on the benzimidazole is thoroughly examined and a novel benzimidazole-2 propionamide BNZ-111 is identified having good oral exposure and bioavailability in rat. Molecular docking study suggests BNZ-111 have a specific binding mode to the β subunit of curved tubulin. BNZ-111 is potent to cancer cells and possesses good drug-like properties as oral drug. Especially, BNZ-111 is not a P-gp substrate and it demonstrates its efficacy over Paclitaxel-resistance tumor in vivo.
Collapse
Affiliation(s)
- Jiyoon Jang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Byumseok Koh
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea; Medicinal Chemistry & Pharmacology, Korea National University of Science & Technology, Daejeon 34113, South Korea.
| | - Kwangho Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea; Medicinal Chemistry & Pharmacology, Korea National University of Science & Technology, Daejeon 34113, South Korea.
| |
Collapse
|
4
|
Wu C, Zhang L, Zhou Z, Tan L, Wang Z, Guo C, Wang Y. Discovery and mechanistic insights into thieno[3,2-d]pyrimidine and heterocyclic fused pyrimidines inhibitors targeting tubulin for cancer therapy. Eur J Med Chem 2024; 276:116649. [PMID: 38972078 DOI: 10.1016/j.ejmech.2024.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Guided by the X-ray cocrystal structure of the lead compound 4a, we developed a series of thieno[3,2-d]pyrimidine and heterocyclic fused pyrimidines demonstrating potent antiproliferative activity against four tumor cell lines. Two analogs, 13 and 25d, exhibited IC50 values around 1 nM and overcame P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). At low concentrations, 13 and 25d inhibited both the colony formation of SKOV3 cells in vitro and tubulin polymerization. Furthermore, mechanistic studies showed that 13 and 25d induced G2/M phase arrest and apoptosis in SKOV3 cells, as well as dose-dependent inhibition of tumor cell migration and invasion at low concentrations. Most notably, the X-ray cocrystal structures of compounds 4a, 25a, and the optimal molecule 13 in complex with tubulin were elucidated. This study identifies thieno[3,2-d]pyrimidine and heterocyclic fused pyrimidines as representatives of colchicine-binding site inhibitors (CBSIs) with potent antiproliferative activity.
Collapse
Affiliation(s)
- Chengyong Wu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lele Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhilan Zhou
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lun Tan
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhijia Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cuiyu Guo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
5
|
Oluwalana D, Adeleye KL, Krutilina RI, Chen H, Playa H, Deng S, Parke DN, Abernathy J, Middleton L, Cullom A, Thalluri B, Ma D, Meibohm B, Miller DD, Seagroves TN, Li W. Biological activity of a stable 6-aryl-2-benzoyl-pyridine colchicine-binding site inhibitor, 60c, in metastatic, triple-negative breast cancer. Cancer Lett 2024; 597:217011. [PMID: 38849011 PMCID: PMC11290984 DOI: 10.1016/j.canlet.2024.217011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Improving survival for patients diagnosed with metastatic disease and overcoming chemoresistance remain significant clinical challenges in treating breast cancer. Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by a lack of therapeutically targetable receptors (ER/PR/HER2). TNBC therapy includes a combination of cytotoxic chemotherapies, including microtubule-targeting agents (MTAs) like paclitaxel (taxane class) or eribulin (vinca class); however, there are currently no FDA-approved MTAs that bind to the colchicine-binding site. Approximately 70 % of patients who initially respond to paclitaxel will develop taxane resistance (TxR). We previously reported that an orally bioavailable colchicine-binding site inhibitor (CBSI), VERU-111, inhibits TNBC tumor growth and treats pre-established metastatic disease. To further improve the potency and metabolic stability of VERU-111, we created next-generation derivatives of its scaffold, including 60c. RESULTS 60c shows improved in vitro potency compared to VERU-111 for taxane-sensitive and TxR TNBC models, and suppress TxR primary tumor growth without gross toxicity. 60c also suppressed the expansion of axillary lymph node metastases existing prior to treatment. Comparative analysis of excised organs for metastasis between 60c and VERU-111 suggested that 60c has unique anti-metastatic tropism. 60c completely suppressed metastases to the spleen and was more potent to reduce metastatic burden in the leg bones and kidney. In contrast, VERU-111 preferentially inhibited liver metastases and lung metastasis repression was similar. Together, these results position 60c as an additional promising CBSI for TNBC therapy, particularly for patients with TxR disease.
Collapse
Affiliation(s)
- Damilola Oluwalana
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Kelli L Adeleye
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Raisa I Krutilina
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Hilaire Playa
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Shanshan Deng
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Deanna N Parke
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - John Abernathy
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Leona Middleton
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Alexandra Cullom
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Bhargavi Thalluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Center for Cancer Research, Memphis, TN 38163, United States
| | - Tiffany N Seagroves
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Center for Cancer Research, Memphis, TN 38163, United States.
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Center for Cancer Research, Memphis, TN 38163, United States.
| |
Collapse
|
6
|
Besleaga I, Raptová R, Stoica AC, Milunovic MNM, Zalibera M, Bai R, Igaz N, Reynisson J, Kiricsi M, Enyedy ÉA, Rapta P, Hamel E, Arion VB. Are the metal identity and stoichiometry of metal complexes important for colchicine site binding and inhibition of tubulin polymerization? Dalton Trans 2024; 53:12349-12369. [PMID: 38989784 PMCID: PMC11264232 DOI: 10.1039/d4dt01469c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Quite recently we discovered that copper(II) complexes with isomeric morpholine-thiosemicarbazone hybrid ligands show good cytotoxicity in cancer cells and that the molecular target responsible for this activity might be tubulin. In order to obtain better lead drug candidates, we opted to exploit the power of coordination chemistry to (i) assemble structures with globular shape to better fit the colchicine pocket and (ii) vary the metal ion. We report the synthesis and full characterization of bis-ligand cobalt(III) and iron(III) complexes with 6-morpholinomethyl-2-formylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL1), 6-morpholinomethyl-2-acetylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL2), and 6-morpholinomethyl-2-formylpyridine 4N-phenyl-3-thiosemicarbazone (HL3), and mono-ligand nickel(II), zinc(II) and palladium(II) complexes with HL1, namely [CoIII(HL1)(L1)](NO3)2 (1), [CoIII(HL2)(L2)](NO3)2 (2), [CoIII(HL3)(L3)](NO3)2 (3), [FeIII(L2)2]NO3 (4), [FeIII(HL3)(L3)](NO3)2 (5), [NiII(L1)]Cl (6), [Zn(L1)Cl] (7) and [PdII(HL1)Cl]Cl (8). We discuss the effect of the metal identity and metal complex stoichiometry on in vitro cytotoxicity and antitubulin activity. The high antiproliferative activity of complex 4 correlated well with inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity were supported by experimental results and molecular docking calculations.
Collapse
Affiliation(s)
- Iuliana Besleaga
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
| | - Renáta Raptová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9/II, A-8010 Graz, Austria
| | - Alexandru-Constantin Stoica
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Miljan N M Milunovic
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | - Mónika Kiricsi
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | - Éva A Enyedy
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary.
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Vladimir B Arion
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
7
|
Milunovic MM, Ohui K, Besleaga I, Petrasheuskaya TV, Dömötör O, Enyedy ÉA, Darvasiova D, Rapta P, Barbieriková Z, Vegh D, Tóth S, Tóth J, Kucsma N, Szakács G, Popović-Bijelić A, Zafar A, Reynisson J, Shutalev AD, Bai R, Hamel E, Arion VB. Copper(II) Complexes with Isomeric Morpholine-Substituted 2-Formylpyridine Thiosemicarbazone Hybrids as Potential Anticancer Drugs Inhibiting Both Ribonucleotide Reductase and Tubulin Polymerization: The Morpholine Position Matters. J Med Chem 2024; 67:9069-9090. [PMID: 38771959 PMCID: PMC11181322 DOI: 10.1021/acs.jmedchem.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The development of copper(II) thiosemicarbazone complexes as potential anticancer agents, possessing dual functionality as inhibitors of R2 ribonucleotide reductase (RNR) and tubulin polymerization by binding at the colchicine site, presents a promising avenue for enhancing therapeutic effectiveness. Herein, we describe the syntheses and physicochemical characterization of four isomeric proligands H2L3-H2L6, with the methylmorpholine substituent at pertinent positions of the pyridine ring, along with their corresponding Cu(II) complexes 3-6. Evidently, the position of the morpholine moiety and the copper(II) complex formation have marked effects on the in vitro antiproliferative activity in human uterine sarcoma MES-SA cells and the multidrug-resistant derivative MES-SA/Dx5 cells. Activity correlated strongly with quenching of the tyrosyl radical (Y•) of mouse R2 RNR protein, inhibition of RNR activity in the cancer cells, and inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity, supported by experimental results and molecular modeling calculations, are presented.
Collapse
Affiliation(s)
| | - Katerina Ohui
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Iuliana Besleaga
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Tatsiana V. Petrasheuskaya
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Orsolya Dömötör
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Éva A. Enyedy
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Denisa Darvasiova
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Peter Rapta
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Zuzana Barbieriková
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Daniel Vegh
- Institute
of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Szilárd Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Judit Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Nóra Kucsma
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Gergely Szakács
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
- Center
for Cancer Research, Medical University
of Vienna, Vienna A-1090, Austria
| | - Ana Popović-Bijelić
- Faculty
of Physical Chemistry, University of Belgrade, Belgrade 11158, Serbia
| | - Ayesha Zafar
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School
of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, United
Kingdom
| | - Anatoly D. Shutalev
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Ruoli Bai
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick
National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ernest Hamel
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick
National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Vladimir B. Arion
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
- Inorganic
Polymers Department, “Petru Poni”
Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
8
|
Wang S, Ge Q, Cong H, Zhang W, Liu H, Qu Z, Chen H, Zhuang C. Structure-Activity Relationship Study of ( E)-3-(6-Fluoro-1 H-indol-3-Yl)-2-methyl-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (FC116) Against Metastatic Colorectal Cancers Resistant to Oxaliplatin. ACS Pharmacol Transl Sci 2024; 7:1386-1394. [PMID: 38751617 PMCID: PMC11091977 DOI: 10.1021/acsptsci.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Advanced metastatic colorectal cancer (mCRC) and the development of drug resistance to chemotherapy pose significant challenges in clinical settings. In previous studies, we have demonstrated the potent cytotoxic activity of (E)-3-(6-fluoro-1H-indol-3-yl)-2-methyl-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (FC116) and related 30 derivatives against mCRC by targeting microtubules. In this study, we aimed to evaluate the efficacy of the 31 compounds and explore the structure-activity relationship (SAR) against oxaliplatin-resistant mCRC. We found that most of the derivatives showed high sensitivity toward the oxaliplatin-resistant HCT-116/L cells. Particularly, FC116 exhibited a better GI50 value against the resistant mCRC cell line, HCT-116/L, compared to standard therapies. We also observed a safer therapeutic window for FC116 and a synergistic effect when it was used in combination with oxaliplatin. Mechanistically, FC116 induced the G2/M phase arrest by downregulating cyclin B1 expression through its interaction with microtubules in resistant colorectal cancer cells. Furthermore, in vivo experiments demonstrated that FC116 significantly suppressed tumor growth, achieving a 78% reduction at a dose of 3 mg/kg, which was superior to the 40% reduction achieved by oxaliplatin treatment. Overall, our findings suggest that the indole-chalcone compound FC116 represents a promising lead for chemotherapy in oxaliplatin-resistant mCRC.
Collapse
Affiliation(s)
- Shuyu Wang
- School
of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Qinghua Ge
- Department
of Otolaryngology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Hui Cong
- School
of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wannian Zhang
- School
of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Huanhai Liu
- Department
of Otolaryngology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhuo Qu
- School
of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Haihu Chen
- Department
of Intervention, Changhai Hospital, Second
Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School
of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
9
|
Li LB, Yang LX, Liu L, Liu FR, Li AH, Zhu YL, Wen H, Xue X, Tian ZX, Sun H, Li PC, Zhao XG. Targeted inhibition of the HNF1A/SHH axis by triptolide overcomes paclitaxel resistance in non-small cell lung cancer. Acta Pharmacol Sin 2024; 45:1060-1076. [PMID: 38228910 PMCID: PMC11053095 DOI: 10.1038/s41401-023-01219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Paclitaxel resistance is associated with a poor prognosis in non-small cell lung cancer (NSCLC) patients, and currently, there is no promising drug for paclitaxel resistance. In this study, we investigated the molecular mechanisms underlying the chemoresistance in human NSCLC-derived cell lines. We constructed paclitaxel-resistant NSCLC cell lines (A549/PR and H460/PR) by long-term exposure to paclitaxel. We found that triptolide, a diterpenoid epoxide isolated from the Chinese medicinal herb Tripterygium wilfordii Hook F, effectively enhanced the sensitivity of paclitaxel-resistant cells to paclitaxel by reducing ABCB1 expression in vivo and in vitro. Through high-throughput sequencing, we identified the SHH-initiated Hedgehog signaling pathway playing an important role in this process. We demonstrated that triptolide directly bound to HNF1A, one of the transcription factors of SHH, and inhibited HNF1A/SHH expression, ensuing in attenuation of Hedgehog signaling. In NSCLC tumor tissue microarrays and cancer network databases, we found a positive correlation between HNF1A and SHH expression. Our results illuminate a novel molecular mechanism through which triptolide targets and inhibits HNF1A, thereby impeding the activation of the Hedgehog signaling pathway and reducing the expression of ABCB1. This study suggests the potential clinical application of triptolide and provides promising prospects in targeting the HNF1A/SHH pathway as a therapeutic strategy for NSCLC patients with paclitaxel resistance. Schematic diagram showing that triptolide overcomes paclitaxel resistance by mediating inhibition of the HNF1A/SHH/ABCB1 axis.
Collapse
Affiliation(s)
- Ling-Bing Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Ling-Xiao Yang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Lei Liu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Fan-Rong Liu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Alex H Li
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10010, USA
| | - Yi-Lin Zhu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Hao Wen
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Zhong-Xian Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
- Key Laboratory of Chest Cancer, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Hong Sun
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10010, USA
| | - Pei-Chao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China.
- Key Laboratory of Chest Cancer, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China.
| | - Xiao-Gang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China.
- Key Laboratory of Chest Cancer, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China.
| |
Collapse
|
10
|
Xie S, Leng J, Zhao S, Zhu L, Zhang M, Ning M, Zhao B, Kong L, Yin Y. Design and biological evaluation of dual tubulin/HDAC inhibitors based on millepachine for treatment of prostate cancer. Eur J Med Chem 2024; 268:116301. [PMID: 38452727 DOI: 10.1016/j.ejmech.2024.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
In this work, a novel of dual tubulin/HDAC inhibitors were designed and synthesized based on the structure of natural product millepachine, which has been identified as a tubulin polymerization inhibitor. Biological evaluation revealed that compound 9n exhibited an impressive potency against PC-3 cells with the IC50 value of 16 nM and effectively inhibited both microtubule polymerization and HDAC activity. Furthermore, compound 9n not only induced cell cycle arrest at G2/M phase, but also induced PC- 3 cells apoptosis. Further study revealed that the induction of cell apoptosis by 9n was accompanied by a decrease in mitochondrial membrane potential and an elevation in reactive oxygen species levels in PC-3 cells. Additionally, 9n exhibited inhibitory effects on tumor cell migration and angiogenesis. In PC-3 xenograft model, 9n achieved a remarkable tumor inhibition rate of 90.07%@20 mg/kg, significantly surpassing to that of CA-4 (55.62%@20 mg/kg). Meanwhile, 9n exhibited the favorable drug metabolism characteristics in vivo. All the results indicate that 9n is a promising dual tubulin/HDAC inhibitor for chemotherapy of prostate cancer, deserving the further investigation.
Collapse
Affiliation(s)
- Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Liqiao Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengyu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengdan Ning
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Bo Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
11
|
Tian XY, Zhang WX, Chen XY, Jia MQ, Zhang SY, Chen YF, Yuan S, Song J, Li J. Discovery of novel coumarin-based derivatives as inhibitors of tubulin polymerization targeting the colchicine binding site with potent anti-gastric cancer activities. Eur J Med Chem 2024; 265:116079. [PMID: 38150962 DOI: 10.1016/j.ejmech.2023.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
In this work, a series of novel coumarin-based derivatives were designed and synthesized as tubulin polymerization inhibitors targeting the colchicine binding site, and their antiproliferative activities against MGC-803, HCT-116 and KYSE30 cells were evaluated. Among them, the compound I-3 (MY-1442) bearing a 6-methoxy-1,2,3,4-tetrahydroquinoline group exhibited most potent inhibitory activities on MGC-803 (IC50 = 0.034 μM), HCT-116 (IC50 = 0.081 μM) and KYSE30 cells (IC50 = 0.19 μM). Further mechanism studies demonstrated that compound I-3 (MY-1442) could directly bind to the colchicine binding site of β-tubulin to inhibit tubulin polymerization and microtubules at the cellular level. The results of molecular docking indicated there were well binding interactions between compound I-3 (MY-1442) and the colchicine binding site of β-tubulin. Compound I-3 (MY-1442) also exhibited effective anti-proliferation, pro-apoptosis, and anti-migration abilities against gastric cancer cells MGC-803. Additionally, compound I-3 (MY-1442) could regulate the expression of cell cycle- and apoptosis-related proteins. Importantly, compound I-3 (MY-1442) could significantly inhibit tumor growth in the MGC-803 xenograft tumor model with a TGI rate of 65.5 % at 30 mg/kg/day. Taken together, this work suggested that the coumarin skeleton exhibited great potential to be a key pharmacophore of tubulin polymerization inhibitors for the discovery of anticancer agents.
Collapse
Affiliation(s)
- Xin-Yi Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Xin Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao-Yu Chen
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Mei-Qi Jia
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Fan Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuo Yuan
- Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jia Li
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
12
|
Ren W, Deng Y, Ward JD, Vairin R, Bai R, Wanniarachchi HI, Hamal KB, Tankoano PE, Tamminga CS, Bueno LMA, Hamel E, Mason RP, Trawick ML, Pinney KG. Synthesis and biological evaluation of structurally diverse 6-aryl-3-aroyl-indole analogues as inhibitors of tubulin polymerization. Eur J Med Chem 2024; 263:115794. [PMID: 37984295 PMCID: PMC11019941 DOI: 10.1016/j.ejmech.2023.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 11/22/2023]
Abstract
The synthesis and evaluation of small-molecule inhibitors of tubulin polymerization remains a promising approach for the development of new therapeutic agents for cancer treatment. The natural products colchicine and combretastatin A-4 (CA4) inspired significant drug discovery campaigns targeting the colchicine site located on the beta-subunit of the tubulin heterodimer, but so far these efforts have not yielded an approved drug for cancer treatment in human patients. Interest in the colchicine site was enhanced by the discovery that a subset of colchicine site agents demonstrated dual functionality as both potent antiproliferative agents and effective vascular disrupting agents (VDAs). Our previous studies led to the discovery and development of a 2-aryl-3-aroyl-indole analogue (OXi8006) that inhibited tubulin polymerization and demonstrated low nM IC50 values against a variety of human cancer cell lines. A water-soluble phosphate prodrug salt (OXi8007), synthesized from OXi8006, displayed promising vascular disrupting activity in mouse models of cancer. To further extend structure-activity relationship correlations, a series of 6-aryl-3-aroyl-indole analogues was synthesized and evaluated for their inhibition of tubulin polymerization and cytotoxicity against human cancer cell lines. Several structurally diverse molecules in this small library were strong inhibitors of tubulin polymerization and of MCF-7 and MDA-MB-231 human breast cancer cells. One of the most promising analogues (KGP591) caused significant G2/M arrest of MDA-MB-231 cells, disrupted microtubule structure and cell morphology in MDA-MB-231 cells, and demonstrated significant inhibition of MDA-MB-231 cell migration in a wound healing (scratch) assay. A phosphate prodrug salt, KGP618, synthesized from its parent phenolic precursor, KGP591, demonstrated significant reduction in bioluminescence signal when evaluated in vivo against an orthotopic model of kidney cancer (RENCA-luc) in BALB/c mice, indicative of VDA efficacy. The most active compounds from this series offer promise as anticancer therapeutic agents.
Collapse
Affiliation(s)
- Wen Ren
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Yuling Deng
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Jacob D Ward
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Rebecca Vairin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Hashini I Wanniarachchi
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Khagendra B Hamal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Pouguiniseli E Tankoano
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Caleb S Tamminga
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Lorena M A Bueno
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Ralph P Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| |
Collapse
|
13
|
Ning C, Tao A, Xu J. Design, synthesis, and biological evaluation of 3, 5-disubsituted-1H-pyrazolo[3,4-b]pyridines as multiacting inhibitors against microtubule and kinases. Eur J Med Chem 2023; 259:115687. [PMID: 37544183 DOI: 10.1016/j.ejmech.2023.115687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Combination therapy of kinases inhibitors and chemotherapeutics targeting tubulin dynamics is an important strategy to improve therapeutic efficacy and overcome the resistance to single-target drug therapies. Inspired by this, we report herein the rational design of 3,5-disubsituted-1H-pyrazolo[3,4-b]pyridines as multiacting molecules that are capable of inhibiting tubulin and kinases simultaneously. Among them, 8g showed excellent antiproliferative activities toward a panel of cancer cell lines. 8g strongly inhibited tubulin assembly and demonstrated a potent inhibition toward FLT3 and Abl1 in both enzymatic and cellular assays. 8g caused a cell cycle arrest at G2/M phase, and significantly disrupted HUVEC tube formation. In vivo efficacy studies showed that 8g significantly inhibited tumor growth on the K562 leukemia xenograft model at 10 mg/kg. Collectively our studies suggest that the excellent antiproliferative potency of 8g may be attributed to its potent inhibitory activity against both microtubule and kinases.
Collapse
Affiliation(s)
- Chengqing Ning
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen, 518055, China; SUSTech Academy for Advanced Interdisciplinary Studies, Shenzhen, 518055, China.
| | - Axiao Tao
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Zoroddu S, Sanna L, Bordoni V, Lyu W, Murineddu G, Pinna GA, Forcales SV, Sala A, Kelvin DJ, Bagella L. RNAseq Analysis of Novel 1,3,4-Oxadiazole Chalcogen Analogues Reveals Anti-Tubulin Properties on Cancer Cell Lines. Int J Mol Sci 2023; 24:11263. [PMID: 37511023 PMCID: PMC10379353 DOI: 10.3390/ijms241411263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
1,3,4-Oxadiazole derivatives are among the most studied anticancer drugs. Previous studies have analyzed the action of different 1,3,4-oxadiazole derivatives and their effects on cancer cells. This study investigated the characterization of two new compounds named 6 and 14 on HeLa and PC-3 cancer cell lines. Based on the previously obtained IC50, cell cycle effects were monitored by flow cytometry. RNA sequencing (RNAseq) was performed to identify differentially expressed genes, followed by functional annotation using gene ontology (GO), KEGG signaling pathway enrichment, and protein-protein interaction (PPI) network analyses. The tubulin polymerization assay was used to analyze the interaction of both compounds with tubulin. The results showed that 6 and 14 strongly inhibited the proliferation of cancer cells by arresting them in the G2/M phase of the cell cycle. Transcriptome analysis showed that exposure of HeLa and PC-3 cells to the compounds caused a marked reprograming of gene expression. Functional enrichment analysis indicated that differentially expressed genes were significantly enriched throughout the cell cycle and cancer-related biological processes. Furthermore, PPI network, hub gene, and CMap analyses revealed that compounds 14 and 6 shared target genes with established microtubule inhibitors, indicating points of similarity between the two molecules and microtubule inhibitors in terms of the mechanism of action. They were also able to influence the polymerization process of tubulin, suggesting the potential of these new compounds to be used as efficient chemotherapeutic agents.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Weidong Lyu
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou 515031, China
| | - Gabriele Murineddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Gerard A Pinna
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Sonia Vanina Forcales
- Department of Pathology and Experimental Therapeutics, School of Medicine, Health Science Campus of Bellvitge, University of Barcelona, Carrer de la Feixa Llarga, s/n, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Arturo Sala
- Centre for Inflammation Research and Translational Medicine (CIRTM), Department of Life Sciences, Brunel University, London UB8 3PH, UK
| | - David J Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou 515031, China
- Department of Microbiology and Immunology, Dalhousie University, 6299 South St, Halifax, NS B3H 4R2, Canada
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
15
|
Ren Y, Wang Y, Liu J, Liu T, Yuan L, Wu C, Yang Z, Chen J. X-ray Crystal Structure-Guided Discovery of Novel Indole Analogues as Colchicine-Binding Site Tubulin Inhibitors with Immune-Potentiating and Antitumor Effects against Melanoma. J Med Chem 2023; 66:6697-6714. [PMID: 37145846 DOI: 10.1021/acs.jmedchem.3c00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A series of novel indole analogues were discovered as colchicine-binding site inhibitors of tubulin. Among them, 3a exhibited the highest antiproliferative activity (average IC50 = 4.5 nM), better than colchicine (IC50 = 65.3 nM). The crystal structure of 3a in complex with tubulin was solved by X-ray crystallography, which explained the improved binding affinity of 3a to tubulin and thus its higher anticancer activity (IC50 = 4.5 nM) than the lead compound 12b (IC50 = 32.5 nM). In vivo, 3a (5 mg/kg) displayed significant antitumor efficacy against B16-F10 melanoma with a TGI of 62.96% and enhanced the antitumor efficacy of a small-molecule PD-1/PD-L1 inhibitor NP19 (TGI = 77.85%). Moreover, 3a potentiated the antitumor immunity of NP19 by activating the tumor immune microenvironment, as demonstrated by the increased tumor-infiltrating lymphocytes (TIL). Collectively, this work shows a successful example of crystal structure-guided discovery of a novel tubulin inhibitor 3a as a potential anticancer and immune-potentiating agent.
Collapse
Affiliation(s)
- Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yuxi Wang
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, Tianfu Jincheng Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Ting Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Lin Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Chengyong Wu
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, Tianfu Jincheng Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zichao Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
Li N, Guan Q, Hong Y, Zhang B, Li M, Li X, Li B, Wu L, Zhang W. Discovery of 6-aryl-2-(3,4,5-trimethoxyphenyl)thiazole[3,2-b][1,2,4]triazoles as potent tubulin polymerization inhibitors. Eur J Med Chem 2023; 256:115402. [PMID: 37182330 DOI: 10.1016/j.ejmech.2023.115402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Tubulin/colchicine-binding site inhibitors (CBSIs) co-crystal structures play an important role in the exploration of novel small molecules for oncotherapy. Based on the analysis of the binding models of tubulin and reported CBSIs, a series of 6-aryl-2-(3,4,5-trimethoxyphenyl)thiazole[3,2-b][1,2,4]triazoles were designed as potential tubulin polymerization inhibitors by binding to distinct colchicine domain of tubulin. Among the compounds synthesized, 7w not only shown noteworthy potency against SGC-7901 cancer cell line (IC50 = 0.21 μM) but also exhibited lower cytotoxicity than colchicine in normal cell line (HUVEC). The mechanism studies elucidated that 7w could cause the apoptosis of cancer cells by inhibiting tubulin polymerization to trigger G2/M arrest. In 4T1-xenograft mice model, 7w significantly inhibited tumor growth without losing weight, demonstrating a promising potential for further development with a unique binding mode at the colchicine-binding site.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yilang Hong
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Bowen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Mi Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xuewen Li
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Street, Heping District, Shenyang, 110002, China
| | - Bo Li
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Street, Heping District, Shenyang, 110002, China.
| | - Lan Wu
- Department of Geratology, The First Affiliated Hospital, Chinese Medical University, Shenyang, 110001, China.
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
17
|
Bora D, Samir KM, Sharma A, Chilvery S, Bansod S, John SE, Ali Khan M, Godugu C, Shankaraiah N. Exploration of cytotoxic potential and tubulin polymerization inhibition activity of cis-stilbene-1,2,3-triazole congeners. RSC Med Chem 2023; 14:482-490. [PMID: 36970147 PMCID: PMC10034215 DOI: 10.1039/d2md00400c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/01/2023] [Indexed: 02/08/2023] Open
Abstract
To scrutinize cis-stilbene based molecules with potential anticancer and tubulin polymerization inhibition activity, a new series of cis-stilbene-1,2,3-triazole congeners was designed and synthesized via a click chemistry protocol. The cytotoxicity of these compounds 9a-j and 10a-j was screened against lung, breast, skin and colorectal cancer cell lines. Based on the results of MTT assay, we further evaluated the selectivity index of the most active compound 9j (IC50 3.25 ± 1.04 μM on HCT-116) by comparing its IC50 value (72.24 ± 1.20 μM) to that of the normal human cell line. Further, to confirm apoptotic cell death, cell morphology and staining studies (AO/EB, DAPI and Annexin V/PI) were carried out. The outcomes of studies showed apoptotic features like change in cell shape, cornering of nuclei, micronuclei formation, fragmented, bright, horseshoe-shaped nuclei, etc. Moreover, active compound 9j displayed G2/M phase cell cycle arrest with significant tubulin polymerization inhibition activity with an IC50 value of 4.51 μM. Additionally, in silico ADMET, molecular docking and molecular dynamic studies of 9j with 3E22 protein proved the binding of the compound at the colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Darshana Bora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Khan Mehtab Samir
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Anamika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Shrilekha Chilvery
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Sapana Bansod
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Stephy Elza John
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Mursalim Ali Khan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Chandraiah Godugu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| |
Collapse
|
18
|
Tan L, Wu C, Zhang J, Yu Q, Wang X, Zhang L, Ge M, Wang Z, Ouyang L, Wang Y. Design, Synthesis, and Biological Evaluation of Heterocyclic-Fused Pyrimidine Chemotypes Guided by X-ray Crystal Structure with Potential Antitumor and Anti-multidrug Resistance Efficacy Targeting the Colchicine Binding Site. J Med Chem 2023; 66:3588-3620. [PMID: 36802449 DOI: 10.1021/acs.jmedchem.2c02115] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Herein, a series of quinazoline and heterocyclic fused pyrimidine analogues were designed and synthesized based on the X-ray co-crystal structure of lead compound 3a, showing efficacious antitumor activities. Two analogues, 15 and 27a, exhibited favorable antiproliferative activities, which were more potent than lead compound 3a by 10-fold in MCF-7 cells. In addition, 15 and 27a exhibited potent antitumor efficacy and tubulin polymerization inhibition in vitro. 15 reduced the average tumor volume by 80.30% (2 mg/kg) in the MCF-7 xenograft model and 75.36% (4 mg/kg) in the A2780/T xenograft model, respectively. Most importantly, supported by structural optimization and Mulliken charge calculation, X-ray co-crystal structures of compounds 15, 27a, and 27b in complex with tubulin were resolved. In summary, our research provided the rational design strategy of colchicine binding site inhibitors (CBSIs) based on X-ray crystallography with antiproliferation, antiangiogenesis, and anti-multidrug resistance properties.
Collapse
Affiliation(s)
- Lun Tan
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengyong Wu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Quanwei Yu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiye Wang
- Department of Pharmacy, Western Theater Command Hospital, Chengdu 610083, Sichuan, China
| | - Lele Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meiyi Ge
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhijia Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
19
|
Microtubules as a potential platform for energy transfer in biological systems: a target for implementing individualized, dynamic variability patterns to improve organ function. Mol Cell Biochem 2023; 478:375-392. [PMID: 35829870 DOI: 10.1007/s11010-022-04513-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Variability characterizes the complexity of biological systems and is essential for their function. Microtubules (MTs) play a role in structural integrity, cell motility, material transport, and force generation during mitosis, and dynamic instability exemplifies the variability in the proper function of MTs. MTs are a platform for energy transfer in cells. The dynamic instability of MTs manifests itself by the coexistence of growth and shortening, or polymerization and depolymerization. It results from a balance between attractive and repulsive forces between tubulin dimers. The paper reviews the current data on MTs and their potential roles as energy-transfer cellular structures and presents how variability can improve the function of biological systems in an individualized manner. The paper presents the option for targeting MTs to trigger dynamic improvement in cell plasticity, regulate energy transfer, and possibly control quantum effects in biological systems. The described system quantifies MT-dependent variability patterns combined with additional personalized signatures to improve organ function in a subject-tailored manner. The platform can regulate the use of MT-targeting drugs to improve the response to chronic therapies. Ongoing trials test the effects of this platform on various disorders.
Collapse
|
20
|
Ren A, Wei W, Liang Z, Zhou M, Liang T, Zang N. Synthesis and bioactive evaluation of N-((1-methyl-1 H-indol-3-yl)methyl)- N-(3,4,5-trimethoxyphenyl)acetamide derivatives as agents for inhibiting tubulin polymerization. RSC Med Chem 2023; 14:113-121. [PMID: 36760739 PMCID: PMC9890541 DOI: 10.1039/d2md00340f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Based on the inhibitory effect of CA-4 analogues and indoles on tubulin polymerization, we designed and synthesized a series of N-((1-methyl-1H-indol-3-yl)methyl)-2-(1H-pyrazol-1-yl or triazolyl)-N-(3,4,5-trimethoxyphenyl)acetamides. All the synthesized compounds were evaluated for their in vitro antiproliferative activities against HeLa, MCF-7 and HT-29 cancer cell lines, and some of the target compounds demonstrated effective activities towards the three tumour cell lines. Among them, compound 7d exhibited the most potent activities against HeLa (IC50 = 0.52 μM), MCF-7 (IC50 = 0.34 μM) and HT-29 (IC50 = 0.86 μM). Mechanistic studies revealed that compound 7d induced cell apoptosis in a dose-dependent manner, arrested the cells in the G2/M phase and inhibited polymerization of tubulin via a consistent way with colchicine. Therefore, 7d is a potential agent for the further development of tubulin polymerization inhibitors.
Collapse
Affiliation(s)
- Aonan Ren
- College of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
| | - Wanxing Wei
- College of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
| | - Zhengcheng Liang
- College of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
| | - Min Zhou
- College of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
| | - Taoyuan Liang
- College of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
| | - Ning Zang
- School of Basic Medicine, Guangxi Medical University Nanning 530021 China
| |
Collapse
|
21
|
Peng X, Ren Y, Pan W, Liu J, Chen J. Discovery of Novel Acridane-Based Tubulin Polymerization Inhibitors with Anticancer and Potential Immunomodulatory Effects. J Med Chem 2023; 66:627-640. [PMID: 36516438 DOI: 10.1021/acs.jmedchem.2c01566] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of novel acridane-based tubulin polymerization inhibitors were designed, synthesized, and bioevaluated as anticancer agents. The most potent compound NT-6 exhibited high tubulin polymerization inhibitory activity (IC50 = 1.5 μM) and remarkable antiproliferative potency against four cancer cell lines with an average IC50 of 30 nM, better than colchicine and the hit compound 1f (IC50 of 65 and 126 nM, respectively). In addition, NT-6 (10 mg/kg) exerted excellent antitumor efficacy in a melanoma tumor model with a tumor growth inhibition (TGI) of 65.1% without apparent toxicity. Importantly, the combination of NT-6 with a small-molecule PD-L1 inhibitor NP-19 decreased tumor burden significantly (TGI% = 77.6%). Moreover, the combination of NT-6 with NP-19 enhanced the antitumor immune response, mediated by a decrease of PD-L1 expression levels and increased infiltration of antitumor CD8+ effector T cells in tumor tissues. Collectively, NT-6 represents a novel tubulin polymerization inhibitor with immunopotentiating effects.
Collapse
Affiliation(s)
- Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 516000, China
| | - Wanyi Pan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 516000, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 516000, China
| |
Collapse
|
22
|
Li L, Zou Z, Xue B, Pang B, Yang Y, Guan Q, Li B, Zhang W. Chalcogen bond-assisted syn-locked scaffolds: DFT analysis and biological implications of novel tubulin inhibitors. Biochem Biophys Res Commun 2023; 638:134-139. [PMID: 36455359 DOI: 10.1016/j.bbrc.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
A series of new tubulin inhibitors containing chalcogen bonds have been discovered. Density functional theory (DFT) analysis of the O-C-C-S torsion profile shows a preference of 0.8 kcal/mol for the syn-conformer over the anti-conformer. Besides, the O-S natural bond orbital (NBO) analysis reveals that the OLP ∼ C-SBD∗ energy potential is 0.62 kcal/mol. Further pharmacochemical screening of several series of (4-arylthiophen-2-yl)(3,4,5-trimethoxyphenyl)methanones identified IPO-10 as a highly effective tubulin inhibitor with an IC50 of 23 nm for MCF-7.
Collapse
Affiliation(s)
- Long Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Zheng Zou
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Baoyu Xue
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Bokai Pang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yukun Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qi Guan
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Bo Li
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Street, Heping District, Shenyang, 110002, China.
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
23
|
López-López E, Cerda-García-Rojas CM, Medina-Franco JL. Consensus Virtual Screening Protocol Towards the Identification of Small Molecules Interacting with the Colchicine Binding Site of the Tubulin-microtubule System. Mol Inform 2023; 42:e2200166. [PMID: 36175374 PMCID: PMC10078098 DOI: 10.1002/minf.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
Modification of the tubulin-microtubule (Tub-Mts) system has generated effective strategies for developing different treatments for cancer. A huge amount of clinical data about inhibitors of the tubulin-microtubule system have supported and validated the studies on this pharmacological target. However, many tubulin-microtubule inhibitors have been developed from representative and common scaffolds that cover a small region of the chemical space with limited structural innovation. The main goal of this study is to develop the first consensus virtual screening protocol for natural products (ligand- and structure-based drug design methods) tuned for the identification of new potential inhibitors of the Tub-Mts system. A combined strategy that involves molecular similarity, molecular docking, pharmacophore modeling, and in silico ADMET prediction has been employed to prioritize the selections of potential inhibitors of the Tub-Mts system. Five compounds were selected and further studied using molecular dynamics and binding energy predictions to characterize their possible binding mechanisms. Their structures correspond to 5-[2-(4-hydroxy-3-methoxyphenyl) ethyl]-2,3-dimethoxyphenol (1), 9,10-dihydro-3,4-dimethoxy-2,7-phenanthrenediol (2), 2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-6-methoxy-4H-1-benzopyran-4-one (3), 13,14-epoxyparvifoline-4',5',6'-trimethoxybenzoate (4), and phenylmethyl 6-hydroxy-2,3-dimethoxybenzoate (5). Compounds 1-3 have been associated with literature reports that confirm their activity against several cancer cell lines, thus supporting the utility of this protocol.
Collapse
Affiliation(s)
- Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.,Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, 07000, Mexico
| | - Carlos M Cerda-García-Rojas
- Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, 07000, Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
24
|
Yan W, Li Y, Liu Y, Wen Y, Pei H, Yang J, Chen L. Crystal structure of tubulin-barbigerone complex enables rational design of potent anticancer agents with isoflavone skeleton. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154550. [PMID: 36610121 DOI: 10.1016/j.phymed.2022.154550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Isoflavones possess many biological activities, including anti-inflammatory and anticancer effects. Microtubules (composed of αβ-tubulin heterodimers) are described as one possible cellular target of some of these isoflavones. However, the binding of tubulin to isoflavones has not been extensively studied, and until now, no crystal structure of the tubulin-isoflavone complex has been solved, and details of the isoflavone-tubulin interaction remain elusive. PURPOSE Barbigerone is an isoflavone mainly found in the genus Milletti, such as the edible leguminous plant Millettia ferruginea, with anticancer activity. This study aims to confirm the cellular target of barbigerone and to study its anticancer mechanism. METHOD Surface plasmon resonance assays and X-ray crystallography were used to study the interaction of barbigerone with tubulin protein. Immunofluorescence, in-cell and in vitro tubulin polymerization assays were employed to investigate the mechanism. MTT assays, cell clonal formation assays, wound healing assays, tube formation assays and H460 xenograft models were conducted to evaluate the in vitro and in vivo anticancer activities of barbigerone and one of its derivatives, 0412. RESULTS Here, we found that barbigerone binds to tubulin to inhibit tubulin polymerization. Moreover, we solved the X-ray crystal structure of the tubulin-barbigerone complex at 2.33 Å resolution, which unambiguously determined the orientation and position of barbigerone in the colchicine-binding site. Illuminated by the X-ray data, we synthetized and obtained a more active isoflavone, 0412. Both barbigerone and 0412 inhibit cancer cell proliferation, tubulin polymerization, migration of HeLa cells and capillary-like tube formation of HUVECs, induce G2/M phase cell cycle arrest and apoptosis, and exhibit anticancer activity in an H460 xenograft model. CONCLUSION In all, through biochemical and X-ray crystal structure results, we identified tubulin as the cellular target of one isoflavone, barbigerone, and proved that the tubulin-barbigerone complex plays a guiding role in obtaining a more active compound, 0412. These studies provide a crucial research basis for the development of isoflavones as anticancer candidate compounds.
Collapse
Affiliation(s)
- Wei Yan
- Laboratory of Natural and targeted small molecule drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yong Li
- Laboratory of Natural and targeted small molecule drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yan Liu
- Laboratory of Natural and targeted small molecule drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yi Wen
- Laboratory of Natural and targeted small molecule drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Heying Pei
- Laboratory of Natural and targeted small molecule drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jianhong Yang
- Laboratory of Natural and targeted small molecule drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Lijuan Chen
- Laboratory of Natural and targeted small molecule drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| |
Collapse
|
25
|
An update on the recent advances and discovery of novel tubulin colchicine binding inhibitors. Future Med Chem 2023; 15:73-95. [PMID: 36756851 DOI: 10.4155/fmc-2022-0212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Microtubules, formed by α- and β-tubulin heterodimer, are considered as a major target to prevent the proliferation of tumor cells. Microtubule-targeted agents have become increasingly effective anticancer drugs. However, due to the relatively sophisticated chemical structure of taxane and vinblastine, their application has faced numerous obstacles. Conversely, the structure of colchicine binding site inhibitors (CBSIs) is much easier to be modified. Moreover, CBSIs have strong antiproliferative effect on multidrug-resistant tumor cells and have become the mainstream research orientation of microtubule-targeted agents. This review focuses mainly on the recent advances of CBSIs during 2017-2022, attempts to depict their biological activities to analyze the structure-activity relationships and offers new perspectives for designing next generation of novel CBSIs.
Collapse
|
26
|
Cao X, Li R, Wang H, Guo C, Wang S, Chen X, Zhao R. Novel indole–chalcone platinum(IV) complexes as tubulin polymerization inhibitors to overcome oxaliplatin resistance in colorectal cancer. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Leng J, Zhao Y, Sheng P, Xia Y, Chen T, Zhao S, Xie S, Yan X, Wang X, Yin Y, Kong L. Discovery of Novel N-Heterocyclic-Fused Deoxypodophyllotoxin Analogues as Tubulin Polymerization Inhibitors Targeting the Colchicine-Binding Site for Cancer Treatment. J Med Chem 2022; 65:16774-16800. [PMID: 36471625 DOI: 10.1021/acs.jmedchem.2c01595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural products are a major source of anticancer agents and play critical roles in anticancer drug development. Inspired by the complexity-to-diversity strategy, novel deoxypodophyllotoxin (DPT) analogues were designed and synthesized. Among them, compound C3 exhibited the potent antiproliferative activity against four human cancer cell lines with IC50 values in the low nanomolar range. Additionally, it showed marked activity against paclitaxel-resistant MCF-7 cells and A549 cells. Moreover, compound C3 can inhibit tubulin polymerization by targeting the colchicine-binding site of tubulin. Further study revealed that compound C3 could arrest cancer cells in the G2/M phase and disrupt the angiogenesis in human umbilical vein endothelial cells. Meanwhile, C3 remarkably inhibited cancer cell motility and migration, as well as considerably inhibited tumor growth in MCF-7 and MCF-7/TxR xenograft model without obvious toxicity. Collectively, these results indicated that compound C3 may be a promising tubulin polymerization inhibitor development for cancer treatment.
Collapse
Affiliation(s)
- Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yongjun Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ping Sheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Tingting Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiangyu Yan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
28
|
Hawash M. Recent Advances of Tubulin Inhibitors Targeting the Colchicine Binding Site for Cancer Therapy. Biomolecules 2022; 12:biom12121843. [PMID: 36551271 PMCID: PMC9776383 DOI: 10.3390/biom12121843] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer accounts for numerous deaths each year, and it is one of the most common causes of death worldwide, despite many breakthroughs in the discovery of novel anticancer candidates. Each new year the FDA approves the use of new drugs for cancer treatments. In the last years, the biological targets of anticancer agents have started to be clearer and one of these main targets is tubulin protein; this protein plays an essential role in cell division, as well as in intracellular transportation. The inhibition of microtubule formation by targeting tubulin protein induces cell death by apoptosis. In the last years, numerous novel structures were designed and synthesized to target tubulin, and this can be achieved by inhibiting the polymerization or depolymerization of the microtubules. In this review article, recent novel compounds that have antiproliferation activities against a panel of cancer cell lines that target tubulin are explored in detail. This review article emphasizes the recent developments of tubulin inhibitors, with insights into their antiproliferative and anti-tubulin activities. A full literature review shows that tubulin inhibitors are associated with properties in the inhibition of cancer cell line viability, inducing apoptosis, and good binding interaction with the colchicine binding site of tubulin. Furthermore, some drugs, such as cabazitaxel and fosbretabulin, have been approved by FDA in the last three years as tubulin inhibitors. The design and development of efficient tubulin inhibitors is progressively becoming a credible solution in treating many species of cancers.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
29
|
Rational design, synthesis and biological evaluation of novel 2-(substituted amino)-[1,2,4]triazolo[1,5-a]pyrimidines as novel tubulin polymerization inhibitors. Eur J Med Chem 2022; 244:114864. [DOI: 10.1016/j.ejmech.2022.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022]
|
30
|
Krutilina RI, Hartman KL, Oluwalana D, Playa HC, Parke DN, Chen H, Miller DD, Li W, Seagroves TN. Sabizabulin, a Potent Orally Bioavailable Colchicine Binding Site Agent, Suppresses HER2+ Breast Cancer and Metastasis. Cancers (Basel) 2022; 14:5336. [PMID: 36358755 PMCID: PMC9658816 DOI: 10.3390/cancers14215336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 07/30/2023] Open
Abstract
HER2+ breast cancer accounts for 15% of all breast cancer cases. Current frontline therapy for HER2+ metastatic breast cancer relies on targeted antibodies, trastuzumab and pertuzumab, combined with microtubule inhibitors in the taxane class (paclitaxel or docetaxel). It is well known that the clinical efficacy of taxanes is limited by the development of chemoresistance and hematological and neurotoxicities. The colchicine-binding site inhibitors (CBSIs) are a class of promising alternative agents to taxane therapy. Sabizabulin (formerly known as VERU-111) is a potent CBSI that overcomes P-gp-mediated taxane resistance, is orally bioavailable, and inhibits tumor growth and distant metastasis in triple negative breast cancer (TNBC). Herein, we demonstrate the efficacy of sabizabulin in HER2+ breast cancer. In vitro, sabizabulin inhibits the proliferation of HER2+ breast cancer cell lines with low nanomolar IC50 values, inhibits clonogenicity, and induces apoptosis in a concentration-dependent manner. In vivo, sabizabulin inhibits breast tumor growth in the BT474 (ER+/PR+/HER2+) xenograft model and a HER2+ (ER-/PR-) metastatic patient-derived xenograft (PDX) model, HCI-12. We demonstrate that sabizabulin is a promising alternative agent to target tubulin in HER2+ breast cancer with similar anti-metastatic efficacy to paclitaxel, but with the advantage of oral bioavailability and lower toxicity than taxanes.
Collapse
Affiliation(s)
- Raisa I. Krutilina
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Kelli L. Hartman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Damilola Oluwalana
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Hilaire C. Playa
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Deanna N. Parke
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Drug Discovery Center, College of Pharmacy, University of Tennessee, Memphis, TN 38103, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Drug Discovery Center, College of Pharmacy, University of Tennessee, Memphis, TN 38103, USA
| | - Tiffany N. Seagroves
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
31
|
Bhattarai RS, Bariwal J, Kumar V, Hao C, Deng S, Li W, Mahato RI. pH-sensitive nanomedicine of novel tubulin polymerization inhibitor for lung metastatic melanoma. J Control Release 2022; 350:569-583. [PMID: 36037976 PMCID: PMC10322201 DOI: 10.1016/j.jconrel.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Microtubule binding agents such as paclitaxel and vincristine have activity in metastatic melanoma. However, even responsive tumors develop resistance, highlighting the need to investigate new drug molecules. Here, we showed that a new compound, CH-2-102, developed by our group, has high anti-tumor efficacy in human and murine melanoma cells. We confirmed that CH-2-102 robustly suppresses the microtubule polymerization process by directly interacting with the colchicine binding site. Our results unveil that CH-2-102 suppresses microtubule polymerization and subsequently induces G2 phase cell arrest as one of the possible mechanisms. Notably, CH-2-102 maintains its efficacy even in the paclitaxel resistance melanoma cells due to different binding sites and a non-Pgp substrate. We developed a pH-responsive drug-polymer Schiff bases linker for high drug loading into nanoparticles (NPs). Our CH-2-102 conjugated NPs induced tumor regression more effectively than Abraxane® (Nab-paclitaxel, N-PTX), free drug, and non-sensitive NPs in B16-F10 cell-derived lung metastasis mouse model. Furthermore, our results suggest that the formulation has a high impact on the in vivo efficacy of the drug and warrants further investigation in other cancers, particularly taxane resistant. In conclusion, the microtubule polymerization inhibitor CH-2-102 conjugated pH-responsive NPs induce tumor regression in lung metastasis melanoma mice, suggesting it may be an effective strategy for treating metastatic melanoma.
Collapse
Affiliation(s)
- Rajan S Bhattarai
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jitender Bariwal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chen Hao
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
32
|
Malebari AM, Duffy Morales G, Twamley B, Fayne D, Khan MF, McLoughlin EC, O’Boyle NM, Zisterer DM, Meegan MJ. Synthesis, Characterisation and Mechanism of Action of Anticancer 3-Fluoroazetidin-2-ones. Pharmaceuticals (Basel) 2022; 15:1044. [PMID: 36145265 PMCID: PMC9501633 DOI: 10.3390/ph15091044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The stilbene combretastatin A-4 (CA-4) is a potent microtubule-disrupting agent interacting at the colchicine-binding site of tubulin. In the present work, the synthesis, characterisation and mechanism of action of a series of 3-fluoro and 3,3-difluoro substituted β-lactams as analogues of the tubulin-targeting agent CA-4 are described. The synthesis was achieved by a convenient microwave-assisted Reformatsky reaction and is the first report of 3-fluoro and 3,3-difluoro β-lactams as CA-4 analogues. The β-lactam compounds 3-fluoro-4-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxy phenyl)azetidin-2-one 32 and 3-fluoro-4-(3-fluoro-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one) 33 exhibited potent activity in MCF-7 human breast cancer cells with IC50 values of 0.075 µM and 0.095 µM, respectively, and demonstrated low toxicity in non-cancerous cells. Compound 32 also demonstrated significant antiproliferative activity at nanomolar concentrations in the triple-negative breast cancer cell line Hs578T (IC50 0.033 μM), together with potency in the invasive isogenic subclone Hs578Ts(i)8 (IC50 = 0.065 μM), while 33 was also effective in MDA-MB-231 cells (IC50 0.620 μM). Mechanistic studies demonstrated that 33 inhibited tubulin polymerisation, induced apoptosis in MCF-7 cells, and induced a downregulation in the expression of anti-apoptotic Bcl2 and survivin with corresponding upregulation in the expression of pro-apoptotic Bax. In silico studies indicated the interaction of the compounds with the colchicine-binding site, demonstrating the potential for further developing novel cancer therapeutics as microtubule-targeting agents.
Collapse
Affiliation(s)
- Azizah M. Malebari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Trinity Biomedical Sciences Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Gabriela Duffy Morales
- Trinity Biomedical Sciences Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Darren Fayne
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Mohemmed Faraz Khan
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Eavan C. McLoughlin
- Trinity Biomedical Sciences Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Niamh M. O’Boyle
- Trinity Biomedical Sciences Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Daniela M. Zisterer
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| | - Mary J. Meegan
- Trinity Biomedical Sciences Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland
| |
Collapse
|
33
|
Song J, Guan YF, Liu WB, Song CH, Tian XY, Zhu T, Fu XJ, Qi YQ, Zhang SY. Discovery of novel coumarin-indole derivatives as tubulin polymerization inhibitors with potent anti-gastric cancer activities. Eur J Med Chem 2022; 238:114467. [DOI: 10.1016/j.ejmech.2022.114467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022]
|
34
|
Design, Synthesis and Evaluation of 4-Phenyl-1,2,3-Triazole Substituted Pyrimidine Derivatives as Antiproliferative and Tubulin Polymerization Inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Structural insight into SSE15206 in complex with tubulin provides a rational design for pyrazolinethioamides as tubulin polymerization inhibitors. Future Med Chem 2022; 14:785-794. [PMID: 35506429 DOI: 10.4155/fmc-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Tubulin protein is a promising target for antitumor drugs. Some tubulin inhibitors targeting the colchicine binding site are not substrates of the multidrug-resistance efflux pump, which can overcome the mechanism of drug resistance mediated by P-glycoprotein. Methodology/results: SSE15206 is a colchicine binding site inhibitor with antiproliferative activity against different drug-resistant cell lines. Unfortunately, the lack of detailed interaction information about SSE15206 in complex with tubulin impeded the development of potent drugs that possess similar scaffolds. Herein, the authors report the crystal structure of the tubulin-SSE15206 complex at a resolution of 2.8 Å. Conclusion: The complex structure reveals the intermolecular interactions between SSE15206 and tubulin, providing a rationale for the development of pyrazolinethioamides as tubulin polymerization inhibitors and to overcome multidrug resistance.
Collapse
|
36
|
Boichuk S, Syuzov K, Bikinieva F, Galembikova A, Zykova S, Gankova K, Igidov S, Igidov N. Computational-Based Discovery of the Anti-Cancer Activities of Pyrrole-Based Compounds Targeting the Colchicine-Binding Site of Tubulin. Molecules 2022; 27:2873. [PMID: 35566235 PMCID: PMC9101527 DOI: 10.3390/molecules27092873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
Despite the tubulin-binding agents (TBAs) that are widely used in the clinic for cancer therapy, tumor resistance to TBAs (both inherited and acquired) significantly impairs their effectiveness, thereby decreasing overall survival (OS) and progression-free survival (PFS) rates, especially for the patients with metastatic, recurrent, and unresectable forms of the disease. Therefore, the development of novel effective drugs interfering with the microtubules' dynamic state remains a big challenge in current oncology. We report here about the novel ethyl 2-amino-1-(furan-2-carboxamido)-5-(2-aryl/tert-butyl-2-oxoethylidene)-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylates (EAPCs) exhibiting potent anti-cancer activities against the breast and lung cancer cell lines in vitro. This was due to their ability to inhibit tubulin polymerization and induce cell cycle arrest in M-phase. As an outcome, the EAPC-treated cancer cells exhibited a significant increase in apoptosis, which was evidenced by the expression of cleaved forms of PARP, caspase-3, and increased numbers of Annexin-V-positive cells. By using the in silico molecular modeling methods (e.g., induced-fit docking, binding metadynamics, and unbiased molecular dynamics), we found that EAPC-67 and -70 preferentially bind to the colchicine-binding site of tubulin. Lastly, we have shown that the EAPCs indicated above and colchicine utilizes a similar molecular mechanism to inhibit tubulin polymerization via targeting the T7 loop in the β-chain of tubulin, thereby preventing the conformational changes in the tubulin dimers required for their polymerization. Collectively, we identified the novel and potent TBAs that bind to the colchicine-binding site and disrupt the microtubule network. As a result of these events, the compounds induced a robust cell cycle arrest in M-phase and exhibited potent pro-apoptotic activities against the epithelial cancer cell lines in vitro.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (F.B.); (A.G.)
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
- Biologically Active Terpenoids Laboratory, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Kirill Syuzov
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (F.B.); (A.G.)
| | - Firuza Bikinieva
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (F.B.); (A.G.)
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (F.B.); (A.G.)
| | - Svetlana Zykova
- Department of Pharmacology, Perm State Academy of Pharmacy, 614990 Perm, Russia; (S.Z.); (K.G.); (S.I.); (N.I.)
| | - Ksenia Gankova
- Department of Pharmacology, Perm State Academy of Pharmacy, 614990 Perm, Russia; (S.Z.); (K.G.); (S.I.); (N.I.)
| | - Sergei Igidov
- Department of Pharmacology, Perm State Academy of Pharmacy, 614990 Perm, Russia; (S.Z.); (K.G.); (S.I.); (N.I.)
| | - Nazim Igidov
- Department of Pharmacology, Perm State Academy of Pharmacy, 614990 Perm, Russia; (S.Z.); (K.G.); (S.I.); (N.I.)
| |
Collapse
|
37
|
Computational-Based Discovery of the Anti-Cancer Activities of Pyrrole-Based Compounds Targeting the Colchicine-Binding Site of Tubulin. Molecules 2022. [PMID: 35566235 DOI: 10.3390/molecules27092873.(] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Despite the tubulin-binding agents (TBAs) that are widely used in the clinic for cancer therapy, tumor resistance to TBAs (both inherited and acquired) significantly impairs their effectiveness, thereby decreasing overall survival (OS) and progression-free survival (PFS) rates, especially for the patients with metastatic, recurrent, and unresectable forms of the disease. Therefore, the development of novel effective drugs interfering with the microtubules' dynamic state remains a big challenge in current oncology. We report here about the novel ethyl 2-amino-1-(furan-2-carboxamido)-5-(2-aryl/tert-butyl-2-oxoethylidene)-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylates (EAPCs) exhibiting potent anti-cancer activities against the breast and lung cancer cell lines in vitro. This was due to their ability to inhibit tubulin polymerization and induce cell cycle arrest in M-phase. As an outcome, the EAPC-treated cancer cells exhibited a significant increase in apoptosis, which was evidenced by the expression of cleaved forms of PARP, caspase-3, and increased numbers of Annexin-V-positive cells. By using the in silico molecular modeling methods (e.g., induced-fit docking, binding metadynamics, and unbiased molecular dynamics), we found that EAPC-67 and -70 preferentially bind to the colchicine-binding site of tubulin. Lastly, we have shown that the EAPCs indicated above and colchicine utilizes a similar molecular mechanism to inhibit tubulin polymerization via targeting the T7 loop in the β-chain of tubulin, thereby preventing the conformational changes in the tubulin dimers required for their polymerization. Collectively, we identified the novel and potent TBAs that bind to the colchicine-binding site and disrupt the microtubule network. As a result of these events, the compounds induced a robust cell cycle arrest in M-phase and exhibited potent pro-apoptotic activities against the epithelial cancer cell lines in vitro.
Collapse
|
38
|
Wang W, Wang J, Liu S, Ren Y, Wang J, Liu S, Cui W, Jia L, Tang X, Yang J, Wu C, Wang L. An EHMT2/NFYA-ALDH2 signaling axis modulates the RAF pathway to regulate paclitaxel resistance in lung cancer. Mol Cancer 2022; 21:106. [PMID: 35477569 PMCID: PMC9044593 DOI: 10.1186/s12943-022-01579-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is a kind of malignancy with high morbidity and mortality worldwide. Paclitaxel (PTX) is the main treatment for non-small cell lung cancer (NSCLC), and resistance to PTX seriously affects the survival of patients. However, the underlying mechanism and potential reversing strategy need to be further explored. Methods We identified ALDH2 as a PTX resistance-related gene using gene microarray analysis. Subsequently, a series of functional analysis in cell lines, patient samples and xenograft models were performed to explore the functional role, clinical significance and the aberrant regulation mechanism of ALDH2 in PTX resistance of NSCLC. Furthermore, the pharmacological agents targeting ALDH2 and epigenetic enzyme were used to investigate the diverse reversing strategy against PTX resistance. Results Upregulation of ALDH2 expression is highly associated with resistance to PTX using in vitro and in vivo analyses of NSCLC cells along with clinicopathological analyses of NSCLC patients. ALDH2-overexpressing NSCLC cells exhibited significantly reduced PTX sensitivity and increased biological characteristics of malignancy in vitro and tumor growth and metastasis in vivo. EHMT2 (euchromatic histone lysine methyltransferase 2) inhibition and NFYA (nuclear transcription factor Y subunit alpha) overexpression had a cooperative effect on the regulation of ALDH2. Mechanistically, ALDH2 overexpression activated the RAS/RAF oncogenic pathway. NSCLC/PTX cells re-acquired sensitivity to PTX in vivo and in vitro when ALDH2 was inhibited by pharmacological agents, including the ALDH2 inhibitors Daidzin (DZN)/Disulfiram (DSF) and JIB04, which reverses the effect of EHMT2. Conclusion Our findings suggest that ALDH2 status can help predict patient response to PTX therapy and ALDH2 inhibition may be a promising strategy to overcome PTX resistance in the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01579-9.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jianmin Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Shuai Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of People's Liberation Army, Wuhan, People's Republic of China
| | - Jingyu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Sen Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| |
Collapse
|
39
|
Jang J, Lee K, Koh B. Investigation of benzimidazole anthelmintics as oral anticancer agents. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiyoon Jang
- Therapeutics and Biotechnology Division Korea Research Institute of Chemical Technology Daejeon South Korea
- Department of Chemistry Sungkyunkwan University Suwon South Korea
| | - Kwangho Lee
- Therapeutics and Biotechnology Division Korea Research Institute of Chemical Technology Daejeon South Korea
- Medicinal Chemistry & Pharmacology University of Science & Technology Daejeon South Korea
| | - Byumseok Koh
- Therapeutics and Biotechnology Division Korea Research Institute of Chemical Technology Daejeon South Korea
| |
Collapse
|
40
|
Liu Y, Meng Y, Bian J, Liu B, Li X, Guan Q, Li Z, Zhang W, Wu Y, Zuo D. 2-Methoxy-5((3,4,5-trimethosyphenyl) seleninyl) phenol causes G2/M cell cycle arrest and apoptosis in NSCLC cells through mitochondrial apoptotic pathway and MDM2 inhibition. J Biochem Mol Toxicol 2022; 36:e23066. [PMID: 35384151 DOI: 10.1002/jbt.23066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/15/2021] [Accepted: 03/23/2022] [Indexed: 12/30/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) is one of the most common malignancies and needs novel and effective chemotherapy. In this study, our purpose is to explore the anticancer effects of 2-methoxy-5((3,4,5-trimethosyphenyl) seleninyl) phenol (SQ) on human NSCLC (A549 and H460) cells. We found that SQ suppressed the proliferation of NSCLC cells in time- and dose-dependent manners, and blocked the cells at G2/M phase, which was relevant to microtubule depolymerization. Additionally, SQ induced A549 and H460 cell apoptosis by activating the mitochondrial apoptotic pathway. Further, we demonstrated that SQ enhanced the generation of reactive oxygen species (ROS), and pretreatment with N-acetyl- L-cysteine (NAC) attenuated SQ-induced cell apoptosis. Meanwhile, SQ mediated-ROS generation caused DNA damage in A549 and H460 cells. Our data also revealed that SQ-induced apoptosis was correlated with the inhibition of mouse double minute 2 (MDM2) in A549 and H460 cells. In summary, our research indicates that the novel compound SQ has great potential for therapeutic treatment of NSCLC in future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuting Meng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiang Bian
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Bolin Liu
- College of Pharmacy, China Medical University, Shenyang, China
| | - Xuefen Li
- Department of Pharmacy, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
41
|
Wang J, Miller DD, Li W. Molecular interactions at the colchicine binding site in tubulin: An X-ray crystallography perspective. Drug Discov Today 2022; 27:759-776. [PMID: 34890803 PMCID: PMC8901563 DOI: 10.1016/j.drudis.2021.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/27/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023]
Abstract
Tubulin is an important cancer drug target. Compounds that bind at the colchicine site in tubulin have attracted significant interest as they are generally less affected by multidrug resistance than other potential drugs. Modeling is useful in understanding the interactions between tubulin and colchicine binding site inhibitors (CBSIs), but because the colchicine binding site contains two flexible loops whose conformations are highly ligand-dependent, modeling has its limitations. X-ray crystallography provides experimental pictures of tubulin-ligand interactions at this challenging colchicine site. Since 2004, when the first X-ray structure of tubulin in complex with N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) was published, many X-ray crystal structures have been reported for tubulin complexes involving the colchicine binding site. In this review, we summarize the crystal structures of tubulin in complexes with various CBSIs, aiming to facilitate the discovery of new generations of tubulin inhibitors.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
42
|
Malebari AM, Wang S, Greene TF, O’Boyle NM, Fayne D, Khan MF, Nathwani SM, Twamley B, McCabe T, Zisterer DM, Meegan MJ. Synthesis and Antiproliferative Evaluation of 3-Chloroazetidin-2-ones with Antimitotic Activity: Heterocyclic Bridged Analogues of Combretastatin A-4. Pharmaceuticals (Basel) 2021; 14:1119. [PMID: 34832901 PMCID: PMC8624998 DOI: 10.3390/ph14111119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Antimitotic drugs that target tubulin are among the most widely used chemotherapeutic agents; however, the development of multidrug resistance has limited their clinical activity. We report the synthesis and biological properties of a series of novel 3-chloro-β-lactams and 3,3-dichloro-β-lactams (2-azetidinones) that are structurally related to the tubulin polymerisation inhibitor and vascular targeting agent, Combretastatin A-4. These compounds were evaluated as potential tubulin polymerisation inhibitors and for their antiproliferative effects in breast cancer cells. A number of the compounds showed potent activity in MCF-7 breast cancer cells, e.g., compound 10n (3-chloro-4-(3-hydroxy-4-methoxy-phenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one) and compound 11n (3,3-dichloro-4-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-azetidin-2-one), with IC50 values of 17 and 31 nM, respectively, and displayed comparable cellular effects to those of Combretastatin A-4. Compound 10n demonstrated minimal cytotoxicity against non-tumorigenic HEK-293T cells and inhibited the in vitro polymerisation of tubulin with significant G2/M phase cell cycle arrest. Immunofluorescence staining of MCF-7 cells confirmed that β-lactam 10n caused a mitotic catastrophe by targeting tubulin. In addition, compound 10n promoted apoptosis by regulating the expression of pro-apoptotic protein BAX and anti-apoptotic proteins Bcl-2 and Mcl-1. Molecular docking was used to explore the potential molecular interactions between novel 3-chloro-β-lactams and the amino acid residues of the colchicine binding active site cavity of β-tubulin. Collectively, these results suggest that 3-chloro-2-azetidinones, such as compound 10n, could be promising lead compounds for further clinical anti-cancer drug development.
Collapse
Affiliation(s)
- Azizah M. Malebari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shu Wang
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.W.); (T.F.G.); (N.M.O.)
| | - Thomas F. Greene
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.W.); (T.F.G.); (N.M.O.)
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.W.); (T.F.G.); (N.M.O.)
| | - Darren Fayne
- Molecular Design Group, School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (D.F.); (M.F.K.)
| | - Mohemmed Faraz Khan
- Molecular Design Group, School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (D.F.); (M.F.K.)
| | - Seema M. Nathwani
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.M.N.); (D.M.Z.)
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, 2 DO2R590 Dublin, Ireland; (B.T.); (T.M.)
| | - Thomas McCabe
- School of Chemistry, Trinity College Dublin, 2 DO2R590 Dublin, Ireland; (B.T.); (T.M.)
| | - Daniela M. Zisterer
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.M.N.); (D.M.Z.)
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.W.); (T.F.G.); (N.M.O.)
| |
Collapse
|
43
|
Banerjee S, Mahmud F, Deng S, Ma L, Yun MK, Fakayode SO, Arnst KE, Yang L, Chen H, Wu Z, Lukka PB, Parmar K, Meibohm B, White SW, Wang Y, Li W, Miller DD. X-ray Crystallography-Guided Design, Antitumor Efficacy, and QSAR Analysis of Metabolically Stable Cyclopenta-Pyrimidinyl Dihydroquinoxalinone as a Potent Tubulin Polymerization Inhibitor. J Med Chem 2021; 64:13072-13095. [PMID: 34406768 PMCID: PMC9206499 DOI: 10.1021/acs.jmedchem.1c01202] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small molecules that interact with the colchicine binding site in tubulin have demonstrated therapeutic efficacy in treating cancers. We report the design, syntheses, and antitumor efficacies of new analogues of pyridopyrimidine and hydroquinoxalinone compounds with improved drug-like characteristics. Eight analogues, 5j, 5k, 5l, 5m, 5n, 5r, 5t, and 5u, showed significant improvement in metabolic stability and demonstrated strong antiproliferative potency in a panel of human cancer cell lines, including melanoma, lung cancer, and breast cancer. We report crystal structures of tubulin in complex with five representative compounds, 5j, 5k, 5l, 5m, and 5t, providing direct confirmation for their binding to the colchicine site in tubulin. A quantitative structure-activity relationship analysis of the synthesized analogues showed strong ability to predict potency. In vivo, 5m (4 mg/kg) and 5t (5 mg/kg) significantly inhibited tumor growth as well as melanoma spontaneous metastasis into the lung and liver against a highly paclitaxel-resistant A375/TxR xenograft model.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Physical Sciences, College of STEM, University of Arkansas Fort Smith, Fort Smith, Arkansas 72913, United States
| | - Foyez Mahmud
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lingling Ma
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Sayo O Fakayode
- Department of Physical Sciences, College of STEM, University of Arkansas Fort Smith, Fort Smith, Arkansas 72913, United States
| | - Kinsie E Arnst
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Pradeep B Lukka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Keyur Parmar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
44
|
Chen H, Deng S, Albadari N, Yun MK, Zhang S, Li Y, Ma D, Parke DN, Yang L, Seagroves TN, White SW, Miller DD, Li W. Design, Synthesis, and Biological Evaluation of Stable Colchicine-Binding Site Tubulin Inhibitors 6-Aryl-2-benzoyl-pyridines as Potential Anticancer Agents. J Med Chem 2021; 64:12049-12074. [PMID: 34378386 PMCID: PMC9206500 DOI: 10.1021/acs.jmedchem.1c00715] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We previously reported a potent tubulin inhibitor CH-2-77. In this study, we optimized the structure of CH-2-77 by blocking metabolically labile sites and synthesized a series of CH-2-77 analogues. Two compounds, 40a and 60c, preserved the potency while improving the metabolic stability over CH-2-77 by 3- to 4-fold (46.8 and 29.4 vs 10.8 min in human microsomes). We determined the high-resolution X-ray crystal structures of 40a (resolution 2.3 Å) and 60c (resolution 2.6 Å) in complex with tubulin and confirmed their direct binding at the colchicine-binding site. In vitro, 60c maintained its mode of action by inhibiting tubulin polymerization and was effective against P-glycoprotein-mediated multiple drug resistance and taxol resistance. In vivo, 60c exhibited a strong inhibitory effect on tumor growth and metastasis in a taxol-resistant A375/TxR xenograft model without obvious toxicity. Collectively, this work showed that 60c is a promising lead compound for further development as a potential anticancer agent.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Najah Albadari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yong Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Deanna N Parke
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Tiffany N Seagroves
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
45
|
Man S, Wu Z, Sun R, Guan Q, Li Z, Zuo D, Zhang W, Wu Y. W436, a novel SMART derivative, exhibits anti-hepatocarcinoma activity by inducing apoptosis and G2/M cell cycle arrest in vitro and in vivo and induces protective autophagy. J Biochem Mol Toxicol 2021; 35:e22831. [PMID: 34155709 DOI: 10.1002/jbt.22831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is considered one of the most common primary liver cancers and the second leading cause of cancer-associated mortality around the world annually. Therefore, it is urgent to develop novel drugs for HCC therapy. We synthesized a novel 4-substituted-methoxybenzoyl-aryl-thiazole (SMART) analog, (5-(4-aminopiperidin-1-yl)-2-phenyl-2H-1,2,3-triazol-4-yl) (3,4,5-trimethoxyphenyl) methanone (W436), with higher solubility, stability, and antitumor activity than SMART against HCC cells in vivo. The purpose of this study was to investigate the mechanisms by which W436 inhibited cell growth in HCC cells. We observed that W436 inhibited the proliferation of HepG2 and Hep3B cells in a dose-dependent manner. Importantly, the anticancer activity of W436 against HCC cells was even higher than that of SMART in vivo. In addition, the antiproliferative effects of W436 on HCC cells were associated with G2/M cell cycle arrest and apoptosis via the activation of reactive oxygen species-mediated mitochondrial apoptotic pathway. W436 also induced protective autophagy by inhibiting the protein kinase B/mammalian target of rapamycin pathway. At the same time, W436 treatment inhibited the cell adhesion and invasion as well as the process of epithelial-to-mesenchymal transition Taken together, our results showed that W436 had the promising potential for the therapeutic treatment of HCC with improved solubility, stability, and bioavailability.
Collapse
Affiliation(s)
- Shuai Man
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhuzhu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Rui Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
46
|
Islam F, Quadery TM, Bai R, Luckett-Chastain LR, Hamel E, Ihnat MA, Gangjee A. Novel pyrazolo[4,3-d]pyrimidine microtubule targeting agents (MTAs): Synthesis, structure-activity relationship, in vitro and in vivo evaluation as antitumor agents. Bioorg Med Chem Lett 2021; 41:127923. [PMID: 33705908 PMCID: PMC8113149 DOI: 10.1016/j.bmcl.2021.127923] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/21/2022]
Abstract
The design, synthesis, and biological evaluation of a series novel N1‑methyl pyrazolo[4,3-d]pyrimidines as inhibitors of tubulin polymerization and colchicine binding were described here. Synthesis of target compounds involved alkylation of the pyrazolo scaffold, which afforded two regioisomers. These were separated, characterized and identified with 1H NMR and NOESY spectroscopy. All compounds, except 10, inhibited [3H]colchicine binding to tubulin, and the potent inhibition was similar to that obtained with CA-4. Compounds 9 and 11-13 strongly inhibited the polymerization of tubulin, with IC50 values of 0.45, 0.42, 0.49 and 0.42 μM, respectively. Compounds 14-16 inhibited the polymerization of tubulin with IC50s near ∼1 μM. Compounds 9, 12, 13 and 16 inhibited MCF-7 breast cancer cell lines and circumvented βIII-tubulin mediated cancer cell resistance to taxanes and other MTAs, and compounds 9-17 circumvented Pgp-mediated drug resistance. In the standard NCI testing protocol, compound 9 exhibited excellent potency with low to sub nanomolar GI50 values (≤10 nM) against most tumor cell lines, including several multidrug resistant phenotypes. Compound 9 was significantly (P < 0.0001) better than paclitaxel at reducing MCF-7 TUBB3 (βIII-tubulin overexpressing) tumors in a mouse xenograft model. Collectively, these studies support the further preclinical development of the pyrazolo[4,3-d]pyrimidine scaffold as a new generation of tubulin inhibitors and 9 as an anticancer agent with advantages over paclitaxel.
Collapse
Affiliation(s)
- Farhana Islam
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Tasdique M Quadery
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Lerin R Luckett-Chastain
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, Oklahoma City, OK 73117, United States
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, Oklahoma City, OK 73117, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| |
Collapse
|
47
|
Lei JH, Ma LL, Xian JH, Chen H, Zhou JJ, Chen H, Lei Q, Li YY, Wang YY, Wang YX. Structural insights into targeting of the colchicine binding site by ELR510444 and parbendazole to achieve rational drug design. RSC Adv 2021; 11:18938-18944. [PMID: 35478655 PMCID: PMC9033620 DOI: 10.1039/d1ra01173a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
Microtubules consisting of α- and β-tubulin heterodimers have proven to be an efficient drug target for cancer therapy. A broad range of agents, including ELR510444 and parbendazole, can bind to tubulin and interfere with microtubule assembly. ELR510444 and parbendazole are colchicine binding site inhibitors with antiproliferative activities. However, the lack of structural information on the tubulin-ELR510444/parbendazole complex has hindered the design and development of more potent drugs with similar scaffolds. Therefore, we report the crystal structures of tubulin complexed with ELR510444 at a resolution of 3.1 Å and with parbendazole at 2.4 Å. The structure of these complexes revealed the intermolecular interactions between the two colchicine binding site inhibitors and tubulin, thus providing a rationale for the development of novel benzsulfamide and benzimidazole derivatives targeting the colchicine binding site.
Collapse
Affiliation(s)
- Jia-Hong Lei
- Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy Chengdu 610041 P. R. China
| | - Ling-Ling Ma
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University Chengdu 610041 P. R. China
| | - Jing-Hong Xian
- Department of Clinical Research, West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Hai Chen
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University Chengdu 610041 P. R. China
| | | | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis Tennessee 38163 USA
| | - Qian Lei
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University Chengdu 610041 P. R. China
| | - Yu-Yan Li
- Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy Chengdu 610041 P. R. China
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University Chengdu 610041 P. R. China
| | - Yan-Yan Wang
- West China National Clinical Research Center for Geriatrics, School of Nursing, Sichuan University Chengdu 610041 P. R. China
| | - Yu-Xi Wang
- Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy Chengdu 610041 P. R. China
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
48
|
Weidong L, Sanna L, Bordoni V, Tiansheng Z, Chengxun L, Murineddu G, Pinna GA, Kelvin DJ, Bagella L. Target identification of a novel unsymmetrical 1,3,4-oxadiazole derivative with antiproliferative properties. J Cell Physiol 2021; 236:3789-3799. [PMID: 33089499 DOI: 10.1002/jcp.30120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 02/05/2023]
Abstract
1,3,4-Oxadiazole derivatives are widely used in research on antineoplastic drugs. Recently, we discovered a novel unsymmetrical 1,3,4-oxadiazole compound with antiproliferative properties called 2j. To further investigate its possible targets and molecular mechanisms, RNA-seq was performed and the differentially expressed genes (DEGs) were obtained after treatment. Data were analyzed using functional (Gene Ontology term) and pathway (Kyoto Encyclopedia of Genes and Genomes) enrichment of the DEGs. The hub genes were determined by the analysis of protein-protein interaction networks. The connectivity map (CMap) information provided insight into the model action of antitumor small molecule drugs. Hub genes have been identified through function gene networks using STRING analysis. The small molecular targets obtained by CMap comparison showed that 2j is a tubulin inhibitor and it acts mainly affecting tumor cells through the cell cycle, FoxO signaling pathway, apoptotic, and p53 signaling pathways. The possible targets of 2j could be TUBA1A and TUBA4A. Molecular docking results indicated that 2j interacts at the colchicine-binding site on tubulin.
Collapse
Affiliation(s)
- Lyu Weidong
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Laboratory of Immunity, Shantou University Medical College, Shantou, Guangdong, China
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Zeng Tiansheng
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Laboratory of Immunity, Shantou University Medical College, Shantou, Guangdong, China
| | - Li Chengxun
- Laboratory of Immunity, Shantou University Medical College, Shantou, Guangdong, China
| | - Gabriele Murineddu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Gerard A Pinna
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - David J Kelvin
- Laboratory of Immunity, Shantou University Medical College, Shantou, Guangdong, China
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Recent advances in research of colchicine binding site inhibitors and their interaction modes with tubulin. Future Med Chem 2021; 13:839-858. [PMID: 33821673 DOI: 10.4155/fmc-2020-0376] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microtubules have been a concerning target of cancer chemotherapeutics for decades, and several tubulin-targeted agents, such as paclitaxel, vincristine and vinorelbine, have been approved. The colchicine binding site is one of the primary targets on microtubules and possesses advantages compared with other tubulin-targeted agents, such as inhibitors of tumor vessels and overcoming P-glycoprotein overexpression-mediated multidrug resistance. This study reviews and summarizes colchicine binding site inhibitors reported in recent years with structural studies via the crystal structures of complexes or computer simulations to discover new lead compounds. We are attempting to resolve the challenge of colchicine site agent research.
Collapse
|
50
|
Ren Y, Wang Y, Li G, Zhang Z, Ma L, Cheng B, Chen J. Discovery of Novel Benzimidazole and Indazole Analogues as Tubulin Polymerization Inhibitors with Potent Anticancer Activities. J Med Chem 2021; 64:4498-4515. [PMID: 33788562 DOI: 10.1021/acs.jmedchem.0c01837] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Novel indazole and benzimidazole analogues were designed and synthesized as tubulin inhibitors with potent antiproliferative activities. Among them, compound 12b exhibited the strongest inhibitory effects on the growth of cancer cells with an average IC50 value of 50 nM, slightly better than colchicine. 12b exhibited nearly equal potency against both, a paclitaxel-resistant cancer cell line (A2780/T, IC50 = 9.7 nM) and the corresponding parental cell line (A2780S, IC50 = 6.2 nM), thus effectively overcoming paclitaxel resistance in vitro. The crystal structure of 12b in complex with tubulin was solved to 2.45 Å resolution by X-ray crystallography, and its direct binding was confirmed to the colchicine site. Furthermore, 12b displayed significant in vivo antitumor efficacy in a melanoma tumor model with tumor growth inhibition rates of 78.70% (15 mg/kg) and 84.32% (30 mg/kg). Collectively, this work shows that 12b is a promising lead compound deserving further investigation as a potential anticancer agent.
Collapse
Affiliation(s)
- Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Zherong Zhang
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Lingling Ma
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binbin Cheng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|