1
|
Kume M, Ahmad A, DeFea KA, Vagner J, Dussor G, Boitano S, Price TJ. Protease-Activated Receptor 2 (PAR2) Expressed in Sensory Neurons Contributes to Signs of Pain and Neuropathy in Paclitaxel Treated Mice. THE JOURNAL OF PAIN 2023; 24:1980-1993. [PMID: 37315729 PMCID: PMC10615692 DOI: 10.1016/j.jpain.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, dose-limiting side effect of cancer therapy. Protease-activated receptor 2 (PAR2) is implicated in a variety of pathologies, including CIPN. In this study, we demonstrate the role of PAR2 expressed in sensory neurons in a paclitaxel (PTX)-induced model of CIPN in mice. PAR2 knockout/wildtype (WT) mice and mice with PAR2 ablated in sensory neurons were treated with PTX administered via intraperitoneal injection. In vivo behavioral studies were done in mice using von Frey filaments and the Mouse Grimace Scale. We then examined immunohistochemical staining of dorsal root ganglion (DRG) and hind paw skin samples from CIPN mice to measure satellite cell gliosis and intra-epidermal nerve fiber (IENF) density. The pharmacological reversal of CIPN pain was tested with the PAR2 antagonist C781. Mechanical allodynia caused by PTX treatment was alleviated in PAR2 knockout mice of both sexes. In the PAR2 sensory neuronal conditional knockout (cKO) mice, both mechanical allodynia and facial grimacing were attenuated in mice of both sexes. In the DRG of the PTX-treated PAR2 cKO mice, satellite glial cell activation was reduced compared to control mice. IENF density analysis of the skin showed that the PTX-treated control mice had a reduction in nerve fiber density while the PAR2 cKO mice had a comparable skin innervation as the vehicle-treated animals. Similar results were seen with satellite cell gliosis in the DRG, where gliosis induced by PTX was absent in PAR cKO mice. Finally, C781 was able to transiently reverse established PTX-evoked mechanical allodynia. PERSPECTIVE: Our work demonstrates that PAR2 expressed in sensory neurons plays a key role in PTX-induced mechanical allodynia, spontaneous pain, and signs of neuropathy, suggesting PAR2 as a possible therapeutic target in multiple aspects of PTX CIPN.
Collapse
Affiliation(s)
- Moeno Kume
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Ayesha Ahmad
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | | | | | - Gregory Dussor
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Scott Boitano
- University of Arizona Bio5 Research Institute
- University of Arizona Heath Sciences, Asthma and Airway Disease Research Center
- University of Arizona Heath Sciences, Department of Physiology
| | - Theodore J. Price
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| |
Collapse
|
2
|
Lucarini E, Micheli L, Rajagopalan R, Ciampi C, Branca JJ, Pacini A, Leandri M, Rajagopalan P, Ghelardini C, Di Cesare Mannelli L. Broad-spectrum neuroprotection exerted by DDD-028 in a mouse model of chemotherapy-induced neuropathy. Pain 2023; 164:2581-2595. [PMID: 37556385 PMCID: PMC10578426 DOI: 10.1097/j.pain.0000000000002963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 08/11/2023]
Abstract
ABSTRACT Neurotoxicity of chemotherapeutics involves peculiar alterations in the structure and function, including abnormal nerve signal transmission, of both the peripheral and central nervous system. The lack of effective pharmacological approaches to prevent chemotherapy-induced neurotoxicity necessitates the identification of innovative therapies. Recent evidence suggests that repeated treatment with the pentacyclic pyridoindole derivative DDD-028 can exert both pain-relieving and glial modulatory effects in mice with paclitaxel-induced neuropathy. This work is aimed at assessing whether DDD-028 is a disease-modifying agent by protecting the peripheral nervous tissues from chemotherapy-induced damage. Neuropathy was induced in animals by paclitaxel injection (2.0 mg kg -1 i.p). DDD-028 (10 mg kg -1 ) and the reference drug, pregabalin (30 mg kg -1 ), were administered per os daily starting concomitantly with the first injection of paclitaxel and continuing 10 days after the end of paclitaxel treatment. The behavioural tests confirmed the antihyperalgesic efficacy of DDD-028 on paclitaxel-induced neuropathic pain. Furthermore, the electrophysiological analysis revealed the capacity of DDD-028 to restore near-normal sensory nerve conduction in paclitaxel-treated animals. Histopathology evidence indicated that DDD-028 was able to counteract effectively paclitaxel-induced peripheral neurotoxicity by protecting against the loss of intraepidermal nerve fibers, restoring physiological levels of neurofilament in nerve tissue and plasma, and preventing morphological alterations occurring in the sciatic nerves and dorsal root ganglia. Overall, DDD-028 is more effective than pregabalin in preventing chemotherapy-induced neurotoxicity. Thus, based on its potent antihyperalgesic and neuroprotective efficacy, DDD-028 seems to be a viable prophylactic medication to limit the development of neuropathies consequent to chemotherapy.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | | | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Jacopo J.V. Branca
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Massimo Leandri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Lopez-Garzon M, Canta A, Chiorazzi A, Alberti P. Gait analysis in chemotherapy-induced peripheral neurotoxicity rodent models. Brain Res Bull 2023; 203:110769. [PMID: 37748696 DOI: 10.1016/j.brainresbull.2023.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Gait analysis could be used in animal models as an indicator of sensory ataxia due to chemotherapy-induced peripheral neurotoxicity (CIPN). Over the years, gait analysis in in vivo studies has evolved from simple observations carried out by a trained operator to computerised systems with machine learning that allow the quantification of any variable of interest and the establishment of algorithms for behavioural classification. However, there is not a consensus on gait analysis use in CIPN animal models; therefore, we carried out a systematic review. Of 987 potentially relevant studies, 14 were included, in which different methods were analysed (observation, footprint and CatWalk™). We presented the state-of-the-art of possible approaches to analyse sensory ataxia in rodent models, addressing advantages and disadvantages of different methods available. Semi-automated methods may be of interest when preventive or therapeutic strategies are evaluated, also considering their methodological simplicity and automaticity; up to now, only CatWalk™ analysis has been tested. Future studies should expect that CIPN-affected animals tend to reduce hind paw support due to pain, allodynia or loss of sensation, and an increase in swing phase could or should be observed. Few available studies documented these impairments at the last time point, and only appeared later on respect to other earlier signs of CIPN (such as altered neurophysiological findings). For that reason, gait impairment could be interpreted as late repercussions of loss of sensory.
Collapse
Affiliation(s)
- Maria Lopez-Garzon
- Biomedical Group (BIO277), Department of Physiotherapy, Faculty of Health Sciences, University of Granada, Granada, Spain; A02-Cuídate, Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain; Unit of Excellence On Exercise and Health (UCEES), University of Granada, Granada, Spain; Sport and Health Research Center (IMUDs), Granada, Spain
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for neuroscience), Milan, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for neuroscience), Milan, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for neuroscience), Milan, Italy; Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
| |
Collapse
|
4
|
Frachet S, Danigo A, Duchesne M, Richard L, Sturtz F, Magy L, Demiot C. A mouse model of sensory neuropathy induced by a long course of monomethyl-auristatin E treatment. Toxicol Appl Pharmacol 2023; 474:116624. [PMID: 37419214 DOI: 10.1016/j.taap.2023.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Antibody-drug conjugates (ADCs) are anticancer drugs consisting of a monoclonal antibody, targeting selective tumor antigens, to which has been frequently associated a highly potent cytotoxic agent, the monomethyl auristatin E (MMAE) using a chemical linker. MMAE is a tubulin polymerization inhibitor derived from dolastin-10. These MMAE-ADCs are responsible for peripheral nerve toxicities. Our objective was to develop and characterize a mouse model of MMAE-induced peripheral neuropathy induced by free MMAE injections. MMAE was injected in Swiss mice at 50 μg/kg i.p. every other day for 7 weeks. Assessments of motor and sensory nerve functions were performed once a week on MMAE and Vehicle-treated mice. Sciatic nerve and paw skin were removed at the end of experiment for subsequent immunofluorescence and morphological analysis. MMAE did not affect motor coordination, muscular strength and heat nociception, but significantly induced tactile allodynia in MMAE-treated mice compared with Vehicle-treated mice from day 35 to day 49. MMAE significantly reduced myelinated and unmyelinated axon densities in sciatic nerves and led to a loss of intraepidermal nerve fiber in paw skin. In summary, long course of low dose of MMAE induced a peripheral sensory neuropathy associated with nerve degeneration, without general state alteration. This model may represent a ready accessible tool to screen neuroprotective strategies in the context of peripheral neuropathies induced by MMAE-ADCs.
Collapse
Affiliation(s)
- Simon Frachet
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France.
| | - Aurore Danigo
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France.
| | - Mathilde Duchesne
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France; Department of Pathology, University Hospital of Limoges, Limoges 87042, France.
| | - Laurence Richard
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France; Department of Pathology, University Hospital of Limoges, Limoges 87042, France.
| | - Franck Sturtz
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France.
| | - Laurent Magy
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France.
| | - Claire Demiot
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France.
| |
Collapse
|
5
|
Liu X, Cui C, Sun W, Meng J, Guo J, Wu L, Chen B, Liao D, Jiang P. Paclitaxel Induces Neurotoxicity by Disrupting Tricarboxylic Acid Cycle Metabolic Balance in the Mouse Hippocampus. J Toxicol 2023; 2023:5660481. [PMID: 37575636 PMCID: PMC10423086 DOI: 10.1155/2023/5660481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
Objective It is well known that paclitaxel (PTX)-induced neurotoxicity seriously affects the quality of life of patients and is the main reason for reducing the dose of chemotherapy or even stopping chemotherapy. The current data are limited, and further information is required for practice and verification. The aims of this study were to clarify the molecular mechanism underlying PTX-induced neurotoxicity by combining in vivo and in vitro metabolomics studies and provide new targets for the prevention and treatment of PTX-induced neurotoxicity. Methods In the in vivo study, a PTX-induced neurotoxicity mouse model was established by intraperitoneal injection of PTX (6 mg/kg every three days) for two consecutive weeks. After verification by water maze tests and HE staining of pathological sections, hippocampal metabolites were measured and the differential metabolites and related metabolic pathways were identified by multivariate statistical analysis. In the in vitro study, we investigated the effects of PTX on mouse hippocampal neuron cells, assessing the concentration and time of administration by MTT assays. After modeling, the relevant metabolites in the TCA cycle were quantified by targeted metabolomics using stable isotope labeling. Finally, the key enzymes of the TCA cycle in tissues and cells were verified by RT-PCR. Results Administration of PTX to model mice resulted in neurological damage, shown by both water-maze tests and hippocampal tissue sections. Twenty-four metabolites and five associated metabolic pathways were found to differ significantly between the hippocampal tissues of the model and control groups. These included metabolites and pathways related to the TCA cycle and pyruvate metabolism. Metabolomics analysis using stable isotope labeling showed significant changes in metabolites associated with the TCA cycle compared with the control group (P < 0.05). Finally, RT-PCR verified that the expression of key enzymes in the TCA cycle was changed to different degrees in both hippocampal tissues and cells. Conclusion Our results showed that PTX neurotoxicity in hippocampal tissue and neuron cells was associated with inhibition of the TCA cycle. This inhibition leads to brain insufficiency and impaired metabolism, resulting in various neurotoxic symptoms.
Collapse
Affiliation(s)
- Xi Liu
- Department of Pharmacy, Linfen People's Hospital, Linfen, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Junjun Meng
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Jinxiu Guo
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Linlin Wu
- Department of Oncology, Tengzhou Central People's Hospital, Affiliated to Jining Medical College, Tengzhou, China
| | - Beibei Chen
- ADFA School of Science, University of New South Wales, Canberra, Australia
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| |
Collapse
|
6
|
Leal T, Socinski MA. Emerging agents for the treatment of advanced or metastatic NSCLC without actionable genomic alterations with progression on first-line therapy. Expert Rev Anticancer Ther 2023; 23:817-833. [PMID: 37486248 DOI: 10.1080/14737140.2023.2235895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Lung cancer is the second most common cancer in the world and the leading cause of cancer-related mortality. Immune checkpoint inhibitors (ICIs), as monotherapy or in combination with platinum-based chemotherapy, have emerged as the standard of care first-line treatment option for patients with advanced non-small cell lung cancer (NSCLC) without actionable genomic alterations (AGAs). Despite significant improvements in patient outcomes with these regimens, primary or acquired resistance is common and most patients develop disease progression, resulting in poor survival. AREAS COVERED We review the current treatments commonly used for NSCLC without AGAs in the first-line and subsequent settings and describe the unmet needs for these patients in the second-line setting, including a lack of standard definitions for primary and required resistance, and few effective treatment options for patients who develop progression of their disease on first-line therapy. We describe key mechanisms of resistance to ICIs and emerging therapies that are being investigated for patients who develop progression on ICIs and platinum-based chemotherapy. EXPERT OPINION Emerging agents in development have a variety of different mechanisms of action and will likely change standard of care for second-line therapy and beyond for patients with NSCLC without AGAs in the future.
Collapse
|
7
|
Liu B, Liu L, Ran J, Xie N, Li J, Xiao H, Yang X, Tian C, Wu H, Lu J, Gao J, Hu X, Cao M, Shui Z, Hu ZY, Ouyang Q. A randomized trial of eribulin monotherapy versus eribulin plus anlotinib in patients with locally recurrent or metastatic breast cancer. ESMO Open 2023; 8:101563. [PMID: 37285718 DOI: 10.1016/j.esmoop.2023.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Eribulin mesylate is a novel, nontaxane, microtubule dynamics inhibitor. In this study, we assessed the efficacy and safety of eribulin versus eribulin plus the oral small-molecule tyrosine kinase inhibitor anlotinib in patients with locally recurrent or metastatic breast cancer. PATIENTS AND METHODS In this single-center, open-label, phase II clinical study (NCT05206656) conducted in a Chinese hospital, patients with human epidermal growth factor receptor 2 (HER2)-negative, locally recurrent or metastatic breast cancer previously treated with anthracycline- or taxane-based chemotherapy were randomized (1 : 1) to receive eribulin alone or in combination with anlotinib. The primary efficacy endpoint was investigator-assessed progression-free survival (PFS). RESULTS From June 2020 to April 2022, a total of 80 patients were randomly assigned to either eribulin monotherapy or eribulin plus anlotinib combination therapy, with 40 patients in each group. The data cut-off was 10 August 2022. The median PFS was 3.5 months [95% confidence interval (CI) 2.8-5.5 months] for eribulin and 5.1 months (95% CI 4.5-6.9 months) for eribulin plus anlotinib (hazard ratio = 0.56, 95% CI 0.32-0.98; P = 0.04). The objective response rates were 32.5% versus 52.5% (P = 0.07), respectively, and disease control rates were 67.5% versus 92.5% (P = 0.01), respectively. Patients <50 years of age, with an Eastern Cooperative Oncology Group performance status score of 0, visceral metastasis, number of treatment lines of four or more, hormone receptor negative (triple-negative), and HER2 low expression appeared to benefit more from combined treatment. The most common adverse events in both groups were leukopenia (n = 28, 70.0%, patients in the eribulin monotherapy group versus n = 35, 87.5%, patients in the combination therapy group), aspartate aminotransferase elevations (n = 28, 70.0%, versus n = 35, 87.5%), neutropenia (n = 25, 62.5%, versus n = 31, 77.5%), and alanine aminotransferase elevations (n = 25, 62.5%, versus n = 30, 75.0%). CONCLUSION Eribulin plus anlotinib can be considered an alternative treatment option for HER2-negative locally advanced or metastatic breast cancer.
Collapse
Affiliation(s)
- B Liu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - L Liu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - J Ran
- Department of Biostatistics and Bioinformatics, Rollins School of Public Heath, Emory University, Atlanta, USA
| | - N Xie
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - J Li
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - H Xiao
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - X Yang
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - C Tian
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - H Wu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - J Lu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - J Gao
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - X Hu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - M Cao
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Z Shui
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Z-Y Hu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Q Ouyang
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.
| |
Collapse
|
8
|
Hsu YT, Chen LH, Liu YH, Chu SK, Chen TY, Tsai KJ, Shen MR, Liu W. Electrical Sympathetic Neuromodulation Protects Bone Marrow Niche and Drives Hematopoietic Regeneration during Chemotherapy. SMALL METHODS 2023; 7:e2201300. [PMID: 36843214 DOI: 10.1002/smtd.202201300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/24/2023] [Indexed: 06/09/2023]
Abstract
The sympathetic nervous system (SNS) of the bone marrow regulates the regeneration and mobilization of hematopoietic stem cells. Chemotherapy can damage bone marrow SNS, which impairs hematopoietic regeneration and aggravates hematologic toxicities. This leads to long-term bone marrow niche damage and increases mortality in patients undergoing chemotherapy. Electrical neuromodulation has been used to improve functional recovery after peripheral nerve injury. This study demonstrates that electrical sympathetic neuromodulation (ESN) of bone marrow can protect the bone marrow niche from chemotherapy-induced injury. Using carboplatin-treated rats, the SNS via the sciatic nerve innervating the femoral marrow with the effective protocol for bone marrow sympathetic activation is electrically stimulated. ESN can mediate several hematopoietic stem cells maintenance factors and promote hematopoietic regeneration after chemotherapy. It also activates adrenergic signals and reduces the release of pro-inflammatory cytokines, particularly interleukin-1 β, which contribute to chemotherapy-related nerve injury. Consequently, the severity of chemotherapy-related leukopenia, thrombocytopenia, and mortality can be reduced by ESN. As a result, in contrast to current drug-based treatment, such as granulocyte colony-stimulating factor, ESN can be a disruptive adjuvant treatment by protecting and modulating bone marrow function to reduce hematologic toxicity during chemotherapy.
Collapse
Affiliation(s)
- Ya-Ting Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Li-Hsien Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Ya-Hui Liu
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Shih-Kai Chu
- Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Tsai-Yun Chen
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine National Cheng Kung University, Tainan, 704302, Taiwan
| | - Meng-Ru Shen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
- Brain Research Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
9
|
Wang SH, Huang SH, Hsieh MC, Lu IC, Chou PR, Tai MH, Wu SH. Hyperbaric Oxygen Therapy Alleviates Paclitaxel-Induced Peripheral Neuropathy Involving Suppressing TLR4-MyD88-NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:ijms24065379. [PMID: 36982452 PMCID: PMC10049379 DOI: 10.3390/ijms24065379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Paclitaxel (PAC) results in long-term chemotherapy-induced peripheral neuropathy (CIPN). The coexpression of transient receptor potential vanilloid 1 (TRPV1) and Toll-like receptor 4 (TLR4) in the nervous system plays an essential role in mediating CIPN. In this study, we used a TLR4 agonist (lipopolysaccharide, LPS) and a TLR4 antagonist (TAK-242) in the CIPN rat model to investigate the role of TLR4-MyD88 signaling in the antinociceptive effects of hyper-baric oxygen therapy (HBOT). All rats, except a control group, received PAC to induce CIPN. Aside from the PAC group, four residual groups were treated with either LPS or TAK-242, and two of them received an additional one-week HBOT (PAC/LPS/HBOT and PAC/TAK-242/HBOT group). Mechanical allodynia and thermal hyperalgesia were then assessed. The expressions of TRPV1, TLR4 and its downstream signaling molecule, MyD88, were investigated. The mechanical and thermal tests revealed that HBOT and TAK-242 alleviated behavioral signs of CIPN. Immunofluorescence in the spinal cord dorsal horn and dorsal root ganglion revealed that TLR4 overexpression in PAC- and PAC/LPS-treated rats was significantly downregulated after HBOT and TAK-242. Additionally, Western blots showed a significant reduction in TLR4, TRPV1, MyD88 and NF-κB. Therefore, we suggest that HBOT may alleviate CIPN by modulating the TLR4-MyD88-NF-κB pathway.
Collapse
Affiliation(s)
- Shih-Hung Wang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Meng-Chien Hsieh
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - I-Cheng Lu
- Department of Anesthesiology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ping-Ruey Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
- Correspondence:
| |
Collapse
|
10
|
Meregalli C, Monza L, Jongen JLM. A mechanistic understanding of the relationship between skin innervation and chemotherapy-induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:1066069. [PMID: 36582196 PMCID: PMC9792502 DOI: 10.3389/fpain.2022.1066069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a frequent complication of chemotherapy-induced peripheral neurotoxicity (CIPN). Chemotherapy-induced peripheral neuropathies may serve as a model to study mechanisms of neuropathic pain, since several other common causes of peripheral neuropathy like painful diabetic neuropathy may be due to both neuropathic and non-neuropathic pain mechanisms like ischemia and inflammation. Experimental studies are ideally suited to study changes in morphology, phenotype and electrophysiologic characteristics of primary afferent neurons that are affected by chemotherapy and to correlate these changes to behaviors reflective of evoked pain, mainly hyperalgesia and allodynia. However, hyperalgesia and allodynia may only represent one aspect of human pain, i.e., the sensory-discriminative component, while patients with CIPN often describe their pain using words like annoying, tiring and dreadful, which are affective-emotional descriptors that cannot be tested in experimental animals. To understand why some patients with CIPN develop neuropathic pain and others not, and which are the components of neuropathic pain that they are experiencing, experimental and clinical pain research should be combined. Emerging evidence suggests that changes in subsets of primary afferent nerve fibers may contribute to specific aspects of neuropathic pain in both preclinical models and in patients with CIPN. In addition, the role of cutaneous neuroimmune interactions is considered. Since obtaining dorsal root ganglia and peripheral nerves in patients is problematic, analyses performed on skin biopsies from preclinical models as well as patients provide an opportunity to study changes in primary afferent nerve fibers and to associate these changes to human pain. In addition, other biomarkers of small fiber damage in CIPN, like corneal confocal microscope and quantitative sensory testing, may be considered.
Collapse
Affiliation(s)
- Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy,Correspondence: Cristina Meregalli
| | - Laura Monza
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Joost L. M. Jongen
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
11
|
Klazas M, Naamneh MS, Zheng W, Lazarovici P. Gabapentin Increases Intra-Epidermal and Peptidergic Nerve Fibers Density and Alleviates Allodynia and Thermal Hyperalgesia in a Mouse Model of Acute Taxol-Induced Peripheral Neuropathy. Biomedicines 2022; 10:biomedicines10123190. [PMID: 36551946 PMCID: PMC9775678 DOI: 10.3390/biomedicines10123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The clinical pathology of Taxol-induced peripheral neuropathy (TIPN), characterized by loss of sensory sensitivity and pain, is mirrored in a preclinical pharmacological mice model in which Gabapentin, produced anti-thermal hyperalgesia and anti-allodynia effects. The study aimed to investigate the hypothesis that gabapentin may protect against Taxol-induced neuropathic pain in association with an effect on intra-epidermal nerve fibers density in the TIPN mice model. A TIPN study schedule was induced in mice by daily injection of Taxol during the first week of the experiment. Gabapentin therapy was performed during the 2nd and 3rd weeks. The neuropathic pain was evaluated during the whole experiment by the Von Frey, tail flick, and hot plate tests. Intra-epidermal nerve fibers (IENF) density in skin biopsies was measured at the end of the experiment by immunohistochemistry of ubiquitin carboxyl-terminal hydrolase PGP9.5 pan-neuronal and calcitonin gene-related (CGRP) peptides-I/II- peptidergic markers. Taxol-induced neuropathy was expressed by 80% and 73% reduction in the paw density of IENFs and CGPR, and gabapentin treatment corrected by 83% and 46% this reduction, respectively. Gabapentin-induced increase in the IENF and CGRP nerve fibers density, thus proposing these evaluations as an additional objective end-point tool in TIPN model studies using gabapentin as a reference compound.
Collapse
Affiliation(s)
- Michal Klazas
- Pharmacy Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Majdi Saleem Naamneh
- Pharmacology Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Philip Lazarovici
- Pharmacology Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
- Correspondence: ; Tel.: +972-2-6758729; Fax: +972-2-6757490
| |
Collapse
|
12
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Lu C, Bao W, Deng D, Li R, Li G, Zou S, Wang Y. Efficacy of electroacupuncture with different frequencies in the treatment of chemotherapy-induced peripheral neuropathy: A study protocol for a randomized controlled trial. Front Neurol 2022; 13:843886. [PMID: 35968286 PMCID: PMC9366109 DOI: 10.3389/fneur.2022.843886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionChemotherapy-induced peripheral neuropathy (CIPN) is a common complication in patients with cancer during chemotherapy. It mainly leads to severe numbness of the hands and feet and causes great pain in patients. Electroacupuncture (EA) is considered to be beneficial in improving peripheral neuropathy and relieving numbness of the hands and feet. This trial aims to evaluate the therapeutic effect of different frequencies of EA on CIPN in patients with cancer.Methods and analysisThis study is a randomized controlled trial. In total, 160 eligible CIPN patients are randomly assigned to the 2 Hz EA group, 100 Hz EA group, 2/100 Hz EA group, and control group in the ratio of 1:1:1:1. All patients in the EA treatment groups receive treatment with EA three times a week for 4 weeks and following up for 4 weeks. The patients in the control group are given Mecobalamin (MeCbl) tablets orally, one tablet at a time, three times a day, for 4 weeks, and following up for 4 weeks. The primary outcome measures are the participant neurotoxicity questionnaire (PNQ) and the peripheral neurotoxicity assessment rating (NCI CTCAE V5.0). Secondary outcomes are the quality of life scale (EORTC QLQ-C30) and the measurement of peripheral nerve conduction velocity (NCV). The results are evaluated at baseline, post-treatment phase, and following up for 4 weeks. All major analyses are based on the intention to treat principle.Ethics/disseminationThis protocol was approved by the Medical Ethics Committee of the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) on 7 December 2021. The license number is IRB-2021-458. This study provides clinical efficacy data of different frequencies of EA in the treatment of CIPN. The results help to prove whether EA is an effective therapy for CIPN and optimize the frequency of EA for CIPN. The results of this study are shared with health care professionals, the public, and relevant organizations through the publication of manuscripts and conference reports.Trial registration numberChiCTR2100054458.
Collapse
Affiliation(s)
- Chao Lu
- The Traditional Chinese Medicine Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- *Correspondence: Chao Lu
| | - Wenlong Bao
- The Traditional Chinese Medicine Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Dehou Deng
- The Traditional Chinese Medicine Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Rongrong Li
- The Third Clinical Medical College, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Guangliang Li
- Breast Medical Oncology Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Shanlin Zou
- The Traditional Chinese Medicine Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yan Wang
- The Traditional Chinese Medicine Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
14
|
Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front Pharmacol 2022; 13:750507. [PMID: 35418856 PMCID: PMC8996259 DOI: 10.3389/fphar.2022.750507] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Medicine Western Health, University of Melbourne, Melbourne, VIC, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.,Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
15
|
Chua KC, El-Haj N, Priotti J, Kroetz DL. Mechanistic insights into the pathogenesis of microtubule-targeting agent-induced peripheral neuropathy from pharmacogenetic and functional studies. Basic Clin Pharmacol Toxicol 2022; 130 Suppl 1:60-74. [PMID: 34481421 PMCID: PMC8716520 DOI: 10.1111/bcpt.13654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting toxicity that affects 30%-40% of patients undergoing cancer treatment. Although multiple mechanisms of chemotherapy-induced neurotoxicity have been described in preclinical models, these have not been translated into widely effective strategies for the prevention or treatment of CIPN. Predictive biomarkers to inform therapeutic approaches are also lacking. Recent studies have examined genetic risk factors associated with CIPN susceptibility. This review provides an overview of the clinical and pathologic features of CIPN and summarizes efforts to identify target pathways through genetic and functional studies. Structurally and mechanistically diverse chemotherapeutics are associated with CIPN; however, the current review is focused on microtubule-targeting agents since these are the focus of most pharmacogenetic association and functional studies of CIPN. Genome-wide pharmacogenetic association studies are useful tools to identify not only causative genes and genetic variants but also genetic networks implicated in drug response or toxicity and have been increasingly applied to investigations of CIPN. Induced pluripotent stem cell-derived models of human sensory neurons are especially useful to understand the mechanistic significance of genomic findings. Combined genetic and functional genomic efforts to understand CIPN hold great promise for developing therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Katherina C. Chua
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA 94143-2911,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Nura El-Haj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Josefina Priotti
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143-2911
| |
Collapse
|
16
|
Tarasiuk O, Cavaletti G, Meregalli C. Clinical and preclinical features of eribulin-related peripheral neuropathy. Exp Neurol 2021; 348:113925. [PMID: 34801586 DOI: 10.1016/j.expneurol.2021.113925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/04/2022]
Abstract
Different microtubule-targeting agents (MTAs) possess distinct modes of action and their clinical use in cancer treatment is often limited by chemotherapy-induced peripheral neurotoxicity (CIPN). Eribulin is a member of the halichondrin class of antineoplastic drugs, which is correlated with a high antimitotic activity against metastatic breast cancer and liposarcoma. Current clinical evidence suggests that eribulin treatment, unlike some of the other MTAs, is associated with a relatively low incidence of severe peripheral neuropathy. This suggests that different MTAs possess unique mechanisms of neuropathologic induction. Animal models reliably reproduced eribulin-related neuropathy providing newer insights in CIPN pathogenesis, and they are highly suitable for in vivo functional, symptomatic and morphological characterizations of eribulin-related CIPN. The purpose of this review is to discuss the most recent literature on eribulin with a focus on both clinical and preclinical data, to explain the molecular events responsible for its favorable neurotoxic profile.
Collapse
Affiliation(s)
- Olga Tarasiuk
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy.
| | - Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
17
|
Vermeer CJC, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N. Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncol 2021; 60:1369-1382. [PMID: 34313190 DOI: 10.1080/0284186x.2021.1954241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Paclitaxel is a taxane-based chemotherapeutic agent used as a treatment in breast cancer. There is no effective prevention or treatment strategy for the most common side effect of peripheral neuropathy. In this manuscript, we reviewed the molecular mechanisms that contribute to paclitaxel-induced peripheral neuropathy (PIPN) with an emphasis on immune-related processes. METHODS A systematic search of the literature was conducted in PubMed, EMBASE and Cochrane Library. The SYRCLE's risk of bias tool was used to assess internal validity. RESULTS 156 studies conducted with rodent models were included. The risk of bias was high due to unclear methodology. Paclitaxel induces changes in myelinated axons, mitochondrial dysfunction, and mechanical hypersensitivity by affecting ion channels expression and function and facilitating spinal transmission. Paclitaxel-induced inflammatory responses are important contributors to PIPN. CONCLUSION Immune-related processes are an important mechanism contributing to PIPN. Studies in humans that validate these mechanistic data are highly needed to facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Cornelia J. C. Vermeer
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anouk E. Hiensch
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laurence Cleenewerk
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne M. May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Middleton SJ, Perez-Sanchez J, Dawes JM. The structure of sensory afferent compartments in health and disease. J Anat 2021; 241:1186-1210. [PMID: 34528255 PMCID: PMC9558153 DOI: 10.1111/joa.13544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Primary sensory neurons are a heterogeneous population of cells able to respond to both innocuous and noxious stimuli. Like most neurons they are highly compartmentalised, allowing them to detect, convey and transfer sensory information. These compartments include specialised sensory endings in the skin, the nodes of Ranvier in myelinated axons, the cell soma and their central terminals in the spinal cord. In this review, we will highlight the importance of these compartments to primary afferent function, describe how these structures are compromised following nerve damage and how this relates to neuropathic pain.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Merheb D, Dib G, Zerdan MB, Nakib CE, Alame S, Assi HI. Drug-Induced Peripheral Neuropathy: Diagnosis and Management. Curr Cancer Drug Targets 2021; 22:49-76. [PMID: 34288840 DOI: 10.2174/1568009621666210720142542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023]
Abstract
Peripheral neuropathy comes in all shapes and forms and is a disorder which is found in the peripheral nervous system. It can have an acute or chronic onset depending on the multitude of pathophysiologic mechanisms involving different parts of nerve fibers. A systematic approach is highly beneficial when it comes to cost-effective diagnosis. More than 30 causes of peripheral neuropathy exist ranging from systemic and auto-immune diseases, vitamin deficiencies, viral infections, diabetes, etc. One of the major causes of peripheral neuropathy is drug induced disease, which can be split into peripheral neuropathy caused by chemotherapy or by other medications. This review deals with the latest causes of drug induced peripheral neuropathy, the population involved, the findings on physical examination and various workups needed and how to manage each case.
Collapse
Affiliation(s)
- Diala Merheb
- Department of Internal Medicine, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Georgette Dib
- Department of Internal Medicine, Division of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maroun Bou Zerdan
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Clara El Nakib
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Saada Alame
- Department of Pediatrics, Clemenceau Medical Center, Faculty of Medical Sciences, Lebanese University, Beirut,, Lebanon
| | - Hazem I Assi
- Department of Internal Medicine Naef K. Basile Cancer Institute American University of Beirut Medical Center Riad El Solh 1107 2020 Beirut, Lebanon
| |
Collapse
|
20
|
Liu Y, Sun Y, Ewaleifoh O, Wei J, Mi R, Zhu J, Hoke A, Polydefkis M. Ethoxyquin is neuroprotective and partially prevents somatic and autonomic neuropathy in db/db mouse model of type 2 diabetes. Sci Rep 2021; 11:10749. [PMID: 34031437 PMCID: PMC8144207 DOI: 10.1038/s41598-021-89781-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
Ethoxyquin (EQ), a quinolone-based antioxidant, has demonstrated neuroprotective properties against several neurotoxic drugs in a phenotypic screening and is shown to protect axons in animal models of chemotherapy-induced peripheral neuropathy. We assessed the effects of EQ on peripheral nerve function in the db/db mouse model of type II diabetes. After a 7 week treatment period, 12-week-old db/db-vehicle, db/+ -vehicle and db/db-EQ treated animals were evaluated by nerve conduction, paw withdrawal against a hotplate, and fiber density in hindlimb footpads. We found that the EQ group had shorter paw withdrawal latency compared to vehicle db/db group. The EQ group scored higher in nerve conduction studies, compared to vehicle-treated db/db group. Morphology studies yielded similar results. To investigate the potential role of mitochondrial DNA (mtDNA) deletions in the observed effects of EQ, we measured total mtDNA deletion burden in the distal sciatic nerve. We observed an increase in total mtDNA deletion burden in vehicle-treated db/db mice compared to db/+ mice that was partially prevented in db/db-EQ treated animals. These results suggest that EQ treatment may exert a neuroprotective effect in diabetic neuropathy. The prevention of diabetes-induced mtDNA deletions may be a potential mechanism of the neuroprotective effects of EQ in diabetic neuropathy.
Collapse
Affiliation(s)
- Ying Liu
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yuan Sun
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Liaoning Laboratory of Cancer Genomics, Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Osefame Ewaleifoh
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Driskill Graduate Program, Northwestern University, Chicago, IL, USA
| | - Josh Wei
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Parker University, Dallas, TX, USA
| | - Ruifa Mi
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jing Zhu
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medical, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ahmet Hoke
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael Polydefkis
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Integrins protect sensory neurons in models of paclitaxel-induced peripheral sensory neuropathy. Proc Natl Acad Sci U S A 2021; 118:2006050118. [PMID: 33876743 DOI: 10.1073/pnas.2006050118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect from cancer treatment with no known method for prevention or cure in clinics. CIPN often affects unmyelinated nociceptive sensory terminals. Despite the high prevalence, molecular and cellular mechanisms that lead to CIPN are still poorly understood. Here, we used a genetically tractable Drosophila model and primary sensory neurons isolated from adult mouse to examine the mechanisms underlying CIPN and identify protective pathways. We found that chronic treatment of Drosophila larvae with paclitaxel caused degeneration and altered the branching pattern of nociceptive neurons, and reduced thermal nociceptive responses. We further found that nociceptive neuron-specific overexpression of integrins, which are known to support neuronal maintenance in several systems, conferred protection from paclitaxel-induced cellular and behavioral phenotypes. Live imaging and superresolution approaches provide evidence that paclitaxel treatment causes cellular changes that are consistent with alterations in endosome-mediated trafficking of integrins. Paclitaxel-induced changes in recycling endosomes precede morphological degeneration of nociceptive neuron arbors, which could be prevented by integrin overexpression. We used primary dorsal root ganglia (DRG) neuron cultures to test conservation of integrin-mediated protection. We show that transduction of a human integrin β-subunit 1 also prevented degeneration following paclitaxel treatment. Furthermore, endogenous levels of surface integrins were decreased in paclitaxel-treated mouse DRG neurons, suggesting that paclitaxel disrupts recycling in vertebrate sensory neurons. Altogether, our study supports conserved mechanisms of paclitaxel-induced perturbation of integrin trafficking and a therapeutic potential of restoring neuronal interactions with the extracellular environment to antagonize paclitaxel-induced toxicity in sensory neurons.
Collapse
|
22
|
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is an unsolved and potentially life-compromising problem for most patients receiving neurotoxic chemotherapy. It manifests with numbness, tingling, and possibly neuropathic pain and motor and autonomic symptoms. This review aims to provide an evidence synthesis that prepares nurses to comprehensively assess, provide supportive care for, and critically evaluate the literature on CIPN. The prevalence, significance, characteristics, mechanisms, and risk factors of CIPN will be discussed, as well as nursing-relevant evidence on the assessment, prevention, and management of CIPN. The importance of critical literature evaluation before clinical implementation to reduce physical and financial harms to patients will also be highlighted.
Collapse
|
23
|
Li Y, Lustberg MB, Hu S. Emerging Pharmacological and Non-Pharmacological Therapeutics for Prevention and Treatment of Chemotherapy-Induced Peripheral Neuropathy. Cancers (Basel) 2021; 13:cancers13040766. [PMID: 33673136 PMCID: PMC7918689 DOI: 10.3390/cancers13040766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Chemotherapy-induced peripheral neuropathy (CIPN) is a common and persistent complication of commonly used chemotherapy drugs. This article provides an overview of emerging therapeutics for the prevention and treatment of CIPN and focuses on pharmacological strategies that are derived from novel mechanistic insights and have the potential to be translated into clinically beneficial approaches. It is our contention to call for fostering collaboration between basic and clinical researchers to improve the development of effective strategies. Abstract Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse event of several first-line chemotherapeutic agents, including platinum compounds, taxanes, vinca alkaloids, thalidomide, and bortezomib, which negatively affects the quality of life and clinical outcome. Given the dearth of effective established agents for preventing or treating CIPN, and the increasing number of cancer survivors, there is an urgent need for the identification and development of new, effective intervention strategies that can prevent or mitigate this debilitating side effect. Prior failures in the development of effective interventions have been due, at least in part, to a lack of mechanistic understanding of CIPN and problems in translating this mechanistic understanding into testable hypotheses in rationally-designed clinical trials. Recent progress has been made, however, in the pathogenesis of CIPN and has provided new targets and pathways for the development of emerging therapeutics that can be explored clinically to improve the management of this debilitating toxicity. This review focuses on the emerging therapeutics for the prevention and treatment of CIPN, including pharmacological and non-pharmacological strategies, and calls for fostering collaboration between basic and clinical researchers to improve the development of effective strategies.
Collapse
Affiliation(s)
- Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Maryam B. Lustberg
- Comprehensive Cancer Center, Department of Medical Oncology, The Ohio State University, Columbus, OH 43210, USA;
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
- Correspondence: ; Tel.: +1-614-685-8028
| |
Collapse
|
24
|
Iannotta M, Belardo C, Trotta MC, Iannotti FA, Vitale RM, Maisto R, Boccella S, Infantino R, Ricciardi F, Mirto BF, Ferraraccio F, Panarese I, Amodeo P, Tunisi L, Cristino L, D’Amico M, di Marzo V, Luongo L, Maione S, Guida F. N-palmitoyl-D-glucosamine, a Natural Monosaccharide-Based Glycolipid, Inhibits TLR4 and Prevents LPS-Induced Inflammation and Neuropathic Pain in Mice. Int J Mol Sci 2021; 22:ijms22031491. [PMID: 33540826 PMCID: PMC7867376 DOI: 10.3390/ijms22031491] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors (TLRs) are key receptors through which infectious and non-infectious challenges act with consequent activation of the inflammatory cascade that plays a critical function in various acute and chronic diseases, behaving as amplification and chronicization factors of the inflammatory response. Previous studies have shown that synthetic analogues of lipid A based on glucosamine with few chains of unsaturated and saturated fatty acids, bind MD-2 and inhibit TLR4 receptors. These synthetic compounds showed antagonistic activity against TLR4 activation in vitro by LPS, but little or no activity in vivo. This study aimed to show the potential use of N-palmitoyl-D-glucosamine (PGA), a bacterial molecule with structural similarity to the lipid A component of LPS, which could be useful for preventing LPS-induced tissue damage or even peripheral neuropathies. Molecular docking and molecular dynamics simulations showed that PGA stably binds MD-2 with a MD-2/(PGA)3 stoichiometry. Treatment with PGA resulted in the following effects: (i) it prevented the NF-kB activation in LPS stimulated RAW264.7 cells; (ii) it decreased LPS-induced keratitis and corneal pro-inflammatory cytokines, whilst increasing anti-inflammatory cytokines; (iii) it normalized LPS-induced miR-20a-5p and miR-106a-5p upregulation and increased miR-27a-3p levels in the inflamed corneas; (iv) it decreased allodynia in peripheral neuropathy induced by oxaliplatin or formalin, but not following spared nerve injury of the sciatic nerve (SNI); (v) it prevented the formalin- or oxaliplatin-induced myelino-axonal degeneration of sciatic nerve. SIGNIFICANCE STATEMENT We report that PGA acts as a TLR4 antagonist and this may be the basis of its potent anti-inflammatory activity. Being unique because of its potency and stability, as compared to other similar congeners, PGA can represent a tool for the optimization of new TLR4 modulating drugs directed against the cytokine storm and the chronization of inflammation.
Collapse
Affiliation(s)
- Monica Iannotta
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Carmela Belardo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Rosa Maisto
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Rosmara Infantino
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Flavia Ricciardi
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Benito Fabio Mirto
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Franca Ferraraccio
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.F.); (I.P.)
| | - Iacopo Panarese
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.F.); (I.P.)
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Lea Tunisi
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Luigia Cristino
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Michele D’Amico
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Vincenzo di Marzo
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agriculture and Food Science, Universitè Laval, Quebec City, QC G1V 0A6, Canada
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
- I.R.C.S.S., Neuromed, 86077 Pozzilli, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
- I.R.C.S.S., Neuromed, 86077 Pozzilli, Italy
- Correspondence: (S.M.); (F.G.); Tel.: +39-0815667658 (F.G.)
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
- Correspondence: (S.M.); (F.G.); Tel.: +39-0815667658 (F.G.)
| |
Collapse
|
25
|
Addressing the Need of a Translational Approach in Peripheral Neuropathy Research: Morphology Meets Function. Brain Sci 2021; 11:brainsci11020139. [PMID: 33499072 PMCID: PMC7911498 DOI: 10.3390/brainsci11020139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies (PNs) are a type of common disease that hampers the quality of life of affected people. Treatment, in most cases, is just symptomatic and often ineffective. To improve drug discovery in this field, preclinical evidence is warranted. In vivo rodent models allow a multiparametric approach to test new therapeutic strategies, since they can allow pathogenetic and morphological studies different from the clinical setting. However, human readouts are warranted to promptly translate data from the bench to the bedside. A feasible solution would be neurophysiology, performed similarly at both sides. We describe a simple protocol that reproduces the standard clinical protocol of a neurophysiology hospital department. We devised the optimal montage for sensory and motor recordings (neurography) in mice, and we also implemented F wave testing and a short electromyography (EMG) protocol at rest. We challenged this algorithm by comparing control animals (BALB/c mice) with a model of mild neuropathy to grasp even subtle changes. The neurophysiological results were confirmed with neuropathology. The treatment group showed all expected alterations. Moreover, the neurophysiology matched the neuropathological analyses. Therefore, our protocol can be suggested to promptly translate data from the bench to the bedside and vice versa.
Collapse
|
26
|
Peripheral Mechanisms of Neuropathic Pain-the Role of Neuronal and Non-Neuronal Interactions and Their Implications for Topical Treatment of Neuropathic Pain. Pharmaceuticals (Basel) 2021; 14:ph14020077. [PMID: 33498496 PMCID: PMC7909513 DOI: 10.3390/ph14020077] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain in humans arises as a consequence of injury or disease of somatosensory nervous system at peripheral or central level. Peripheral neuropathic pain is more common than central neuropathic pain, and is supposed to result from peripheral mechanisms, following nerve injury. The animal models of neuropathic pain show extensive functional and structural changes occurring in neuronal and non-neuronal cells in response to peripheral nerve injury. These pathological changes following damage lead to peripheral sensitization development, and subsequently to central sensitization initiation with spinal and supraspinal mechanism involved. The aim of this narrative review paper is to discuss the mechanisms engaged in peripheral neuropathic pain generation and maintenance, with special focus on the role of glial, immune, and epithelial cells in peripheral nociception. Based on the preclinical and clinical studies, interactions between neuronal and non-neuronal cells have been described, pointing out at the molecular/cellular underlying mechanisms of neuropathic pain, which might be potentially targeted by topical treatments in clinical practice. The modulation of the complex neuro-immuno-cutaneous interactions in the periphery represents a strategy for the development of new topical analgesics and their utilization in clinical settings.
Collapse
|
27
|
Yamamoto S, Egashira N. Drug Repositioning for the Prevention and Treatment of Chemotherapy-Induced Peripheral Neuropathy: A Mechanism- and Screening-Based Strategy. Front Pharmacol 2021; 11:607780. [PMID: 33519471 PMCID: PMC7840493 DOI: 10.3389/fphar.2020.607780] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse effect observed in most patients treated with neurotoxic anti-cancer drugs. Currently, there are no therapeutic options available for the prevention of CIPN. Furthermore, few drugs are recommended for the treatment of existing neuropathies because the mechanisms of CIPN remain unclear. Each chemotherapeutic drug induces neuropathy by distinct mechanisms, and thus we need to understand the characteristics of CIPN specific to individual drugs. Here, we review the known pathogenic mechanisms of oxaliplatin- and paclitaxel-induced CIPN, highlighting recent findings. Cancer chemotherapy is performed in a planned manner; therefore, preventive strategies can be planned for CIPN. Drug repositioning studies, which identify the unexpected actions of already approved drugs, have increased in recent years. We have also focused on drug repositioning studies, especially for prevention, because they should be rapidly translated to patients suffering from CIPN.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
28
|
Jiménez-López J, Bravo-Caparrós I, Cabeza L, Nieto FR, Ortiz R, Perazzoli G, Fernández-Segura E, Cañizares FJ, Baeyens JM, Melguizo C, Prados J. Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes. Biomed Pharmacother 2021; 133:111059. [PMID: 33378963 DOI: 10.1016/j.biopha.2020.111059] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Paclitaxel (PTX), a drug widely used in lung cancer, has serious limitations including the development of peripheral neurotoxicity, which may lead to treatment discontinuation and therapy failure. The transport of PTX in large cationic liposomes could avoid this undesirable effect, improving the patient's prognosis. PTX was encapsulated in cationic liposomes with two different sizes, MLV (180-200 nm) and SUV (80-100 nm). In both cases, excellent biocompatibility and improved internalization and antitumor effect of PTX were observed in human and mice lung cancer cells in culture, multicellular spheroids and cancer stem cells (CSCs). In addition, both MLV and SUV with a polyethylene glycol (PEG) shell, induced a greater tumor volume reduction than PTX (56.4 % and 57.1 % vs. 36.7 %, respectively) in mice. Interestingly, MLV-PEG-PTX did not induce either mechanical or heat hypersensitivity whereas SUV-PEG-PTX produced a similar response to free PTX. Analysis of PTX distribution showed a very low concentration of the drug in the dorsal root ganglia (DRG) with MLV-PEG-PTX, but not with SUV-PEG-PTX or free PTX. These results support the hypothesis that PTX induces peripheral neuropathy by penetrating the endothelial fenestrations of the DRG (80-100 nm, measured in mice). In conclusion, our larger liposomes (MLV-PEG-PTX) not only showed biocompatibility, antitumor activity against CSCs, and in vitro and in vivo antitumor effect that improved PTX free activity, but also protected from PTX-induced painful peripheral neuropathy. These advantages could be used as a new strategy of lung cancer chemotherapy to increase the PTX activity and reduce its side effects.
Collapse
Affiliation(s)
- Julia Jiménez-López
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), 18014, Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012, Granada, Spain
| | - Inmaculada Bravo-Caparrós
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012, Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), 18014, Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012, Granada, Spain
| | - Francisco R Nieto
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), 18014, Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012, Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), 18014, Granada, Spain
| | - Eduardo Fernández-Segura
- Department of Histology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Francisco J Cañizares
- Department of Histology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - José M Baeyens
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), 18014, Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012, Granada, Spain.
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), 18014, Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012, Granada, Spain
| |
Collapse
|
29
|
First-line bevacizumab and eribulin combination therapy for HER2-negative metastatic breast cancer: Efficacy and safety in the GINECO phase II ESMERALDA study. Breast 2020; 54:256-263. [PMID: 33188992 PMCID: PMC7672314 DOI: 10.1016/j.breast.2020.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 01/17/2023] Open
Abstract
Purpose Combining bevacizumab with paclitaxel significantly improves progression-free survival (PFS) versus paclitaxel alone in HER2-negative metastatic breast cancer (MBC). Eribulin is active and tolerable in pretreated MBC. To assess whether eribulin may offer a more tolerable yet effective combination partner for bevacizumab, we evaluated a bevacizumab/eribulin combination regimen as first-line therapy for MBC. Methods In this single-arm phase II study, patients with histologically confirmed HER2-negative MBC and no prior chemotherapy for MBC received eribulin 1.23 mg/m2 on days 1 and 8 every 3 weeks for ≥6 cycles plus bevacizumab 15 mg/kg on day 1 every 3 weeks until disease progression. The primary endpoint was non-progression rate at 1 year. Secondary endpoints included objective response rate (ORR), PFS, and safety. Results The median age of the 61 treated female patients was 59 years, 16% had triple-negative MBC, 30% had ≥3 metastatic sites, and 71% had received prior (neo)adjuvant chemotherapy. Patients received a median of six eribulin and nine bevacizumab cycles. The non-progression rate at 1 year was 32% (95% confidence interval [CI]: 20–43%), ORR was 47% (95% CI: 34–60%), and median PFS was 8.3 months (95% CI: 7.0–9.6 months). The only grade ≥3 clinical adverse events in >5% of patients were hypertension (39%), neutropenia (26%), thrombosis (10%), and paresthesia/dysesthesia (7%). Conclusion First-line eribulin/bevacizumab combination therapy showed interesting activity in MBC with an acceptable safety profile, including a particularly low incidence of high-grade neuropathy. A single-arm study evaluated first-line bevacizumab–eribulin for HER2-negative MBC. The primary endpoint was non-progression rate at 1 year. The 1-year non-progression rate was 32% (95% CI 20–43%); median PFS was 8.3 months. Grade ≥3 clinical AEs in >10% comprised hypertension (39%) and neutropenia (26%). Eribulin–bevacizumab showed interesting activity and acceptable safety in MBC.
Collapse
|
30
|
Neurotoxicity of antineoplastic drugs: Mechanisms, susceptibility, and neuroprotective strategies. Adv Med Sci 2020; 65:265-285. [PMID: 32361484 DOI: 10.1016/j.advms.2020.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
This review summarizes the adverse effects on the central and/or peripheral nervous systems that may occur in response to antineoplastic drugs. In particular, we describe the neurotoxic side effects of the most commonly used drugs, such as platinum compounds, doxorubicin, ifosfamide, 5-fluorouracil, vinca alkaloids, taxanes, methotrexate, bortezomib and thalidomide. Neurotoxicity may result from direct action of compounds on the nervous system or from metabolic alterations produced indirectly by these drugs, and either the central nervous system or the peripheral nervous system, or both, may be affected. The incidence and severity of neurotoxicity are principally related to the dose, to the duration of treatment, and to the dose intensity, though other factors, such as age, concurrent pathologies, and genetic predisposition may enhance the occurrence of side effects. To avoid or reduce the onset and severity of these neurotoxic effects, the use of neuroprotective compounds and/or strategies may be helpful, thereby enhancing the therapeutic effectiveness of antineoplastic drug.
Collapse
|
31
|
Planning and Analysis of Axon Degeneration Screening Experiments. Methods Mol Biol 2020. [PMID: 32524473 DOI: 10.1007/978-1-0716-0585-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A network of intersecting molecular pathways interacts to initiate and execute axon destruction. Maximum protection against axon degeneration likely requires more than manipulation of a single target. Here, we describe the process of designing a high-throughput arrayed screening assay for the identification of key factors responsible for axon destruction and/or protection. First, we go over some existing screens in the literature, then discuss the planning, tracking, analysis, and statistics around such a screening experiment. Prioritization of perturbations may allow laboratories to cost-effectively explore the process of screening. We also present the pairing of a combinatorial drug screen with a machine learning algorithm, predicting how to best modulate neurodegenerative and neuroprotective components.
Collapse
|
32
|
Kober KM, Schumacher M, Conley YP, Topp K, Mazor M, Hammer MJ, Paul SM, Levine JD, Miaskowski C. Signaling pathways and gene co-expression modules associated with cytoskeleton and axon morphology in breast cancer survivors with chronic paclitaxel-induced peripheral neuropathy. Mol Pain 2020; 15:1744806919878088. [PMID: 31486345 PMCID: PMC6755139 DOI: 10.1177/1744806919878088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The major dose-limiting toxicity of paclitaxel, one of the most commonly used
drugs to treat breast cancer, is peripheral neuropathy (paclitaxel-induced
peripheral neuropathy). Paclitaxel-induced peripheral neuropathy, which
persists into survivorship, has a negative impact on patient’s mood,
functional status, and quality of life. Currently, no interventions are
available to treat paclitaxel-induced peripheral neuropathy. A critical
barrier to the development of efficacious interventions is the lack of
understanding of the mechanisms that underlie paclitaxel-induced peripheral
neuropathy. While data from preclinical studies suggest that disrupting
cytoskeleton- and axon morphology-related processes are a potential
mechanism for paclitaxel-induced peripheral neuropathy, clinical evidence is
limited. The purpose of this study in breast cancer survivors was to
evaluate whether differential gene expression and co-expression patterns in
these pathways are associated with paclitaxel-induced peripheral
neuropathy. Methods Signaling pathways and gene co-expression modules associated with
cytoskeleton and axon morphology were identified between survivors who
received paclitaxel and did (n = 25) or did not (n = 25) develop
paclitaxel-induced peripheral neuropathy. Results Pathway impact analysis identified four significantly perturbed cytoskeleton-
and axon morphology-related signaling pathways. Weighted gene co-expression
network analysis identified three co-expression modules. One module was
associated with paclitaxel-induced peripheral neuropathy group membership.
Functional analysis found that this module was associated with four
signaling pathways and two ontology annotations related to cytoskeleton and
axon morphology. Conclusions This study, which is the first to apply systems biology approaches using
circulating whole blood RNA-seq data in a sample of breast cancer survivors
with and without chronic paclitaxel-induced peripheral neuropathy, provides
molecular evidence that cytoskeleton- and axon morphology-related mechanisms
identified in preclinical models of various types of neuropathic pain
including chemotherapy-induced peripheral neuropathy are found in breast
cancer survivors and suggests pathways and a module of genes for validation
and as potential therapeutic targets.
Collapse
Affiliation(s)
- Kord M Kober
- School of Nursing, University of California, San Francisco, CA, USA
| | - Mark Schumacher
- School of Medicine, University of California, San Francisco, CA, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimberly Topp
- School of Medicine, University of California, San Francisco, CA, USA
| | - Melissa Mazor
- School of Nursing, University of California, San Francisco, CA, USA
| | - Marilynn J Hammer
- Icahn School of Medicine, Mount Sinai Medical Center, New York, NY, USA
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, CA, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
33
|
Akbulut O, Lengerli D, Saatci O, Duman E, Seker UOS, Isik A, Akyol A, Caliskan B, Banoglu E, Sahin O. A Highly Potent TACC3 Inhibitor as a Novel Anticancer Drug Candidate. Mol Cancer Ther 2020; 19:1243-1254. [PMID: 32217742 DOI: 10.1158/1535-7163.mct-19-0957] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/11/2020] [Accepted: 03/19/2020] [Indexed: 11/16/2022]
Abstract
TACC3, a transforming acidic coiled-coil (TACC) family member, is frequently upregulated in a broad spectrum of cancers, including breast cancer. It plays critical roles in protecting microtubule stability and centrosome integrity that is often dysregulated in cancers; therefore, making TACC3 a highly attractive therapeutic target. Here, we identified a new TACC3-targeting chemotype, BO-264, through the screening of in-house compound collection. Direct interaction between BO-264 and TACC3 was validated by using several biochemical methods, including drug affinity responsive target stability, cellular thermal shift assay, and isothermal titration calorimetry. BO-264 demonstrated superior antiproliferative activity to the two currently reported TACC3 inhibitors, especially in aggressive breast cancer subtypes, basal and HER2+, via spindle assembly checkpoint-dependent mitotic arrest, DNA damage, and apoptosis, while the cytotoxicity against normal breast cells was negligible. Furthermore, BO-264 significantly decreased centrosomal TACC3 during both mitosis and interphase. BO-264 displayed potent antiproliferative activity (∼90% have less than 1 μmol/L GI50 value) in the NCI-60 cell line panel compromising of nine different cancer types. Noteworthy, BO-264 significantly inhibited the growth of cells harboring FGFR3-TACC3 fusion, an oncogenic driver in diverse malignancies. Importantly, its oral administration significantly impaired tumor growth in immunocompromised and immunocompetent breast and colon cancer mouse models, and increased survival without any major toxicity. Finally, TACC3 expression has been identified as strong independent prognostic factor in breast cancer and strongly prognostic in several different cancers. Overall, we identified a novel and highly potent TACC3 inhibitor as a novel potential anticancer agent, inducing spindle abnormalities and mitotic cell death.
Collapse
Affiliation(s)
- Ozge Akbulut
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Deniz Lengerli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Ozge Saatci
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey.,Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina
| | - Elif Duman
- UNAM-National Nanotechnology Research Center, Institute of Material Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Urartu O S Seker
- UNAM-National Nanotechnology Research Center, Institute of Material Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Aynur Isik
- Hacettepe University Transgenic Animal Technologies Research and Application Center, Ankara, Turkey
| | - Aytekin Akyol
- Hacettepe University Transgenic Animal Technologies Research and Application Center, Ankara, Turkey.,Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Burcu Caliskan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Ozgur Sahin
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey. .,Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
34
|
Bruna J, Alberti P, Calls-Cobos A, Caillaud M, Damaj MI, Navarro X. Methods for in vivo studies in rodents of chemotherapy induced peripheral neuropathy. Exp Neurol 2020; 325:113154. [PMID: 31837318 PMCID: PMC7105293 DOI: 10.1016/j.expneurol.2019.113154] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
Peripheral neuropathy is one of the most common, dose limiting, and long-lasting disabling adverse events of chemotherapy treatment. Unfortunately, no treatment has proven efficacy to prevent this adverse effect in patients or improve the nerve regeneration, once it is established. Experimental models, particularly using rats and mice, are useful to investigate the mechanisms related to axonal or neuronal degeneration and target loss of function induced by neurotoxic drugs, as well as to test new strategies to prevent the development of neuropathy and to improve functional restitution. Therefore, objective and reliable methods should be applied for the assessment of function and innervation in adequately designed in vivo studies of CIPN, taking into account the impact of age, sex and species/strains features. This review gives an overview of the most useful methods to assess sensory, motor and autonomic functions, electrophysiological and morphological tests in rodent models of peripheral neuropathy, focused on CIPN. We include as well a proposal of protocols that may improve the quality and comparability of studies undertaken in different laboratories. It is recommended to apply more than one functional method for each type of function, and to perform parallel morphological studies in the same targets and models.
Collapse
Affiliation(s)
- Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge, Institut Català d'Oncologia L'Hospitalet, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University Milano Bicocca, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Aina Calls-Cobos
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
35
|
Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol 2020; 324:113121. [PMID: 31758983 PMCID: PMC6993945 DOI: 10.1016/j.expneurol.2019.113121] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
Abstract
Paclitaxel (Brand name Taxol) is widely used in the treatment of common cancers like breast, ovarian and lung cancer. Although highly effective in blocking tumor progression, paclitaxel also causes peripheral neuropathy as a side effect in 60-70% of chemotherapy patients. Recent efforts by numerous labs have aimed at defining the underlying mechanisms of paclitaxel-induced peripheral neuropathy (PIPN). In vitro models using rodent dorsal root ganglion neurons, human induced pluripotent stem cells, and rodent in vivo models have revealed a number of molecular pathways affected by paclitaxel within axons of sensory neurons and within other cell types, such as the immune system and peripheral glia, as well skin. These studies revealed that paclitaxel induces altered calcium signaling, neuropeptide and growth factor release, mitochondrial damage and reactive oxygen species formation, and can activate ion channels that mediate responses to extracellular cues. Recent studies also suggest a role for the matrix-metalloproteinase 13 (MMP-13) in mediating neuropathy. These diverse changes may be secondary to paclitaxel-induced microtubule transport impairment. Human genetic studies, although still limited, also highlight the involvement of cytoskeletal changes in PIPN. Newly identified molecular targets resulting from these studies could provide the basis for the development of therapies with which to either prevent or reverse paclitaxel-induced peripheral neuropathy in chemotherapy patients.
Collapse
Affiliation(s)
- Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, University School of Medicine, Indianapolis, IN 46202, USA
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sandra Rieger
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
36
|
Zheng W, Ge D, Meng G. Reversing microtubule-directed chemotherapeutic drug resistance by co-delivering α2β1 inhibitor and paclitaxel with nanoparticles in ovarian cancer. Cell Biol Int 2019; 44:610-620. [PMID: 31743535 DOI: 10.1002/cbin.11261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/14/2019] [Indexed: 01/18/2023]
Abstract
Previous reports indicated that integrins associated signals are tightly related to tumor progression. Here, we observed elevated expression of integrin α2β1 in tumor tissues from microtubule-directed chemotherapeutic drugs (MDCDs) resistant patients compared with the samples from chemosensitive patients. More importantly, we sorted the integrin α2β1+ tumor cells and found those cells revealed high MDCDs resistance, whereas MDCDs shows effective cytotoxicity to those integrin α2β1- tumor cells in vitro and in vivo. Mechanistically, we demonstrated that integrin α2β1 could induce MDCDs resistance through the activation of the PI3K/AKT pathway. Applying MPEG-PLA to co-encapsulate the integrin α2β1 inhibitor E7820 and MDCDs could effectively reverse MDCDs resistance, resulting in enhanced anticancer effects while avoiding potential systemic toxicity in vitro and in vivo. In conclusion, the expression of integrin α2β1 contributes to MDCDs resistance, while applying E7820 combination treatment by MPEG-PLA nanoparticles could reverse the resistance.
Collapse
Affiliation(s)
- Weihong Zheng
- School of Life Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, China
| | - Dandi Ge
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, No. 866 Yuhangtang Road, Xihu District, Hangzhou, 310058, Zhejiang, China
| | - Guohua Meng
- Department of Gynecology and Obstetrics, Zhejiang Hospital, 12 Lingyin Road, Hangzhou, 310012, Zhejiang, China
| |
Collapse
|
37
|
Al-Massri KF, Ahmed LA, El-Abhar HS. Mesenchymal stem cells in chemotherapy-induced peripheral neuropathy: A new challenging approach that requires further investigations. J Tissue Eng Regen Med 2019; 14:108-122. [PMID: 31677248 DOI: 10.1002/term.2972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/08/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic drugs may disrupt the nervous system and cause chemotherapy-induced peripheral neuropathy (CIPN) as side effects. There are no completely successful medications for the prevention or treatment of CIPN. Many drugs such as tricyclic antidepressants and anticonvulsants have been used for symptomatic treatment of CIPN. Unfortunately, these drugs often give only partial relief or have dose-limiting side effects. Thus, the treatment of CIPN becomes a challenge because of failure to regenerate and repair the injured neurons. Mesenchymal stem cell (MSC) therapy is a new attractive approach for CIPN. Evidence has demonstrated that MSCs play important roles in reducing oxidative stress, neuroinflammation, and apoptosis, as well as mediating axon regeneration after nerve damage in several experimental studies and some clinical trials. We will briefly review the pathogenesis of CIPN, traditional therapies used and their drawbacks as well as therapeutic effects of MSCs, their related mechanisms, future challenges for their clinical application, and the additional benefit of their combination with pharmacological agents. MSCs-based therapies may provide a new therapeutic strategy for patients suffering from CIPN where further investigations are required for studying their exact mechanisms. Combined therapy with pharmacological agents can provide another promising option for enhancing MSC therapy success while limiting its adverse effects.
Collapse
Affiliation(s)
- Khaled F Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
38
|
Meier WA, Linn MJ, Davis WP, Sutherland JE, Sharma AK. Incidental Ultrastructural Findings in the Sural Nerve and Dorsal Root Ganglion of Aged Control Sprague Dawley Rats in a Nonclinical Carcinogenicity Study. Toxicol Pathol 2019; 48:132-143. [DOI: 10.1177/0192623319873319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Xenobiotic-induced peripheral nerve damage is a growing concern. Identifying relative risks that a new drug may cause peripheral nerve injury over long periods of administration is gathering importance in the evaluation of animal models. Separating out age-related changes in peripheral nerves of rats caused by compression injury from drug-induced effects has been difficult. Biopsy of the sural nerve is utilized in humans for investigations of peripheral neuropathy, because it is largely removed from the effects of nerve compression. This study used transmission electron microscopy to identify incidental findings in the sural nerves and dorsal root ganglia of aged control rats over time. The goal was to establish a baseline understanding of the range of possible changes that could be noted in controls compared to rats treated with any new investigative drug. In this evaluation, most sural nerve fibers from aged control rats had few ultrastructural abnormalities of pathologic significance. However, glycogenosomes, polyglucosan bodies, swollen mitochondria, autolysosomes, split myelin, Schwann cell processes, and endoneural macrophages with phagocytosed debris (considered an indication of ongoing degenerative changes) were occasionally noted.
Collapse
|
39
|
Hahn I, Voelzmann A, Liew YT, Costa-Gomes B, Prokop A. The model of local axon homeostasis - explaining the role and regulation of microtubule bundles in axon maintenance and pathology. Neural Dev 2019; 14:11. [PMID: 31706327 PMCID: PMC6842214 DOI: 10.1186/s13064-019-0134-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Axons are the slender, cable-like, up to meter-long projections of neurons that electrically wire our brains and bodies. In spite of their challenging morphology, they usually need to be maintained for an organism's lifetime. This makes them key lesion sites in pathological processes of ageing, injury and neurodegeneration. The morphology and physiology of axons crucially depends on the parallel bundles of microtubules (MTs), running all along to serve as their structural backbones and highways for life-sustaining cargo transport and organelle dynamics. Understanding how these bundles are formed and then maintained will provide important explanations for axon biology and pathology. Currently, much is known about MTs and the proteins that bind and regulate them, but very little about how these factors functionally integrate to regulate axon biology. As an attempt to bridge between molecular mechanisms and their cellular relevance, we explain here the model of local axon homeostasis, based on our own experiments in Drosophila and published data primarily from vertebrates/mammals as well as C. elegans. The model proposes that (1) the physical forces imposed by motor protein-driven transport and dynamics in the confined axonal space, are a life-sustaining necessity, but pose a strong bias for MT bundles to become disorganised. (2) To counterbalance this risk, MT-binding and -regulating proteins of different classes work together to maintain and protect MT bundles as necessary transport highways. Loss of balance between these two fundamental processes can explain the development of axonopathies, in particular those linking to MT-regulating proteins, motors and transport defects. With this perspective in mind, we hope that more researchers incorporate MTs into their work, thus enhancing our chances of deciphering the complex regulatory networks that underpin axon biology and pathology.
Collapse
Affiliation(s)
- Ines Hahn
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - André Voelzmann
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Yu-Ting Liew
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Beatriz Costa-Gomes
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK.
| |
Collapse
|
40
|
Islam B, Lustberg M, Staff NP, Kolb N, Alberti P, Argyriou AA. Vinca alkaloids, thalidomide and eribulin-induced peripheral neurotoxicity: From pathogenesis to treatment. J Peripher Nerv Syst 2019; 24 Suppl 2:S63-S73. [PMID: 31647152 DOI: 10.1111/jns.12334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023]
Abstract
Vinca alkaloids, thalidomide, and eribulin are widely used to treat patients with childhood acute lymphoblastic leukemia (ALL), adults affected by multiple myeloma and locally invasive or metastatic breast cancer, respectively. However, soon after their introduction into clinical practice, chemotherapy-induced peripheral neurotoxicity (CIPN) emerged as their main non-hematological and among dose-limiting adverse events. It is generally perceived that vinca alkaloids and the antiangiogenic agent thalidomide are more neurotoxic, compared to eribulin. The exposure to these chemotherapeutic agents is associated with an axonal, length-dependent, sensory polyneuropathy of mild to moderate severity, whereas it is considered that the peripheral nerve damage, unless severe, usually resolves soon after treatment discontinuation. Advanced age, high initial and prolonged dosing, coadministration of other neurotoxic chemotherapeutic agents and pre-existing neuropathy are the common risk factors. Pharmacogenetic biomarkers might be used to define patients at increased susceptibility of CIPN. Currently, there is no established therapy for CIPN prevention or treatment; symptomatic treatment for neuropathic pain and dose reduction or withdrawal in severe cases is considered, at the cost of reduced cancer therapeutic efficacy. This review critically examines the pathogenesis, epidemiology, risk factors (both clinical and pharmacogenetic), clinical phenotype and management of CIPN as a result of exposure to vinca alkaloids, thalidomide and its analogue lenalidomide as also eribulin.
Collapse
Affiliation(s)
- Badrul Islam
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Maryam Lustberg
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer, Columbus, Ohio
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Noah Kolb
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Andreas A Argyriou
- Department of Neurology, "Saint Andrew's" State General Hospital of Patras, Patras, Greece
| |
Collapse
|
41
|
Si Z, Zhang S, Yang X, Ding N, Xiang M, Zhu Q, Mao Y, Lv Y, Yu L, Shang H, Xie J, Tian Y. The Association Between the Incidence Risk of Peripheral Neuropathy and PD-1/PD-L1 Inhibitors in the Treatment for Solid Tumor Patients: A Systematic Review and Meta-Analysis. Front Oncol 2019; 9:866. [PMID: 31552184 PMCID: PMC6736994 DOI: 10.3389/fonc.2019.00866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose: We conducted this study to determine the relationship between PD-1/PD-L1 inhibitors and the incidence risk of peripheral neuropathy in patients with solid tumors. Method: The process of the meta-analysis was performed by us according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Incidence of all-grade and grade 3-5 treatment-related peripheral neuropathy in patients with solid tumors were taken into account. Results: After screening and eligibility assessment, a total of 17 clinical trials involving 10,500 patients were selected for the final meta-analysis. The incidence risk of peripheral neuropathy for all grade was significantly lower in the PD-1/PD-L1 inhibitor group than that of the control group, either monotherapy (OR = 0.08, 95%CI:[0.03, 0.19]) or chemotherapy (OR = 0.05, 95%CI:[0.03, 0.11]). Similar incidence trend could also be seen for the incidence risk of grade 3-5 peripheral neuropathy. When PD-1/PD-L1 inhibitors were used in combination with chemotherapy, the incidence risk of peripheral neuropathy was higher than in the control chemotherapy group, whether it was all-grade (OR = 1.22, 95%CI:[1.00, 1.49]) or grade 3-5 degree (OR = 1.74, 95%CI:[1.03, 2.92]). Conclusion: Compared with chemotherapy, incidence risk of peripheral neuropathy related to PD-1/PD-L1 inhibitor was significantly lower than that of the chemotherapy group, while PD-1/PD-L1 inhibitor increased the incidence risk of peripheral neuropathy when it was combined with chemotherapy.
Collapse
Affiliation(s)
- Zhihua Si
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Shuisheng Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Xiaowei Yang
- Department of Hepatobiliary Intervention, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Nan Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Meiyi Xiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Qingshan Zhu
- Department of Radiotherapy Oncology, Anyang Tumor Hospital, Anyang, China
| | - Yantao Mao
- Department of Oncology, Yantaishan Hospital, Yantai, China
| | - Yajuan Lv
- Department of Radiotherapy Oncology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Lili Yu
- Department of Radiotherapy Oncology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Heli Shang
- Department of Radiotherapy Oncology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Jian Xie
- Department of Radiotherapy Oncology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Yuan Tian
- Department of Radiotherapy Oncology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| |
Collapse
|
42
|
Lee EK, Tan-Wasielewski Z, Matulonis UA, Birrer MJ, Wright AA, Horowitz N, Konstantinopoulos PA, Curtis J, Liu JF. Results of an abbreviated Phase Ib study of the HDAC6 inhibitor ricolinostat and paclitaxel in recurrent ovarian, fallopian tube, or primary peritoneal cancer. Gynecol Oncol Rep 2019; 29:118-122. [PMID: 31467965 PMCID: PMC6712364 DOI: 10.1016/j.gore.2019.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral neuropathy is a common side effect of chemotherapeutic agents that frequently necessitates dose-reduction, truncation of, or change in therapy. HDAC6 inhibition has demonstrated preclinical efficacy in preventing and/or reversing chemotherapy-induced peripheral neuropathy and furthermore has demonstrated synergistic antitumor activity with various chemotherapies. Here, we report the abbreviated results of a Phase Ib trial of ricolinostat, an HDAC6-specific inhibitor, in combination with paclitaxel, in the treatment of recurrent ovarian, fallopian tube, or primary peritoneal cancer. Combination ricolinostat (HDAC6 inhibitor) and paclitaxel was well tolerated at the starting dose level. One patient developed grade 1 peripheral neuropathy with combination therapy. Two patients responded to combination ricolinostat + paclitaxel, with DOR 23.4 and 37.3 weeks respectively.
Collapse
Affiliation(s)
- Elizabeth K Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Zhenying Tan-Wasielewski
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America.,Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Michael J Birrer
- Medical Gynecologic Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, United States of America
| | - Alexi A Wright
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America.,Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Neil Horowitz
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America.,Department of Obstetrics and Gynecology, Brigham & Women's Hospital, Boston, MA, United States of America
| | - Panagiotis A Konstantinopoulos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America.,Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Jennifer Curtis
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Joyce F Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America.,Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| |
Collapse
|
43
|
Mangus LM, Rao DB, Ebenezer GJ. Intraepidermal Nerve Fiber Analysis in Human Patients and Animal Models of Peripheral Neuropathy: A Comparative Review. Toxicol Pathol 2019; 48:59-70. [PMID: 31221022 DOI: 10.1177/0192623319855969] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analysis of intraepidermal nerve fibers (IENFs) in skin biopsy samples has become a standard clinical tool for diagnosing peripheral neuropathies in human patients. Compared to sural nerve biopsy, skin biopsy is safer, less invasive, and can be performed repeatedly to facilitate longitudinal assessment. Intraepidermal nerve fiber analysis is also more sensitive than conventional nerve histology or electrophysiological tests for detecting damage to small-diameter sensory nerve fibers. The techniques used for IENF analysis in humans have been adapted for large and small animal models and successfully used in studies of diabetic neuropathy, chemotherapy-induced peripheral neuropathy, HIV-associated sensory neuropathy, among others. Although IENF analysis has yet to become a routine end point in nonclinical safety testing, it has the potential to serve as a highly relevant indicator of sensory nerve fiber status in neurotoxicity studies, as well as development of neuroprotective and neuroregenerative therapies. Recently, there is also interest in the evaluation of IENF via skin biopsy as a biomarker of small fiber neuropathy in the regulatory setting. This article provides an overview of the anatomic and pathophysiologic principles behind IENF analysis, its use as a diagnostic tool in humans, and applications in animal models with focus on comparative methodology and considerations for study design.
Collapse
Affiliation(s)
- Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Deepa B Rao
- US Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Gigi J Ebenezer
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
44
|
Rovini A. Tubulin-VDAC Interaction: Molecular Basis for Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy. Front Physiol 2019; 10:671. [PMID: 31214047 PMCID: PMC6554597 DOI: 10.3389/fphys.2019.00671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Tubulin is a well-established target of microtubule-targeting agents (MTAs), a widely used class of chemotherapeutic drugs. Yet, aside from their powerful anti-cancer efficiency, MTAs induce a dose-limiting and debilitating peripheral neurotoxicity. Despite intensive efforts in the development of neuroprotective agents, there are currently no approved therapies to effectively manage chemotherapy-induced peripheral neuropathy (CIPN). Over the last decade, attempts to unravel the pathomechanisms underlying the development of CIPN led to the observation that mitochondrial dysfunctions stand as a common feature associated with axonal degeneration. Concomitantly, mitochondria emerged as crucial players in the anti-cancer efficiency of MTAs. The findings that free dimeric tubulin could be associated with mitochondrial membranes and interact directly with the voltage-dependent anion channels (VDACs) located in the mitochondrial outer membrane strongly suggested the existence of an interplay between both subcellular compartments. The biological relevance of the interaction between tubulin and VDAC came from subsequent in vitro studies, which found dimeric tubulin to be a potent modulator of VDAC and ultimately of mitochondrial membrane permeability to respiratory substrates. Therefore, one of the hypothetic mechanisms of CIPN implies that MTAs, by binding directly to the tubulin associated with VDAC, interferes with mitochondrial function in the peripheral nervous system. We review here the foundations of this hypothesis and discuss them in light of the current knowledge. A focus is set on the molecular mechanisms behind MTA interference with dimeric tubulin and VDAC interaction, the potential relevance of tubulin isotypes and availability as a free dimer in the specific context of MTA-induced CIPN. We further highlight the emerging interest for VDAC and its interacting partners as a promising therapeutic target in neurodegeneration.
Collapse
Affiliation(s)
- Amandine Rovini
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
45
|
Madariaga A, Rustin GJS, Buckanovich RJ, Trent JC, Oza AM. Wanna Get Away? Maintenance Treatments and Chemotherapy Holidays in Gynecologic Cancers. Am Soc Clin Oncol Educ Book 2019; 39:e152-e166. [PMID: 31099646 DOI: 10.1200/edbk_238755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epithelial ovarian cancer has a very high rate of relapse after primary therapy; historically approximately 70% of patients with a complete clinical response to surgery and adjuvant chemotherapy will relapse and die of the disease. Although this number has slowly improved, cure rates remain less than 50%. As such, maintenance therapy with the aim of preventing or delaying disease relapse and the goal of improving overall survival has been the subject of intense study. Numerous earlier studies with agents ranging from radioactive phosphorus to extended frontline therapy or to monthly taxol administration demonstrated encouraging improvements in progression-free survival (PFS) only to find, disappointingly, no benefit in overall survival. In addition, the PFS advantage of maintenance therapy was associated with disconcerting side effects such that maintenance therapy was not adapted as standard of care. Studies with bevacizumab and PARP inhibitors have demonstrated a PFS advantage with a manageable side-effect profile. However, an overall survival advantage remains unclear, and the use of these approaches thus remains controversial. Furthermore, in recurrent disease, the length of chemotherapy and benefits of extended chemotherapy is unclear. Thus, additional trials assessing maintenance strategies in ovarian and other gynecologic malignancies are needed.
Collapse
Affiliation(s)
- Ainhoa Madariaga
- 1 Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | | | | | - Amit M Oza
- 1 Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
46
|
Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2019; 20:ijms20061451. [PMID: 30909387 PMCID: PMC6471666 DOI: 10.3390/ijms20061451] [Citation(s) in RCA: 431] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by antineoplastic agents, with a prevalence from 19% to over 85%. Clinically, CIPN is a mostly sensory neuropathy that may be accompanied by motor and autonomic changes of varying intensity and duration. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors as well as for their health care providers, especially because, at the moment, there is no single effective method of preventing CIPN; moreover, the possibilities of treating this syndrome are very limited. There are six main substance groups that cause damage to peripheral sensory, motor and autonomic neurons, which result in the development of CIPN: platinum-based antineoplastic agents, vinca alkaloids, epothilones (ixabepilone), taxanes, proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). Among them, the most neurotoxic are platinum-based agents, taxanes, ixabepilone and thalidomide; other less neurotoxic but also commonly used drugs are bortezomib and vinca alkaloids. This paper reviews the clinical picture of CIPN and the neurotoxicity mechanisms of the most common antineoplastic agents. A better understanding of the risk factors and underlying mechanisms of CIPN is needed to develop effective preventive and therapeutic strategies.
Collapse
|
47
|
|
48
|
Chemotherapy-induced peripheral neuropathy in breast cancer patients treated with eribulin: interim data from a post-marketing observational study. Breast Cancer 2018; 26:235-243. [PMID: 30324551 PMCID: PMC6394617 DOI: 10.1007/s12282-018-0919-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
Background Few studies have examined chemotherapy-induced peripheral neuropathy (CIPN) following the administration of eribulin as first- or second-line therapy in patients with breast cancer. We therefore assessed CIPN incidence by severity and risk factors for CIPN in patients treated with eribulin for HER2-negative inoperable or recurrent breast cancer, regardless of line therapy status. Methods This multicenter, prospective, post-marketing observational study enrolled patients from September 2014 in Japan and followed them for 2 years. For this interim analysis, the data cut-off point was in November 2017. CIPN severity was assessed based on the Japanese version of the Common Terminology Criteria for Adverse Events, version 4.0. Results Among 634 patients included in the safety analysis, 374 patients did not have existing CIPN at baseline. CIPN was observed in 105 patients (28.1%), including 67 (17.9%), 34 (9.1%), and 4 (1.1%) patients with grade 1, 2, and 3 severity, respectively. Of the 105 patients, 85.7% patients continued, 7.6% reduced, interrupted or postponed, and 6.7% discontinued eribulin. The median time (min‒max) from baseline to CIPN onset was 60 (3‒337) days. Multivariate logistic regression identified a significant association between CIPN and hemoglobin level at baseline, starting dose of eribulin, and history of radiotherapy. Conclusions Our findings indicate that, with respect to CIPN, eribulin is well-tolerated, as approximately one-quarter of patients developed CIPN, most cases were grade 1 or 2, and the majority of patients continued eribulin after CIPN onset. Electronic supplementary material The online version of this article (10.1007/s12282-018-0919-8) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Chang EI, Rose MI, Rossi K, Elkwood AI. Microneurosurgical treatment options in peripheral nerve compression syndromes after chemotherapy and radiation treatment. J Surg Oncol 2018; 118:793-799. [PMID: 30261113 DOI: 10.1002/jso.25254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022]
Abstract
Chemotherapy-induced peripheral neuropathy and radiation-induced brachial plexopathy are extremely debilitating conditions which can occur after treatment of malignancy. Unfortunately, the diagnosis can be elusive, and this dilemma is further compounded by the lack of efficacious therapeutics to prevent the onset of neurotoxicity before initiating chemotherapy or radiation or to treat these sequelae after treatment. However, microsurgical nerve decompression can provide these patients with a viable option to treat this complication.
Collapse
Affiliation(s)
- Eric I Chang
- The Institute for Advanced Reconstruction at The Plastic Surgery Center, Shrewsbury, New Jersey.,Center for Treatment of Paralysis and Reconstructive Nerve Surgery, Jersey Shore University Medical Center, Neptune, New Jersey
| | - Michael I Rose
- The Institute for Advanced Reconstruction at The Plastic Surgery Center, Shrewsbury, New Jersey.,Center for Treatment of Paralysis and Reconstructive Nerve Surgery, Jersey Shore University Medical Center, Neptune, New Jersey
| | - Kristie Rossi
- The Institute for Advanced Reconstruction at The Plastic Surgery Center, Shrewsbury, New Jersey.,Center for Treatment of Paralysis and Reconstructive Nerve Surgery, Jersey Shore University Medical Center, Neptune, New Jersey
| | - Andrew I Elkwood
- The Institute for Advanced Reconstruction at The Plastic Surgery Center, Shrewsbury, New Jersey.,Center for Treatment of Paralysis and Reconstructive Nerve Surgery, Jersey Shore University Medical Center, Neptune, New Jersey
| |
Collapse
|