1
|
Rajkumari S, Singh J, Agrawal U, Agrawal S. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Int Immunopharmacol 2024; 142:112949. [PMID: 39236460 DOI: 10.1016/j.intimp.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
MDSCs (myeloid-derived suppressor cells) are crucial for immune system evasion in cancer. They accumulate in peripheral blood and tumor microenvironment, suppressing immune cells like T-cells, natural killer cells and dendritic cells. They promote tumor angiogenesis and metastasis by secreting cytokines and growth factors and contribute to a tumor-promoting environment. The accumulation of MDSCs in cancer patients has been linked to poor prognosis and resistance to various cancer therapies. Targeting MDSCs and their immunosuppressive mechanisms may improve treatment outcomes and enhance immune surveillance by developing drugs that inhibit MDSC function, by preventing their accumulation and by disrupting the tumor-promoting environment. This review presents a detailed overview of the MDSC research in cancer with regulation of their development and function. The relevance of MDSC as a prognostic and predictive biomarker in different types of cancers, along with recent advancements on the therapeutic approaches to target MDSCs are discussed in detail.
Collapse
Affiliation(s)
- Sunanda Rajkumari
- ICMR National Institute of Medical Statistics, Ansari Nagar, New Delhi 110029, India
| | - Jaspreet Singh
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar, New Delhi 110029, India
| | - Usha Agrawal
- Asian Institute of Public Health University (AIPH) University, 1001 Haridamada, Jatani, Near IIT Bhubaneswar, Bhubaneswar 751002, India
| | - Sandeep Agrawal
- Discovery Research Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
2
|
Kaur P, Singh SK, Mishra MK, Singh S, Singh R. Nanotechnology for boosting ovarian cancer immunotherapy. J Ovarian Res 2024; 17:202. [PMID: 39402681 PMCID: PMC11475952 DOI: 10.1186/s13048-024-01507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Ovarian cancer, often referred to as the "silent killer," is notoriously difficult to detect in its early stages, leading to a poor prognosis for many patients. Diagnosis is often delayed until the cancer has advanced, primarily due to its ambiguous and frequently occurring clinical symptoms. Ovarian cancer leads to more deaths than any other cancer of the female reproductive system. The main reasons for the high mortality rates include delayed diagnosis and resistance to treatment. As a result, there is an urgent need for improved diagnostic and treatment options for ovarian cancer. The standard treatments typically involve debulking surgery along with platinum-based chemotherapies. Among patients with advanced-stage cancer who initially respond to current therapies, 50-75% experience a recurrence. Recently, immunotherapy-based approaches to enhance the body's immune response to combat tumor growth have shown promise. Immune checkpoint inhibitors have shown promising results in treating other types of tumors. However, in ovarian cancer, only a few of these inhibitors have been effective because the tumor's environment suppresses the immune system and creates barriers for treatment. This hampers the effectiveness of existing immunotherapies. Nonetheless, advanced immunotherapy techniques and delivery systems based on nanotechnology hold promise for overcoming these challenges.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36014, USA
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| |
Collapse
|
3
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
4
|
Yao Z, Xu F, Wu R, Wang X, Guo M, Wang S, Yang K, Du W, Song J. Dual-Locked Probe with Activatable Sonoafterglow Luminescence for Precise Imaging of MET-Induced Liver Injury. Anal Chem 2024; 96:15031-15041. [PMID: 39226180 DOI: 10.1021/acs.analchem.4c03305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Metformin (MET) is currently the first-line treatment for type 2 diabetes mellitus (T2DM). However, overdose and long-term use of MET may induce a serious liver injury. What's worse, diagnosis of MET-induced liver injury remains challenging in clinic. Although several probes have been reported for imaging MET-induced liver injury utilizing upregulated hepatic H2S as a biomarker, they are still at risk of nonspecific activation in complex physiological environments and rely on light excitation with limited imaging depth. Herein, we rationally designed and developed a dual-locked probe, DPA-H2S, for precise imaging of MET-induced liver injury by H2S-activated sonoafterglow luminescence. DPA-H2S is a small molecule consisting of a sonosensitizer protoporphyrin IX (PpIX) and an afterglow substrate that is dual-locked with a H2S-responsive 2,4-dinitrobenzene group and a 1O2-responsive electron-rich double bond. When employing DPA-H2S for imaging of MET-induced liver injury in vivo, since the PpIX moiety can produce 1O2 in situ at the liver site under focused ultrasound (US) irradiation, the two locks of DPA-H2S can be specifically activated by the highly upregulated H2S at the liver injury sites and the in situ generated 1O2, respectively. Thus, the sonoafterglow signal of DPA-H2S is significantly turned on, enabling precise imaging of the MET-induced liver injury. In vitro results showed that, through H2S-activated sonoafterglow luminescence, DPA-H2S was capable of imaging H2S with good sensitivity and high selectivity and realized deep tissue imaging (∼20 mm, signal-to-background ratio (SBR) = 3.4). Furthermore, we successfully applied DPA-H2S for precise in vivo imaging of MET-induced liver injury. We anticipate that our dual-locked probe, DPA-H2S, may serve as a promising tool in assisting the diagnosis of MET-induced liver injury in clinics and informing the clinical utilization of MET in the near future.
Collapse
Affiliation(s)
- Zhicun Yao
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Fei Xu
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Rongrong Wu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xian Wang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Mao Guo
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Shuhan Wang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Kaiqiong Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Wei Du
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| |
Collapse
|
5
|
Rimini M, Montes M, Amadeo E, Vitiello F, Kudo M, Tada T, Suda G, Shimose S, Lonardi S, Finkelmeier F, Salani F, Antonuzzo L, Marra F, Iavarone M, Cabibbo G, Foschi FG, Silletta M, Sacco R, Rapposelli IG, Scartozzi M, Nicoletta P, Aldrighetti L, Persano M, Camera S, Rossari F, Foti S, Kumada T, Hiraoka A, Iwamoto H, Rizzato MD, Himmelsbach V, Masi G, Corradi M, Celsa C, Fabio C, Frassineti GL, Cascinu S, Casadei-Gardini A, Presa J. Impact of metformin, statin, aspirin and insulin on the prognosis of uHCC patients receiving first line Lenvatinib or Atezolizumab plus Bevacizumab. Sci Rep 2024; 14:20200. [PMID: 39215078 PMCID: PMC11364777 DOI: 10.1038/s41598-024-70928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Recently, in Hepatocellular carcinoma (HCC) setting, the use of metformin has been associated to a trend toward worse response rate, overall survival and progression free survival in patients who received immunotherapy. The study population included individuals from both Eastern and Western regions with a confirmed diagnosis of HCC and receiving first line treatment with Atezolizumab plus bevacizumab or Lenvatinib. Univariate and multivariate analyses were performed by Cox proportional. For the analysis, patients were stratified based on their use of concomitant medication or not. At the time of database lock, 319 deaths were observed: 209 in the Lenvatinib cohort, 110 in the Atezolizumab plus bevacizumab cohort. In the Atezolizumab plus Bevacizumab arm, 50 (16.5%) patients were on chronic metformin use. At the univariate analysis for OS, patients who used metformin showed significantly shorter OS compared to patients who did not use metformin (HR 1.9, 95% CI 1.1-3.2). Multivariate analysis confirmed that patients in metformin group had significantly shorter OS compared to patients in no-metformin group (HR 1.9; 95% CI 1.1-3.1). At the univariate analysis for PFS, patients in metformin group had significantly shorter PFS compared to patients in no-metformin group (HR 1.6, 95% CI 1.0-2.6). Multivariate analysis confirmed that patients in metformin group had significantly shorter PFS compared to patients in no-metformin group (HR 1.7; 95% CI 1.1-2.7; p = 0.0147). No differences were reported in terms of ORR and DCR between patients in metformin group and those in no-metformin group. In the Lenvatinib cohort, 65 (15%) patients were recorded to chronically use metformin. No statistically significant differences in terms of both OS and PFS were found between patients in metformin group and patients in no-metformin group. This analysis unveils a negative prognostic role associated with metformin use specifically within the Atezolizumab plus Bevacizumab group.
Collapse
Affiliation(s)
- Margherita Rimini
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Vita-Salute San Raffaele University, Milan, Italy
- Vita-Salute University San Raffaele, Milan, Italy
| | | | - Elisabeth Amadeo
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Vitiello
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Higashiosaka, Japan
| | - Toshifumi Tada
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shigeo Shimose
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Sara Lonardi
- Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Fabian Finkelmeier
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Francesca Salani
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy
| | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fabio Marra
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Massimo Iavarone
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Cabibbo
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
| | | | - Marianna Silletta
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Rodolfo Sacco
- Gastroenterology and Digestive Endoscopy Unit, Foggia University Hospital, Foggia, Puglia, Italy
| | | | - Mario Scartozzi
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Pella Nicoletta
- Department of Oncology, ASUFC University Hospital, Udine, Italy
| | - Luca Aldrighetti
- Hepato-Biliary Surgery Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Silvia Camera
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Federico Rossari
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Foti
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Takashi Kumada
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Atsushi Hiraoka
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | | | - Vera Himmelsbach
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Gianluca Masi
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy
| | - Mattia Corradi
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ciro Celsa
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
| | - Conti Fabio
- Department of Internal Medicine, Ospedale degli Infermi di Faenza, Faenza, Emilia Romagna, Italy
| | | | - Stefano Cascinu
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Vita-Salute San Raffaele University, Milan, Italy
- Vita-Salute University San Raffaele, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Vita-Salute San Raffaele University, Milan, Italy.
- Vita-Salute University San Raffaele, Milan, Italy.
| | | |
Collapse
|
6
|
Flores-Gonzalez J, Ramón-Luing LA, Falfán-Valencia R, Batista CVF, Soto-Alvarez S, Huerta-Nuñez L, Chávez-Galán L. The presence of cytotoxic CD4 and exhausted-like CD8+ T-cells is a signature of active tuberculosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167219. [PMID: 38734321 DOI: 10.1016/j.bbadis.2024.167219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Chronic infections induce CD4+ T-cells with cytotoxic functions (CD4 CTLs); at present, it is still unknown whether latent tuberculosis (LTB) and active tuberculosis (ATB) induce CD4 CTLs. Plasma and cells from four patient groups-uninfected contact (UC), LTB, and ATB (divided as sensitive [DS-TB]- or resistant [DR-TB]-drug)-were evaluated by flow cytometry, q-PCR, and proteomics. The data showed that ATB patients had an increased frequency of CD4+ T-cells and a decreased frequency of CD8+ T-cells. The latter displays an exhausted-like profile characterized by CD39, CD279, and TIM-3 expression. ATB had a high frequency of CD4 + perforin+ cells, suggesting a CD4 CTL profile. The expression (at the transcriptional level) of granzyme A, granzyme B, granulysin, and perforin, as well as the genes T-bet (Tbx21) and NKG2D (Klrk1), in enriched CD4+ T-cells, confirmed the cytotoxic signature of CD4+ T-cells during ATB (which was stronger in DS-TB than in DR-TB). Moreover, proteomic analysis revealed the presence of HSP70 (in DS-TB) and annexin A5 (in DR-TB), which are molecules that have been associated with favoring the CD4 CTL profile. Finally, we found that lipids from Mycobacterium tuberculosis increased the presence of CD4 CTLs in DR-TB patients. Our data suggest that ATB is characterized by exhausted-like CD8+ T-cells, which, together with a specific microenvironment, favor the presence of CD4 CTLs.
Collapse
Affiliation(s)
- Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080. Mexico
| | - Lucero A Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080. Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Cesar V F Batista
- Laboratory of Pharmacology, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicana, Mexico City 11200, Mexico
| | - Silverio Soto-Alvarez
- Laboratory of Pharmacology, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicana, Mexico City 11200, Mexico
| | - Lidia Huerta-Nuñez
- Laboratory of Pharmacology, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicana, Mexico City 11200, Mexico
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080. Mexico.
| |
Collapse
|
7
|
Tokumasu M, Nishida M, Zhao W, Chao R, Imano N, Yamashita N, Hida K, Naito H, Udono H. Metformin synergizes with PD-1 blockade to promote normalization of tumor vessels via CD8T cells and IFNγ. Proc Natl Acad Sci U S A 2024; 121:e2404778121. [PMID: 39018197 PMCID: PMC11287262 DOI: 10.1073/pnas.2404778121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/21/2024] [Indexed: 07/19/2024] Open
Abstract
Tumor blood vessels are highly leaky in structure and have poor blood perfusion, which hampers infiltration and function of CD8T cells within tumor. Normalizing tumor vessels is thus thought to be important in promoting the flux of immune T cells and enhancing ant-tumor immunity. However, how tumor vasculature is normalized is poorly understood. Metformin (Met) combined with ant-PD-1 therapy is known to stimulate proliferation of and to produce large amounts of IFNγ from tumor-infiltrating CD8T lymphocytes (CD8TILs). We found that the combination therapy promotes the pericyte coverage of tumor vascular endothelial cells (ECs) to improve blood perfusion and that it suppresses the hyperpermeability through the increase of VE-cadherin. Peripheral node addressin(PNAd) and vascular cell adhesion molecule (VCAM)-1, both implicated to promote tumor infiltration of CD8T cells, were also increased. Importantly, tumor vessel normalization, characterized as the reduced 70-kDa dextran leakage and the enhancement of VE-cadherin and VCAM-1, were canceled by anti-CD8 Ab or anti-IFNγ Ab injection to mice. The increased CD8TILs were also abrogated by anti-IFNγ Ab injection. In vascular ECs, flow cytometry analysis revealed that pSTAT1 expression was found to be associated with VE-cadherin expression. Moreover, in vitro treatment with Met and IFNγ enhanced VE-cadherin and VCAM-1 on human umbilical vein endothelial cells (HUVECs). The Kaplan-Meier method revealed a correlation of VE-cadherin or VCAM-1 levels with overall survival in patients treated with immune checkpoint inhibitors. These data indicate that IFNγ-mediated cross talk of CD8TILs with tumor vessels is important for creating a better tumor microenvironment and maintaining sustained antitumor immunity.
Collapse
Affiliation(s)
- Miho Tokumasu
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| | - Mikako Nishida
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| | - Weiyang Zhao
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| | - Ruoyu Chao
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| | - Natsumi Imano
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| | - Nahoko Yamashita
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo060-8586, Japan
| | - Hisamichi Naito
- Department of Vascular Physiology, Kanazawa University Graduate School of Medical Sciences, Kanazawa920-8640, Ishikawa, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama700-8558, Japan
| |
Collapse
|
8
|
Sun BY, Zhang D, Gan W, Wu JF, Wang ZT, Sun GQ, Zhou J, Fan J, Yi Y, Hu B, Zhang BH, Qiu SJ. Targeting CD73 limits tumor progression and enhances anti-tumor activity of anti-PD-1 therapy in intrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol 2024; 150:348. [PMID: 39002018 PMCID: PMC11246275 DOI: 10.1007/s00432-024-05869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND & AIMS Patients with intrahepatic cholangiocarcinoma (iCCA) respond poorly to immune checkpoint blockades (ICBs). In this study, we aimed to dissect the potential mechanisms underlying poor response to ICBs and explore a rational ICB-based combination therapy in iCCA. METHODS scRNA-seq dataset GSE151530 was analyzed to investigate the differentially expressed genes in malignant cells following ICBs therapy. RNA-seq analysis and western blot assays were performed to examine the upstream and downstream signaling pathways of CD73. Subcutaneous tumor xenograft models were utilized to investigate the impact of CD73 on iCCA growth. Plasmid AKT/NICD-induced spontaneous murine iCCAs were used to explore the therapeutic efficacy of CD73 enzymatic inhibitor AB680 combined with PD-1 blockade. Time-of-flight mass cytometry (CyTOF) was conducted to identify the tumor-infiltrating immune cell populations and their functional changes in murine iCCAs treated with AB680 in combination with PD-1 antibody. RESULTS scRNA-seq analysis identified elevated CD73 expression in malignant cells in response to ICBs therapy. Mechanistically, ICBs therapy upregulated CD73 expression in malignant cells via TNF-α/NF-κB signaling pathway. In vivo studies revealed that CD73 inhibition suppressed the growth of subcutaneous tumors, and achieved synergistic depression effects with gemcitabine and cisplatin (GC). Adenosine produced by CD73 activates AKT/GSK3β/β-catenin signaling axis in iCCA cells. CD73 inhibitor AB680 potentiates anti-tumor efficacy of PD-1 antibody in murine iCCAs. CyTOF analysis showed that AB680 combined with anti-PD-1 therapy promoted the infiltration of CD8+ T, CD4+ T cells, and NK cells in murine iCCAs, while simultaneously decreased the proportions of macrophages and neutrophils. Moreover, AB680 combined with anti-PD-1 significantly upregulated the expression of Granzyme B, Tbet and co-stimulatory molecule ICOS in infiltrating CD8+ T cells. CONCLUSIONS CD73 inhibitor AB680 limits tumor progression and potentiates therapeutic efficacy of GC chemotherapy or anti-PD-1 treatment in iCCA. AB680 combined with anti-PD-1 therapy effectively elicits anti-tumor immune response.
Collapse
Affiliation(s)
- Bao-Ye Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dai Zhang
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Gan
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing-Fang Wu
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guo-Qiang Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Bo-Heng Zhang
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China.
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Kim J, Choi JY, Min H, Hwang KW. Exploring the Potential of Glycolytic Modulation in Myeloid-Derived Suppressor Cells for Immunotherapy and Disease Management. Immune Netw 2024; 24:e26. [PMID: 38974210 PMCID: PMC11224668 DOI: 10.4110/in.2024.24.e26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
Recent advancements in various technologies have shed light on the critical role of metabolism in immune cells, paving the way for innovative disease treatment strategies through immunometabolism modulation. This review emphasizes the glucose metabolism of myeloid-derived suppressor cells (MDSCs), an emerging pivotal immunosuppressive factor especially within the tumor microenvironment. MDSCs, an immature and heterogeneous myeloid cell population, act as a double-edged sword by exacerbating tumors or mitigating inflammatory diseases through their immune-suppressive functions. Numerous recent studies have centered on glycolysis of MDSC, investigating the regulation of altered glycolytic pathways to manage diseases. However, the specific changes in MDSC glycolysis and their exact functions continue to be areas of ongoing discussion yet. In this paper, we review a range of current findings, including the latest research on the alteration of glycolysis in MDSCs, the consequential functional alterations in these cells, and the outcomes of attempts to modulate MDSC functions by regulating glycolysis. Ultimately, we will provide insights into whether these research efforts could be translated into clinical applications.
Collapse
Affiliation(s)
- Jisu Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jee Yeon Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Kwang Woo Hwang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
10
|
Qi H, Li Y, Geng Y, Wan X, Cai X. Nanoparticle-mediated immunogenic cell death for cancer immunotherapy. Int J Pharm 2024; 656:124045. [PMID: 38561134 DOI: 10.1016/j.ijpharm.2024.124045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The field of cancer therapy is witnessing the emergence of immunotherapy, an innovative approach that activates the body own immune system to combat cancer. Immunogenic cell death (ICD) has emerged as a prominent research focus in the field of cancer immunotherapy, attracting significant attention in recent years. The activation of ICD can induce the release of damage-associated molecular patterns (DAMPs), such as calreticulin (CRT), adenosine triphosphate (ATP), high mobility group box protein 1 (HMGB1), and heat shock proteins (HSP). Subsequently, this process promotes the maturation of innate immune cells, including dendritic cells (DCs), thereby triggering a T cell-mediated anti-tumor immune response. The activation of the ICD ultimately leads to the development of long-lasting immune responses against tumors. Studies have demonstrated that partial therapeutic approaches, such as chemotherapy with doxorubicin, specific forms of radiotherapy, and phototherapy, can induce the generation of ICD. The main focus of this article is to discuss and review the therapeutic methods triggered by nanoparticles for ICD, while briefly outlining their anti-tumor mechanism. The objective is to provide a comprehensive reference for the widespread application of ICD.
Collapse
Affiliation(s)
- Haolong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Yuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Yingjie Geng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|
11
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
12
|
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol 2024; 21:147-164. [PMID: 38191922 DOI: 10.1038/s41571-023-00846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Anticancer agents continue to dominate the list of newly approved drugs, approximately half of which are immunotherapies. This trend illustrates the considerable promise of cancer treatments that modulate the immune system. However, the immune system is complex and dynamic, and can have both tumour-suppressive and tumour-promoting effects. Understanding the full range of immune modulation in cancer is crucial to identifying more effective treatment strategies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that develop in association with chronic inflammation, which is a hallmark of cancer. Indeed, MDSCs accumulate in the tumour microenvironment, where they strongly inhibit anticancer functions of T cells and natural killer cells and exert a variety of other tumour-promoting effects. Emerging evidence indicates that MDSCs also contribute to resistance to cancer treatments, particularly immunotherapies. Conversely, treatment approaches designed to eliminate cancer cells can have important additional effects on MDSC function, which can be either positive or negative. In this Review, we discuss the interplay between MDSCs and various other cell types found in tumours as well as the mechanisms by which MDSCs promote tumour progression. We also discuss the relevance and implications of MDSCs for cancer therapy.
Collapse
Affiliation(s)
- Samantha A Lasser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Feyza G Ozbay Kurt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Ihor Arkhypov
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
13
|
Wang Q, Wei X. Research Progress on the Use of Metformin in Leukemia Treatment. Curr Treat Options Oncol 2024; 25:220-236. [PMID: 38286894 PMCID: PMC10873432 DOI: 10.1007/s11864-024-01179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
OPINION STATEMENT Metformin is a first-line drug in the clinical treatment of type 2 diabetes. Its main molecular mechanism involves the activation of adenosine 5'-monophosphate-activated protein kinase (AMPK), which regulates cell energy metabolism. Many clinical studies have shown that metformin can reduce the incidence and mortality of cancer in patients with or without diabetes. In vitro studies also confirmed that metformin can inhibit proliferation, promote apoptosis, and enhance the response of cells to chemical drugs and other anticancer effects on a variety of leukemia cells. In recent years, leukemia has become one of the most common malignant diseases. Although great progress has been made in therapeutic approaches for leukemia, novel drugs and better treatments are still needed to improve the therapeutic efficacy of these treatments. This article reviews the application status and possible mechanism of metformin in the treatment of leukemia to further understand the anticancer mechanism of metformin and expand its clinical application.
Collapse
Affiliation(s)
- Qian Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xudong Wei
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
14
|
Salminen A. AMPK signaling inhibits the differentiation of myofibroblasts: impact on age-related tissue fibrosis and degeneration. Biogerontology 2024; 25:83-106. [PMID: 37917219 PMCID: PMC10794430 DOI: 10.1007/s10522-023-10072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Disruption of the extracellular matrix (ECM) and an accumulation of fibrotic lesions within tissues are two of the distinctive hallmarks of the aging process. Tissue fibroblasts are mesenchymal cells which display an impressive plasticity in the regulation of ECM integrity and thus on tissue homeostasis. Single-cell transcriptome studies have revealed that tissue fibroblasts exhibit a remarkable heterogeneity with aging and in age-related diseases. Excessive stress and inflammatory insults induce the differentiation of fibroblasts into myofibroblasts which are fusiform contractile cells and abundantly secrete the components of the ECM and proteolytic enzymes as well as many inflammatory mediators. Detrimental stresses can also induce the transdifferentiation of certain mesenchymal and myeloid cells into myofibroblasts. Interestingly, many age-related stresses, such as oxidative and endoplasmic reticulum stresses, ECM stiffness, inflammatory mediators, telomere shortening, and several alarmins from damaged cells are potent inducers of myofibroblast differentiation. Intriguingly, there is convincing evidence that the signaling pathways stimulated by the AMP-activated protein kinase (AMPK) are potent inhibitors of myofibroblast differentiation and accordingly AMPK signaling reduces fibrotic lesions within tissues, e.g., in age-related cardiac and pulmonary fibrosis. AMPK signaling is not only an important regulator of energy metabolism but it is also able to control cell fate determination and many functions of the immune system. It is known that AMPK signaling can delay the aging process via an integrated signaling network. AMPK signaling inhibits myofibroblast differentiation, e.g., by suppressing signaling through the TGF-β, NF-κB, STAT3, and YAP/TAZ pathways. It seems that AMPK signaling can alleviate age-related tissue fibrosis and degeneration by inhibiting the differentiation of myofibroblasts.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
15
|
Su X, Fu C, Liu F, Bian R, Jing P. T-cell exhaustion prediction algorithm in tumor microenvironment for evaluating prognostic stratification and immunotherapy effect of esophageal cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:592-611. [PMID: 37493251 DOI: 10.1002/tox.23887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/01/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
Esophageal cancer (EC) is a common digestive malignancy that ranks sixth in cancer deaths, with a 5-year survival rate of 15%-25%. As a result, reliable prognostic biomarkers are required to accurately predict the prognosis of EC. T-cell exhaustion (TEX) is associated with poorer prognosis and immune infiltration in EC. In this study, nine risk genes were finally screened to constitute the prognostic model using least absolute shrinkage and selection operator analysis. Patients were divided into two groups based on the expression of the TEX-related genes: high-risk group and low-risk group. The expression of TEX-related genes differed significantly between the two groups. The findings revealed that the risk model developed was highly related to the clinical prognosis and amount of immune cell infiltration in EC patients. It was also significantly correlated with the therapeutic sensitivity of multiple chemotherapeutic agents in EC patients. Subsequently, we successfully constructed drug-resistant cell lines KYSE480/CDDP-R and KYSE180/CDDP-R to verify the correlation between PD-1 and drug resistance in EC. Then, we examined the mRNA and protein expression levels of PD-1 in parental and drug-resistant cells using qPCR and WB. It was found that the expression level of PD-1 was significantly increased in the plasma red of drug-resistant cells. Next, we knocked down PD-1 in drug-resistant cells and found that the resistance of EC cells to CDDP was significantly reduced. And the proportion of apoptotic cells in cells treated with 6 μM CDDP for 24 h was significantly in increase. The TEX-based risk model achieved good prediction results for prognosis prediction in EC patients. And it was also significantly associated with the level of immune cell infiltration and drug therapy sensitivity of EC patients. Additionally, the downregulation of PD-1 may be associated with increased drug sensitivity in EC and enhanced T-cell infiltration. The high-risk group had lower TIDE scores, indicating that the high-risk group benefits more after receiving immunotherapy. Thus, the TEX-based risk model can be used as a novel tumor prognostic biomarker.
Collapse
Affiliation(s)
- Xiangyu Su
- School of Medicine, Southeast University, Nanjing, China
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chenchun Fu
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fei Liu
- Department of Oncology, Luhe People's Hospital of Nanjing, Nanjing, China
| | - Rongrong Bian
- Department of Oncology, Luhe People's Hospital of Nanjing, Nanjing, China
| | - Ping Jing
- Department of Gastroenterology, Luhe People's Hospital of Nanjing, Nanjing, China
| |
Collapse
|
16
|
Zhao Z, Wang Q, Zhao F, Ma J, Sui X, Choe HC, Chen P, Gao X, Zhang L. Single-cell and transcriptomic analyses reveal the influence of diabetes on ovarian cancer. BMC Genomics 2024; 25:1. [PMID: 38166541 PMCID: PMC10759538 DOI: 10.1186/s12864-023-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND There has been a significant surge in the global prevalence of diabetes mellitus (DM), which increases the susceptibility of individuals to ovarian cancer (OC). However, the relationship between DM and OC remains largely unexplored. The objective of this study is to provide preliminary insights into the shared molecular regulatory mechanisms and potential biomarkers between DM and OC. METHODS Multiple datasets from the GEO database were utilized for bioinformatics analysis. Single cell datasets from the GEO database were analysed. Subsequently, immune cell infiltration analysis was performed on mRNA expression data. The intersection of these datasets yielded a set of common genes associated with both OC and DM. Using these overlapping genes and Cytoscape, a protein‒protein interaction (PPI) network was constructed, and 10 core targets were selected. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were then conducted on these core targets. Additionally, advanced bioinformatics analyses were conducted to construct a TF-mRNA-miRNA coregulatory network based on identified core targets. Furthermore, immunohistochemistry staining (IHC) and real-time quantitative PCR (RT-qPCR) were employed for the validation of the expression and biological functions of core proteins, including HSPAA1, HSPA8, SOD1, and transcription factors SREBF2 and GTAT2, in ovarian tumors. RESULTS The immune cell infiltration analysis based on mRNA expression data for both DM and OC, as well as analysis using single-cell datasets, reveals significant differences in mononuclear cell levels. By intersecting the single-cell datasets, a total of 119 targets related to mononuclear cells in both OC and DM were identified. PPI network analysis further identified 10 hub genesincludingHSP90AA1, HSPA8, SNRPD2, UBA52, SOD1, RPL13A, RPSA, ITGAM, PPP1CC, and PSMA5, as potential targets of OC and DM. Enrichment analysis indicated that these genes are primarily associated with neutrophil degranulation, GDP-dissociation inhibitor activity, and the IL-17 signaling pathway, suggesting their involvement in the regulation of the tumor microenvironment. Furthermore, the TF-gene and miRNA-gene regulatory networks were validated using NetworkAnalyst. The identified TFs included SREBF2, GATA2, and SRF, while the miRNAs included miR-320a, miR-378a-3p, and miR-26a-5p. Simultaneously, IHC and RT-qPCR reveal differential expression of core targets in ovarian tumors after the onset of diabetes. RT-qPCR further revealed that SREBF2 and GATA2 may influence the expression of core proteins, including HSP90AA1, HSPA8, and SOD1. CONCLUSION This study revealed the shared gene interaction network between OC and DM and predicted the TFs and miRNAs associated with core genes in monocytes. Our research findings contribute to identifying potential biological mechanisms underlying the relationship between OC and DM.
Collapse
Affiliation(s)
- Zhihao Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qilin Wang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fang Zhao
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junnan Ma
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xue Sui
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hyok Chol Choe
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Department of Clinical Medicine, Sinuiju Medical University, Sinuiju, Democratic People's Republic of Korea
| | - Peng Chen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xue Gao
- Department of Pathology, the First Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China.
| | - Lin Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.
| |
Collapse
|
17
|
Cavalluzzi MM, Viale M, Rotondo NP, Ferraro V, Lentini G. Drug Repositioning for Ovarian Cancer Treatment: An Update. Anticancer Agents Med Chem 2024; 24:637-647. [PMID: 38367265 DOI: 10.2174/0118715206282904240122063914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 02/19/2024]
Abstract
Ovarian cancer (OC) is one of the most prevalent malignancies in female reproductive organs, and its 5-year survival is below 45%. Despite the advances in surgical and chemotherapeutic options, OC treatment is still a challenge, and new anticancer agents are urgently needed. Drug repositioning has gained significant attention in drug discovery, representing a smart way to identify new clinical applications for drugs whose human safety and pharmacokinetics have already been established, with great time and cost savings in pharmaceutical development endeavors. This review offers an update on the most promising drugs repurposable for OC treatment and/or prevention.
Collapse
Affiliation(s)
| | - Maurizio Viale
- U.O.C. Bioterapie, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Valeria Ferraro
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
18
|
Gupta J, Jalil AT, Abd Alzahraa ZH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Najafi M. The Metformin Immunoregulatory Actions in Tumor Suppression and Normal Tissues Protection. Curr Med Chem 2024; 31:5370-5396. [PMID: 37403391 DOI: 10.2174/0929867331666230703143907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
The immune system is the key player in a wide range of responses in normal tissues and tumors to anticancer therapy. Inflammatory and fibrotic responses in normal tissues are the main limitations of chemotherapy, radiotherapy, and also some newer anticancer drugs such as immune checkpoint inhibitors (ICIs). Immune system responses within solid tumors including anti-tumor and tumor-promoting responses can suppress or help tumor growth. Thus, modulation of immune cells and their secretions such as cytokines, growth factors and epigenetic modulators, pro-apoptosis molecules, and some other molecules can be suggested to alleviate side effects in normal tissues and drug-resistance mechanisms in the tumor. Metformin as an anti-diabetes drug has shown intriguing properties such as anti-inflammation, anti-fibrosis, and anticancer effects. Some investigations have uncovered that metformin can ameliorate radiation/chemotherapy toxicity in normal cells and tissues through the modulation of several targets in cells and tissues. These effects of metformin may ameliorate severe inflammatory responses and fibrosis after exposure to ionizing radiation or following treatment with highly toxic chemotherapy drugs. Metformin can suppress the activity of immunosuppressive cells in the tumor through the phosphorylation of AMP-activated protein kinase (AMPK). In addition, metformin may stimulate antigen presentation and maturation of anticancer immune cells, which lead to the induction of anticancer immunity in the tumor. This review aims to explain the detailed mechanisms of normal tissue sparing and tumor suppression during cancer therapy using adjuvant metformin with an emphasis on immune system responses.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
19
|
Almeida-Nunes DL, Silvestre R, Dinis-Oliveira RJ, Ricardo S. Enhancing Immunotherapy in Ovarian Cancer: The Emerging Role of Metformin and Statins. Int J Mol Sci 2023; 25:323. [PMID: 38203494 PMCID: PMC10779012 DOI: 10.3390/ijms25010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer metastization is accompanied by the development of malignant ascites, which are associated with poor prognosis. The acellular fraction of this ascitic fluid contains tumor-promoting soluble factors, bioactive lipids, cytokines, and extracellular vesicles, all of which communicate with the tumor cells within this peritoneal fluid. Metabolomic profiling of ovarian cancer ascites has revealed significant differences in the pathways of fatty acids, cholesterol, glucose, and insulin. The proteins involved in these pathways promote tumor growth, resistance to chemotherapy, and immune evasion. Unveiling the key role of this liquid tumor microenvironment is crucial for discovering more efficient treatment options. This review focuses on the cholesterol and insulin pathways in ovarian cancer, identifying statins and metformin as viable treatment options when combined with standard chemotherapy. These findings are supported by clinical trials showing improved overall survival with these combinations. Additionally, statins and metformin are associated with the reversal of T-cell exhaustion, positioning these drugs as potential combinatory strategies to improve immunotherapy outcomes in ovarian cancer patients.
Collapse
Affiliation(s)
- Diana Luísa Almeida-Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4169-007 Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4169-007 Porto, Portugal
- FOREN—Forensic Science Experts, 1400-136 Lisboa, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
- Faculty of Medicine, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
20
|
Noch EK, Palma LN, Yim I, Bullen N, Qiu Y, Ravichandran H, Kim J, Rendeiro A, Davis MB, Elemento O, Pisapia DJ, Zhai K, LeKaye HC, Koutcher JA, Wen PY, Ligon KL, Cantley LC. Insulin feedback is a targetable resistance mechanism of PI3K inhibition in glioblastoma. Neuro Oncol 2023; 25:2165-2176. [PMID: 37399061 PMCID: PMC10708938 DOI: 10.1093/neuonc/noad117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Insulin feedback is a critical mechanism responsible for the poor clinical efficacy of phosphatidylinositol 3-kinase (PI3K) inhibition in cancer, and hyperglycemia is an independent factor associated with poor prognosis in glioblastoma (GBM). We investigated combination anti-hyperglycemic therapy in a mouse model of GBM and evaluated the association of glycemic control in clinical trial data from patients with GBM. METHODS The effect of the anti-hyperglycemic regimens, metformin and the ketogenic diet, was evaluated in combination with PI3K inhibition in patient-derived GBM cells and in an orthotopic GBM mouse model. Insulin feedback and the immune microenvironment were retrospectively evaluated in blood and tumor tissue from a Phase 2 clinical trial of buparlisib in patients with recurrent GBM. RESULTS We found that PI3K inhibition induces hyperglycemia and hyperinsulinemia in mice and that combining metformin with PI3K inhibition improves the treatment efficacy in an orthotopic GBM xenograft model. Through examination of clinical trial data, we found that hyperglycemia was an independent factor associated with poor progression-free survival in patients with GBM. We also found that PI3K inhibition increased insulin receptor activation and T-cell and microglia abundance in tumor tissue from these patients. CONCLUSION Reducing insulin feedback improves the efficacy of PI3K inhibition in GBM in mice, and hyperglycemia worsens progression-free survival in patients with GBM treated with PI3K inhibition. These findings indicate that hyperglycemia is a critical resistance mechanism associated with PI3K inhibition in GBM and that anti-hyperglycemic therapy may enhance PI3K inhibitor efficacy in GBM patients.
Collapse
Affiliation(s)
- Evan K Noch
- Division of Neuro-oncology, Department of Neurology, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Laura N Palma
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Isaiah Yim
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Nayah Bullen
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Yuqing Qiu
- Department of Population Health Sciences, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Hiranmayi Ravichandran
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Junbum Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Andre Rendeiro
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Melissa B Davis
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kevin Zhai
- Division of Neuro-oncology, Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Hongbiao Carl LeKaye
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jason A Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Patrick Y Wen
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-oncology, Boston, Massachusetts, USA
| | - Keith L Ligon
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, Boston, Massachusetts, USA
| | - Lewis C Cantley
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
22
|
Ye F, Xie L, Liang L, Zhou Z, He S, Li R, Lin L, Zhu K. Mechanisms and therapeutic strategies to combat the recurrence and progression of hepatocellular carcinoma after thermal ablation. J Interv Med 2023; 6:160-169. [PMID: 38312128 PMCID: PMC10831380 DOI: 10.1016/j.jimed.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 02/06/2024] Open
Abstract
Thermal ablation (TA), including radiofrequency ablation (RFA) and microwave ablation (MWA), has become the main treatment for early-stage hepatocellular carcinoma (HCC) due to advantages such as safety and minimal invasiveness. However, HCC is prone to local recurrence, with more aggressive malignancies after TA closely related to TA-induced changes in epithelial-mesenchymal transition (EMT) and remodeling of the tumor microenvironment (TME). According to many studies, various components of the TME undergo complex changes after TA, such as the recruitment of innate and adaptive immune cells, the release of tumor-associated antigens (TAAs) and various cytokines, the formation of a hypoxic microenvironment, and tumor angiogenesis. Changes in the TME after TA can partly enhance the anti-tumor immune response; however, this response is weak to kill the tumor completely. Certain components of the TME can induce an immunosuppressive microenvironment through complex interactions, leading to tumor recurrence and progression. How the TME is remodeled after TA and the mechanism by which the TME promotes HCC recurrence and progression are unclear. Thus, in this review, we focused on these issues to highlight potentially effective strategies for reducing and preventing the recurrence and progression of HCC after TA.
Collapse
Affiliation(s)
| | | | | | - Zhimei Zhou
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Siqin He
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Rui Li
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| |
Collapse
|
23
|
Lu Y, Sun Q, Guan Q, Zhang Z, He Q, He J, Ji Z, Tian W, Xu X, Liu Y, Yin Y, Zheng C, Lian S, Xu B, Wang P, Jiang R, Sun B. The XOR-IDH3α axis controls macrophage polarization in hepatocellular carcinoma. J Hepatol 2023; 79:1172-1184. [PMID: 37473847 DOI: 10.1016/j.jhep.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND & AIMS Tumor-associated macrophages (TAMs) are indispensable in the hepatocellular carcinoma (HCC) tumor microenvironment. Xanthine oxidoreductase (XOR), also known as xanthine dehydrogenase (XDH), participates in purine metabolism, uric acid production, and macrophage polarization to a pro-inflammatory phenotype. However, the role of XOR in HCC-associated TAMs is unclear. METHODS We evaluated the XOR level in macrophages isolated from HCC tissues and paired adjacent tissues. We established diethylnitrosamine/carbon tetrachloride (CCl4)-induced and orthotopically implanted HCC mouse models using mice with Xdh-specific depletion in the myeloid cell lineage (Xdhf/fLyz2cre) or Kupffer cells (Xdhf/fClec4fcre). We determined metabolic differences using specific methodologies, including metabolomics and metabolic flux. RESULTS We found that XOR expression was downregulated in HCC TAMs and positively correlated with patient survival, which was strongly related to the characteristics of the tumor microenvironment, especially hypoxia. Using HCC-inflicted mice (Xdhf/fLyz2cre and Xdhf/fClec4fcre), we revealed that XOR loss in monocyte-derived TAMs rather than Kupffer cells promoted their M2 polarization and CD8+ T-cell exhaustion, which exacerbated HCC progression. In addition, the tricarboxylic acid cycle was disturbed, and the generation of α-ketoglutarate was enhanced within XOR-depleted macrophages. XOR inhibited α-ketoglutarate production by interacting with IDH3α catalytic sites (K142 and Q139). The increased IDH3α activity caused increased adenosine and kynurenic acid production in TAMs, which enhanced the immunosuppressive effects of TAMs and CD8+ T cells. CONCLUSIONS The XOR-IDH3α axis mediates TAM polarization and HCC progression and may be a small-molecule therapeutic or immunotherapeutic target against suppressive HCC TAMs. IMPACT AND IMPLICATIONS Immunotherapies have been widely applied to the treatment of hepatocellular carcinoma (HCC), but to date they have been associated with unsatisfactory efficacy. The tumor microenvironment of HCC is full of different infiltrating immune cells. Tumor-associated macrophages (TAMs) are vital components in the tumor microenvironment and are involved in HCC progression. Herein, we confirm the downregulation of XOR expression in TAMs isolated from human HCC. The loss of XOR in monocyte-derived macrophages increases IDH3 activity and results in an increase in α-ketoglutarate production, which can promote M2-like polarization. Additionally, XOR-null TAMs derived from monocytes promote CD8+ T-cell exhaustion via the upregulation of immunosuppressive metabolites, including adenosine and kynurenic acid. Given the prevalence and high rate of incidence of HCC and the need for improved therapeutic options for patients, our findings identify potential therapeutic targets that may be further studied to develop improved therapies.
Collapse
Affiliation(s)
- Yijun Lu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qikai Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qifei Guan
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zechuan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qifeng He
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jianbo He
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zetao Ji
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenfang Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yin Yin
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chang Zheng
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Senlin Lian
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bing Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Pin Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
24
|
Flati I, Di Vito Nolfi M, Dall’Aglio F, Vecchiotti D, Verzella D, Alesse E, Capece D, Zazzeroni F. Molecular Mechanisms Underpinning Immunometabolic Reprogramming: How the Wind Changes during Cancer Progression. Genes (Basel) 2023; 14:1953. [PMID: 37895302 PMCID: PMC10606647 DOI: 10.3390/genes14101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolism and the immunological state are intimately intertwined, as defense responses are bioenergetically expensive. Metabolic homeostasis is a key requirement for the proper function of immune cell subsets, and the perturbation of the immune-metabolic balance is a recurrent event in many human diseases, including cancer, due to nutrient fluctuation, hypoxia and additional metabolic changes occurring in the tumor microenvironment (TME). Although much remains to be understood in the field of immunometabolism, here, we report the current knowledge on both physiological and cancer-associated metabolic profiles of immune cells, and the main molecular circuits involved in their regulation, highlighting similarities and differences, and emphasizing immune metabolic liabilities that could be exploited in cancer therapy to overcome immune resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (I.F.); (M.D.V.N.); (F.D.); (D.V.); (D.V.); (E.A.); (F.Z.)
| | | |
Collapse
|
25
|
Jia W, Huang Z, Zhou L, Liou YC, Di Virgilio F, Ulrich H, Illes P, Zhang W, Huang C, Tang Y. Purinergic signalling in cancer therapeutic resistance: From mechanisms to targeting strategies. Drug Resist Updat 2023; 70:100988. [PMID: 37413937 DOI: 10.1016/j.drup.2023.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
Purinergic signalling, consisting of extracellular purines and purinergic receptors, modulates cell proliferation, invasion and immunological reaction during cancer progression. Here, we focus on current evidence that suggests the crucial role of purinergic signalling in mediating cancer therapeutic resistance, the major obstacle in cancer treatment. Mechanistically, purinergic signalling can modulate the tumor microenvironment (TME), epithelial-mesenchymal transition (EMT) and anti-tumor immunity, thus affecting drug sensitivity of tumor cells. Currently, some agents attempting to target purinergic signalling either in tumor cells or in tumor-associated immune cells are under preclinical or clinical investigation. Moreover, nano-based delivery technologies significantly improve the efficacy of agents targeting purinergic signalling. In this review article, we summarize the mechanisms of purinergic signalling in promoting cancer therapeutic resistance and discuss the potentials and challenges of targeting purinergic signalling in future cancer treatment.
Collapse
Affiliation(s)
- Wenhui Jia
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yih-Cherng Liou
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117573, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117573, Singapore
| | | | - Henning Ulrich
- International Joint Research Centre on Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Institute of TCM-Based Stress Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
26
|
Abdelmoneim M, Aboalela MA, Naoe Y, Matsumura S, Eissa IR, Bustos-Villalobos I, Sibal PA, Takido Y, Kodera Y, Kasuya H. The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies. Int J Mol Sci 2023; 24:13353. [PMID: 37686159 PMCID: PMC10487782 DOI: 10.3390/ijms241713353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in the fate of cancer cells, and tumor-infiltrating immune cells have emerged as key players in shaping this complex milieu. Cancer is one of the leading causes of death in the world. The most common standard treatments for cancer are surgery, radiation therapy, and chemotherapeutic drugs. In the last decade, immunotherapy has had a potential effect on the treatment of cancer patients with poor prognoses. One of the immune therapeutic targeted approaches that shows anticancer efficacy is a type 2 diabetes medication, metformin. Beyond its glycemic control properties, studies have revealed intriguing immunomodulatory properties of metformin. Meanwhile, several studies focus on the impact of metformin on tumor-infiltrating immune cells in various tumor models. In several tumor models, metformin can modulate tumor-infiltrated effector immune cells, CD8+, CD4+ T cells, and natural killer (NK) cells, as well as suppressor immune cells, T regulatory cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs). In this review, we discuss the role of metformin in modulating tumor-infiltrating immune cells in different preclinical models and clinical trials. Both preclinical and clinical studies suggest that metformin holds promise as adjunctive therapy in cancer treatment by modulating the immune response within the tumor microenvironment. Nonetheless, both the tumor type and the combined therapy have an impact on the specific targets of metformin in the TME. Further investigations are warranted to elucidate the precise mechanisms underlying the immunomodulatory effects of metformin and to optimize its clinical application in cancer patients.
Collapse
Affiliation(s)
- Mohamed Abdelmoneim
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Mona Alhussein Aboalela
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Ibrahim Ragab Eissa
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Itzel Bustos-Villalobos
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Patricia Angela Sibal
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yuhei Takido
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| |
Collapse
|
27
|
Oliveros A, Poleschuk M, Cole PD, Boison D, Jang MH. Chemobrain: An accelerated aging process linking adenosine A 2A receptor signaling in cancer survivors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:267-305. [PMID: 37741694 PMCID: PMC10947554 DOI: 10.1016/bs.irn.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Chemotherapy has a significant positive impact in cancer treatment outcomes, reducing recurrence and mortality. However, many cancer surviving children and adults suffer from aberrant chemotherapy neurotoxic effects on learning, memory, attention, executive functioning, and processing speed. This chemotherapy-induced cognitive impairment (CICI) is referred to as "chemobrain" or "chemofog". While the underlying mechanisms mediating CICI are still unclear, there is strong evidence that chemotherapy accelerates the biological aging process, manifesting as effects which include telomere shortening, epigenetic dysregulation, oxidative stress, mitochondrial defects, impaired neurogenesis, and neuroinflammation, all of which are known to contribute to increased anxiety and neurocognitive decline. Despite the increased prevalence of CICI, there exists a lack of mechanistic understanding by which chemotherapy detrimentally affects cognition in cancer survivors. Moreover, there are no approved therapeutic interventions for this condition. To address this gap in knowledge, this review attempts to identify how adenosine signaling, particularly through the adenosine A2A receptor, can be an essential tool to attenuate accelerated aging phenotypes. Importantly, the adenosine A2A receptor uniquely stands at the crossroads of cancer treatment and improved cognition, given that it is widely known to control tumor induced immunosuppression in the tumor microenvironment, while also posited to be an essential regulator of cognition in neurodegenerative disease. Consequently, we propose that the adenosine A2A receptor may provide a multifaceted therapeutic strategy to enhance anticancer activity, while combating chemotherapy induced cognitive deficits, both which are essential to provide novel therapeutic interventions against accelerated aging in cancer survivors.
Collapse
Affiliation(s)
- Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Michael Poleschuk
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Peter D Cole
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| |
Collapse
|
28
|
To KKW, Cho WC. Drug Repurposing to Circumvent Immune Checkpoint Inhibitor Resistance in Cancer Immunotherapy. Pharmaceutics 2023; 15:2166. [PMID: 37631380 PMCID: PMC10459070 DOI: 10.3390/pharmaceutics15082166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have achieved unprecedented clinical success in cancer treatment. However, drug resistance to ICI therapy is a major hurdle that prevents cancer patients from responding to the treatment or having durable disease control. Drug repurposing refers to the application of clinically approved drugs, with characterized pharmacological properties and known adverse effect profiles, to new indications. It has also emerged as a promising strategy to overcome drug resistance. In this review, we summarized the latest research about drug repurposing to overcome ICI resistance. Repurposed drugs work by either exerting immunostimulatory activities or abolishing the immunosuppressive tumor microenvironment (TME). Compared to the de novo drug design strategy, they provide novel and affordable treatment options to enhance cancer immunotherapy that can be readily evaluated in the clinic. Biomarkers are exploited to identify the right patient population to benefit from the repurposed drugs and drug combinations. Phenotypic screening of chemical libraries has been conducted to search for T-cell-modifying drugs. Genomics and integrated bioinformatics analysis, artificial intelligence, machine and deep learning approaches are employed to identify novel modulators of the immunosuppressive TME.
Collapse
Affiliation(s)
- Kenneth K. W. To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
29
|
Liu Z, Zhang M, Shi X, Zhao W, Cao C, Jin L, Wang Y, Xiao J. Decreased programmed cell death ligand 2-positive monocytic myeloid-derived suppressor cells and programmed cell death protein 1-positive T-regulatory cells in patients with type 2 diabetes: implications for immunopathogenesis. Endocr Connect 2023; 12:e230218. [PMID: 37410080 PMCID: PMC10448569 DOI: 10.1530/ec-23-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
Objectives The activation of immune cells plays a significant role in the progression of type 2 diabetes. This study aimed to investigate the potential role of myeloid-derived suppressor cells (MDSCs) and T-regulatory cells (Tregs) in type 2 diabetes. Methods A total of 61 patients diagnosed with type 2 diabetes were recruited. Clinical characteristics were reviewed and peripheral blood samples were collected. We calculated the percentage of different cells. Frequencies of MDSC subsets refered to the percentage of G-MDSCs (CD15+CD33+CD11b+CD14-HLA-DR-/low) in CD45 positive cells and the percentage of M-MDSCs (CD14+CD15-CD11b+CD33+HLA-DR-/low) in lymphocytes plus monocytes. Results Frequencies of programmed cell death ligand 1-positive granulocytic MDSCs (PD-L1+ G-MDSCs), programmed cell death ligand 2-positive monocytic MDSCs (PD-L2+ M-MDSCs), PD-L2+ G-MDSC, and programmed cell death protein 1-positive Tregs (PD-1+Tregs) were decreased in patients with type 2 diabetes. The frequency of PD-1+ Tregs was positively related to PD-L2+ M-MDSCs (r= 0.357, P = 0.009) and negatively related to HbA1c (r = -0.265, P = 0.042), fasting insulin level (r = -0.260, P = 0.047), and waist circumference (r = -0.373, P = 0.005). Conclusions Decreased PD-L2+ M-MDSCs and PD-1+ Tregs may promote effector T cell activation, leading to chronic low-grade inflammation in type 2 diabetes. These findings highlight the contribution of MDSCs and Tregs to the immunopathogenesis of type 2 diabetes and suggest their potential as targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Zhaoxiang Liu
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Mingqiang Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiaohu Shi
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhui Zhao
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chenxiang Cao
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lixia Jin
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanlei Wang
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jianzhong Xiao
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
30
|
Guo D, Zhang S, Gao Y, Shi J, Wang X, Zhang Z, Zhang Y, Wang Y, Zhao K, Li M, Wang A, Wang P, Gou Y, Zhang M, Liu M, Zhang Y, Chen R, Sun J, Wang S, Wu X, Liang Z, Chen J, Lang J. Exploring the cellular and molecular differences between ovarian clear cell carcinoma and high-grade serous carcinoma using single-cell RNA sequencing and GEO gene expression signatures. Cell Biosci 2023; 13:139. [PMID: 37525249 PMCID: PMC10391916 DOI: 10.1186/s13578-023-01087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
The two most prevalent subtypes of epithelial ovarian carcinoma (EOC) are ovarian clear cell carcinoma (OCCC) and high-grade serous ovarian carcinoma (HGSC). Patients with OCCC have a poor prognosis than those with HGSC due to chemoresistance, implying the need for novel treatment target. In this study, we applied single-cell RNA sequencing (scRNA-seq) together with bulk RNA-seq data from the GEO (Gene Expression Omnibus) database (the GSE189553 dataset) to characterize and compare tumor heterogeneity and cell-level evolution between OCCC and HGSC samples. To begin, we found that the smaller proportion of an epithelial OCCC cell subset in the G2/M phase might explain OCCC chemoresistance. Second, we identified a possible pathogenic OCCC epithelial cell subcluster that overexpresses LEFTY1. Third, novel biomarkers separating OCCC from HGSC were discovered and subsequently validated on a wide scale using immunohistochemistry. Amine oxidase copper containing 1 (AOC1) was preferentially expressed in OCCC over HGSC, while S100 calcium-binding protein A2 (S100A2) was detected less frequently in OCCC than in HGSC. In addition, we discovered that metabolic pathways were enriched in the epithelial compartment of the OCCC samples. In vitro experiments verified that inhibition of oxidative phosphorylation or glycolysis pathways exerted direct antitumor effects on both OCCC and HGSC cells, while targeting glutamine metabolism or ferroptosis greatly attenuated chemosensitivity only in OCCC cells. Finally, to determine whether there were any variations in immune cell subsets between OCCC and HGSC, data from scRNA-seq and mass cytometry were pooled for analysis. In summary, our work provides the first holistic insights into the cellular and molecular distinctions between OCCC and HGSC and is a valuable source for discovering new targets to leverage in clinical treatments to improve the poor prognosis of patients with OCCC.
Collapse
Affiliation(s)
- Dan Guo
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sumei Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yike Gao
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jinghua Shi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Xiaoxi Wang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zixin Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yaran Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuming Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Kun Zhao
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Li
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Anqi Wang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pan Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanqin Gou
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Miao Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meiyu Liu
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuhan Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Rui Chen
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jian Sun
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Shu Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China.
| | - Xunyao Wu
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jie Chen
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
31
|
Okła K. Myeloid-Derived Suppressor Cells (MDSCs) in Ovarian Cancer-Looking Back and Forward. Cells 2023; 12:1912. [PMID: 37508575 PMCID: PMC10377883 DOI: 10.3390/cells12141912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play a significant role in the immune system and have been extensively studied in cancer. MDSCs are a heterogeneous population of myeloid cells that accumulate in the tumor microenvironment. Consequently, the high abundance of these cells often leads to immunosuppression, tumor growth, treatment failure, and poor prognosis. Ovarian cancer ranks fifth in cancer deaths among women, accounting for more deaths than any other cancer of the female genital tract. Currently, there is a lack of effective clinical strategies for the treatment of ovarian cancer. Although several studies underline the negative role of human MDSCs in ovarian cancer, this topic is still understudied. The works on MDSCs are summarized here, along with an explanation of why focusing on these cells would be a promising approach for treating ovarian cancer patients.
Collapse
Affiliation(s)
- Karolina Okła
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Qiu W, Guo Q, Guo X, Wang C, Li B, Qi Y, Wang S, Zhao R, Han X, Du H, Zhao S, Pan Z, Fan Y, Wang Q, Gao Z, Li G, Xue H. Mesenchymal stem cells, as glioma exosomal immunosuppressive signal multipliers, enhance MDSCs immunosuppressive activity through the miR-21/SP1/DNMT1 positive feedback loop. J Nanobiotechnology 2023; 21:233. [PMID: 37481646 PMCID: PMC10362641 DOI: 10.1186/s12951-023-01997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The immunosuppressive microenvironment in glioma induces immunotherapy resistance and is associated with poor prognosis. Glioma-associated mesenchymal stem cells (GA-MSCs) play an important role in the formation of the immunosuppressive microenvironment, but the mechanism is still not clear. RESULTS We found that GA-MSCs promoted the expression of CD73, an ectonucleotidase that drives immunosuppressive microenvironment maintenance by generating adenosine, on myeloid-derived suppressor cells (MDSCs) through immunosuppressive exosomal miR-21 signaling. This process was similar to the immunosuppressive signaling mediated by glioma exosomal miR-21 but more intense. Further study showed that the miR-21/SP1/DNMT1 positive feedback loop in MSCs triggered by glioma exosomal CD44 upregulated MSC exosomal miR-21 expression, amplifying the glioma exosomal immunosuppressive signal. Modified dendritic cell-derived exosomes (Dex) carrying miR-21 inhibitors could target GA-MSCs and reduce CD73 expression on MDSCs, synergizing with anti-PD-1 monoclonal antibody (mAb). CONCLUSIONS Overall, this work reveals the critical role of MSCs in the glioma microenvironment as signal multipliers to enhance immunosuppressive signaling of glioma exosomes, and disrupting the positive feedback loop in MSCs with modified Dex could improve PD-1 blockade therapy.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Qindong Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Xiaofan Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- Department of Neurology, Loma Linda University Health, Loma Linda, CA, 92350, USA
| | - Chaochao Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Xiao Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Jinan Children's Hospital, Jinan, Shandong, China
| | - Hao Du
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Shulin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Yang Fan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Qingtong Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.
| |
Collapse
|
33
|
Calderon JJ, Prieto K, Lasso P, Fiorentino S, Barreto A. Modulation of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment by Natural Products. Arch Immunol Ther Exp (Warsz) 2023; 71:17. [PMID: 37410164 DOI: 10.1007/s00005-023-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023]
Abstract
During carcinogenesis, the microenvironment plays a fundamental role in tumor progression and resistance. This tumor microenvironment (TME) is characterized by being highly immunosuppressive in most cases, which makes it an important target for the development of new therapies. One of the most important groups of cells that orchestrate immunosuppression in TME is myeloid-derived suppressor cells (MDSCs), which have multiple mechanisms to suppress the immune response mediated by T lymphocytes and thus protect the tumor. In this review, we will discuss the importance of modulating MDSCs as a therapeutic target and how the use of natural products, due to their multiple mechanisms of action, can be a key alternative for modulating these cells and thus improve response to therapy in cancer patients.
Collapse
Affiliation(s)
- Jhon Jairo Calderon
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Karol Prieto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
- Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 # 43-82. Edificio 50 Laboratorio 101, Bogotá, Colombia.
| |
Collapse
|
34
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
35
|
Panaampon J, Zhou Y, Saengboonmee C. Metformin as a booster of cancer immunotherapy. Int Immunopharmacol 2023; 121:110528. [PMID: 37364322 DOI: 10.1016/j.intimp.2023.110528] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Metformin, a biguanide antidiabetic, has been studied for its repurposing effects in oncology. Although a modest effect was observed in a single-agent regimen, metformin can synergize the anti-tumor effects of other modalities. The promising combination for cancer treatment is with immunotherapy. Despite high efficacy for some cancers, immunotherapy could be limited by modulation of the tumor immune microenvironment and the immune exhaustion of cytotoxic immune cells. Combining immunotherapy with metformin, thus, exerted a rescuing effect of immunotherapy and potentiated the anti-tumor effects of each other. Although not fully understood, metformin shows promoting effects of immunotherapy by several mechanisms. Those proposed mechanisms have been partially proven and are suggested for possible therapeutic strategies for cancer treatment. In this review, a state-of-the-art of metformin's boosting effects on immunotherapy is reviewed and discussed. The future directions for metformin research in preclinical and clinical immunotherapy are also suggested.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
| | - Yubin Zhou
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University 40002, Thailand.
| |
Collapse
|
36
|
Berckmans Y, Hoffert Y, Vankerckhoven A, Dreesen E, Coosemans A. Drug Repurposing for Targeting Myeloid-Derived Suppressor-Cell-Generated Immunosuppression in Ovarian Cancer: A Literature Review of Potential Candidates. Pharmaceutics 2023; 15:1792. [PMID: 37513979 PMCID: PMC10385967 DOI: 10.3390/pharmaceutics15071792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The lethality of patients with ovarian cancer (OC) remains high. Current treatment strategies often do not lead to the desired outcome due to the development of therapy resistance, resulting in high relapse rates. Additionally, clinical trials testing immunotherapy against OC have failed to reach significant results to date. The OC tumor microenvironment and specifically myeloid-derived suppressor cells (MDSC) are known to generate immunosuppression and inhibit the anti-tumor immune response following immunotherapy treatment. Our review aims to characterize potential candidate treatments to target MDSC in OC through drug-repurposing. A literature search identified repurposable compounds with evidence of their suppressing the effect of MDSC. A total of seventeen compounds were withheld, of which four were considered the most promising. Lurbinectedin, metformin, celecoxib, and 5-azacytidine have reported preclinical effects on MDSC and clinical evidence in OC. They have all been approved for a different indication, characterizing them as the most promising candidates for repurposing to treat patients with OC.
Collapse
Affiliation(s)
- Yani Berckmans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Yannick Hoffert
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Ann Vankerckhoven
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Erwin Dreesen
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
37
|
Papadakos SP, Ferraro D, Carbone G, Frampton AE, Vennarecci G, Kykalos S, Schizas D, Theocharis S, Machairas N. The Emerging Role of Metformin in the Treatment of Hepatocellular Carcinoma: Is There Any Value in Repurposing Metformin for HCC Immunotherapy? Cancers (Basel) 2023; 15:3161. [PMID: 37370771 PMCID: PMC10295995 DOI: 10.3390/cancers15123161] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. There has been significant progress in understanding the risk factors and epidemiology of HCC during the last few decades, resulting in efficient preventative, diagnostic and treatment strategies. Type 2 diabetes mellitus (T2DM) has been demonstrated to be a major risk factor for developing HCC. Metformin is a widely used hypoglycemic agent for patients with T2DM and has been shown to play a potentially beneficial role in improving the survival of patients with HCC. Experimental and clinical studies evaluating the outcomes of metformin as an antineoplastic drug in the setting of HCC were reviewed. Pre-clinical evidence suggests that metformin may enhance the antitumor effects of immune checkpoint inhibitors (ICIs) and reverse the effector T cells' exhaustion. However, there is still limited clinical evidence regarding the efficacy of metformin in combination with ICIs for the treatment of HCC. We appraised and analyzed in vitro and animal studies that aimed to elucidate the mechanisms of action of metformin, as well as clinical studies that assessed its impact on the survival of HCC patients.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Daniele Ferraro
- HPB Surgery and Liver Transplant Unit, AORN A. Cardarelli, 80131 Naples, Italy; (D.F.); (G.V.)
| | - Gabriele Carbone
- Department of General Surgery and Organ Transplantation, University of Rome “Sapienza”, 00161 Rome, Italy;
| | - Adam Enver Frampton
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK;
- Oncology Section, Surrey Cancer Research Institute, Department of Clinical and Experimental Medicine, FHMS, University of Surrey, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK
- HPB Surgical Unit, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
| | - Giovanni Vennarecci
- HPB Surgery and Liver Transplant Unit, AORN A. Cardarelli, 80131 Naples, Italy; (D.F.); (G.V.)
| | - Stylianos Kykalos
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| |
Collapse
|
38
|
Dong Y, Qi Y, Jiang H, Mi T, Zhang Y, Peng C, Li W, Zhang Y, Zhou Y, Zang Y, Li J. The development and benefits of metformin in various diseases. Front Med 2023; 17:388-431. [PMID: 37402952 DOI: 10.1007/s11684-023-0998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/01/2023] [Indexed: 07/06/2023]
Abstract
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yingbei Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian Mi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yunkai Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanchen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Lingang Laboratory, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
39
|
Pankowska KA, Będkowska GE, Chociej-Stypułkowska J, Rusak M, Dąbrowska M, Osada J. Crosstalk of Immune Cells and Platelets in an Ovarian Cancer Microenvironment and Their Prognostic Significance. Int J Mol Sci 2023; 24:ijms24119279. [PMID: 37298230 DOI: 10.3390/ijms24119279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological cancers, largely due to the fast development of metastasis and drug resistance. The immune system is a critical component of the OC tumor microenvironment (TME) and immune cells such as T cells, NK cells, and dendritic cells (DC) play a key role in anti-tumor immunity. However, OC tumor cells are well known for evading immune surveillance by modulating the immune response through various mechanisms. Recruiting immune-suppressive cells such as regulatory T cells (Treg cells), macrophages, or myeloid-derived suppressor cells (MDSC) inhibit the anti-tumor immune response and promote the development and progression of OC. Platelets are also involved in immune evasion by interaction with tumor cells or through the secretion of a variety of growth factors and cytokines to promote tumor growth and angiogenesis. In this review, we discuss the role and contribution of immune cells and platelets in TME. Furthermore, we discuss their potential prognostic significance to help in the early detection of OC and to predict disease outcome.
Collapse
Affiliation(s)
- Katarzyna Aneta Pankowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Grażyna Ewa Będkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Chociej-Stypułkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Małgorzata Rusak
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Milena Dąbrowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Osada
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| |
Collapse
|
40
|
Jiang H, Suo H, Gao L, Liu Y, Chen B, Lu S, Jin F, Cao Y. Metformin plays an antitumor role by downregulating inhibitory cells and immune checkpoint molecules while activating protective immune responses in breast cancer. Int Immunopharmacol 2023; 118:110038. [PMID: 36996738 DOI: 10.1016/j.intimp.2023.110038] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/30/2023]
Abstract
This study seeks to test the effect of metformin treatment on the outcomes of breast cancer in BALB/c mice bearing 4 T1 breast cancer cells. The survival rate and tumor size of mice were compared, as well as evaluation of the changes of immune cells in spleens and the microenvironment of tumors using flow cytometry and ELISA. Our results demonstrate that metformin prolongs mouse survival. A significant decrease in M2-like macrophages (F4/80+CD206+) was found in mice spleen treated with metformin. The treatment also inhibited monocytic myeloid-derived suppressor cells (M-MDSCs, CD11b+Gr-1+) and regulatory T cells (Tregs, CD4+CD25+Foxp3+). Metformin treatment resulted in an increase in the level of IFN-γ and a decrease in IL-10. Expression of the immune checkpoint molecule PD-1 on T cells was inhibited following treatment. Metformin enhances local antitumor activity in the tumor microenvironment, and our data supports the drug as a candidate for evaluation in the treatment of breast cancer.
Collapse
|
41
|
Finisguerra V, Dvorakova T, Formenti M, Van Meerbeeck P, Mignion L, Gallez B, Van den Eynde BJ. Metformin improves cancer immunotherapy by directly rescuing tumor-infiltrating CD8 T lymphocytes from hypoxia-induced immunosuppression. J Immunother Cancer 2023; 11:jitc-2022-005719. [PMID: 37147018 PMCID: PMC10163559 DOI: 10.1136/jitc-2022-005719] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Despite their revolutionary success in cancer treatment over the last decades, immunotherapies encounter limitations in certain tumor types and patients. The efficacy of immunotherapies depends on tumor antigen-specific CD8 T-cell viability and functionality within the immunosuppressive tumor microenvironment, where oxygen levels are often low. Hypoxia can reduce CD8 T-cell fitness in several ways and CD8 T cells are mostly excluded from hypoxic tumor regions. Given the challenges to achieve durable reduction of hypoxia in the clinic, ameliorating CD8 T-cell survival and effector function in hypoxic condition could improve tumor response to immunotherapies. METHODS Activated CD8 T cells were exposed to hypoxia and metformin and analyzed by fluorescence-activated cell sorting for cell proliferation, apoptosis and phenotype. In vivo, metformin was administered to mice bearing hypoxic tumors and receiving either adoptive cell therapy with tumor-specific CD8 T cells, or immune checkpoint inhibitors; tumor growth was followed over time and CD8 T-cell infiltration, survival and localization in normoxic or hypoxic tumor regions were assessed by flow cytometry and immunofluorescence. Tumor oxygenation and hypoxia were measured by electron paramagnetic resonance and pimonidazole staining, respectively. RESULTS We found that the antidiabetic drug metformin directly improved CD8 T-cell fitness in hypoxia, both in vitro and in vivo. Metformin rescued murine and human CD8 T cells from hypoxia-induced apoptosis and increased their proliferation and cytokine production, while blunting the upregulation of programmed cell death protein 1 and lymphocyte-activation gene 3. This appeared to result from a reduced production of reactive oxygen species, due to the inhibition of mitochondrial complex I. Differently from what others reported, metformin did not reduce tumor hypoxia, but rather increased CD8 T-cell infiltration and survival in hypoxic tumor areas, and synergized with cyclophosphamide to enhance tumor response to adoptive cell therapy or immune checkpoint blockade in different tumor models. CONCLUSIONS This study describes a novel mechanism of action of metformin and presents a promising strategy to achieve immune rejection in hypoxic and immunosuppressive tumors, which would otherwise be resistant to immunotherapy.
Collapse
Affiliation(s)
- Veronica Finisguerra
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | - Tereza Dvorakova
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | - Matteo Formenti
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | | | - Lionel Mignion
- Biomedical Magnetic Resonance (REMA) Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance (REMA) Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Qin G, Liu S, Liu J, Hu H, Yang L, Zhao Q, Li C, Zhang B, Zhang Y. Overcoming resistance to immunotherapy by targeting GPR84 in myeloid-derived suppressor cells. Signal Transduct Target Ther 2023; 8:164. [PMID: 37105980 PMCID: PMC10140025 DOI: 10.1038/s41392-023-01388-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 04/29/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) were found to gradually accumulate in the orthotopic esophageal cancer mouse model during tumor progression. Although the roles of MDSCs in promoting tumor growth and inhibiting immune response have been extensively explored, currently, there are still no effective means for targeting MDSCs clinically. The deficiency of specific markers of MDSCs was responsible for the limited strategy to eliminating in clinic. This study identified that GPR84 was exclusively overexpressed on MDSCs. It was further found that GPR84 was prominently expressed on MDSCs in clinical samples and tumor mouse models, which drives the immunosuppression on CD8+T cells by inhibiting PD-L1 degradation in lysosomes. Furthermore, G-CSF and GM-CSF were found to induce GPR84 expression through the STAT3/C/EBPβ signaling pathway. In addition, GPR84+MDSCs and PD-L1+MDSCs were highly accumulated in anti-PD-1 therapy-resistant patients with esophageal cancer, and high GPR84 signature risk was verified as a negative factor for the overall survival of patients with anti-PD-1 treatment. Finally, GPR84 antagonism combined with an anti-PD-1 antibody enhanced the antitumor responses. Therefore, targeting GPR84 enhanced anti-PD-1 efficacy in esophageal cancer and other malignant tumors. This combination therapy has the potential for tumor therapy in clinics.
Collapse
Affiliation(s)
- Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shasha Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jinyan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hongwei Hu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qitai Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Congcong Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bin Zhang
- Department of Medicine-Division of Hematology/Oncology, Feinberg School of Medicine Northwestern University, Chicago, IL, 60611, USA
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, 450052, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
43
|
Wanjari PJ, Rath A, Sathe RY, Bharatam PV. Identification of CYP3A4 inhibitors as potential anti-cancer agents using pharmacoinformatics approach. J Mol Model 2023; 29:156. [PMID: 37097473 DOI: 10.1007/s00894-023-05538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Biguanide derivatives exhibit a wide variety of therapeutic applications, including anti-cancer effects. Metformin is an effective anti-cancer agent against breast cancer, lung cancer, and prostate cancer. In the crystal structure (PDB ID: 5G5J), it was found that metformin is found in the active site of CYP3A4, and the associated anti-cancer effect was explored. Taking clues from this work, pharmacoinformatics research has been carried out on a series of known and virtual biguanide, guanylthiourea (GTU), and nitreone derivatives. This exercise led to the identification of more than 100 species that exhibit greater binding affinity toward CYP3A4 in comparison to that of metformin. Selected six molecules were subjected to molecular dynamics simulations, and the results are presented in this work.
Collapse
Affiliation(s)
- Pravin J Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Asutosh Rath
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Rohit Y Sathe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India.
| |
Collapse
|
44
|
Savva C, Copson E, Johnson PWM, Cutress RI, Beers SA. Obesity Is Associated with Immunometabolic Changes in Adipose Tissue That May Drive Treatment Resistance in Breast Cancer: Immune-Metabolic Reprogramming and Novel Therapeutic Strategies. Cancers (Basel) 2023; 15:cancers15092440. [PMID: 37173907 PMCID: PMC10177091 DOI: 10.3390/cancers15092440] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
White adipose tissue (WAT) represents an endocrinologically and immunologically active tissue whose primary role is energy storage and homeostasis. Breast WAT is involved in the secretion of hormones and proinflammatory molecules that are associated with breast cancer development and progression. The role of adiposity and systemic inflammation in immune responses and resistance to anti-cancer treatment in breast cancer (BC) patients is still not clear. Metformin has demonstrated antitumorigenic properties both in pre-clinical and clinical studies. Nevertheless, its immunomodulating properties in BC are largely unknown. This review aims to evaluate the emerging evidence on the crosstalk between adiposity and the immune-tumour microenvironment in BC, its progression and treatment resistance, and the immunometabolic role of metformin in BC. Adiposity, and by extension subclinical inflammation, are associated with metabolic dysfunction and changes in the immune-tumour microenvironment in BC. In oestrogen receptor positive (ER+) breast tumours, it is proposed that these changes are mediated via a paracrine interaction between macrophages and preadipocytes, leading to elevated aromatase expression and secretion of pro-inflammatory cytokines and adipokines in the breast tissue in patients who are obese or overweight. In HER2+ breast tumours, WAT inflammation has been shown to be associated with resistance to trastuzumab mediated via MAPK or PI3K pathways. Furthermore, adipose tissue in patients with obesity is associated with upregulation of immune checkpoints on T-cells that is partially mediated via immunomodulatory effects of leptin and has been paradoxically associated with improved responses to immunotherapy in several cancers. Metformin may play a role in the metabolic reprogramming of tumour-infiltrating immune cells that are dysregulated by systemic inflammation. In conclusion, evidence suggests that body composition and metabolic status are associated with patient outcomes. To optimise patient stratification and personalisation of treatment, prospective studies are required to evaluate the role of body composition and metabolic parameters in metabolic immune reprogramming with and without immunotherapy in patients with BC.
Collapse
Affiliation(s)
- Constantinos Savva
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Ellen Copson
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Peter W M Johnson
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Ramsey I Cutress
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
45
|
Műzes G, Sipos F. Autoimmunity and Carcinogenesis: Their Relationship under the Umbrella of Autophagy. Biomedicines 2023; 11:biomedicines11041130. [PMID: 37189748 DOI: 10.3390/biomedicines11041130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The immune system and autophagy share a functional relationship. Both innate and adaptive immune responses involve autophagy and, depending on the disease’s origin and pathophysiology, it may have a detrimental or positive role on autoimmune disorders. As a “double-edged sword” in tumors, autophagy can either facilitate or impede tumor growth. The autophagy regulatory network that influences tumor progression and treatment resistance is dependent on cell and tissue types and tumor stages. The connection between autoimmunity and carcinogenesis has not been sufficiently explored in past studies. As a crucial mechanism between the two phenomena, autophagy may play a substantial role, though the specifics remain unclear. Several autophagy modifiers have demonstrated beneficial effects in models of autoimmune disease, emphasizing their therapeutic potential as treatments for autoimmune disorders. The function of autophagy in the tumor microenvironment and immune cells is the subject of intensive study. The objective of this review is to investigate the role of autophagy in the simultaneous genesis of autoimmunity and malignancy, shedding light on both sides of the issue. We believe our work will assist in the organization of current understanding in the field and promote additional research on this urgent and crucial topic.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
46
|
Cadassou O, Petter Jordheim L. OXPHOS inhibitors, metabolism and targeted therapies in cancer. Biochem Pharmacol 2023; 211:115531. [PMID: 37019188 DOI: 10.1016/j.bcp.2023.115531] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
More and more studies highlight the complex metabolic characteristics and plasticity of cancer cells. To address these specificities and explore the associated vulnerabilities, new metabolism-targeting therapeutic strategies are being developed. It is more and more accepted that cancer cells do not produce their energy only from aerobic glycolysis, as some subtypes strongly rely on mitochondrial respiration (OXPHOS). This review focuses on classical and promising OXPHOS inhibitors (OXPHOSi), unravelling their interest and modes of actions in cancer, particularly in combination with other strategies. Indeed, in monotherapy, OXPHOSi display limited efficiency as they mostly trigger cell death in cancer cell subtypes that strongly depend on mitochondrial respiration and are not able to shift to other metabolic pathways to produce energy. Nevertheless, they remain very interesting in combination with conventional therapeutic strategies such as chemotherapy and radiotherapy, increasing their anti-tumoral actions. In addition, OXPHOSi can be included in even more innovative strategies such as combinations with other metabolic drugs or immunotherapies.
Collapse
|
47
|
Lord SR, Harris AL. Is it still worth pursuing the repurposing of metformin as a cancer therapeutic? Br J Cancer 2023; 128:958-966. [PMID: 36823364 PMCID: PMC10006178 DOI: 10.1038/s41416-023-02204-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Over the past 15 years, there has been great interest in the potential to repurpose the diabetes drug, metformin, as a cancer treatment. However, despite considerable efforts being made to investigate its efficacy in a number of large randomised clinical trials in different tumour types, results have been disappointing to date. This perspective article summarises how interest initially developed in the oncological potential of metformin and the diverse clinical programme of work to date including our contribution to establishing the intra-tumoral pharmacodynamic effects of metformin in the clinic. We also discuss the lessons that can be learnt from this experience and whether a further clinical investigation of metformin in cancer is warranted.
Collapse
Affiliation(s)
- Simon R Lord
- Department of Oncology, University of Oxford, Oxford, UK.
| | | |
Collapse
|
48
|
Sun BY, Yang ZF, Wang ZT, Liu G, Zhou C, Zhou J, Fan J, Gan W, Yi Y, Qiu SJ. Integrative analyses identify CD73 as a prognostic biomarker and immunotherapeutic target in intrahepatic cholangiocarcinoma. World J Surg Oncol 2023; 21:90. [PMID: 36899373 PMCID: PMC9999525 DOI: 10.1186/s12957-023-02970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND CD73 promotes progression in several malignancies and is considered as a novel immune checkpoint. However, the function of CD73 in intrahepatic cholangiocarcinoma (ICC) remains uncertain. In this study, we aim to investigate the role of CD73 in ICC. METHODS Multi-omics data of 262 ICC patients from the FU-iCCA cohort were analyzed. Two single-cell datasets were downloaded to examine the expression of CD73 at baseline and in response to immunotherapy. Functional experiments were performed to explore the biological functions of CD73 in ICC. The expression of CD73 and HHLA2 and infiltrations of CD8 + , Foxp3 + , CD68 + , and CD163 + immune cells were evaluated by immunohistochemistry in 259 resected ICC samples from Zhongshan Hospital. The prognostic value of CD73 was assessed by Cox regression analysis. RESULTS CD73 correlated with poor prognosis in two ICC cohorts. Single-cell atlas of ICC indicated high expression of CD73 on malignant cells. TP53 and KRAS gene mutations were more frequent in patients with high CD73 expression. CD73 promoted ICC proliferation, migration, invasion, and epithelial-mesenchymal transition. High CD73 expression was associated with a higher ratio of Foxp3 + /CD8 + tumor-infiltrating lymphocytes (TILs) and CD163 + /CD68 + tumor-associated macrophages (TAMs). A positive correlation between CD73 and CD44 was observed, and patients with high CD73 expression showed elevated expression of HHLA2. CD73 expression in malignant cells was significantly upregulated in response to immunotherapy. CONCLUSIONS High expression of CD73 is associated with poor prognosis and a suppressive tumor immune microenvironment in ICC. CD73 could potentially be a novel biomarker for prognosis and immunotherapy in ICC.
Collapse
Affiliation(s)
- Bao-Ye Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Gao Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wei Gan
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
49
|
Jantz-Naeem N, Böttcher-Loschinski R, Borucki K, Mitchell-Flack M, Böttcher M, Schraven B, Mougiakakos D, Kahlfuss S. TIGIT signaling and its influence on T cell metabolism and immune cell function in the tumor microenvironment. Front Oncol 2023; 13:1060112. [PMID: 36874131 PMCID: PMC9982004 DOI: 10.3389/fonc.2023.1060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/11/2023] [Indexed: 02/19/2023] Open
Abstract
One of the key challenges for successful cancer therapy is the capacity of tumors to evade immune surveillance. Tumor immune evasion can be accomplished through the induction of T cell exhaustion via the activation of various immune checkpoint molecules. The most prominent examples of immune checkpoints are PD-1 and CTLA-4. Meanwhile, several other immune checkpoint molecules have since been identified. One of these is the T cell immunoglobulin and ITIM domain (TIGIT), which was first described in 2009. Interestingly, many studies have established a synergistic reciprocity between TIGIT and PD-1. TIGIT has also been described to interfere with the energy metabolism of T cells and thereby affect adaptive anti-tumor immunity. In this context, recent studies have reported a link between TIGIT and the hypoxia-inducible factor 1-α (HIF1-α), a master transcription factor sensing hypoxia in several tissues including tumors that among others regulates the expression of metabolically relevant genes. Furthermore, distinct cancer types were shown to inhibit glucose uptake and effector function by inducing TIGIT expression in CD8+ T cells, resulting in an impaired anti-tumor immunity. In addition, TIGIT was associated with adenosine receptor signaling in T cells and the kynurenine pathway in tumor cells, both altering the tumor microenvironment and T cell-mediated immunity against tumors. Here, we review the most recent literature on the reciprocal interaction of TIGIT and T cell metabolism and specifically how TIGIT affects anti-tumor immunity. We believe understanding this interaction may pave the way for improved immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Romy Böttcher-Loschinski
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marisa Mitchell-Flack
- Department of Oncology, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Martin Böttcher
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
50
|
Liu W, Yu X, Yuan Y, Feng Y, Wu C, Huang C, Xie P, Li S, Li X, Wang Z, Qi L, Chen Y, Shi L, Li MJ, Huang Z, Tang B, Chang A, Hao J. CD73, a Promising Therapeutic Target of Diclofenac, Promotes Metastasis of Pancreatic Cancer through a Nucleotidase Independent Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206335. [PMID: 36563135 PMCID: PMC9951332 DOI: 10.1002/advs.202206335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
CD73, a cell surface-bound nucleotidase, facilitates extracellular adenosine formation by hydrolyzing 5'-AMP to adenosine. Several studies have shown that CD73 plays an essential role in immune escape, cell proliferation and tumor angiogenesis, making it an attractive target for cancer therapies. However, there are limited clinical benefits associated with the mainstream enzymatic inhibitors of CD73, suggesting that the mechanism underlying the role of CD73 in tumor progression is more complex than anticipated, and further investigation is necessary. In this study, CD73 is found to overexpress in the cytoplasm of pancreatic ductal adenocarcinoma (PDAC) cells and promotes metastasis in a nucleotidase-independent manner, which cannot be restrained by the CD73 monoclonal antibodies or small-molecule enzymatic inhibitors. Furthermore, CD73 promotes the metastasis of PDAC by binding to the E3 ligase TRIM21, competing with the Snail for its binding site. Additionally, a CD73 transcriptional inhibitor, diclofenac, a non-steroidal anti-inflammatory drug, is more effective than the CD73 blocking antibody for the treatment of PDAC metastasis. Diclofenac also enhances the therapeutic efficacy of gemcitabine in the spontaneous KPC (LSL-KrasG12D/+ , LSL-Trp53R172H/+ , and Pdx-1-Cre) pancreatic cancer model. Therefore, diclofenac may be an effective anti-CD73 therapy, when used alone or in combination with gemcitabine-based chemotherapy regimen, for metastatic PDAC.
Collapse
Affiliation(s)
- Weishuai Liu
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Xiaozhou Yu
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yudong Yuan
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yixing Feng
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Chao Wu
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Chongbiao Huang
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Peng Xie
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Shengnan Li
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Xiaofeng Li
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Ziyang Wang
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Lisha Qi
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yanan Chen
- School of MedicineNankai UniversityTianjin300071China
| | - Lei Shi
- Tianjin Medical UniversityTianjin300070China
| | | | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of SciencesTianjin300308China
| | - Bo Tang
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Antao Chang
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Jihui Hao
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| |
Collapse
|