1
|
Grosjean F, Shaldaeva M, Cros-Perrial E, Rodriguez C, Ghoteimi R, Lebrun A, Gao ZG, Uttaro JP, Mathé C, Jacobson KA, Petter Jordheim L, Ménétrier-Caux C, Chaloin L, Peyrottes S. Third-Generation CD73 Inhibitors Based on a 4,6-Disubstituted-2-Thiopyridine Scaffold. ChemMedChem 2024:e202400662. [PMID: 39670314 DOI: 10.1002/cmdc.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
Various series of 4,6-disubstituted-2-thiopyridine derivatives were synthesized and evaluated as potential ecto-5'-nucleotidase (CD73) inhibitors. Altogether, about ninety compounds were prepared using a general synthetic pathway involving one or two steps (eventually one-pot) procedures. Variation of the nature of the substituents in positions 4 and 6 (methyl, trifluoromethyl or phenyl) of the thiopurine ring, as well as on the thiol function, was examined and led to marked differences both in term of reactivity and ability to interfere with the putative target protein. Using a functional assay on immune cells, few compounds belonging to series 4 were shown to be able to antagonize the inhibition of the T-cell proliferation at both 100 μM and 10 μM (completely for 4 ab and partially for 4 ai), that is as potent as AOPCP which entirely reversed the inhibitory impact of exogenous ATP on T cell proliferation until 62.5 μM. In addition, we have shown that both compounds (4 ab and 4 ai) were also capable of moderately inhibiting the hA2A receptor with Ki in the μmolar range in HEK-293 cells. Thus, with the aim to reduce the molecular size and the lipophilicity of our initial scaffold, we finally observed by serendipity a modification of the potential target of our compounds.
Collapse
Affiliation(s)
- Félix Grosjean
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard, Univ. Montpellier, CNRS, ENSCM, 34293, Montpellier, France
| | - Maria Shaldaeva
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Univ. Montpellier, CNRS, 34293, Montpellier, France
| | - Emeline Cros-Perrial
- Cancer Research Center of Lyon (CRCL), INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Céline Rodriguez
- Cancer Research Center of Lyon (CRCL), INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Rayane Ghoteimi
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard, Univ. Montpellier, CNRS, ENSCM, 34293, Montpellier, France
| | - Aurélien Lebrun
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard, Univ. Montpellier, CNRS, ENSCM, 34293, Montpellier, France
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, MD, 20892-0810, USA
| | - Jean-Pierre Uttaro
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard, Univ. Montpellier, CNRS, ENSCM, 34293, Montpellier, France
| | - Christophe Mathé
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard, Univ. Montpellier, CNRS, ENSCM, 34293, Montpellier, France
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, MD, 20892-0810, USA
| | - Lars Petter Jordheim
- Cancer Research Center of Lyon (CRCL), INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Christine Ménétrier-Caux
- Cancer Research Center of Lyon (CRCL), INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Univ. Montpellier, CNRS, 34293, Montpellier, France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard, Univ. Montpellier, CNRS, ENSCM, 34293, Montpellier, France
| |
Collapse
|
2
|
Manica D, da Silva GB, Narzetti RA, Dallagnoll P, da Silva AP, Marafon F, Cassol J, de Souza Matias L, Zamoner A, de Oliveira Maciel SFV, Moreno M, Bagatini MD. Curcumin modulates purinergic signaling and inflammatory response in cutaneous metastatic melanoma cells. Purinergic Signal 2024:10.1007/s11302-024-10023-0. [PMID: 38801619 DOI: 10.1007/s11302-024-10023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Cutaneous melanoma (CM) poses a therapeutic challenge due to its aggressive nature and often limited response to conventional treatments. Exploring novel therapeutic targets is essential, and natural compounds have emerged as potential candidates. This study aimed to elucidate the impact of curcumin, a natural compound known for its anti-inflammatory, antioxidant, and anti-tumor properties, on metastatic melanoma cells, focusing on the purinergic system and immune responses. Human melanoma cell line SK-Mel-28 were exposed to different curcumin concentrations for either 6 or 24 h, after which we assessed components related to the purinergic system and the inflammatory cascade. Using RT-qPCR, we assessed the gene expression of CD39 and CD73 ectonucleotidases, as well as adenosine deaminase (ADA). Curcumin effectively downregulated CD39, CD73, and ADA gene expression. Flow cytometry analysis revealed that curcumin significantly reduced CD39 and CD73 protein expression at specific concentrations. Moreover, the A2A receptor's protein expression decreased across all concentrations. Enzymatic activity assays demonstrated that curcumin modulated CD39, CD73, and ADA activities, with effects dependent on concentration and duration of treatment. Extracellular ATP levels increased after 24 h of curcumin treatment, emphasizing its role in modulating hydrolytic activity. Curcumin also displayed anti-inflammatory properties by reducing NLRP3 gene expression and impacting the levels of key inflammatory cytokines. In conclusion, this study unveils the potential of curcumin as a promising adjuvant in CM treatment. Curcumin modulates the expression and activity of crucial components of the purinergic system and exhibits anti-inflammatory effects, indicating its potential therapeutic role in combating CM. These findings underscore curcumin's promise and warrant further investigation in preclinical and clinical settings for melanoma management.
Collapse
Affiliation(s)
- Daiane Manica
- Department of Biochemistry, Biochemistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Graduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Rafael Antônio Narzetti
- Department of Biochemistry, Biochemistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Paula Dallagnoll
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapeco, SC, Brazil
| | - Alana Patrícia da Silva
- Department of Biochemistry, Biochemistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Filomena Marafon
- Department of Biochemistry, Biochemistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Joana Cassol
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapeco, SC, Brazil
| | - Letícia de Souza Matias
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapeco, SC, Brazil
| | - Ariane Zamoner
- Department of Biochemistry, Biochemistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | | - Marcelo Moreno
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapeco, SC, Brazil.
| | - Margarete Dulce Bagatini
- Department of Biochemistry, Biochemistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapeco, SC, Brazil.
| |
Collapse
|
3
|
Mensink M, Verleng LJ, Schrama E, Janssen GM, Tjokrodirijo RT, van Veelen PA, Jiang Q, Pascutti MF, van der Hoorn ML, Eikmans M, de Kivit S, Borst J. Tregs from human blood differentiate into nonlymphoid tissue-resident effector cells upon TNFR2 costimulation. JCI Insight 2024; 9:e172942. [PMID: 38341270 PMCID: PMC10972588 DOI: 10.1172/jci.insight.172942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Tregs can facilitate transplant tolerance and attenuate autoimmune and inflammatory diseases. Therefore, it is clinically relevant to stimulate Treg expansion and function in vivo and to create therapeutic Treg products in vitro. We report that TNF receptor 2 (TNFR2) is a unique costimulus for naive, thymus-derived Tregs (tTregs) from human blood that promotes their differentiation into nonlymphoid tissue-resident (NLT-resident) effector Tregs, without Th-like polarization. In contrast, CD28 costimulation maintains a lymphoid tissue-resident (LT-resident) Treg phenotype. We base this conclusion on transcriptome and proteome analysis of TNFR2- and CD28-costimulated CD4+ tTregs and conventional T cells (Tconvs), followed by bioinformatic comparison with published transcriptomic Treg signatures from NLT and LT in health and disease, including autoimmunity and cancer. These analyses illuminate that TNFR2 costimulation promoted tTreg capacity for survival, migration, immunosuppression, and tissue regeneration. Functional studies confirmed improved migratory ability of TNFR2-costimulated tTregs. Flow cytometry validated the presence of the TNFR2-driven tTreg signature in effector/memory Tregs from the human placenta, as opposed to blood. Thus, TNFR2 can be exploited as a driver of NLT-resident tTreg differentiation for adoptive cell therapy or antibody-based immunomodulation in human disease.
Collapse
|
4
|
Figarella K, Kim J, Ruan W, Mills T, Eltzschig HK, Yuan X. Hypoxia-adenosine axis as therapeutic targets for acute respiratory distress syndrome. Front Immunol 2024; 15:1328565. [PMID: 38312838 PMCID: PMC10835146 DOI: 10.3389/fimmu.2024.1328565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The human respiratory and circulatory systems collaborate intricately to ensure oxygen delivery to all cells, which is vital for ATP production and maintaining physiological functions and structures. During limited oxygen availability, hypoxia-inducible factors (HIFs) are stabilized and play a fundamental role in maintaining cellular processes for hypoxia adaptation. First discovered during investigations of erythropoietin production regulation, HIFs influence physiological and pathological processes, including development, inflammation, wound healing, and cancer. HIFs promote extracellular adenosine signaling by enhancing adenosine generation and receptor signaling, representing an endogenous feedback mechanism that curbs excessive inflammation, supports injury resolution, and enhances hypoxia tolerance. This is especially important for conditions that involve tissue hypoxia, such as acute respiratory distress syndrome (ARDS), which globally poses significant health challenges without specific treatment options. Consequently, pharmacological strategies to amplify HIF-mediated adenosine production and receptor signaling are of great importance.
Collapse
Affiliation(s)
- Katherine Figarella
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jieun Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger Klaus Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Di Roio A, Hubert M, Besson L, Bossennec M, Rodriguez C, Grinberg-Bleyer Y, Lalle G, Moudombi L, Schneider R, Degletagne C, Treilleux I, Campbell DJ, Metzger S, Duhen T, Trédan O, Caux C, Ménétrier-Caux C. MDR1-EXPRESSING CD4 + T CELLS WITH TH1.17 FEATURES RESIST TO NEOADJUVANT CHEMOTHERAPY AND ARE ASSOCIATED WITH BREAST CANCER CLINICAL RESPONSE. J Immunother Cancer 2023; 11:e007733. [PMID: 37940345 PMCID: PMC10632904 DOI: 10.1136/jitc-2023-007733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Multidrug resistance-1 (MDR1) transporter limits the intracellular accumulation of chemotherapies (paclitaxel, anthracyclines) used in breast cancer (BC) treatment. In addition to tumor cells, MDR1 is expressed on immune cell subsets in which it confers chemoresistance. Among human T cells, MDR1 is expressed by most CD8+ T cells, and a subset of CD4+ T helper (Th) cells. Here we explored the expression, function and regulation of MDR1 on CD4+ T cells and investigated the role of this population in response to neoadjuvant chemotherapy (NAC) in BC. METHODS Phenotypic and functional characteristics of MDR1+ CD4 Th cells were assessed on blood from healthy donors and patients with BC by flow cytometry. These features were extended to CD4+ Th cells from untreated breast tumor by flow cytometry and RNA-sequencing (RNA-seq). We performed in vitro polarization assays to decipher MDR1 regulation on CD4 Th cells. We evaluated in vitro the impact of chemotherapy agents on MDR1+ CD4+ Th cells. We analyzed the impact of NAC treatment on MDR1+ CD4+ Th cells from blood and tumors and their association with treatment efficacy in two independent BC cohorts and in a public RNA-seq data set of BC tumor biopsies before and after NAC. Finally, we performed single cell (sc) RNAseq of blood CD4+ memory T cells from NAC-treated patients and combined them with an scRNAseq public data set. RESULTS MDR1+ CD4 Th cells were strongly enriched in Th1.17 polyfunctional cells but also in Th17 cells, both in blood and untreated breast tumor tissues. Mechanistically, Tumor growth factor (TGF)-β1 was required for MDR1 induction during in vitro Th17 or Th1.17 polarization. MDR1 expression conferred a selective advantage to Th1.17 and Th17 cells following paclitaxel treatment in vitro and in vivo in NAC-treated patients. scRNAseq demonstrated MDR1 association with tumor Th1.17 and Th with features of cytotoxic cells. Enrichment in MDR1+ CD4+ Th1.17 and Th17 cells, in blood and tumors positively correlated with pathological response. Absence of early modulation of Th1.17 and Th17 in NAC-resistant patients, argue for its use as a biomarker for chemotherapy regimen adjustment. CONCLUSION MDR1 favored the enrichment of Th1.17 and Th17 in blood and tumor after NAC that correlated to clinical response.
Collapse
Affiliation(s)
- Anthony Di Roio
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Margaux Hubert
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Laurie Besson
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Marion Bossennec
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Céline Rodriguez
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | | | - Guilhem Lalle
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Lyvia Moudombi
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Raphael Schneider
- Plateforme Gilles Thomas, Centre de Recherche en cancérologie de Lyon, Lyon, France
| | - Cyril Degletagne
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Isabelle Treilleux
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
- BioPathology Department, Centre Léon Bérard, Lyon, Rhône-Alpes, France
| | - Daniel J Campbell
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Séverine Metzger
- Clinical Research Platform, DRCI, Centre Léon Bérard, Lyon, Rhône-Alpes, France
| | - Thomas Duhen
- Earle A Chiles Research Institute, Portland, Oregon, USA
| | | | - Christophe Caux
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | | |
Collapse
|
6
|
Turner RJ, Guy TV, Geraghty NJ, Splitt A, Watson D, Brungs D, Carolan MG, Miller AA, de Leon JF, Aghmesheh M, Sluyter R. Low Pretreatment CD4 +:CD8 + T Cell Ratios and CD39 +CD73 +CD19 + B Cell Proportions Are Associated with Improved Relapse-Free Survival in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:12538. [PMID: 37628721 PMCID: PMC10454544 DOI: 10.3390/ijms241612538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The ectonucleotidases CD39 and CD73 are present on immune cells and play important roles in cancer progression by suppressing antitumour immunity. As such, CD39 and CD73 on peripheral blood mononuclear cells (PBMCs) are emerging as potential biomarkers to predict disease outcomes and treatment responses in cancer patients. This study aimed to examine T and B cells, including CD39 and CD73 expressing subsets, by flow cytometry in PBMCs from 28 patients with head and neck squamous cell carcinoma (HNSCC) and to assess the correlation with the treatment modality, human papillomavirus (HPV) status, and relapse-free survival (RFS). The PBMCs were examined pre-, mid-, and post-radiotherapy with concurrent cisplatin chemotherapy or anti-epidermal growth factor receptor antibody (cetuximab) therapy. Combination radiotherapy caused changes to T and B cell populations, including CD39 and CD73 expressing subsets, but no such differences were observed between concurrent chemotherapy and cetuximab. Pretreatment PBMCs from HPV+ patients contained increased proportions of CD39-CD73-CD4+ T cells and reduced proportions of CD39-/+CD73+CD4+ T cells compared to the equivalent cells from HPV- patients. Notably, the pretreatment CD4+:CD8+ T cell ratios and CD39+CD73+CD19+ B cell proportions below the respective cohort medians corresponded with an improved RFS. Collectively, this study supports the notion that CD39 and CD73 may contribute to disease outcomes in HNSCC patients and may assist as biomarkers, either alone or as part of immune signatures, in HNSCC. Further studies of CD39 and CD73 on PBMCs from larger cohorts of HNSCC patients are warranted.
Collapse
Affiliation(s)
- Ross J. Turner
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (R.J.T.); (N.J.G.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| | - Thomas V. Guy
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| | - Nicholas J. Geraghty
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (R.J.T.); (N.J.G.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| | - Ashleigh Splitt
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (R.J.T.); (N.J.G.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| | - Daniel Brungs
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Martin G. Carolan
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
| | - Andrew A. Miller
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
| | | | - Morteza Aghmesheh
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (R.J.T.); (N.J.G.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| |
Collapse
|
7
|
Koppensteiner L, Mathieson L, Pattle S, Dorward DA, O'Connor R, Akram AR. Location of CD39 + T cell subpopulations within tumors predict differential outcomes in non-small cell lung cancer. J Immunother Cancer 2023; 11:e006770. [PMID: 37648263 PMCID: PMC10471883 DOI: 10.1136/jitc-2023-006770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 09/01/2023] Open
Abstract
PURPOSE An improved mechanistic understanding of immunosuppressive pathways in non-small cell lung cancer (NSCLC) is important to develop novel diagnostic and therapeutic approaches. Here, we investigate the prognostic significance of the ectonucleotidases CD39 and CD73 in NSCLC. EXPERIMENTAL DESIGN The expression and localization of CD39, CD73 and CD103 was digitally quantified in a cohort of 162 early treatment naïve NSCLC patients using multiplex-immunofluorescence and related to patient outcome. Expression among different cell-populations was assessed via flow cytometry. Targeted RNA-Seq was performed on CD4+ and CD8+ T cells from digested NSCLC tumor tissue and single-cell RNA-Seq data was analyzed to investigate the functional significance of CD39+ T cell populations. RESULTS We demonstrate that flow cytometry of early untreated NSCLC patients shows an upregulation of CD39 expression in the tumor tissue among natural killer (NK) cells, fibroblasts and T cells. CD73 expression is mainly found among fibroblasts and Epcam+cells in the tumor tissue. Multiplex Immunofluorescence in a cohort of 162 early untreated NSCLC patients demonstrates that CD39 expression is mainly localized in the tumor stroma while CD73 expression is equally distributed between tumor nest and stroma, and high expression of CD39 and CD73 in the tumor stroma is associated with poor recurrence-free survival (RFS) at 5 years. Additionally, we find that CD8+T cells located in the tumor nest express CD103 and the density of CD39+CD103+CD8+ T cells in the tumor nest predicts improved RFS at 5 years. Targeted RNA-Seq shows that the tumor microenvironment of NSCLC upregulates regulatory pathways in CD4+ T cells and exhaustion in CD8+ T cells, and analysis of a single cell RNA sequencing dataset shows that CD39+CD4+ cells are enriched in Treg signature gene-sets, and CD39+CD103+ cytotoxic T lymphocyte show gene signatures indicative of an exhausted cytotoxic phenotype with upregulated expression of CXCL13. CONCLUSIONS Knowledge of patterns of distribution and location are required to understand the prognostic impact of CD39+ T cell populations in NSCLC. This study provides an improved understanding of spatial and functional characteristics of CD39+ T cells and their significance to patient outcome.
Collapse
Affiliation(s)
| | - Layla Mathieson
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Samuel Pattle
- Department of Pathology, Royal Infirmary, Edinburgh, UK
| | | | - Richard O'Connor
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Ahsan R Akram
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Jantz-Naeem N, Böttcher-Loschinski R, Borucki K, Mitchell-Flack M, Böttcher M, Schraven B, Mougiakakos D, Kahlfuss S. TIGIT signaling and its influence on T cell metabolism and immune cell function in the tumor microenvironment. Front Oncol 2023; 13:1060112. [PMID: 36874131 PMCID: PMC9982004 DOI: 10.3389/fonc.2023.1060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/11/2023] [Indexed: 02/19/2023] Open
Abstract
One of the key challenges for successful cancer therapy is the capacity of tumors to evade immune surveillance. Tumor immune evasion can be accomplished through the induction of T cell exhaustion via the activation of various immune checkpoint molecules. The most prominent examples of immune checkpoints are PD-1 and CTLA-4. Meanwhile, several other immune checkpoint molecules have since been identified. One of these is the T cell immunoglobulin and ITIM domain (TIGIT), which was first described in 2009. Interestingly, many studies have established a synergistic reciprocity between TIGIT and PD-1. TIGIT has also been described to interfere with the energy metabolism of T cells and thereby affect adaptive anti-tumor immunity. In this context, recent studies have reported a link between TIGIT and the hypoxia-inducible factor 1-α (HIF1-α), a master transcription factor sensing hypoxia in several tissues including tumors that among others regulates the expression of metabolically relevant genes. Furthermore, distinct cancer types were shown to inhibit glucose uptake and effector function by inducing TIGIT expression in CD8+ T cells, resulting in an impaired anti-tumor immunity. In addition, TIGIT was associated with adenosine receptor signaling in T cells and the kynurenine pathway in tumor cells, both altering the tumor microenvironment and T cell-mediated immunity against tumors. Here, we review the most recent literature on the reciprocal interaction of TIGIT and T cell metabolism and specifically how TIGIT affects anti-tumor immunity. We believe understanding this interaction may pave the way for improved immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Romy Böttcher-Loschinski
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marisa Mitchell-Flack
- Department of Oncology, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Martin Böttcher
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
9
|
Todosenko N, Yurova K, Khaziakhmatova O, Malashchenko V, Khlusov I, Litvinova L. Heparin and Heparin-Based Drug Delivery Systems: Pleiotropic Molecular Effects at Multiple Drug Resistance of Osteosarcoma and Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102181. [PMID: 36297616 PMCID: PMC9612132 DOI: 10.3390/pharmaceutics14102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
One of the main problems of modern health care is the growing number of oncological diseases both in the elderly and young population. Inadequately effective chemotherapy, which remains the main method of cancer control, is largely associated with the emergence of multidrug resistance in tumor cells. The search for new solutions to overcome the resistance of malignant cells to pharmacological agents is being actively pursued. Another serious problem is immunosuppression caused both by the tumor cells themselves and by antitumor drugs. Of great interest in this context is heparin, a biomolecule belonging to the class of glycosaminoglycans and possessing a broad spectrum of biological activity, including immunomodulatory and antitumor properties. In the context of the rapid development of the new field of “osteoimmunology,” which focuses on the collaboration of bone and immune cells, heparin and delivery systems based on it may be of intriguing importance for the oncotherapy of malignant bone tumors. Osteosarcoma is a rare but highly aggressive, chemoresistant malignant tumor that affects young adults and is characterized by constant recurrence and metastasis. This review describes the direct and immune-mediated regulatory effects of heparin and drug delivery systems based on it on the molecular mechanisms of (multiple) drug resistance in (onco) pathological conditions of bone tissue, especially osteosarcoma.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Correspondence:
| |
Collapse
|
10
|
Yang Y, Zhao T, Chen Q, Li Y, Xiao Z, Xiang Y, Wang B, Qiu Y, Tu S, Jiang Y, Nan Y, Huang Q, Ai K. Nanomedicine Strategies for Heating "Cold" Ovarian Cancer (OC): Next Evolution in Immunotherapy of OC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202797. [PMID: 35869032 PMCID: PMC9534959 DOI: 10.1002/advs.202202797] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Indexed: 05/08/2023]
Abstract
Immunotherapy has revolutionized cancer treatment, dramatically improving survival rates of melanoma and lung cancer patients. Nevertheless, immunotherapy is almost ineffective against ovarian cancer (OC) due to its cold tumor immune microenvironment (TIM). Many traditional medications aimed at remodeling TIM are often associated with severe systemic toxicity, require frequent dosing, and show only modest clinical efficacy. In recent years, emerging nanomedicines have demonstrated extraordinary immunotherapeutic effects for OC by reversing the TIM because the physical and biochemical features of nanomedicines can all be harnessed to obtain optimal and expected tissue distribution and cellular uptake. However, nanomedicines are far from being widely explored in the field of OC immunotherapy due to the lack of appreciation for the professional barriers of nanomedicine and pathology, limiting the horizons of biomedical researchers and materials scientists. Herein, a typical cold tumor-OC is adopted as a paradigm to introduce the classification of TIM, the TIM characteristics of OC, and the advantages of nanomedicines for immunotherapy. Subsequently, current nanomedicines are comprehensively summarized through five general strategies to substantially enhance the efficacy of immunotherapy by heating the cold OC. Finally, the challenges and perspectives of this expanding field for improved development of clinical applications are also discussed.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yumei Li
- Department of Assisted ReproductionXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Boyu Wang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yige Qiu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Shiqi Tu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yayun Nan
- Geriatric Medical CenterPeople's Hospital of Ningxia Hui Autonomous RegionYinchuanNingxia750002P. R. China
| | - Qiong Huang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| |
Collapse
|
11
|
Chan Wah Hak CML, Rullan A, Patin EC, Pedersen M, Melcher AA, Harrington KJ. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front Oncol 2022; 12:971959. [PMID: 36106115 PMCID: PMC9465159 DOI: 10.3389/fonc.2022.971959] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the most effective and frequently used treatments for a wide range of cancers. In addition to its direct anti-cancer cytotoxic effects, ionising radiation can augment the anti-tumour immune response by triggering pro-inflammatory signals, DNA damage-induced immunogenic cell death and innate immune activation. Anti-tumour innate immunity can result from recruitment and stimulation of dendritic cells (DCs) which leads to tumour-specific adaptive T-cell priming and immunostimulatory cell infiltration. Conversely, radiotherapy can also induce immunosuppressive and anti-inflammatory mediators that can confer radioresistance. Targeting the DNA damage response (DDR) concomitantly with radiotherapy is an attractive strategy for overcoming radioresistance, both by enhancing the radiosensitivity of tumour relative to normal tissues, and tipping the scales in favour of an immunostimulatory tumour microenvironment. This two-pronged approach exploits genomic instability to circumvent immune evasion, targeting both hallmarks of cancer. In this review, we describe targetable DDR proteins (PARP (poly[ADP-ribose] polymerase); ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) and Wee1 (Wee1-like protein kinase) and their potential intersections with druggable immunomodulatory signalling pathways, including nucleic acid-sensing mechanisms (Toll-like receptors (TLR); cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and retinoic acid-inducible gene-I (RIG-I)-like receptors), and how these might be exploited to enhance radiation therapy. We summarise current preclinical advances, recent and ongoing clinical trials and the challenges of therapeutic combinations with existing treatments such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Antonio Rullan
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Emmanuel C. Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Malin Pedersen
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Alan A. Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
12
|
Zhao Z, Hua Z, Luo X, Li Y, Yu L, Li M, Lu C, Zhao T, Liu Y. Application and pharmacological mechanism of methotrexate in rheumatoid arthritis. Biomed Pharmacother 2022; 150:113074. [PMID: 35658215 DOI: 10.1016/j.biopha.2022.113074] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Methotrexate (MTX) has been used for the treatment of rheumatoid arthritis (RA) for about forty years and to date MTX remains the part of global standard of treatment for RA. The efficacy of MTX in RA is the result of multiple mechanisms of action. In order to summarize the possible pharmacological mechanisms of MTX in the treatment of RA, this review will elaborate on folate antagonism, promotion of adenosine accumulation, regulation of inflammatory signaling pathways, bone protection and maintenance of immune system function.
Collapse
Affiliation(s)
- Zixuan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ming Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
13
|
Piovesan D, Tan JB, Becker A, Banuelos J, Narasappa N, DiRenzo D, Zhang K, Chen A, Ginn E, Udyavar AR, Yin F, Paprcka SL, Purandare B, Park TW, Kimura N, Kalisiak J, Young SW, Powers JP, Schindler U, Sivick KE, Walters MJ. Targeting CD73 with AB680 (Quemliclustat), a Novel and Potent Small-Molecule CD73 Inhibitor, Restores Immune Functionality and Facilitates Antitumor Immunity. Mol Cancer Ther 2022; 21:948-959. [PMID: 35405741 PMCID: PMC9381133 DOI: 10.1158/1535-7163.mct-21-0802] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 01/07/2023]
Abstract
T cells play a critical role in the control of cancer. The development of immune checkpoint blockers (ICB) aimed at enhancing antitumor T-cell responses has revolutionized cancer treatment. However, durable clinical benefit is observed in only a subset of patients, prompting research efforts to focus on strategies that target multiple inhibitory signals within the tumor microenvironment (TME) to limit tumor evasion and improve patient outcomes. Adenosine has emerged as a potent immune suppressant within the TME, and CD73 is the major enzyme responsible for its extracellular production. CD73 can be co-opted within the TME to impair T-cell-mediated antitumor immunity and promote tumor growth. To target this pathway and block the formation of adenosine, we designed a novel, selective, and potent class of small-molecule inhibitors of CD73, including AB680 (quemliclustat), which is currently being tested in patients with cancer. AB680 effectively restored T-cell proliferation, cytokine secretion, and cytotoxicity that were dampened by the formation of immunosuppressive adenosine by CD73. Furthermore, in an allogeneic mixed lymphocyte reaction where CD73-derived adenosine had a dominant suppressive effect in the presence of PD-1 blockade, AB680 restored T-cell activation and function. Finally, in a preclinical mouse model of melanoma, AB680 inhibited CD73 in the TME and increased the antitumor activity of PD-1 blockade. Collectively, these data provide a rationale for the inhibition of CD73 with AB680 in combination with ICB, such as anti-PD-1, to improve cancer patient outcomes.
Collapse
Affiliation(s)
| | - Joanne B.L. Tan
- Arcus Biosciences, Hayward, California.,Nkarta Inc., South San Francisco, California
| | - Annette Becker
- Arcus Biosciences, Hayward, California.,Departments of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| | | | - Nell Narasappa
- Arcus Biosciences, Hayward, California.,Nurix Therapeutics, San Francisco, California
| | | | - Kristen Zhang
- Arcus Biosciences, Hayward, California.,Allogene Therapeutics, South San Francisco, California
| | - Ada Chen
- Arcus Biosciences, Hayward, California
| | | | - Akshata R. Udyavar
- Arcus Biosciences, Hayward, California.,Instil Bio Inc., Thousand Oaks, California
| | - Fangfang Yin
- Arcus Biosciences, Hayward, California.,BeiGene USA, Inc., San Mateo, California
| | | | | | | | | | | | | | | | | | | | - Matthew J. Walters
- Arcus Biosciences, Hayward, California.,Corresponding Author: Matthew J. Walters, Biology, Arcus Biosciences Inc., Hayward, CA 94545. Phone: 510-694-6200, E-mail:
| |
Collapse
|
14
|
Tay AHM, Prieto-Díaz R, Neo S, Tong L, Chen X, Carannante V, Önfelt B, Hartman J, Haglund F, Majellaro M, Azuaje J, Garcia-Mera X, Brea JM, Loza MI, Jespers W, Gutierrez-de-Teran H, Sotelo E, Lundqvist A. A 2B adenosine receptor antagonists rescue lymphocyte activity in adenosine-producing patient-derived cancer models. J Immunother Cancer 2022; 10:e004592. [PMID: 35580926 PMCID: PMC9115112 DOI: 10.1136/jitc-2022-004592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Adenosine is a metabolite that suppresses antitumor immune response of T and NK cells via extracellular binding to the two subtypes of adenosine-2 receptors, A2ARs. While blockade of the A2AARs subtype effectively rescues lymphocyte activity, with four A2AAR antagonists currently in anticancer clinical trials, less is known for the therapeutic potential of the other A2BAR blockade within cancer immunotherapy. Recent studies suggest the formation of A2AAR/A2BAR dimers in tissues that coexpress the two receptor subtypes, where the A2BAR plays a dominant role, suggesting it as a promising target for cancer immunotherapy. METHODS We report the synthesis and functional evaluation of five potent A2BAR antagonists and a dual A2AAR/A2BAR antagonist. The compounds were designed using previous pharmacological data assisted by modeling studies. Synthesis was developed using multicomponent approaches. Flow cytometry was used to evaluate the phenotype of T and NK cells on A2BAR antagonist treatment. Functional activity of T and NK cells was tested in patient-derived tumor spheroid models. RESULTS We provide data for six novel small molecules: five A2BAR selective antagonists and a dual A2AAR/A2BAR antagonist. The growth of patient-derived breast cancer spheroids is prevented when treated with A2BAR antagonists. To elucidate if this depends on increased lymphocyte activity, immune cells proliferation, and cytokine production, lymphocyte infiltration was evaluated and compared with the potent A2AAR antagonist AZD-4635. We find that A2BAR antagonists rescue T and NK cell proliferation, IFNγ and perforin production, and increase tumor infiltrating lymphocytes infiltration into tumor spheroids without altering the expression of adhesion molecules. CONCLUSIONS Our results demonstrate that A2BAR is a promising target in immunotherapy, identifying ISAM-R56A as the most potent candidate for A2BAR blockade. Inhibition of A2BAR signaling restores T cell function and proliferation. Furthermore, A2BAR and dual A2AAR/A2BAR antagonists showed similar or better results than A2AAR antagonist AZD-4635 reinforcing the idea of dominant role of the A2BAR in the regulation of the immune system.
Collapse
Affiliation(s)
- Apple Hui Min Tay
- Department of Biological Science, Nanyang Technological University, Singapore
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Rubén Prieto-Díaz
- Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Shiyong Neo
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Singapore Immunology Network SIgN, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Le Tong
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Valentina Carannante
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Majellaro
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Jhonny Azuaje
- Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Xerardo Garcia-Mera
- Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Jose M Brea
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Maria I Loza
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Willem Jespers
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Hugo Gutierrez-de-Teran
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Lin HJ, Liu Y, Lofland D, Lin J. Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers (Basel) 2022; 14:cancers14020285. [PMID: 35053449 PMCID: PMC8774102 DOI: 10.3390/cancers14020285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immune therapy is designed to stimulate tumoricidal effects in a variety of solid tumors including breast carcinomas. However, the emergence of resistant clones leads to treatment failure. Understanding the molecular, cellular, and microenvironmental aberrations is crucial to uncovering underlying mechanisms and developing advanced strategies for preventing or combating these resistant malignancies. This review will summarize research findings revealing various mechanisms employed to hijack innate and adaptive immune surveillance mechanisms, develop hypoxic and tumor promoting metabolism, and foster an immune tolerance microenvironment. In addition, it will highlight potential targets for therapeutic approaches. Abstract Breast cancer is the most common malignancy among females in western countries, where women have an overall lifetime risk of >10% for developing invasive breast carcinomas. It is not a single disease but is composed of distinct subtypes associated with different clinical outcomes and is highly heterogeneous in both the molecular and clinical aspects. Although tumor initiation is largely driven by acquired genetic alterations, recent data suggest microenvironment-mediated immune evasion may play an important role in neoplastic progression. Beyond surgical resection, radiation, and chemotherapy, additional therapeutic options include hormonal deactivation, targeted-signaling pathway treatment, DNA repair inhibition, and aberrant epigenetic reversion. Yet, the fatality rate of metastatic breast cancer remains unacceptably high, largely due to treatment resistance and metastases to brain, lung, or bone marrow where tumor bed penetration of therapeutic agents is limited. Recent studies indicate the development of immune-oncological therapy could potentially eradicate this devastating malignancy. Evidence suggests tumors express immunogenic neoantigens but the immunity towards these antigens is frequently muted. Established tumors exhibit immunological tolerance. This tolerance reflects a process of immune suppression elicited by the tumor, and it represents a critical obstacle towards successful antitumor immunotherapy. In general, immune evasive mechanisms adapted by breast cancer encompasses down-regulation of antigen presentations or recognition, lack of immune effector cells, obstruction of anti-tumor immune cell maturation, accumulation of immunosuppressive cells, production of inhibitory cytokines, chemokines or ligands/receptors, and up-regulation of immune checkpoint modulators. Together with altered metabolism and hypoxic conditions, they constitute a permissive tumor microenvironment. This article intends to discern representative incidents and to provide potential innovative therapeutic regimens to reinstate tumoricidal immunity.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-302-831-7576; Fax: +1-302-831-4180
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA;
| | - Denene Lofland
- Department of Microbiology and Immunology, Tower Campus, Drexel University College of Medicine, 50 Innovation Way, Wyomissing, PA 19610, USA;
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, 108 N. Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
16
|
Magagna I, Gourdin N, Kieffer Y, Licaj M, Mhaidly R, Andre P, Morel A, Vincent-Salomon A, Paturel C, Mechta-Grigoriou F. CD73-Mediated Immunosuppression Is Linked to a Specific Fibroblast Population That Paves the Way for New Therapy in Breast Cancer. Cancers (Basel) 2021; 13:cancers13235878. [PMID: 34884993 PMCID: PMC8657241 DOI: 10.3390/cancers13235878] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAF) are heterogeneous with multiple functions in breast cancer. Recently, we identified a specific CAF subpopulation (referred to as CAF-S1), which promotes immunosuppression and immunotherapy resistance. METHODS AND RESULTS Here, by studying a large collection of human samples, we highlight the key function of CD73/NT5E in CAF-S1-mediated immunosuppression in breast cancer. We first reveal that CD73 protein level specifically accumulates in CAF-S1 in breast cancer patients. Interestingly, infiltration of regulatory T lymphocytes (Tregs) is significantly correlated with CD73 expression in stroma but not in epithelium, indicating that CD73 contributes to immunosuppression when expressed in CAF-S1 and not in tumor cells. By performing functional assays based on relevant systems using primary CAF-S1 isolated from patients, we demonstrate that CAF-S1 increase the content in both PD-1+ and CTLA-4+ Tregs. Importantly, the use of a blocking anti-CD73 antibody on CAF-S1 reduces CAF-S1-mediated immunosuppression by preventing expression of these immune checkpoints on Tregs. CONCLUSIONS Our data support the potential clinical benefit of using both anti-CD73 and immune-checkpoint inhibitors in breast cancer patients for inhibiting CAF-S1-mediated immunosuppression and enhancing anti-tumor immune response.
Collapse
Affiliation(s)
- Ilaria Magagna
- Equipe labellisée Ligue Nationale Contre le Cancer, Stress and Cancer Laboratory, Institut Curie, PSL Research University, 26, rue d’Ulm, 75005 Paris, France; (I.M.); (Y.K.); (M.L.); (R.M.)
- Inserm, U830, 75005 Paris, France
- Innate Pharma, 117 Avenue de Luminy BP 30191, 13276 Marseille, France; (N.G.); (P.A.); (A.M.); (C.P.)
| | - Nicolas Gourdin
- Innate Pharma, 117 Avenue de Luminy BP 30191, 13276 Marseille, France; (N.G.); (P.A.); (A.M.); (C.P.)
| | - Yann Kieffer
- Equipe labellisée Ligue Nationale Contre le Cancer, Stress and Cancer Laboratory, Institut Curie, PSL Research University, 26, rue d’Ulm, 75005 Paris, France; (I.M.); (Y.K.); (M.L.); (R.M.)
- Inserm, U830, 75005 Paris, France
| | - Monika Licaj
- Equipe labellisée Ligue Nationale Contre le Cancer, Stress and Cancer Laboratory, Institut Curie, PSL Research University, 26, rue d’Ulm, 75005 Paris, France; (I.M.); (Y.K.); (M.L.); (R.M.)
- Inserm, U830, 75005 Paris, France
| | - Rana Mhaidly
- Equipe labellisée Ligue Nationale Contre le Cancer, Stress and Cancer Laboratory, Institut Curie, PSL Research University, 26, rue d’Ulm, 75005 Paris, France; (I.M.); (Y.K.); (M.L.); (R.M.)
- Inserm, U830, 75005 Paris, France
| | - Pascale Andre
- Innate Pharma, 117 Avenue de Luminy BP 30191, 13276 Marseille, France; (N.G.); (P.A.); (A.M.); (C.P.)
| | - Ariane Morel
- Innate Pharma, 117 Avenue de Luminy BP 30191, 13276 Marseille, France; (N.G.); (P.A.); (A.M.); (C.P.)
| | - Anne Vincent-Salomon
- Hospital Group, Department of Diagnostic and Theranostic Medicine, Institut Curie, 75005 Paris, France;
| | - Carine Paturel
- Innate Pharma, 117 Avenue de Luminy BP 30191, 13276 Marseille, France; (N.G.); (P.A.); (A.M.); (C.P.)
| | - Fatima Mechta-Grigoriou
- Equipe labellisée Ligue Nationale Contre le Cancer, Stress and Cancer Laboratory, Institut Curie, PSL Research University, 26, rue d’Ulm, 75005 Paris, France; (I.M.); (Y.K.); (M.L.); (R.M.)
- Inserm, U830, 75005 Paris, France
- Correspondence: ; Tel.: +33-(0)1-56-24-66-53; Fax: +33-(0)1-56-24-66-50
| |
Collapse
|
17
|
Schneider E, Winzer R, Rissiek A, Ricklefs I, Meyer-Schwesinger C, Ricklefs FL, Bauche A, Behrends J, Reimer R, Brenna S, Wasielewski H, Lauten M, Rissiek B, Puig B, Cortesi F, Magnus T, Fliegert R, Müller CE, Gagliani N, Tolosa E. CD73-mediated adenosine production by CD8 T cell-derived extracellular vesicles constitutes an intrinsic mechanism of immune suppression. Nat Commun 2021; 12:5911. [PMID: 34625545 PMCID: PMC8501027 DOI: 10.1038/s41467-021-26134-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells at sites of inflammation are continuously activated by local antigens and cytokines, and regulatory mechanisms must be enacted to control inflammation. The stepwise hydrolysis of extracellular ATP by ectonucleotidases CD39 and CD73 generates adenosine, a potent immune suppressor. Here we report that human effector CD8 T cells contribute to adenosine production by releasing CD73-containing extracellular vesicles upon activation. These extracellular vesicles have AMPase activity, and the resulting adenosine mediates immune suppression independently of regulatory T cells. In addition, we show that extracellular vesicles isolated from the synovial fluid of patients with juvenile idiopathic arthritis contribute to T cell suppression in a CD73-dependent manner. Our results suggest that the generation of adenosine upon T cell activation is an intrinsic mechanism of human effector T cells that complements regulatory T cell-mediated suppression in the inflamed tissue. Finally, our data underscore the role of immune cell-derived extracellular vesicles in the control of immune responses.
Collapse
Affiliation(s)
- Enja Schneider
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Riekje Winzer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Anne Rissiek
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Isabell Ricklefs
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, 23538, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research, Lübeck, Germany
| | - Catherine Meyer-Schwesinger
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Andreas Bauche
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, 23845, Borstel, Germany
| | - Rudolph Reimer
- Technology Platform Microscopy and Image Analysis, Heinrich Pette Institute/Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Santra Brenna
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hauke Wasielewski
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Melchior Lauten
- Department of Pediatrics and Adolescent Medicine, University of Lübeck, 23538, Lübeck, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Berta Puig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Filippo Cortesi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ralf Fliegert
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christa E Müller
- Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
18
|
Ni Y, Zhou X, Yang J, Shi H, Li H, Zhao X, Ma X. The Role of Tumor-Stroma Interactions in Drug Resistance Within Tumor Microenvironment. Front Cell Dev Biol 2021; 9:637675. [PMID: 34095111 PMCID: PMC8173135 DOI: 10.3389/fcell.2021.637675] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer cells resistance to various therapies remains to be a key challenge nowadays. For a long time, scientists focused on tumor cells themselves for the mechanisms of acquired drug resistance. However, recent evidence showed that tumor microenvironment (TME) is essential for regulating immune escape, drug resistance, progression and metastasis of malignant cells. Reciprocal interactions between cancer cells and non-malignant cells within this milieu often reshape the TME and promote drug resistance. Therefore, advanced knowledge about these sophisticated interactions is significant for the design of effective therapeutic approaches. In this review, we highlight cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), T-regulatory lymphocytes (Tregs), mesenchymal stem cells (MSCs), cancer-associated adipocytes (CAAs), and tumor endothelial cells (TECs) existing in TME, as well as their multiple cross-talk with tumor cells, which eventually endows tumor cells with therapeutic resistance.
Collapse
Affiliation(s)
- Yanghong Ni
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jia Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Houhui Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Lai YP, Kuo LC, Lin BR, Lin HJ, Lin CY, Chen YT, Hsiao PW, Chang HT, Ko PCI, Chen HC, Chang HY, Lu J, Ho HN, Wu-Hsieh BA, Kung JT, Chen SC. CD28 engagement inhibits CD73-mediated regulatory activity of CD8 + T cells. Commun Biol 2021; 4:595. [PMID: 34011962 PMCID: PMC8134507 DOI: 10.1038/s42003-021-02119-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
CD28 is required for T cell activation as well as the generation of CD4+Foxp3+ Treg. It is unclear, however, how CD28 costimulation affects the development of CD8+ T cell suppressive function. Here, by use of Hepa1.6.gp33 in vitro killing assay and B16.gp33 tumor mouse model we demonstrate that CD28 engagement during TCR ligation prevents CD8+ T cells from becoming suppressive. Interestingly, our results showed that ectonucleotidase CD73 expression on CD8+ T cells is upregulated in the absence of CD28 costimulation. In both murine and human tumor-bearing hosts, CD73 is upregulated on CD28-CD8+ T cells that infiltrate the solid tumor. UPLC-MS/MS analysis revealed that CD8+ T cells activation without CD28 costimulation produces elevated levels of adenosine and that CD73 mediates its production. Adenosine receptor antagonists block CD73-mediated suppression. Our data support the notion that CD28 costimulation inhibits CD73 upregulation and thereby prevents CD8+ T cells from becoming suppressive. This study uncovers a previously unidentified role for CD28 costimulation in CD8+ T cell activation and suggests that the CD28 costimulatory pathway can be a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yo-Ping Lai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lu-Cheng Kuo
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Been-Ren Lin
- Division of Colorectal Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hung-Ju Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Patrick Chow-In Ko
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Chin Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiang-Yu Chang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, Tzu Chi University, Hualien, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, National Taiwan University, College of Medicine, Taipei, Taiwan
- Graduate Institute of Immunology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Betty A Wu-Hsieh
- Graduate Institute of Immunology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - John T Kung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ching Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
20
|
Recruitment and Expansion of Tregs Cells in the Tumor Environment-How to Target Them? Cancers (Basel) 2021; 13:cancers13081850. [PMID: 33924428 PMCID: PMC8069615 DOI: 10.3390/cancers13081850] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The immune response against cancer is generated by effector T cells, among them cytotoxic CD8+ T cells that destroy cancer cells and helper CD4+ T cells that mediate and support the immune response. This antitumor function of T cells is tightly regulated by a particular subset of CD4+ T cells, named regulatory T cells (Tregs), through different mechanisms. Even if the complete inhibition of Tregs would be extremely harmful due to their tolerogenic role in impeding autoimmune diseases in the periphery, the targeted blockade of their accumulation at tumor sites or their targeted depletion represent a major therapeutic challenge. This review focuses on the mechanisms favoring Treg recruitment, expansion and stabilization in the tumor microenvironment and the therapeutic strategies developed to block these mechanisms. Abstract Regulatory T cells (Tregs) are present in a large majority of solid tumors and are mainly associated with a poor prognosis, as their major function is to inhibit the antitumor immune response contributing to immunosuppression. In this review, we will investigate the mechanisms involved in the recruitment, amplification and stability of Tregs in the tumor microenvironment (TME). We will also review the strategies currently developed to inhibit Tregs’ deleterious impact in the TME by either inhibiting their recruitment, blocking their expansion, favoring their plastic transformation into other CD4+ T-cell subsets, blocking their suppressive function or depleting them specifically in the TME to avoid severe deleterious effects associated with Treg neutralization/depletion in the periphery and normal tissues.
Collapse
|
21
|
Huang ZD, Yao YY, Chen TY, Zhao YF, Zhang C, Niu YM. Construction of Prognostic Risk Prediction Model of Oral Squamous Cell Carcinoma Based on Nine Survival-Associated Metabolic Genes. Front Physiol 2021; 12:609770. [PMID: 33815132 PMCID: PMC8011568 DOI: 10.3389/fphys.2021.609770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
The aim was to investigate the independent prognostic factors and construct a prognostic risk prediction model to facilitate the formulation of oral squamous cell carcinoma (OSCC) clinical treatment plan. We constructed a prognostic model using univariate COX, Lasso, and multivariate COX regression analysis and conducted statistical analysis. In this study, 195 randomly obtained sample sets were defined as training set, while 390 samples constituted validation set for testing. A prognostic model was constructed using regression analysis based on nine survival-associated metabolic genes, among which PIP5K1B, NAGK, and HADHB significantly down-regulated, while MINPP1, PYGL, AGPAT4, ENTPD1, CA12, and CA9 significantly up-regulated. Statistical analysis used to evaluate the prognostic model showed a significant different between the high and low risk groups and a poor prognosis in the high risk group (P < 0.05) based on the training set. To further clarify, validation sets showed a significant difference between the high-risk group with a worse prognosis and the low-risk group (P < 0.05). Independent prognostic analysis based on the training set and validation set indicated that the risk score was superior as an independent prognostic factor compared to other clinical characteristics. We conducted Gene Set Enrichment Analysis (GSEA) among high-risk and low-risk patients to identify metabolism-related biological pathways. Finally, nomogram incorporating some clinical characteristics and risk score was constructed to predict 1-, 2-, and 3-year survival rates (C-index = 0.7). The proposed nine metabolic gene prognostic model may contribute to a more accurate and individualized prediction for the prognosis of newly diagnosed OSCC patients, and provide advice for clinical treatment and follow-up observations.
Collapse
Affiliation(s)
- Zhen-Dong Huang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Stomatology, Southern Medical University, Guangzhou, China
| | - Yang-Yang Yao
- The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ting-Yu Chen
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yi-Fan Zhao
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu-Ming Niu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Oral and Maxillofacial Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
22
|
Briceño P, Rivas-Yañez E, Rosemblatt MV, Parra-Tello B, Farías P, Vargas L, Simon V, Cárdenas C, Lladser A, Salazar-Onfray F, Elorza AA, Rosemblatt M, Bono MR, Sauma D. CD73 Ectonucleotidase Restrains CD8+ T Cell Metabolic Fitness and Anti-tumoral Activity. Front Cell Dev Biol 2021; 9:638037. [PMID: 33681221 PMCID: PMC7930398 DOI: 10.3389/fcell.2021.638037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
CD39 and CD73 are ectoenzymes that dephosphorylate ATP into its metabolites; ADP, AMP, and adenosine, and thus are considered instrumental in the development of immunosuppressive microenvironments. We have previously shown that within the CD8+ T cell population, naïve and memory cells express the CD73 ectonucleotidase, while terminally differentiated effector cells are devoid of this enzyme. This evidence suggests that adenosine might exert an autocrine effect on CD8+ T cells during T cell differentiation. To study the possible role of CD73 and adenosine during this process, we compared the expression of the adenosinergic signaling components, the phenotype, and the functional properties between CD73-deficient and WT CD8+ T cells. Upon activation, we observed an upregulation of CD73 expression in CD8+ T cells along with an upregulation of the adenosine A2A receptor. Interestingly, when we differentiated CD8+ T cells to Tc1 cells in vitro, we observed that these cells produce adenosine and that CD73-deficient cells present a higher cytotoxic potential evidenced by an increase in IFN-γ, TNF-α, and granzyme B production. Moreover, CD73-deficient cells presented a increased glucose uptake and higher mitochondrial respiration, indicating that this ectonucleotidase restrict the mitochondrial capacity in CD8+ T cells. In agreement, when adoptively transferred, antigen-specific CD73-deficient CD8+ T cells were more effective in reducing the tumor burden in B16.OVA melanoma-bearing mice and presented lower levels of exhaustion markers than wild type cells. All these data suggest an autocrine effect of CD73-mediated adenosine production, limiting differentiation and cytotoxic T cells' metabolic fitness.
Collapse
Affiliation(s)
- Pedro Briceño
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Elizabeth Rivas-Yañez
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Mariana V Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Brian Parra-Tello
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Paula Farías
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Leonardo Vargas
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Valeska Simon
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - César Cárdenas
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Alvaro Lladser
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A Elorza
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile
| | - María Rosa Bono
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Balança CC, Salvioni A, Scarlata CM, Michelas M, Martinez-Gomez C, Gomez-Roca C, Sarradin V, Tosolini M, Valle C, Pont F, Ferron G, Gladieff L, Vergez S, Dupret-Bories A, Mery E, Rochaix P, Fournié JJ, Delord JP, Devaud C, Martinez A, Ayyoub M. PD-1 blockade restores helper activity of tumor-infiltrating, exhausted PD-1hiCD39+ CD4 T cells. JCI Insight 2021; 6:142513. [PMID: 33332284 PMCID: PMC7934837 DOI: 10.1172/jci.insight.142513] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/09/2020] [Indexed: 01/03/2023] Open
Abstract
Tumor antigen-specific CD4 T cells accumulate at tumor sites, evoking their involvement in antitumor effector functions in situ. Contrary to CD8 cytotoxic T lymphocyte exhaustion, that of CD4 T cells remains poorly appreciated. Here, using phenotypic, transcriptomic, and functional approaches, we characterized CD4 T cell exhaustion in patients with head and neck, cervical, and ovarian cancer. We identified a CD4 tumor-infiltrating lymphocyte (TIL) population, defined by high PD-1 and CD39 expression, which contained high proportions of cytokine-producing cells, although the quantity of cytokines produced by these cells was low, evoking an exhausted state. Terminal exhaustion of CD4 TILs was instated regardless of TIM-3 expression, suggesting divergence with CD8 T cell exhaustion. scRNA-Seq and further phenotypic analyses uncovered similarities with the CD8 T cell exhaustion program. In particular, PD-1hiCD39+ CD4 TILs expressed the exhaustion transcription factor TOX and the chemokine CXCL13 and were tumor antigen specific. In vitro, PD-1 blockade enhanced CD4 TIL activation, as evidenced by increased CD154 expression and cytokine secretion, leading to improved dendritic cell maturation and consequently higher tumor-specific CD8 T cell proliferation. Our data identify exhausted CD4 TILs as players in responsiveness to immune checkpoint blockade.
Collapse
Affiliation(s)
| | - Anna Salvioni
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Clara-Maria Scarlata
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France.,Immune Monitoring Core Facility
| | - Marie Michelas
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Carlos Martinez-Gomez
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France.,Department of Surgery, and
| | - Carlos Gomez-Roca
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France.,Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Victor Sarradin
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France.,Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Marie Tosolini
- Technological Pole and Bioinformatic Platform, Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Carine Valle
- Technological Pole and Bioinformatic Platform, Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Frédéric Pont
- Technological Pole and Bioinformatic Platform, Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | | | - Laurence Gladieff
- Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Sébastien Vergez
- Department of Surgery, Centre Hospitalier Universitaire, Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France
| | | | - Eliane Mery
- Department of Pathology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Philippe Rochaix
- Department of Pathology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | | | - Jean-Pierre Delord
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France.,Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christel Devaud
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Alejandra Martinez
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France.,Department of Surgery, and
| | - Maha Ayyoub
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France.,Immune Monitoring Core Facility.,Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
24
|
Allard B, Allard D, Buisseret L, Stagg J. The adenosine pathway in immuno-oncology. Nat Rev Clin Oncol 2020; 17:611-629. [PMID: 32514148 DOI: 10.1038/s41571-020-0382-2] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy based on immune-checkpoint inhibition or adoptive cell therapy has revolutionized cancer care. Nevertheless, a large proportion of patients do not benefit from such treatments. Over the past decade, remarkable progress has been made in the development of 'next-generation' therapeutics in immuno-oncology, with inhibitors of extracellular adenosine (eADO) signalling constituting an expanding class of agents. Induced by tissue hypoxia, inflammation, tissue repair and specific oncogenic pathways, the adenosinergic axis is a broadly immunosuppressive pathway that regulates both innate and adaptive immune responses. Inhibition of eADO-generating enzymes and/or eADO receptors can promote antitumour immunity through multiple mechanisms, including enhancement of T cell and natural killer cell function, suppression of the pro-tumourigenic effects of myeloid cells and other immunoregulatory cells, and promotion of antigen presentation. With several clinical trials currently evaluating inhibitors of the eADO pathway in patients with cancer, we herein review the pathophysiological function of eADO with a focus on effects on antitumour immunity. We also discuss the treatment opportunities, potential limitations and biomarker-based strategies related to adenosine-targeted therapy in oncology.
Collapse
Affiliation(s)
- Bertrand Allard
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - David Allard
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Laurence Buisseret
- Department of Medical Oncology, Institut Jules Bordet, Brussels, Belgium
| | - John Stagg
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
25
|
Jiang Z, Hsu JL, Li Y, Hortobagyi GN, Hung MC. Cancer Cell Metabolism Bolsters Immunotherapy Resistance by Promoting an Immunosuppressive Tumor Microenvironment. Front Oncol 2020; 10:1197. [PMID: 32775303 PMCID: PMC7387712 DOI: 10.3389/fonc.2020.01197] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting immune checkpoint proteins, such as CTLA-4 and PD-1/PD-L1, have demonstrated remarkable and durable clinical responses in various cancer types. However, a considerable number of patients receiving ICIs eventually experience a relapse due to diverse resistance mechanisms. As a result, there have been increasing research efforts to elucidate the molecular mechanisms behind resistance to ICIs and improve patient outcomes. There is growing evidence that the dysregulated metabolic activity of tumor cells generates an immunosuppressive tumor microenvironment (TME) that orchestrates an impaired anti-tumor immune response. Notably, the immunosuppressive TME is characterized by nutrient shortage, hypoxia, an acidic extracellular milieu, and abundant immunosuppressive molecules. A detailed understanding of the TME remains a major challenge in mounting a more effective anti-tumor immune response. Herein, we discuss how tumor cells reprogram metabolism to modulate a pro-tumor TME, driving disease progression and immune evasion; in particular, we highlight potential approaches to target metabolic vulnerabilities in the context of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Zhou Jiang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer L. Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yintao Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gabriel N. Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Center for Molecular Medicine and Research Center for Cancer Biology, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
26
|
Peng H, Xue R, Ju Z, Qiu J, Wang J, Yan W, Gan X, Tian Y, Shen H, Wang X, Wang X, Ni X, Yu Y, Lu L. Cancer-associated fibroblasts enhance the chemoresistance of CD73 + hepatocellular carcinoma cancer cells via HGF-Met-ERK1/2 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:856. [PMID: 32793700 DOI: 10.21037/atm-20-1038] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Cancer-associated fibroblasts (CAFs) are a major component of hepatocellular carcinoma (HCC) stroma that are critically involved in HCC cancer chemoresistance, but the mechanism has not been elucidated. Previous studies have reported CD73 exerted an immunosuppressive function in cancer. Here, we explored the mechanism by which CAFs regulates CD73+ HCC cells and clarified whether CAFs promote chemoresistance of CD73+ cells. Methods We used the co-culture method to study the relationship between CAFs and HCC cells. Immunohistochemistry was applied to evaluate the correlation between α-smooth-muscle actin (α-SMA) and CD73. CD73 mRNA and protein were determined by real-time polymerase chain reaction (RT-PCR) and western blotting, and hepatocyte growth factor (HGF) was assayed by enzyme-linked immunosorbent assay (ELISA). Western blotting was used to explore the regulated pathway of CD73+ HCC. We then knocked down CD73 in cells, and then assessed the effect of CD73 on the apoptosis by flow cytometry. Finally, a sphere formation assay was applied to investigate the stemness of cancer cells, and xenograft tumors in nude mice were built to investigate the tumorigenicity. Results We found that the proportion of CAFs was positively correlated with CD73 expression in HCC cells. Mechanistically, c-Met and the MEK-ERK1/2 pathway were activated by HGF from CAFs which upregulated CD73 expression in HCC cells. Also, we found that CD73 promote sorafenib and cisplatin resistance in HCC, and CD73+ HCC cells indicated the higher capability of tumorigenicity compared to CD73- HCC cells in vivo. Furthermore, HGF further enhanced the chemoresistant characteristics of CD73+ tumor cells. Conclusions Our findings collectively suggest that CD73 is a vital HCC-chemoresistance force controlled by cross-talking between CAFs and HCC cells, thereby establishing CD73 as a potential new therapeutic target for HCC.
Collapse
Affiliation(s)
- Hao Peng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Rong Xue
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Zheng Ju
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jiannan Qiu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jiawei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wei Yan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiaojie Gan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yizhu Tian
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hongbin Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- State Key Laboratory of Reproductive Medicine, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xuhao Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Cathelicidin-Related Antimicrobial Peptide Regulates CD73 Expression in Mouse Th17 Cells via p38. Cells 2020; 9:cells9061561. [PMID: 32604872 PMCID: PMC7348842 DOI: 10.3390/cells9061561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
The effector function of tumor-infiltrated CD4+ T cells is readily suppressed by many types of immune regulators in the tumor microenvironment, which is one of the major mechanisms of immune tolerance against cancer. Cathelicidin-related antimicrobial peptide (CRAMP), the mouse analog of LL-37 peptide in humans, is a cationic antimicrobial peptide belonging to the cathelicidin family; however, its secretion by cancer cells and role in the tumor microenvironment (TME) remain unclear. In this study, we explored the possibility of an interaction between effector CD4+ T cells and CRAMP using in vitro-generated mouse Th17 cells. We found that CRAMP stimulates Th17 cells to express the ectonucleotidase CD73, while simultaneously inducing cell death. This finding suggested that CD73-expressing Th17 cells may function as immune suppressor cells instead of effector cells. In addition, treatment of pharmacological inhibitors of the transforming growth factor-beta (TGF-β) signaling pathway showed that induction of CD73 expression is mediated by the p38 signaling pathway. Overall, our findings suggest that tumor-derived LL-37 likely functions as an immune suppressor that induces immune tolerance against tumors through shaping effector Th17 cells into suppressor Th17 cells, suggesting a new intervention target to improve cancer immunotherapy.
Collapse
|
28
|
Rahmaninejad H, Pace T, Bhatt S, Sun B, Kekenes-Huskey P. Co-localization and confinement of ecto-nucleotidases modulate extracellular adenosine nucleotide distributions. PLoS Comput Biol 2020; 16:e1007903. [PMID: 32584811 PMCID: PMC7316229 DOI: 10.1371/journal.pcbi.1007903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/22/2020] [Indexed: 12/30/2022] Open
Abstract
Nucleotides comprise small molecules that perform critical signaling roles in biological systems. Adenosine-based nucleotides, including adenosine tri-, di-, and mono-phosphate, are controlled through their rapid degradation by diphosphohydrolases and ecto-nucleotidases (NDAs). The interplay between nucleotide signaling and degradation is especially important in synapses formed between cells, which create signaling 'nanodomains'. Within these 'nanodomains', charged nucleotides interact with densely-packed membranes and biomolecules. While the contributions of electrostatic and steric interactions within such nanodomains are known to shape diffusion-limited reaction rates, less is understood about how these factors control the kinetics of nucleotidase activity. To quantify these factors, we utilized reaction-diffusion numerical simulations of 1) adenosine triphosphate (ATP) hydrolysis into adenosine monophosphate (AMP) and 2) AMP into adenosine (Ado) via two representative nucleotidases, CD39 and CD73. We evaluate these sequentially-coupled reactions in nanodomain geometries representative of extracellular synapses, within which we localize the nucleotidases. With this model, we find that 1) nucleotidase confinement reduces reaction rates relative to an open (bulk) system, 2) the rates of AMP and ADO formation are accelerated by restricting the diffusion of substrates away from the enzymes, and 3) nucleotidase co-localization and the presence of complementary (positive) charges to ATP enhance reaction rates, though the impact of these contributions on nucleotide pools depends on the degree to which the membrane competes for substrates. As a result, these contributions integratively control the relative concentrations and distributions of ATP and its metabolites within the junctional space. Altogether, our studies suggest that CD39 and CD73 nucleotidase activity within junctional spaces can exploit their confinement and favorable electrostatic interactions to finely control nucleotide signaling.
Collapse
Affiliation(s)
- Hadi Rahmaninejad
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Tom Pace
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Shashank Bhatt
- Paul Laurence Dunbar High School, Lexington, Kentucky, United States of America
| | - Bin Sun
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter Kekenes-Huskey
- Department of Cell & Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
29
|
Shevchenko I, Mathes A, Groth C, Karakhanova S, Müller V, Utikal J, Werner J, Bazhin AV, Umansky V. Enhanced expression of CD39 and CD73 on T cells in the regulation of anti-tumor immune responses. Oncoimmunology 2020; 9:1744946. [PMID: 33457090 PMCID: PMC7790505 DOI: 10.1080/2162402x.2020.1744946] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Synthesis of extracellular adenosine by the ectonucleotidases CD39 and CD73 represents an important pathway of immune suppression in the tumor microenvironment. Using two mouse models (RET transgenic melanoma and Panc02 orthotopic pancreatic adenocarcinoma), we identified an elevated frequency of ectonucleotidase-expressing T cells in tumors and spleens. Importantly, these ectonucleotidase-positive T cells also showed a pronounced expression of PD-1. Conversely, the PD-1+ T cell subsets in tumors contained substantially larger proportions of ectonucleotidase-expressing cells compared to their counterparts lacking PD-1 expression. Our in vitro experiments showed that the activation of normal T cells resulted in an increase in the CD39 expression. CD39+ and CD73+ T cells displayed effector or memory phenotypes and produced IFN-γ, thereby linking ectonucleotidase expression to T cell effector functions. An accumulation of conventional and regulatory T cells expressing CD39 and/or CD73 was also detected in the peripheral blood of patients with melanoma and pancreatic cancer. Moreover, we demonstrated a significant association between low frequencies of circulating CD73+CD8+ T cells and CD73+CD4+ regulatory T cells and better overall survival of melanoma patients. Tumor-derived soluble factors (in particular, TGF-β) significantly enhanced the frequencies of ectonucleotidase-expressing cells in mice. Our findings suggest that the upregulation of ectonucleotidase expression in T cells promotes extracellular adenosine accumulation and represents an important mechanism of homeostatic immune auto-regulation, which could be hijacked by tumors to evade anti-cancer immunity. Targeting CD39 and CD73 can open new avenues for cancer immunotherapy.
Collapse
Affiliation(s)
- Ivan Shevchenko
- Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,Department of General Surgery, University of Heidelberg, Germany
| | - Andreas Mathes
- Department of General Surgery, University of Heidelberg, Germany.,Department of General and Abdominal Surgery, Sana Klinikum Offenbach, Offenbach, Germany
| | - Christopher Groth
- Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | | | - Verena Müller
- Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Viktor Umansky
- Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
30
|
CD73 promotes tumor metastasis by modulating RICS/RhoA signaling and EMT in gastric cancer. Cell Death Dis 2020; 11:202. [PMID: 32205841 PMCID: PMC7089986 DOI: 10.1038/s41419-020-2403-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Tumor microenvironment plays vital roles in shaping cancer diversity, and CD73 (ecto-5′-nucleotidase; NT5E) is an emerging immune checkpoint in modulating cancer progression via conversion of immunostimulatory ATP into immunosuppressive adenosine. However, how the CD73 is regulated and how it functions in the progression of cancer are largely unknown. Here, we showed that CD73 was overexpressed and correlated with poor prognosis of gastric cancer. CD73 links adenosinergic signaling in microenvironment switching to induction of epithelial-to-mesenchymal transition phenotype in gastric cancer during metastasis. Further pathway and gene set enrichment analysis of transcriptome data revealed the modulation role of CD73 in RICS/RhoA signaling by its extracellular function in adenosinergic pathway, which subsequently inhibited phosphorylation of LIMK/cofilin and promoted β-catenin activation. Pharmacological inhibition of CD73 adenosinergic signaling was found to induce RICS dysfunction. Dissemination and hematogenous metastasis model showed that targeting CD73 in gastric cancer could suppress experimental metastasis. To conclude, it substantiates CD73 as a target for treatment of gastric cancer metastasis and verifies RICS as an intracellular functional molecule linking CD73/adenosinergic signaling switching to RhoA/LIMK/cofilin pathway.
Collapse
|
31
|
Jeske SS, Schuler PJ, Doescher J, Theodoraki MN, Laban S, Brunner C, Hoffmann TK, Wigand MC. Age-related changes in T lymphocytes of patients with head and neck squamous cell carcinoma. IMMUNITY & AGEING 2020; 17:3. [PMID: 32082401 PMCID: PMC7017629 DOI: 10.1186/s12979-020-0174-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
Introduction The number of aging cancer patients has increased continuously and will do so further in the future. The immune system of elderly people experiences critical changes over the time. Therefore, tumor-induced changes in the immune system are believed to differ in young and elderly cancer patients as well. Methods The effect of aging on the immune system was measured in peripheral blood lymphocytes (PBL) of healthy volunteers (n = 48, 21–84 yrs.) divided into three different age groups. Seventy years was set as a cut-off for defining subjects as elderly. Results were compared to two groups of adult cancer patients, which donated PBL and tumor infiltrating lymphocytes (TIL): young cancer patients (40–69 yrs.; blood: n = 13; TIL: n = 17) and elderly cancer patients (70–90 yrs.; blood: n = 20; TIL: n = 15) with head and neck squamous cell carcinoma (HNSCC). Frequencies and phenotypes of CD4+ and CD8+ T cells as well as regulatory T cells (Treg) were assessed by flow cytometry. Results We observed lower frequencies of CD8+ cytotoxic T cells during aging in both groups. Frequencies of tumor infiltrating regulatory T cells were significantly higher than in the peripheral blood but showed a significant decline in older tumor patients. With increasing age, expression of immunosuppressive CD73 and CCR7 was lower and expression of PD1 elevated on peripheral T cells in healthy volunteers and tumor patients. Conclusion Immunosenescence takes place in healthy donors and cancer patients. Our results suggest that in elderly tumor patients, the immune system is impaired and the tumor-induced immune escape is less pronounced. The increased expression of PD1 implies the potential for effective immunotherapies in elderly, as treatment with checkpoint inhibitors could be more beneficial for elderly HNSCC patients.
Collapse
Affiliation(s)
- S S Jeske
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075 Ulm, Germany
| | - P J Schuler
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075 Ulm, Germany
| | - J Doescher
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075 Ulm, Germany
| | - M N Theodoraki
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075 Ulm, Germany
| | - S Laban
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075 Ulm, Germany
| | - C Brunner
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075 Ulm, Germany
| | - T K Hoffmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075 Ulm, Germany
| | - M C Wigand
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075 Ulm, Germany
| |
Collapse
|
32
|
Shi L, Feng M, Du S, Wei X, Song H, Yixin X, Song J, Wenxian G. Adenosine Generated by Regulatory T Cells Induces CD8 + T Cell Exhaustion in Gastric Cancer through A2aR Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4093214. [PMID: 31930120 PMCID: PMC6942766 DOI: 10.1155/2019/4093214] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/14/2019] [Accepted: 09/02/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Adenosine, derived from the degradation of ATP via ectonucleotidases CD39 and CD73, is a critical immunosuppressive metabolite in the hypoxic microenvironment of tumor tissue. Adenosine signaling via A2aR can inhibit the antitumor immune response of CD8+ T cells. CD39 and CD73 high-expressing Tregs play a critical role in tumor immune evasion of gastric cancer (GC). The present study investigated the underlying mechanism by which Tregs suppress antitumor immune responses in GC. MATERIALS AND METHODS Fifty-two GC samples were collected, and the frequency of FoxP3+ Tregs and CD8+ T cells and density ratios of A2aR+/CD8+ T cells, CD39+/FoxP3+ Tregs, and CD73+/FoxP3+ Tregs in GC were assessed with multiplex immunofluorescence. The expression of FoxP3 and A2aR in GC tissues was also detected by the immunoblotting assay. We next investigated the relationship between density of FoxP3+ Tregs, ratio of A2aR+/CD8+ T cells, and clinicopathological parameters. At the same time, Tregs and CD8+ T cells were isolated from peripheral blood of five GC patients, and the antagonists of CD39 and CD73 were used to assess the ability of Tregs to decompose ATP into adenosine. In addition, we cocultured CD8+ T cells and Tregs with antagonists of A2aR and A2bR in order to examine the alterations in immune function of CD8+ T cells. RESULTS The density of both FoxP3+ Tregs and A2aR+/CD8+ T cells was higher in GC tissue compared to peritumoral normal tissue and significantly correlated with the TNM stage, lymph node metastasis, and distant metastasis of GC. The process of Treg hydrolysis of ATP into adenosine was blocked by the antagonists of CD39 and CD73. In addition, Tregs could induce apoptosis and inhibit proliferation of CD8+ T cells, while this effect could be obviously reduced by applying the antagonist of A2aR or A2aR+A2bR. Moreover, IFN-γ, TNF-α, and perforin generated by CD8+ T cells could also be inhibited through the adenosine A2aR pathway. CONCLUSIONS The FoxP3+ Tregs and A2aR+/CD8+ T cells were excessively infiltrated in GC tissue. Tregs from GC can decompose ATP to adenosine and in turn induce apoptosis and inhibit the proliferation of CD8+ T cells through the A2aR pathway, further leading to immune escape of GC.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- The Affiliated Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
| | - Min Feng
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Shangce Du
- The Affiliated Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
| | - Xu Wei
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hu Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xu Yixin
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Wenxian
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Cabral-Marques O, Schimke LF, de Oliveira EB, El Khawanky N, Ramos RN, Al-Ramadi BK, Segundo GRS, Ochs HD, Condino-Neto A. Flow Cytometry Contributions for the Diagnosis and Immunopathological Characterization of Primary Immunodeficiency Diseases With Immune Dysregulation. Front Immunol 2019; 10:2742. [PMID: 31849949 PMCID: PMC6889851 DOI: 10.3389/fimmu.2019.02742] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022] Open
Abstract
Almost 70 years after establishing the concept of primary immunodeficiency disorders (PIDs), more than 320 monogenic inborn errors of immunity have been identified thanks to the remarkable contribution of high-throughput genetic screening in the last decade. Approximately 40 of these PIDs present with autoimmune or auto-inflammatory symptoms as the primary clinical manifestation instead of infections. These PIDs are now recognized as diseases of immune dysregulation. Loss-of function mutations in genes such as FOXP3, CD25, LRBA, IL-10, IL10RA, and IL10RB, as well as heterozygous gain-of-function mutations in JAK1 and STAT3 have been reported as causative of these disorders. Identifying these syndromes has considerably contributed to expanding our knowledge on the mechanisms of immune regulation and tolerance. Although whole exome and whole genome sequencing have been extremely useful in identifying novel causative genes underlying new phenotypes, these approaches are time-consuming and expensive. Patients with monogenic syndromes associated with autoimmunity require faster diagnostic tools to delineate therapeutic strategies and avoid organ damage. Since these PIDs present with severe life-threatening phenotypes, the need for a precise diagnosis in order to initiate appropriate patient management is necessary. More traditional approaches such as flow cytometry are therefore a valid option. Here, we review the application of flow cytometry and discuss the relevance of this powerful technique in diagnosing patients with PIDs presenting with immune dysregulation. In addition, flow cytometry represents a fast, robust, and sensitive approach that efficiently uncovers new immunopathological mechanisms underlying monogenic PIDs.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Nadia El Khawanky
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Freiburg im Breisgau, Germany.,Precision Medicine Theme, The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Rodrigo Nalio Ramos
- INSERM U932, SiRIC Translational Immunotherapy Team, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | | | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, United States
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Methotrexate Restores CD73 Expression on Th1.17 in Rheumatoid Arthritis and Psoriatic Arthritis Patients and May Contribute to Its Anti-Inflammatory Effect through Ado Production. J Clin Med 2019; 8:jcm8111859. [PMID: 31684171 PMCID: PMC6912794 DOI: 10.3390/jcm8111859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022] Open
Abstract
Objectives: Th1.17 are highly polyfunctional, potentially harmful CD4+ effector T cells (Teff) through IFN-γ and IL-17A coproduction. Th1.17 take part in the pathophysiology of rheumatoid arthritis (RA) and psoriatic arthritis (PsA), in which their hyper activation results in part from defects in negative regulation mechanisms. We recently demonstrated that the ecto-nucleotidase CD73 delineates a Th1.17-enriched Teff population and acts as an endogenous regulatory mechanism. Because Methotrexate (MTX), used as first line treatment of RA and PsA, increases extracellular concentrations of AMP and immunosuppressive adenosine, we investigated the modulation of CD73 by MTX treatment on Teff in RA/PsA patients. Methods: In a prospective cohort of 26 RA and 15 PsA patients before or under MTX treatment, we evaluated CD73 expression on blood Teff subsets, their cytokine production and AMPase functions. Results: We showed a decreased CD73 expression on Th1.17 and Th1 in untreated patients compared to healthy donors that was partly restored under MTX. This decrease in untreated patients leads to a halved Ado production by Th1.17 cells. CD73+ Teff remained functional under MTX treatment, but their CD73 re-expression may contribute to control their activation. Conclusion: Our study unveils uncovered mode of action of MTX on Teff subsets modulation and in the adenosine-dependent termination of inflammation in RA and PsA.
Collapse
|
35
|
de Leve S, Wirsdörfer F, Jendrossek V. The CD73/Ado System-A New Player in RT Induced Adverse Late Effects. Cancers (Basel) 2019; 11:cancers11101578. [PMID: 31623231 PMCID: PMC6827091 DOI: 10.3390/cancers11101578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a central component of standard treatment for many cancer patients. RT alone or in multimodal treatment strategies has a documented contribution to enhanced local control and overall survival of cancer patients, and cancer cure. Clinical RT aims at maximizing tumor control, while minimizing the risk for RT-induced adverse late effects. However, acute and late toxicities of IR in normal tissues are still important biological barriers to successful RT: While curative RT may not be tolerable, sub-optimal tolerable RT doses will lead to fatal outcomes by local recurrence or metastatic disease, even when accepting adverse normal tissue effects that decrease the quality of life of irradiated cancer patients. Technical improvements in treatment planning and the increasing use of particle therapy have allowed for a more accurate delivery of IR to the tumor volume and have thereby helped to improve the safety profile of RT for many solid tumors. With these technical and physical strategies reaching their natural limits, current research for improving the therapeutic gain of RT focuses on innovative biological concepts that either selectively limit the adverse effects of RT in normal tissues without protecting the tumor or specifically increase the radiosensitivity of the tumor tissue without enhancing the risk of normal tissue complications. The biology-based optimization of RT requires the identification of biological factors that are linked to differential radiosensitivity of normal or tumor tissues, and are amenable to therapeutic targeting. Extracellular adenosine is an endogenous mediator critical to the maintenance of homeostasis in various tissues. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (NT5E, CD73) that catabolize ATP to adenosine. Recent work revealed a role of the immunoregulatory CD73/adenosine system in radiation-induced fibrotic disease in normal tissues suggesting a potential use as novel therapeutic target for normal tissue protection. The present review summarizes relevant findings on the pathologic roles of CD73 and adenosine in radiation-induced fibrosis in different organs (lung, skin, gut, and kidney) that have been obtained in preclinical models and proposes a refined model of radiation-induced normal tissue toxicity including the disease-promoting effects of radiation-induced activation of CD73/adenosine signaling in the irradiated tissue environment. However, expression and activity of the CD73/adenosine system in the tumor environment has also been linked to increased tumor growth and tumor immune escape, at least in preclinical models. Therefore, we will discuss the use of pharmacologic inhibition of CD73/adenosine-signaling as a promising strategy for improving the therapeutic gain of RT by targeting both, malignant tumor growth and adverse late effects of RT with a focus on fibrotic disease. The consideration of the therapeutic window is particularly important in view of the increasing use of RT in combination with various molecularly targeted agents and immunotherapy to enhance the tumor radiation response, as such combinations may result in increased or novel toxicities, as well as the increasing number of cancer survivors.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| |
Collapse
|
36
|
Al-Attraqchi OH, Attimarad M, Venugopala KN, Nair A, Al-Attraqchi NH. Adenosine A2A Receptor as a Potential Drug Target - Current Status and Future Perspectives. Curr Pharm Des 2019; 25:2716-2740. [DOI: 10.2174/1381612825666190716113444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Adenosine receptors (ARs) are a class of G-protein coupled receptors (GPCRs) that are activated by
the endogenous substance adenosine. ARs are classified into 4 subtype receptors, namely, the A1, A2A, A2B and A3
receptors. The wide distribution and expression of the ARs in various body tissues as well as the roles they have
in controlling different functions in the body make them potential drug targets for the treatment of various pathological
conditions, such as cardiac diseases, cancer, Parkinson’s disease, inflammation and glaucoma. Therefore,
in the past decades, there have been extensive investigations of ARs with a high number of agonists and antagonists
identified that can interact with these receptors. This review shall discuss the A2A receptor (A2AAR) subtype
of the ARs. The structure, properties and the recent advances in the therapeutic potential of the receptor are discussed
with an overview of the recent advances in the methods of studying the receptor. Also, molecular modeling
approaches utilized in the design of A2AAR ligands are highlighted with various recent examples.
Collapse
Affiliation(s)
- Omar H.A. Al-Attraqchi
- Faculty of Pharmacy, Philadelphia University-Jordan, P.O BOX (1), Philadelphia University-19392, Amman, Jordan
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | |
Collapse
|
37
|
Chen S, Wainwright DA, Wu JD, Wan Y, Matei DE, Zhang Y, Zhang B. CD73: an emerging checkpoint for cancer immunotherapy. Immunotherapy 2019; 11:983-997. [PMID: 31223045 PMCID: PMC6609898 DOI: 10.2217/imt-2018-0200] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
CD73 is a novel immune checkpoint associated with adenosine metabolism that promotes tumor progression by suppressing antitumor immune response and promoting angiogenesis. The inhibition of CD73, in combination with immune checkpoint blockade, targeted therapy or conventional therapy, improves antitumor effects in numerous preclinical mouse models of cancer. Emerging evidence suggests that the combination of anti-CD73 and immune checkpoint blockade has promising clinical activity in patients with advanced solid tumors. In this review, we will discuss the specific role of CD73 on both tumor cells and nontumor cells in regulating tumor immunity and tumorigenesis and provide an update on the current view of the antitumor activity of targeting CD73 by mAb or small molecule selective inhibitors in preclinical and clinical settings.
Collapse
Affiliation(s)
- Siqi Chen
- Robert H Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer D Wu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yong Wan
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniela E Matei
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bin Zhang
- Robert H Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
38
|
Vigano S, Alatzoglou D, Irving M, Ménétrier-Caux C, Caux C, Romero P, Coukos G. Targeting Adenosine in Cancer Immunotherapy to Enhance T-Cell Function. Front Immunol 2019; 10:925. [PMID: 31244820 PMCID: PMC6562565 DOI: 10.3389/fimmu.2019.00925] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
T cells play a critical role in cancer control, but a range of potent immunosuppressive mechanisms can be upregulated in the tumor microenvironment (TME) to abrogate their activity. While various immunotherapies (IMTs) aiming at re-invigorating the T-cell-mediated anti-tumor response, such as immune checkpoint blockade (ICB), and the adoptive cell transfer (ACT) of natural or gene-engineered ex vivo expanded tumor-specific T cells, have led to unprecedented clinical responses, only a small proportion of cancer patients benefit from these treatments. Important research efforts are thus underway to identify biomarkers of response, as well as to develop personalized combinatorial approaches that can target other inhibitory mechanisms at play in the TME. In recent years, adenosinergic signaling has emerged as a powerful immuno-metabolic checkpoint in tumors. Like several other barriers in the TME, such as the PD-1/PDL-1 axis, CTLA-4, and indoleamine 2,3-dioxygenase (IDO-1), adenosine plays important physiologic roles, but has been co-opted by tumors to promote their growth and impair immunity. Several agents counteracting the adenosine axis have been developed, and pre-clinical studies have demonstrated important anti-tumor activity, alone and in combination with other IMTs including ICB and ACT. Here we review the regulation of adenosine levels and mechanisms by which it promotes tumor growth and broadly suppresses protective immunity, with extra focus on the attenuation of T cell function. Finally, we present an overview of promising pre-clinical and clinical approaches being explored for blocking the adenosine axis for enhanced control of solid tumors.
Collapse
Affiliation(s)
- Selena Vigano
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Alatzoglou
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christine Ménétrier-Caux
- Department of Immunology Virology and Inflammation, INSERM 1052, CNRS 5286, Léon Bérard Cancer Center, Cancer Research Center of Lyon, University of Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Christophe Caux
- Department of Immunology Virology and Inflammation, INSERM 1052, CNRS 5286, Léon Bérard Cancer Center, Cancer Research Center of Lyon, University of Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Ma XL, Shen MN, Hu B, Wang BL, Yang WJ, Lv LH, Wang H, Zhou Y, Jin AL, Sun YF, Zhang CY, Qiu SJ, Pan BS, Zhou J, Fan J, Yang XR, Guo W. CD73 promotes hepatocellular carcinoma progression and metastasis via activating PI3K/AKT signaling by inducing Rap1-mediated membrane localization of P110β and predicts poor prognosis. J Hematol Oncol 2019; 12:37. [PMID: 30971294 PMCID: PMC6458749 DOI: 10.1186/s13045-019-0724-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide because of rapid progression and high incidence of metastasis or recurrence. Accumulating evidence shows that CD73-expressing tumor cell is implicated in development of several types of cancer. However, the role of CD73 in HCC cell has not been systematically investigated and its underlying mechanism remains elusive. METHODS CD73 expression in HCC cell was determined by RT-PCR, Western blot, and immunohistochemistry staining. Clinical significance of CD73 was evaluated by Cox regression analysis. Cell counting kit-8 and colony formation assays were used for proliferation evaluation. Transwell assays were used for motility evaluations. Co-immunoprecipitation, cytosolic and plasma membrane fractionation separation, and ELISA were applied for evaluating membrane localization of P110β and its catalytic activity. NOD/SCID/γc(null) (NOG) mice model was used to investigate the in vivo functions of CD73. RESULTS In the present study, we demonstrate that CD73 was crucial for epithelial-mesenchymal transition (EMT), progression and metastasis in HCC. CD73 expression is increased in HCC cells and correlated with aggressive clinicopathological characteristics. Clinically, CD73 is identified as an independent poor prognostic indicator for both time to recurrence and overall survival. CD73 knockdown dramatically inhibits HCC cells proliferation, migration, invasion, and EMT in vitro and hinders tumor growth and metastasis in vivo. Opposite results could be observed when CD73 is overexpressed. Mechanistically, adenosine produced by CD73 binds to adenosine A2A receptor (A2AR) and activates Rap1, which recruits P110β to the plasma membrane and triggers PIP3 production, thereby promoting AKT phosphorylation in HCC cells. Notably, a combination of anti-CD73 and anti-A2AR achieves synergistic depression effects on HCC growth and metastasis than single agent alone. CONCLUSIONS CD73 promotes progression and metastasis through activating PI3K/AKT signaling, indicating a novel prognostic biomarker for HCC. Our data demonstrate the importance of CD73 in HCC in addition to its immunosuppressive functions and revealed that co-targeting CD73 and A2AR strategy may be a promising novel therapeutic strategy for future HCC management.
Collapse
Affiliation(s)
- Xiao-Lu Ma
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Min-Na Shen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Bo Hu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 People’s Republic of China
| | - Bei-Li Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Wen-Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Li-Hua Lv
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Yan Zhou
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - An-Li Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Yun-Fan Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 People’s Republic of China
| | - Chuan-Yan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 People’s Republic of China
| | - Bai-Shen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 People’s Republic of China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 People’s Republic of China
| | - Xin-Rong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 People’s Republic of China
- Liver Cancer Institute, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
40
|
de Leve S, Wirsdörfer F, Jendrossek V. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy. Front Immunol 2019; 10:698. [PMID: 31024543 PMCID: PMC6460721 DOI: 10.3389/fimmu.2019.00698] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular adenosine is a potent endogenous immunosuppressive mediator critical to the maintenance of homeostasis in various normal tissues including the lung. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (CD73) that catabolize ATP to adenosine. An acute CD73-dependent increase of adenosine in normal tissues mostly exerts tissue protective functions whereas chronically increased adenosine-levels in tissues exposed to DNA damaging chemotherapy or radiotherapy promote pathologic remodeling processes and fibrosis for example in the skin and the lung. Importantly, cancer cells also express CD73 and high CD73 expression in the tumor tissue has been linked to poor overall survival and recurrence free survival in patients suffering from breast and ovarian cancer. CD73 and adenosine support growth-promoting neovascularization, metastasis, and survival in cancer cells. In addition, adenosine can promote tumor intrinsic or therapy-induced immune escape by various mechanisms that dampen the immune system. Consequently, modulating CD73 or cancer-derived adenosine in the tumor microenvironment emerges as an attractive novel therapeutic strategy to limit tumor progression, improve antitumor immune responses, avoid therapy-induced immune deviation, and potentially limit normal tissue toxicity. However, the role of CD73/adenosine signaling in the tumor and normal tissue responses to radiotherapy and its use as therapeutic target to improve the outcome of radiotherapy approaches is less understood. The present review will highlight the dual role of CD73 and adenosine in tumor and tissue responses to radiotherapy with a special focus to the lung. It will also discuss the potential benefits and risks of pharmacologic modulation of the CD73/adenosine system to increase the therapeutic gain of radiotherapy or combined radioimmunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
41
|
Huang Y, Gu Z, Fan Y, Zhai G, Zhao X, Sun Q, Shi Y, Lin G. Inhibition of the adenosinergic pathway: the indispensable part of oncological therapy in the future. Purinergic Signal 2019; 15:53-67. [PMID: 30809739 PMCID: PMC6439062 DOI: 10.1007/s11302-018-9641-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/04/2018] [Indexed: 02/08/2023] Open
Abstract
In recent years, immunotherapy has produced many unexpected breakthroughs in oncological therapy; however, it still has many deficiencies. For example, the number of patients who are unresponsive to anti-programmed death-ligand 1 (PD-L1), anti-cytotoxic T-like antigen-4 (CTLA4), and anti-programmed death-1 (PD1) therapies cannot be ignored, and the search for an undiscovered immunosuppressive pathway is imminent. Five decades ago, researchers found that activation of the adenosinergic pathway was negatively correlated with prognosis in many cancers. This review describes the entire process of the adenosinergic pathway in the tumor microenvironment and the mechanism of immunosuppression, which promotes tumor metastasis and drug resistance. Additionally, the review explores factors that regulate this pathway, including signaling factors secreted by the tumor microenvironment and certain anti-tumor drugs. Additionally, the combination of adenosinergic pathway inhibitors with chemotherapy, checkpoint blockade therapy, and immune cell-based therapy is summarized. Finally, certain issues regarding treatment via inhibition of this pathway and the use of targeted nanoparticles to reduce adverse reactions in patients are put forward in this review. Graphical Abstract The inhibitors of adenosinergic pathway loaded nanoparticles enter tumor tissue through EPR effect, and inhibit adenosinergic pathway to enhance or restore the effect of immune checkpoint blockade therapy, chemotherapies and immune cell-based therapy. Note: EPR means enhanced penetration and retention, × means blockade.
Collapse
Affiliation(s)
- Yi Huang
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Zili Gu
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Yang Fan
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Guangxi Zhai
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, Second Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Qifeng Sun
- Department of Thoracic Surgery, Second Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
42
|
Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med 2018; 10:10/459/eaat7807. [DOI: 10.1126/scitranslmed.aat7807] [Citation(s) in RCA: 317] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022]
Abstract
Immunotherapy is revolutionizing the clinical management of multiple tumors. However, only a fraction of patients with cancer responds to immunotherapy, and currently available immunotherapeutic agents are expensive and generally associated with considerable toxicity, calling for the identification of robust predictive biomarkers. The overall genomic configuration of malignant cells, potentially favoring the emergence of immunogenic tumor neoantigens, as well as specific mutations that compromise the ability of the immune system to recognize or eradicate the disease have been associated with differential sensitivity to immunotherapy in preclinical and clinical settings. Along similar lines, the type, density, localization, and functional orientation of the immune infiltrate have a prominent impact on anticancer immunity, as do features of the tumor microenvironment linked to the vasculature and stroma, and systemic factors including the composition of the gut microbiota. On the basis of these considerations, we outline the hallmarks of successful anticancer immunotherapy.
Collapse
|
43
|
Bossennec M, Di Roio A, Caux C, Ménétrier-Caux C. MDR1 in immunity: friend or foe? Oncoimmunology 2018; 7:e1499388. [PMID: 30524890 PMCID: PMC6279327 DOI: 10.1080/2162402x.2018.1499388] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/08/2018] [Indexed: 02/09/2023] Open
Abstract
MDR1 is an ATP-dependent transmembrane transporter primarily studied for its role in the detoxification of tissues and for its implication in resistance of tumor cells to chemotherapy treatment. Several studies also report on its expression on immune cells where it plays a protective role from xenobiotics and toxins. This review provides an overview of what is known on MDR1 expression in immune cells in human, and its implications in different pathologies and their treatment options.
Collapse
Affiliation(s)
- Marion Bossennec
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| | - Anthony Di Roio
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| | - Christophe Caux
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| | - Christine Ménétrier-Caux
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| |
Collapse
|
44
|
Koledova Z, Howard BA, Englund J, Bach K, Bentires-Alj M, Gonzalez-Suarez E. European Network of Breast Development and Cancer turned 10 years: a growing family of mammary gland researchers. Breast Cancer Res 2018; 20:102. [PMID: 30180882 PMCID: PMC6122475 DOI: 10.1186/s13058-018-1032-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The European Network for Breast Development and Cancer (ENBDC), a worldwide network (http://www.enbdc.org/), celebrated its tenth anniversary with a fantastic meeting last March 15–17, 2018 in Weggis with 76 attendees.
Collapse
Affiliation(s)
- Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic
| | - Beatrice A Howard
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Johanna Englund
- Institute of Biotechnology and HiLIFE, University of Helsinki, Helsinki, Finland
| | - Karsten Bach
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.,Cancer Research UK Cambridge Cancer Centre, Cambridge, CB2 0RE, UK
| | - Mohammed Bentires-Alj
- Department of Biomedicine, University of Basel, University Hospital Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland
| | - Eva Gonzalez-Suarez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Avinguda de la Gran Via, 199 - 203, L'Hospitalet deLlobregat, 08908, Barcelona, Spain.
| |
Collapse
|
45
|
Allard D, Chrobak P, Allard B, Messaoudi N, Stagg J. Targeting the CD73-adenosine axis in immuno-oncology. Immunol Lett 2018; 205:31-39. [PMID: 29758241 DOI: 10.1016/j.imlet.2018.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
The ectonucleotidases CD39 and CD73 are cell surface enzymes that catabolize the breakdown of extracellular ATP into adenosine. As such, they constitute critical components of the extracellular purinergic pathway and play important roles in maintaining tissue and immune homeostasis. With the coming of age of cancer immunotherapy, ectonucleotidases and adenosine receptors have emerged as novel therapeutic targets to enhance antitumor immune responses. With early-phase clinical trials showing promising results, it is becoming increasingly important to decipher the distinct mechanisms-of-action of adenosine-targeting agents, identify patients that will benefit from these agents and rationally develop novel synergistic combinations. Given the broad expression of ectonucleotidases and adenosine receptors, a better understanding of cell-specific roles will also be key for successful implementation of this new generation of immuno-oncology therapeutics. We here review the latest studies on the roles of CD73 and adenosine in cancer with a focus on cell-specific function. We also discuss ongoing clinical trials and future avenues for adenosine-targeting agents.
Collapse
Affiliation(s)
- David Allard
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; Faculté de Pharmacie de l'Université de Montréal, Montréal, QC, Canada
| | - Pavel Chrobak
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; Faculté de Pharmacie de l'Université de Montréal, Montréal, QC, Canada
| | - Bertrand Allard
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; Faculté de Pharmacie de l'Université de Montréal, Montréal, QC, Canada
| | - Nouredin Messaoudi
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; University of Antwerp, Antwerp, Belgium
| | - John Stagg
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; Faculté de Pharmacie de l'Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|