1
|
González-Fernández M, Perry C, Gerhards NM, Francica P, Rottenberg S. Docetaxel response in BRCA1,p53-deficient mammary tumor cells is affected by Huntingtin and BAP1. Proc Natl Acad Sci U S A 2024; 121:e2402849121. [PMID: 39705313 DOI: 10.1073/pnas.2402849121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/30/2024] [Indexed: 12/22/2024] Open
Abstract
Taxanes are frequently used anticancer drugs known to kill tumor cells by inducing mitotic aberrations and segregation defects. A defining feature of specific cancers, notably triple-negative breast cancer (TNBC) and particularly those deficient in BRCA1, is chromosomal instability (CIN). Here, we focused on understanding the mechanisms of docetaxel-induced cytotoxicity, especially in the context of BRCA1-deficient TNBC. Using functional genetic screens in CIN+ cells, we identified genes that mediate docetaxel response and found an interaction between Huntingtin (HTT) and BRCA1-associated protein-1 (BAP1). We employed Brca1-/-;p53-/- mammary tumor cells, derived from genetically engineered mouse tumors that closely mimic the human disease, to investigate the role of these genes in CIN+ BRCA1-deficient cells. Specifically, we observed that loss of HTT sensitizes CIN+ BRCA1-deficient mammary tumor cells to docetaxel by shortening mitotic spindle poles and increasing spindle multipolarity. In contrast, BAP1 depletion protected cells against these spindle aberrations by restoring spindle length and enhancing mitotic clustering of the extra centrosomes. In conclusion, our findings shed light on the roles of HTT and BAP1 in controlling mitotic spindle multipolarity and centrosome clustering, specifically in the absence of BRCA1. This affects the response to microtubule-targeting agents and suggests that further studies of the interaction of these genes with the mitotic spindle may provide useful insights into how to target CIN+ cells, particularly in the challenging therapeutic landscape of BRCA1-deficient TNBC.
Collapse
Affiliation(s)
- Martín González-Fernández
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland
| | - Carmen Perry
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland
| | - Nora Merete Gerhards
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Paola Francica
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland
| | - Sven Rottenberg
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Areewong S, Suppramote O, Prasopporn S, Jirawatnotai S. Exploiting acquired vulnerability to develop novel treatments for cholangiocarcinoma. Cancer Cell Int 2024; 24:362. [PMID: 39501277 PMCID: PMC11539612 DOI: 10.1186/s12935-024-03548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024] Open
Abstract
Cholangiocarcinoma (CCA) presents a formidable therapeutic challenge due to its extensive heterogeneity and plasticity, which inevitably lead to acquired resistance to current treatments. However, recent evidence suggests that acquired drug resistance is associated with a fitness cost resulting from the myriad of acquired alterations under the selective pressure of the primary treatment. Consequently, CCA patients with acquired resistance are more susceptible to alternative therapies that are ineffective as monotherapies. This phenomenon, termed "acquired vulnerability," has garnered significant interest in drug development, as the acquired alterations could potentially be exploited therapeutically. This review elucidates the modes of acquired vulnerability, methods for identifying and exploiting acquired vulnerabilities in cancer (particularly in CCA), and strategies to enhance the clinical efficacy of drug combinations by leveraging the principle of acquired vulnerability. Identifying acquired vulnerabilities may pave the way for novel drug combinations to effectively treat highly heterogeneous and adaptable malignancies such as CCA.
Collapse
Affiliation(s)
- Sirayot Areewong
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., 11th Floor Srisavarindhira Building, Bangkok Noi, 10700, Bangkok, Thailand
| | - Orawan Suppramote
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, 10210, Bangkok, Thailand
| | - Sunisa Prasopporn
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., 11th Floor Srisavarindhira Building, Bangkok Noi, 10700, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., 11th Floor Srisavarindhira Building, Bangkok Noi, 10700, Bangkok, Thailand.
- Faculty of Pharmacy, Silpakorn University, 6 Ratchamankanai Road., Phra Pathom Chedi Sub-district, Mueang District, 73000, Nakhon Pathom, Thailand.
| |
Collapse
|
3
|
Dey P, Das R, Chatterjee S, Paul R, Ghosh U. Combined effects of carbon ion radiation and PARP inhibitor on non-small cell lung carcinoma cells: Insights into DNA repair pathways and cell death mechanisms. DNA Repair (Amst) 2024; 144:103778. [PMID: 39486351 DOI: 10.1016/j.dnarep.2024.103778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024]
Abstract
The utilization of high linear energy transfer (LET) carbon ion (12C-ion) in radiotherapy has witnessed a notable rise in managing highly metastatic, recurrent, and chemo/radio-resistant human cancers. Non-small cell lung cancer (NSCLC) presents a formidable challenge due to its chemo-resistance and aggressive nature, resulting in poor prognosis and survival rates. In a previous study, we demonstrated that the combination of 12C-ion with the poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) olaparib significantly mitigated metastasis in A549 cells. Here, we delve into the underlying rationale behind the combined action of olaparib with 12C-ion, focusing on DNA repair pathways and cell death mechanisms in asynchronous NSCLC A549 cells following single and combined treatments. Evaluation included analysis of colony-forming ability, DNA damage assessed by γH2AX foci, expression profiling of key proteins involved in Homologous Recombination (HR) and Non-Homologous End Joining (NHEJ) repair pathways, caspase-3 activation, apoptotic body formation, and autophagic cell death. Our findings reveal that both PARPi olaparib and rucaparib sensitize A549 cells to 12C-ion exposure, with olaparib exhibiting superior sensitization. Moreover, 12C-ion exposure alone significantly downregulates both HR and NHEJ repair pathways by reducing the expression of MRE11--RAD51 and Ku70-Ku80 protein complexes at 24 h post-treatment. Notably, the combination of olaparib pre-treatment with 12C-ion markedly inhibits both HR and NHEJ pathways, culminating in DNA damage-induced apoptotic and autophagic cell death. Thus we are the first to demonstrate that olaparib sensitizes NSCLC cells to carbon ion by interfering with HR and NHEJ pathway. These insights underscore the promising therapeutic potential of combining PARP inhibition with carbon ion exposure for effective NSCLC management.
Collapse
Affiliation(s)
- Payel Dey
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Rima Das
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Sandipan Chatterjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Roni Paul
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India.
| |
Collapse
|
4
|
Li J, Jia Z, Dong L, Cao H, Huang Y, Xu H, Xie Z, Jiang Y, Wang X, Liu J. DNA damage response in breast cancer and its significant role in guiding novel precise therapies. Biomark Res 2024; 12:111. [PMID: 39334297 PMCID: PMC11437670 DOI: 10.1186/s40364-024-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
DNA damage response (DDR) deficiency has been one of the emerging targets in treating breast cancer in recent years. On the one hand, DDR coordinates cell cycle and signal transduction, whose dysfunction may lead to cell apoptosis, genomic instability, and tumor development. Conversely, DDR deficiency is an intrinsic feature of tumors that underlies their response to treatments that inflict DNA damage. In this review, we systematically explore various mechanisms of DDR, the rationale and research advances in DDR-targeted drugs in breast cancer, and discuss the challenges in its clinical applications. Notably, poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated favorable efficacy and safety in breast cancer with high homogenous recombination deficiency (HRD) status in a series of clinical trials. Moreover, several studies on novel DDR-related molecules are actively exploring to target tumors that become resistant to PARP inhibition. Before further clinical application of new regimens or drugs, novel and standardized biomarkers are needed to develop for accurately characterizing the benefit population and predicting efficacy. Despite the promising efficacy of DDR-related treatments, challenges of off-target toxicity and drug resistance need to be addressed. Strategies to overcome drug resistance await further exploration on DDR mechanisms, and combined targeted drugs or immunotherapy will hopefully provide more precise or combined strategies and expand potential responsive populations.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yansong Huang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhixuan Xie
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yiwen Jiang
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Chen G, Zheng D, Zhou Y, Du S, Zeng Z. Olaparib enhances radiation-induced systemic anti-tumor effects via activating STING-chemokine signaling in hepatocellular carcinoma. Cancer Lett 2024; 582:216507. [PMID: 38048841 DOI: 10.1016/j.canlet.2023.216507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Although Poly (ADP-ribose) polymerase (PARP) inhibitors have been clinically approved for cancers with BRCA mutations and are known to augment radiotherapy responses, their roles in promoting the abscopal effect and mediating immunotherapy in BRCA-proficient hepatocellular carcinoma (HCC) remain underexplored. Our study elucidates that olaparib enhances the radio-sensitivity of HCC cells. Coadministration of olaparib and irradiation induces significant DNA damage by generating double-strand breaks (DSBs), as revealed both in vitro and in immune-deficient mice. These DSBs activate the cGAS-STING pathway, initiating immunogenic cell death in abscopal tumors. STING activation reprograms the immune microenvironment in the abscopal tumors, triggering the release of type I interferon and chemokines, including CXCL9, CXCL10, CXCL11, and CCL5. This in turn amplifies T cell priming against tumor neoantigens, leading to an influx of activated, neoantigen-specific CD8+ T-cells within the abscopal tumors. Furthermore, olaparib attenuated the immune exhaustion induced by radiation and enhances the responsiveness of HCC to immune checkpoint inhibitors. Collectively, our data advocate that a synergistic regimen of PARP inhibitors and radiotherapy can strategically reinforce both local (primary) and systemic (abscopal) tumor control, bolstering HCC susceptibility to immunotherapy.
Collapse
Affiliation(s)
- Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Danxue Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yimin Zhou
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Kanev PB, Atemin A, Stoynov S, Aleksandrov R. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Semin Oncol 2024; 51:2-18. [PMID: 37714792 DOI: 10.1053/j.seminoncol.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/17/2023]
Abstract
Genome integrity is under constant insult from endogenous and exogenous sources. In order to cope, eukaryotic cells have evolved an elaborate network of DNA repair that can deal with diverse lesion types and exhibits considerable functional redundancy. PARP1 is a major sensor of DNA breaks with established and putative roles in a number of pathways within the DNA repair network, including repair of single- and double-strand breaks as well as protection of the DNA replication fork. Importantly, PARP1 is the major target of small-molecule PARP inhibitors (PARPi), which are employed in the treatment of homologous recombination (HR)-deficient tumors, as the latter are particularly susceptible to the accumulation of DNA damage due to an inability to efficiently repair highly toxic double-strand DNA breaks. The clinical success of PARPi has fostered extensive research into PARP biology, which has shed light on the involvement of PARP1 in various genomic transactions. A major goal within the field has been to understand the relationship between catalytic inhibition and PARP1 trapping. The specific consequences of inhibition and trapping on genomic stability as a basis for the cytotoxicity of PARP inhibitors remain a matter of debate. Finally, PARP inhibition is increasingly recognized for its capacity to elicit/modulate anti-tumor immunity. The clinical potential of PARP inhibition is, however, hindered by the development of resistance. Hence, extensive efforts are invested in identifying factors that promote resistance or sensitize cells to PARPi. The current review provides a summary of advances in our understanding of PARP1 biology, the mechanistic nature, and molecular consequences of PARP inhibition, as well as the mechanisms that give rise to PARPi resistance.
Collapse
Affiliation(s)
- Petar-Bogomil Kanev
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aleksandar Atemin
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Radoslav Aleksandrov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
7
|
Zhang Y, Liang L, Li Z, Huang Y, Jiang M, Zou B, Xu Y. Polyadenosine diphosphate-ribose polymerase inhibitors: advances, implications, and challenges in tumor radiotherapy sensitization. Front Oncol 2023; 13:1295579. [PMID: 38111536 PMCID: PMC10726039 DOI: 10.3389/fonc.2023.1295579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Polyadenosine diphosphate-ribose polymerase (PARP) is a key modifying enzyme in cells, which participates in single-strand break repair and indirectly affects double-strand break repair. PARP inhibitors have shown great potential in oncotherapy by exploiting DNA damage repair pathways, and several small molecule PARP inhibitors have been approved by the U.S. Food and Drug Administration for treating various tumor types. PARP inhibitors not only have significant antitumor effects but also have some synergistic effects when combined with radiotherapy; therefore they have potential as radiation sensitizers. Here, we reviewed the advances and implications of PARP inhibitors in tumor radiotherapy sensitization. First, we summarized the multiple functions of PARP and the mechanisms by which its inhibitors exert antitumor effects. Next, we discuss the immunomodulatory effects of PARP and its inhibitors in tumors. Then, we described the theoretical basis of using PARP inhibitors in combination with radiotherapy and outlined their importance in oncological radiotherapy. Finally, we reviewed the current challenges in this field and elaborated on the future applications of PARP inhibitors as radiation sensitizers. A comprehensive understanding of the mechanism, optimal dosing, long-term safety, and identification of responsive biomarkers remain key challenges to integrating PARP inhibition into the radiotherapy management of cancer patients. Therefore, extensive research in these areas would facilitate the development of precision radiotherapy using PARP inhibitors to improve patient outcomes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lijie Liang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, China
| | - Ming Jiang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zelceski A, Francica P, Lingg L, Mutlu M, Stok C, Liptay M, Alexander J, Baxter JS, Brough R, Gulati A, Haider S, Raghunandan M, Song F, Sridhar S, Forment JV, O'Connor MJ, Davies BR, van Vugt MATM, Krastev DB, Pettitt SJ, Tutt ANJ, Rottenberg S, Lord CJ. MND1 and PSMC3IP control PARP inhibitor sensitivity in mitotic cells. Cell Rep 2023; 42:112484. [PMID: 37163373 DOI: 10.1016/j.celrep.2023.112484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/22/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
The PSMC3IP-MND1 heterodimer promotes meiotic D loop formation before DNA strand exchange. In genome-scale CRISPR-Cas9 mutagenesis and interference screens in mitotic cells, depletion of PSMC3IP or MND1 causes sensitivity to poly (ADP-Ribose) polymerase inhibitors (PARPi) used in cancer treatment. PSMC3IP or MND1 depletion also causes ionizing radiation sensitivity. These effects are independent of PSMC3IP/MND1's role in mitotic alternative lengthening of telomeres. PSMC3IP- or MND1-depleted cells accumulate toxic RAD51 foci in response to DNA damage, show impaired homology-directed DNA repair, and become PARPi sensitive, even in cells lacking both BRCA1 and TP53BP1. Epistasis between PSMC3IP-MND1 and BRCA1/BRCA2 defects suggest that abrogated D loop formation is the cause of PARPi sensitivity. Wild-type PSMC3IP reverses PARPi sensitivity, whereas a PSMC3IP p.Glu201del mutant associated with D loop defects and ovarian dysgenesis does not. These observations suggest that meiotic proteins such as MND1 and PSMC3IP have a greater role in mitotic DNA repair.
Collapse
Affiliation(s)
- Anabel Zelceski
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Paola Francica
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Departement of Biomedical Research (DBMR), Cancer Therapy Resistance Cluster, University of Bern, 3012 Bern, Switzerland
| | - Lea Lingg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Departement of Biomedical Research (DBMR), Cancer Therapy Resistance Cluster, University of Bern, 3012 Bern, Switzerland
| | - Merve Mutlu
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Colin Stok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Martin Liptay
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - John Alexander
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Joseph S Baxter
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Aditi Gulati
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Syed Haider
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Maya Raghunandan
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Feifei Song
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Sandhya Sridhar
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | | | | | | | | | - Dragomir B Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Andrew N J Tutt
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Departement of Biomedical Research (DBMR), Cancer Therapy Resistance Cluster, University of Bern, 3012 Bern, Switzerland; Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Bern Center for Precision Medicine, University of Bern, 3012 Bern, Switzerland.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
9
|
Dall G, Vandenberg CJ, Nesic K, Ratnayake G, Zhu W, Vissers JHA, Bedő J, Penington J, Wakefield MJ, Kee D, Carmagnac A, Lim R, Shield-Artin K, Milesi B, Lobley A, Kyran EL, O'Grady E, Tram J, Zhou W, Nugawela D, Stewart KP, Caldwell R, Papadopoulos L, Ng AP, Dobrovic A, Fox SB, McNally O, Power JD, Meniawy T, Tan TH, Collins IM, Klein O, Barnett S, Olesen I, Hamilton A, Hofmann O, Grimmond S, Papenfuss AT, Scott CL, Barker HE. Targeting homologous recombination deficiency in uterine leiomyosarcoma. J Exp Clin Cancer Res 2023; 42:112. [PMID: 37143137 PMCID: PMC10157936 DOI: 10.1186/s13046-023-02687-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy, with individuals with advanced uLMS having a five-year survival of < 10%. Mutations in the homologous recombination (HR) DNA repair pathway have been observed in ~ 10% of uLMS cases, with reports of some individuals benefiting from poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) therapy, which targets this DNA repair defect. In this report, we screened individuals with uLMS, accrued nationally, for mutations in the HR repair pathway and explored new approaches to therapeutic targeting. METHODS A cohort of 58 individuals with uLMS were screened for HR Deficiency (HRD) using whole genome sequencing (WGS), whole exome sequencing (WES) or NGS panel testing. Individuals identified to have HRD uLMS were offered PARPi therapy and clinical outcome details collected. Patient-derived xenografts (PDX) were generated for therapeutic targeting. RESULTS All 13 uLMS samples analysed by WGS had a dominant COSMIC mutational signature 3; 11 of these had high genome-wide loss of heterozygosity (LOH) (> 0.2) but only two samples had a CHORD score > 50%, one of which had a homozygous pathogenic alteration in an HR gene (deletion in BRCA2). A further three samples harboured homozygous HRD alterations (all deletions in BRCA2), detected by WES or panel sequencing, with 5/58 (9%) individuals having HRD uLMS. All five individuals gained access to PARPi therapy. Two of three individuals with mature clinical follow up achieved a complete response or durable partial response (PR) with the subsequent addition of platinum to PARPi upon minor progression during initial PR on PARPi. Corresponding PDX responses were most rapid, complete and sustained with the PARP1-specific PARPi, AZD5305, compared with either olaparib alone or olaparib plus cisplatin, even in a paired sample of a BRCA2-deleted PDX, derived following PARPi therapy in the patient, which had developed PARPi-resistance mutations in PRKDC, encoding DNA-PKcs. CONCLUSIONS Our work demonstrates the value of identifying HRD for therapeutic targeting by PARPi and platinum in individuals with the aggressive rare malignancy, uLMS and suggests that individuals with HRD uLMS should be included in trials of PARP1-specific PARPi.
Collapse
Affiliation(s)
- Genevieve Dall
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Cassandra J Vandenberg
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | | | - Wenying Zhu
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph H A Vissers
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Justin Bedő
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- School of Computing and Information Systems, the University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jocelyn Penington
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Matthew J Wakefield
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Damien Kee
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- Austin Health, Heidelberg, VIC, 3084, Australia
- Australian Rare Cancer Portal, BioGrid Australia, Melbourne Health, Parkville, VIC, 3052, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Amandine Carmagnac
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Ratana Lim
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Kristy Shield-Artin
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Briony Milesi
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Amanda Lobley
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Elizabeth L Kyran
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Emily O'Grady
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Joshua Tram
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Warren Zhou
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Devindee Nugawela
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Kym Pham Stewart
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Reece Caldwell
- Australian Rare Cancer Portal, BioGrid Australia, Melbourne Health, Parkville, VIC, 3052, Australia
| | - Lia Papadopoulos
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Australian Rare Cancer Portal, BioGrid Australia, Melbourne Health, Parkville, VIC, 3052, Australia
| | - Ashley P Ng
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
- Royal Melbourne Hospital, Parkville, VIC, 3052, Australia
| | | | - Stephen B Fox
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Orla McNally
- Royal Women's Hospital, Parkville, VIC, 3052, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jeremy D Power
- Launceston General Hospital, Launceston, TAS, 7250, Australia
| | - Tarek Meniawy
- University of Western Australia, Perth, WA, 6009, Australia
| | - Teng Han Tan
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Ian M Collins
- SouthWest Healthcare, Warrnambool, VIC, 3280, Australia
- Faculty of Health, School of Medicine, Deakin University, Warrnambool, VIC, 3280, Australia
| | - Oliver Klein
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- Austin Health, Heidelberg, VIC, 3084, Australia
| | - Stephen Barnett
- Royal Melbourne Hospital, Parkville, VIC, 3052, Australia
- Western Hospital, Footscray, VIC, 3011, Australia
| | - Inger Olesen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- University Hospital Geelong, Geelong, VIC, 3220, Australia
| | - Anne Hamilton
- Royal Women's Hospital, Parkville, VIC, 3052, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Oliver Hofmann
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sean Grimmond
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anthony T Papenfuss
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Clare L Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Royal Women's Hospital, Parkville, VIC, 3052, Australia
- Australian Rare Cancer Portal, BioGrid Australia, Melbourne Health, Parkville, VIC, 3052, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
- Royal Melbourne Hospital, Parkville, VIC, 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Holly E Barker
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
10
|
Ohuchi K, Saga R, Hasegawa K, Tsuruga E, Hosokawa Y, Fukumoto M, Okumura K. DNA‑PKcs phosphorylation specific inhibitor, NU7441, enhances the radiosensitivity of clinically relevant radioresistant oral squamous cell carcinoma cells. Biomed Rep 2023; 18:28. [PMID: 36926187 PMCID: PMC10011949 DOI: 10.3892/br.2023.1610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/23/2023] [Indexed: 02/26/2023] Open
Abstract
Radioresistant cancer cells lead to poor prognosis after radiotherapy. However, the mechanisms underlying cancer cell radioresistance have not been fully elucidated. Thus, the DNA damage response of clinically relevant radioresistant oral squamous cell carcinoma HSC2-R cells, established by long-term exposure of parental HSC2 cells to fractionated radiation, was investigated. The DNA double-strand break (DSB) repair protein-specific inhibitor, NU7441, which targets DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation, and IBR2, which targets Rad51, were administered to HSC2 and HSC2-R cells. NU7441 administration eliminated colony formation in both cell lines under 6 Gy X-ray irradiation, whereas IBR2 did not affect colony formation. NU7441 and IBR2 significantly enhanced 6 Gy X-ray irradiation-induced apoptosis in HSC2-R cells. In HSC2-R cells, cell cycle arrest released earlier than in HSC2 cells, and phosphorylated-H2A histone family member X (γH2AX) expression rapidly decreased. Following NU7441 administration, γH2AX expression and the cell percentages of the G2/M phase were not decreased at 48 h after treatment in HSC2-R cells. DNA-PKcs has been demonstrated to regulate non-homologous end-joining (NHEJ) and homologous recombination (HR) repair, and the later phase of DSB repair is dominated by HR. Therefore, the results of the present study indicated that the DSB repair mechanism in HSC2-R cells strongly depends on NHEJ and loss of HR repair function. The present study revealed a potential mechanism underlying the acquired radioresistance and therapeutic targets in radioresistant cancer cells.
Collapse
Affiliation(s)
- Kentaro Ohuchi
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Ryo Saga
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Kazuki Hasegawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Eichi Tsuruga
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Manabu Fukumoto
- Pathology Informatics Team, RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo 103-0027, Japan
| | - Kazuhiko Okumura
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| |
Collapse
|
11
|
Pettitt SJ, Ryan CJ, Lord CJ. Exploiting Cancer Synthetic Lethality in Cancer-Lessons Learnt from PARP Inhibitors. Cancer Treat Res 2023; 186:13-23. [PMID: 37978128 DOI: 10.1007/978-3-031-30065-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PARP inhibitors now have proven utility in the treatment of homologous recombination (HR) defective cancers. These drugs, and the synthetic lethality effect they exploit, have not only taught us how to approach the treatment of HR defective cancers but have also illuminated how resistance to a synthetic lethal approach can occur, how cancer-associated synthetic lethal effects are perhaps more complex than we imagine, how the better use of biomarkers could improve the success of treatment and even how drug resistance might be targeted. Here, we discuss some of the lessons learnt from the study of PARP inhibitor synthetic lethality and how these lessons might have wider application. Specifically, we discuss the concept of synthetic lethal penetrance, phenocopy effects in cancer such as BRCAness, synthetic lethal resistance, the polygenic and complex nature of synthetic lethal interactions, how evolutionary double binds could be exploited in treatment as well as future horizons for the field.
Collapse
Affiliation(s)
- Stephen J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Colm J Ryan
- School of Computer Science and Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
12
|
Baxter JS, Zatreanu D, Pettitt SJ, Lord CJ. Resistance to DNA repair inhibitors in cancer. Mol Oncol 2022; 16:3811-3827. [PMID: 35567571 PMCID: PMC9627783 DOI: 10.1002/1878-0261.13224] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) represents a complex network of proteins which detect and repair DNA damage, thereby maintaining the integrity of the genome and preventing the transmission of mutations and rearranged chromosomes to daughter cells. Faults in the DDR are a known driver and hallmark of cancer. Furthermore, inhibition of DDR enzymes can be used to treat the disease. This is exemplified by PARP inhibitors (PARPi) used to treat cancers with defects in the homologous recombination DDR pathway. A series of novel DDR targets are now also under pre-clinical or clinical investigation, including inhibitors of ATR kinase, WRN helicase or the DNA polymerase/helicase Polθ (Pol-Theta). Drug resistance is a common phenomenon that impairs the overall effectiveness of cancer treatments and there is already some understanding of how resistance to PARPi occurs. Here, we discuss how an understanding of PARPi resistance could inform how resistance to new drugs targeting the DDR emerges. We also discuss potential strategies that could limit the impact of these therapy resistance mechanisms in cancer.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
13
|
Dibitetto D, Marshall S, Sanchi A, Liptay M, Badar J, Lopes M, Rottenberg S, Smolka MB. DNA-PKcs promotes fork reversal and chemoresistance. Mol Cell 2022; 82:3932-3942.e6. [PMID: 36130596 PMCID: PMC9588680 DOI: 10.1016/j.molcel.2022.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/25/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
The DNA-PKcs kinase mediates the repair of DNA double-strand breaks via classical non-homologous end joining (NHEJ). DNA-PKcs is also recruited to active replication forks, although a role for DNA-PKcs in the control of fork dynamics is unclear. Here, we identify a crucial role for DNA-PKcs in promoting fork reversal, a process that stabilizes stressed replication forks and protects genome integrity. DNA-PKcs promotes fork reversal and slowing in response to several replication stress-inducing agents in a manner independent of its role in NHEJ. Cells lacking DNA-PKcs activity show increased DNA damage during S-phase and cellular sensitivity to replication stress. Notably, prevention of fork slowing and reversal via DNA-PKcs inhibition efficiently restores chemotherapy sensitivity in BRCA2-deficient mammary tumors with acquired PARPi resistance. Together, our data uncover a new key regulator of fork reversal and show how DNA-PKcs signaling can be manipulated to alter fork dynamics and drug resistance in cancer.
Collapse
Affiliation(s)
- Diego Dibitetto
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Shannon Marshall
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Andrea Sanchi
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Martin Liptay
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jumana Badar
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Bern Center for Precision Medicine, University of Bern, 3012 Bern, Switzerland
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Monge-Cadet J, Moyal E, Supiot S, Guimas V. DNA repair inhibitors and radiotherapy. Cancer Radiother 2022; 26:947-954. [PMID: 35987813 DOI: 10.1016/j.canrad.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
Abstract
Radiotherapy (RT) is one of the main cancer treatments and grows in importance due to improved techniques. DNA damage caused by ionizing radiation creates DNA strand breaks that trigger an intervention of DNA repair pathways involving numerous proteins and enzymes. In recent years, we have identified DNA repair inhibitors as targets for inhibiting cellular repair systems and thus causing cell death. Combining RT with these DNA repair inhibitors appears to be a new approach for cancer treatment, but safety and real efficiency of this combination in practice is unclear. Numerous trials are underway in various diseases and initial results are promising overall, yet remain controversial.
Collapse
Affiliation(s)
- J Monge-Cadet
- Radiothérapie, institut universitaire du cancer de Toulouse, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France.
| | - E Moyal
- Radiothérapie, institut universitaire du cancer de Toulouse, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France
| | - S Supiot
- Radiothérapie, institut de cancérologie de l'Ouest, boulevard Professeur Jacques-Monod, 44800 Saint-Herblain, France
| | - V Guimas
- Radiothérapie, institut de cancérologie de l'Ouest, boulevard Professeur Jacques-Monod, 44800 Saint-Herblain, France
| |
Collapse
|
15
|
Bisht P, Kumar VU, Pandey R, Velayutham R, Kumar N. Role of PARP Inhibitors in Glioblastoma and Perceiving Challenges as Well as Strategies for Successful Clinical Development. Front Pharmacol 2022; 13:939570. [PMID: 35873570 PMCID: PMC9297740 DOI: 10.3389/fphar.2022.939570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiform is the most aggressive primary type of brain tumor, representing 54% of all gliomas. The average life span for glioblastoma multiform is around 14-15 months instead of treatment. The current treatment for glioblastoma multiform includes surgical removal of the tumor followed by radiation therapy and temozolomide chemotherapy for 6.5 months, followed by another 6 months of maintenance therapy with temozolomide chemotherapy (5 days every month). However, resistance to temozolomide is frequently one of the limiting factors in effective treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors have recently been investigated as sensitizing drugs to enhance temozolomide potency. However, clinical use of PARP inhibitors in glioblastoma multiform is difficult due to a number of factors such as limited blood-brain barrier penetration of PARP inhibitors, inducing resistance due to frequent use of PARP inhibitors, and overlapping hematologic toxicities of PARP inhibitors when co-administered with glioblastoma multiform standard treatment (radiation therapy and temozolomide). This review elucidates the role of PARP inhibitors in temozolomide resistance, multiple factors that make development of these PARP inhibitor drugs challenging, and the strategies such as the development of targeted drug therapies and combination therapy to combat the resistance of PARP inhibitors that can be adopted to overcome these challenges.
Collapse
Affiliation(s)
- Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - V. Udaya Kumar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Ruchi Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Ravichandiran Velayutham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| |
Collapse
|
16
|
Abstract
This overview of the molecular pathology of lung cancer includes a review of the most salient molecular alterations of the genome, transcriptome, and the epigenome. The insights provided by the growing use of next-generation sequencing (NGS) in lung cancer will be discussed, and interrelated concepts such as intertumor heterogeneity, intratumor heterogeneity, tumor mutational burden, and the advent of liquid biopsy will be explored. Moreover, this work describes how the evolving field of molecular pathology refines the understanding of different histologic phenotypes of non-small-cell lung cancer (NSCLC) and the underlying biology of small-cell lung cancer. This review will provide an appreciation for how ongoing scientific findings and technologic advances in molecular pathology are crucial for development of biomarkers, therapeutic agents, clinical trials, and ultimately improved patient care.
Collapse
Affiliation(s)
- James J Saller
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Theresa A Boyle
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
17
|
Groelly FJ, Porru M, Zimmer J, Benainous H, De Visser Y, Kosova AA, Di Vito S, Serra V, Ryan A, Leonetti C, Bruna A, Biroccio A, Tarsounas M. Anti-tumoural activity of the G-quadruplex ligand pyridostatin against BRCA1/2-deficient tumours. EMBO Mol Med 2022; 14:e14501. [PMID: 35107878 PMCID: PMC8899905 DOI: 10.15252/emmm.202114501] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
The cells with compromised BRCA1 or BRCA2 (BRCA1/2) function accumulate stalled replication forks, which leads to replication‐associated DNA damage and genomic instability, a signature of BRCA1/2‐mutated tumours. Targeted therapies against BRCA1/2‐mutated tumours exploit this vulnerability by introducing additional DNA lesions. Because homologous recombination (HR) repair is abrogated in the absence of BRCA1 or BRCA2, these lesions are specifically lethal to tumour cells, but not to the healthy tissue. Ligands that bind and stabilise G‐quadruplexes (G4s) have recently emerged as a class of compounds that selectively eliminate the cells and tumours lacking BRCA1 or BRCA2. Pyridostatin is a small molecule that binds G4s and is specifically toxic to BRCA1/2‐deficient cells in vitro. However, its in vivo potential has not yet been evaluated. Here, we demonstrate that pyridostatin exhibits a high specific activity against BRCA1/2‐deficient tumours, including patient‐derived xenograft tumours that have acquired PARP inhibitor (PARPi) resistance. Mechanistically, we demonstrate that pyridostatin disrupts replication leading to DNA double‐stranded breaks (DSBs) that can be repaired in the absence of BRCA1/2 by canonical non‐homologous end joining (C‐NHEJ). Consistent with this, chemical inhibitors of DNA‐PKcs, a core component of C‐NHEJ kinase activity, act synergistically with pyridostatin in eliminating BRCA1/2‐deficient cells and tumours. Furthermore, we demonstrate that pyridostatin triggers cGAS/STING‐dependent innate immune responses when BRCA1 or BRCA2 is abrogated. Paclitaxel, a drug routinely used in cancer chemotherapy, potentiates the in vivo toxicity of pyridostatin. Overall, our results demonstrate that pyridostatin is a compound suitable for further therapeutic development, alone or in combination with paclitaxel and DNA‐PKcs inhibitors, for the benefit of cancer patients carrying BRCA1/2 mutations.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, The MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Manuela Porru
- Area of Translational Research, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Jutta Zimmer
- Genome Stability and Tumourigenesis Group, The MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Hugo Benainous
- Genome Stability and Tumourigenesis Group, The MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Yanti De Visser
- Genome Stability and Tumourigenesis Group, The MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Anastasiya A Kosova
- Genome Stability and Tumourigenesis Group, The MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Serena Di Vito
- Area of Translational Research, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Anderson Ryan
- Lung Cancer Translational Science Research Group, The MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Carlo Leonetti
- Area of Translational Research, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alejandra Bruna
- Molecular Pathology Division, Centre for Cancer Evolution, The Institute of Cancer Research, London, UK
| | - Annamaria Biroccio
- Area of Translational Research, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, The MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol 2021; 18:773-791. [PMID: 34285417 DOI: 10.1038/s41571-021-00532-x] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Developing novel targeted anticancer therapies is a major goal of current research. The use of poly(ADP-ribose) polymerase (PARP) inhibitors in patients with homologous recombination-deficient tumours provides one of the best examples of a targeted therapy that has been successfully translated into the clinic. The success of this approach has so far led to the approval of four different PARP inhibitors for the treatment of several types of cancers and a total of seven different compounds are currently under clinical investigation for various indications. Clinical trials have demonstrated promising response rates among patients receiving PARP inhibitors, although the majority will inevitably develop resistance. Preclinical and clinical data have revealed multiple mechanisms of resistance and current efforts are focused on developing strategies to address this challenge. In this Review, we summarize the diverse processes underlying resistance to PARP inhibitors and discuss the potential strategies that might overcome these mechanisms such as combinations with chemotherapies, targeting the acquired vulnerabilities associated with resistance to PARP inhibitors or suppressing genomic instability.
Collapse
|
19
|
Paes Dias M, Tripathi V, van der Heijden I, Cong K, Manolika EM, Bhin J, Gogola E, Galanos P, Annunziato S, Lieftink C, Andújar-Sánchez M, Chakrabarty S, Smith GCM, van de Ven M, Beijersbergen RL, Bartkova J, Rottenberg S, Cantor S, Bartek J, Ray Chaudhuri A, Jonkers J. Loss of nuclear DNA ligase III reverts PARP inhibitor resistance in BRCA1/53BP1 double-deficient cells by exposing ssDNA gaps. Mol Cell 2021; 81:4692-4708.e9. [PMID: 34555355 DOI: 10.1016/j.molcel.2021.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, preclinical and clinical research with PARPi has revealed multiple resistance mechanisms, highlighting the need for identification of novel functional biomarkers and combination treatment strategies. Functional genetic screens performed in cells and organoids that acquired resistance to PARPi by loss of 53BP1 identified loss of LIG3 as an enhancer of PARPi toxicity in BRCA1-deficient cells. Enhancement of PARPi toxicity by LIG3 depletion is dependent on BRCA1 deficiency but independent of the loss of 53BP1 pathway. Mechanistically, we show that LIG3 loss promotes formation of MRE11-mediated post-replicative ssDNA gaps in BRCA1-deficient and BRCA1/53BP1 double-deficient cells exposed to PARPi, leading to an accumulation of chromosomal abnormalities. LIG3 depletion also enhances efficacy of PARPi against BRCA1-deficient mammary tumors in mice, suggesting LIG3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Mariana Paes Dias
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Vivek Tripathi
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Ingrid van der Heijden
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Ke Cong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eleni-Maria Manolika
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Jinhyuk Bhin
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Robotics and Screening Center, Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Ewa Gogola
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Panagiotis Galanos
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen 2100, Denmark
| | - Stefano Annunziato
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Cor Lieftink
- Robotics and Screening Center, Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Miguel Andújar-Sánchez
- Pathology Department, Complejo Hospitalario Universitario Insular, Las Palmas, Gran Canaria, Spain
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Graeme C M Smith
- Artios Pharma, Glenn Berge Building, Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging, Preclinical Intervention Unit, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Roderick L Beijersbergen
- Robotics and Screening Center, Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Jirina Bartkova
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen 2100, Denmark; Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Stockholm 171 77, Sweden
| | - Sven Rottenberg
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
| | - Sharon Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen 2100, Denmark; Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Stockholm 171 77, Sweden
| | - Arnab Ray Chaudhuri
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
20
|
de Krijger I, Boersma V, Jacobs JJL. REV7: Jack of many trades. Trends Cell Biol 2021; 31:686-701. [PMID: 33962851 DOI: 10.1016/j.tcb.2021.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023]
Abstract
The HORMA domain protein REV7, also known as MAD2L2, interacts with a variety of proteins and thereby contributes to the establishment of different complexes. With doing so, REV7 impacts a diverse range of cellular processes and gained increasing interest as more of its activities became uncovered. REV7 has important roles in translesion synthesis and mitotic progression, and acts as a central component in the recently discovered shieldin complex that operates in DNA double-strand break repair. Here we discuss the roles of REV7 in its various complexes, focusing on its activity in genome integrity maintenance. Moreover, we will describe current insights on REV7 structural features that allow it to be such a versatile protein.
Collapse
Affiliation(s)
- Inge de Krijger
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Vera Boersma
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Lo CSY, van Toorn M, Gaggioli V, Paes Dias M, Zhu Y, Manolika EM, Zhao W, van der Does M, Mukherjee C, G S C Souto Gonçalves J, van Royen ME, French PJ, Demmers J, Smal I, Lans H, Wheeler D, Jonkers J, Chaudhuri AR, Marteijn JA, Taneja N. SMARCAD1-mediated active replication fork stability maintains genome integrity. SCIENCE ADVANCES 2021; 7:7/19/eabe7804. [PMID: 33952518 PMCID: PMC8099181 DOI: 10.1126/sciadv.abe7804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/16/2021] [Indexed: 05/17/2023]
Abstract
The stalled fork protection pathway mediated by breast cancer 1/2 (BRCA1/2) proteins is critical for replication fork stability. However, it is unclear whether additional mechanisms are required to maintain replication fork stability. We describe a hitherto unknown mechanism, by which the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily-A containing DEAD/H box-1 (SMARCAD1) stabilizes active replication forks, that is essential to maintaining resistance towards replication poisons. We find that SMARCAD1 prevents accumulation of 53BP1-associated nucleosomes to preclude toxic enrichment of 53BP1 at the forks. In the absence of SMARCAD1, 53BP1 mediates untimely dissociation of PCNA via the PCNA-unloader ATAD5, causing frequent fork stalling, inefficient fork restart, and accumulation of single-stranded DNA. Although loss of 53BP1 in SMARCAD1 mutants rescues these defects and restores genome stability, this rescued stabilization also requires BRCA1-mediated fork protection. Notably, fork protection-challenged BRCA1-deficient naïve- or chemoresistant tumors require SMARCAD1-mediated active fork stabilization to maintain unperturbed fork progression and cellular proliferation.
Collapse
Affiliation(s)
- Calvin Shun Yu Lo
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Marvin van Toorn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
- Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Vincent Gaggioli
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Mariana Paes Dias
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Yifan Zhu
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Eleni Maria Manolika
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Wei Zhao
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Marit van der Does
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Chirantani Mukherjee
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - João G S C Souto Gonçalves
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Martin E van Royen
- Department of Pathology, Cancer Treatment Screening Facility (CTSF), Erasmus Optical Imaging Centre (OIC), Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Pim J French
- Department of Neurology and Cancer Treatment Screening Facility (CTSF), Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Jeroen Demmers
- Proteomics Center and Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Ihor Smal
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Arnab Ray Chaudhuri
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
- Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands.
| |
Collapse
|
22
|
Zhu X, Chen L, Huang B, Li X, Yang L, Hu X, Jiang Y, Shao Z, Wang Z. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:122. [PMID: 33832512 PMCID: PMC8028839 DOI: 10.1186/s13046-021-01930-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/28/2021] [Indexed: 12/31/2022]
Abstract
Background PARP inhibitors (PARPi) benefit only a fraction of breast cancer patients with BRCA mutations, and their efficacy is even more limited in triple-negative breast cancer (TNBC) due to clinical primary and acquired resistance. Here, we found that the efficacy of the PARPi olaparib in TNBC can be improved by combination with the CDK4/6 inhibitor (CDK4/6i) palbociclib. Methods We screened primary olaparib-sensitive and olaparib-resistant cell lines from existing BRCAmut/TNBC cell lines and generated cells with acquired olaparib resistance by gradually increasing the concentration. The effects of the PARPi olaparib and the CDK4/6i palbociclib on BRCAmut/TNBC cell lines were examined in both sensitive and resistant cells in vitro and in vivo. Pathway and gene alterations were assessed mechanistically and pharmacologically. Results We demonstrated for the first time that the combination of olaparib and palbociclib has synergistic effects against BRCAmut/TNBC both in vitro and in vivo. In olaparib-sensitive MDA-MB-436 cells, the single agent olaparib significantly inhibited cell viability and affected cell growth due to severe DNA damage. In olaparib-resistant HCC1937 and SUM149 cells, single-agent olaparib was ineffective due to potential homologous recombination (HR) repair, and the combination of olaparib and palbociclib greatly inhibited HR during the G2 phase, increased DNA damage and inhibited tumour growth. Inadequate DNA damage caused by olaparib activated the Wnt signalling pathway and upregulated MYC. Further experiments indicated that the overexpression of β-catenin, especially its hyperphosphorylation at the Ser675 site, activated the Wnt signalling pathway and mediated olaparib resistance, which could be strongly inhibited by combined treatment with palbociclib. Conclusions Our data provide a rationale for clinical evaluation of the therapeutic synergy of the PARPi olaparib and CDK4/6i palbociclib in BRCAmut/TNBCs with high Wnt signalling activation and high MYC expression that do not respond to PARPi monotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01930-w.
Collapse
Affiliation(s)
- Xiuzhi Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Li Chen
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Binhao Huang
- Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Gastric Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Xiaoguang Li
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Liu Yang
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Precision Cancer Medicine Center, Shanghai, 200032, China
| | - Yizhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Zhimin Shao
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Zhonghua Wang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
23
|
Resistance of Hypoxic Cells to Ionizing Radiation Is Mediated in Part via Hypoxia-Induced Quiescence. Cells 2021; 10:cells10030610. [PMID: 33801903 PMCID: PMC7998378 DOI: 10.3390/cells10030610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Double strand breaks (DSBs) are highly toxic to a cell, a property that is exploited in radiation therapy. A critical component for the damage induction is cellular oxygen, making hypoxic tumor areas refractory to the efficacy of radiation treatment. During a fractionated radiation regimen, these hypoxic areas can be re-oxygenated. Nonetheless, hypoxia still constitutes a negative prognostic factor for the patient’s outcome. We hypothesized that this might be attributed to specific hypoxia-induced cellular traits that are maintained upon reoxygenation. Here, we show that reoxygenation of hypoxic non-transformed RPE-1 cells fully restored induction of DSBs but the cells remain radioresistant as a consequence of hypoxia-induced quiescence. With the use of the cell cycle indicators (FUCCI), cell cycle-specific radiation sensitivity, the cell cycle phase duration with live cell imaging, and single cell tracing were assessed. We observed that RPE-1 cells experience a longer G1 phase under hypoxia and retain a large fraction of cells that are non-cycling. Expression of HPV oncoprotein E7 prevents hypoxia-induced quiescence and abolishes the radioprotective effect. In line with this, HPV-negative cancer cell lines retain radioresistance, while HPV-positive cancer cell lines are radiosensitized upon reoxygenation. Quiescence induction in hypoxia and its HPV-driven prevention was observed in 3D multicellular spheroids. Collectively, we identify a new hypoxia-dependent radioprotective phenotype due to hypoxia-induced quiescence that accounts for a global decrease in radiosensitivity that can be retained upon reoxygenation and is absent in cells expressing oncoprotein E7.
Collapse
|
24
|
Panzarino NJ, Krais JJ, Cong K, Peng M, Mosqueda M, Nayak SU, Bond SM, Calvo JA, Doshi MB, Bere M, Ou J, Deng B, Zhu LJ, Johnson N, Cantor SB. Replication Gaps Underlie BRCA Deficiency and Therapy Response. Cancer Res 2021; 81:1388-1397. [PMID: 33184108 PMCID: PMC8026497 DOI: 10.1158/0008-5472.can-20-1602] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/02/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Defects in DNA repair and the protection of stalled DNA replication forks are thought to underlie the chemosensitivity of tumors deficient in the hereditary breast cancer genes BRCA1 and BRCA2 (BRCA). Challenging this assumption are recent findings that indicate chemotherapies, such as cisplatin used to treat BRCA-deficient tumors, do not initially cause DNA double-strand breaks (DSB). Here, we show that ssDNA replication gaps underlie the hypersensitivity of BRCA-deficient cancer and that defects in homologous recombination (HR) or fork protection (FP) do not. In BRCA-deficient cells, ssDNA gaps developed because replication was not effectively restrained in response to stress. Gap suppression by either restoration of fork restraint or gap filling conferred therapy resistance in tissue culture and BRCA patient tumors. In contrast, restored FP and HR could be uncoupled from therapy resistance when gaps were present. Moreover, DSBs were not detected after therapy when apoptosis was inhibited, supporting a framework in which DSBs are not directly induced by genotoxic agents, but rather are induced from cell death nucleases and are not fundamental to the mechanism of action of genotoxic agents. Together, these data indicate that ssDNA replication gaps underlie the BRCA cancer phenotype, "BRCAness," and we propose they are fundamental to the mechanism of action of genotoxic chemotherapies. SIGNIFICANCE: This study suggests that ssDNA replication gaps are fundamental to the toxicity of genotoxic agents and underlie the BRCA-cancer phenotype "BRCAness," yielding promising biomarkers, targets, and opportunities to resensitize refractory disease.See related commentary by Canman, p. 1214.
Collapse
Affiliation(s)
| | - John J Krais
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ke Cong
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Min Peng
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Michelle Mosqueda
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sumeet U Nayak
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Samuel M Bond
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jennifer A Calvo
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Mihir B Doshi
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Matt Bere
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jianhong Ou
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Bin Deng
- The University of Vermont, Burlington, Vermont
| | - Lihua J Zhu
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Neil Johnson
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sharon B Cantor
- University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
25
|
Mehta AK, Cheney EM, Hartl CA, Pantelidou C, Oliwa M, Castrillon JA, Lin JR, Hurst KE, de Oliveira Taveira M, Johnson NT, Oldham WM, Kalocsay M, Berberich MJ, Boswell SA, Kothari A, Johnson S, Dillon DA, Lipschitz M, Rodig S, Santagata S, Garber JE, Tung N, Yélamos J, Thaxton JE, Mittendorf EA, Sorger PK, Shapiro GI, Guerriero JL. Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. NATURE CANCER 2021; 2:66-82. [PMID: 33738458 PMCID: PMC7963404 DOI: 10.1038/s43018-020-00148-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Despite objective responses to PARP inhibition and improvements in progression-free survival compared to standard chemotherapy in patients with BRCA-associated triple-negative breast cancer (TNBC), benefits are transitory. Using high dimensional single-cell profiling of human TNBC, here we demonstrate that macrophages are the predominant infiltrating immune cell type in BRCA-associated TNBC. Through multi-omics profiling we show that PARP inhibitors enhance both anti- and pro-tumor features of macrophages through glucose and lipid metabolic reprogramming driven by the sterol regulatory element-binding protein 1 (SREBP-1) pathway. Combined PARP inhibitor therapy with CSF-1R blocking antibodies significantly enhanced innate and adaptive anti-tumor immunity and extends survival in BRCA-deficient tumors in vivo and is mediated by CD8+ T-cells. Collectively, our results uncover macrophage-mediated immune suppression as a liability of PARP inhibitor treatment and demonstrate combined PARP inhibition and macrophage targeting therapy induces a durable reprogramming of the tumor microenvironment, thus constituting a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Anita K Mehta
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Emily M Cheney
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christina A Hartl
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Constantia Pantelidou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Madisson Oliwa
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessica A Castrillon
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Katie E Hurst
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mateus de Oliveira Taveira
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Department of Imaging, AC Camargo Cancer Center, São Paulo, Brazil
| | - Nathan T Johnson
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marian Kalocsay
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Matthew J Berberich
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sarah A Boswell
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Aditi Kothari
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Shawn Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mikel Lipschitz
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nadine Tung
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Jessica E Thaxton
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Elizabeth A Mittendorf
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA.
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA.
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
26
|
Han Y, Yu X, Li S, Tian Y, Liu C. New Perspectives for Resistance to PARP Inhibitors in Triple-Negative Breast Cancer. Front Oncol 2020; 10:578095. [PMID: 33324554 PMCID: PMC7724080 DOI: 10.3389/fonc.2020.578095] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are a therapeutic milestone exerting a synthetic lethal effect in the treatment of cancer involving BRCA1/2 mutation. Theoretically, PARP inhibitors (PARPi) eliminate tumor cells by disrupting DNA damage repair through either PARylation or the homologous recombination (HR) pathway. However, resistance to PARPi greatly hinders therapeutic effectiveness in triple-negative breast cancer (TNBC). Owing to the high heterogeneity and few genetic targets in TNBC, there has been limited therapeutic progress in the past decades. In view of this, there is a need to circumvent resistance to PARPi and develop potential treatment strategies for TNBC. We present, herein, a review of the scientific progress and explore the mechanisms underlying PARPi resistance in TNBC. The complicated mechanisms of PARPi resistance, including drug exporter formation, loss of poly (ADP-ribose) glycohydrolase (PARG), HR reactivation, and restoration of replication fork stability, are discussed in detail in this review. Additionally, we also discuss new combination therapies with PARPi that can improve the clinical response in TNBC. The new perspectives for PARPi bring novel challenges and opportunities to overcome PARPi resistance in breast cancer.
Collapse
Affiliation(s)
- Ye Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuqiang Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Biomedical Informatics, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Francica P, Mutlu M, Blomen VA, Oliveira C, Nowicka Z, Trenner A, Gerhards NM, Bouwman P, Stickel E, Hekkelman ML, Lingg L, Klebic I, van de Ven M, de Korte-Grimmerink R, Howald D, Jonkers J, Sartori AA, Fendler W, Chapman JR, Brummelkamp T, Rottenberg S. Functional Radiogenetic Profiling Implicates ERCC6L2 in Non-homologous End Joining. Cell Rep 2020; 32:108068. [PMID: 32846126 DOI: 10.1016/j.celrep.2020.108068] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/27/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
Using genome-wide radiogenetic profiling, we functionally dissect vulnerabilities of cancer cells to ionizing radiation (IR). We identify ERCC6L2 as a major determinant of IR response, together with classical DNA damage response genes and members of the recently identified shieldin and CTC1-STN1-TEN1 (CST) complexes. We show that ERCC6L2 contributes to non-homologous end joining (NHEJ), and it may exert this function through interactions with SFPQ. In addition to causing radiosensitivity, ERCC6L2 loss restores DNA end resection and partially rescues homologous recombination (HR) in BRCA1-deficient cells. As a consequence, ERCC6L2 deficiency confers resistance to poly (ADP-ribose) polymerase (PARP) inhibition in tumors deficient for both BRCA1 and p53. Moreover, we show that ERCC6L2 mutations are found in human tumors and correlate with a better overall survival in patients treated with radiotherapy (RT); this finding suggests that ERCC6L2 is a predictive biomarker of RT response.
Collapse
Affiliation(s)
- Paola Francica
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Merve Mutlu
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Vincent A Blomen
- Division of Biochemistry, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Catarina Oliveira
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Anika Trenner
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Nora M Gerhards
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Peter Bouwman
- Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Elmer Stickel
- Division of Biochemistry, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Maarten L Hekkelman
- Division of Biochemistry, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Lea Lingg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Ismar Klebic
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging Research (MCCA), Preclinical Intervention Unit, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Renske de Korte-Grimmerink
- Mouse Clinic for Cancer and Aging Research (MCCA), Preclinical Intervention Unit, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Denise Howald
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jos Jonkers
- Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - J Ross Chapman
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Thijn Brummelkamp
- Division of Biochemistry, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Bern Center for Precision Medicine, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
28
|
Zebrafish Xenografts Unveil Sensitivity to Olaparib beyond BRCA Status. Cancers (Basel) 2020; 12:cancers12071769. [PMID: 32630796 PMCID: PMC7408583 DOI: 10.3390/cancers12071769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibition in BRCA-mutated cells results in an incapacity to repair DNA damage, leading to cell death caused by synthetic lethality. Within the treatment options for advanced triple negative breast cancer, the PARP inhibitor olaparib is only given to patients with BRCA1/2 mutations. However, these patients may show resistance to this drug and BRCA1/2 wild-type tumors can show a striking sensitivity, making BRCA status a poor biomarker for treatment choice. Aiming to investigate if the zebrafish model can discriminate sensitivities to olaparib, we developed zebrafish xenografts with different BRCA status and measured tumor response to treatment, as well as its impact on angiogenesis and metastasis. When challenged with olaparib, xenografts revealed sensitivity phenotypes independent of BRCA. Moreover, its combination with ionizing radiation increased the cytotoxic effects, showing potential as a combinatorial regimen. In conclusion, we show that the zebrafish xenograft model may be used as a sensitivity profiling platform for olaparib in monotherapy or in combinatorial regimens. Hence, this model presents as a promising option for the future establishment of patient-derived xenografts for personalized medicine approaches beyond BRCA status.
Collapse
|
29
|
Wang XS, Lee BJ, Zha S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair (Amst) 2020; 94:102874. [PMID: 32623318 DOI: 10.1016/j.dnarep.2020.102874] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Lymphocyte development requires ordered assembly and subsequent modifications of the antigen receptor genes through V(D)J recombination and Immunoglobulin class switch recombination (CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase (DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending questions and emerging differences that will extend our understanding of cNHEJ and DDR in the context of primary immunodeficiency and lymphoid malignancies.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.
| |
Collapse
|
30
|
Li H, Liu ZY, Wu N, Chen YC, Cheng Q, Wang J. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer 2020; 19:107. [PMID: 32563252 PMCID: PMC7305609 DOI: 10.1186/s12943-020-01227-0] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022] Open
Abstract
Due to the DNA repair defect, BRCA1/2 deficient tumor cells are more sensitive to PARP inhibitors (PARPi) through the mechanism of synthetic lethality. At present, several PAPRi targeting poly (ADP-ribose) polymerase (PARP) have been approved for ovarian cancer and breast cancer indications. However, PARPi resistance is ubiquitous in clinic. More than 40% BRCA1/2-deficient patients fail to respond to PARPi. In addition, lots of patients acquire PARPi resistance with prolonged oral administration of PARPi. Homologous recombination repair deficient (HRD), as an essential prerequisite of synthetic lethality, plays a vital role in killing tumor cells. Therefore, Homologous recombination repair restoration (HRR) becomes the predominant reason of PARPi resistance. Recently, it was reported that DNA replication fork protection also contributed to PARPi resistance in BRCA1/2-deficient cells and patients. Moreover, various factors, such as reversion mutations, epigenetic modification, restoration of ADP-ribosylation (PARylation) and pharmacological alteration lead to PARPi resistance as well. In this review, we reviewed the underlying mechanisms of PARP inhibitor resistance in detail and summarized the potential strategies to overcome PARPi resistance and increase PARPi sensitivity.
Collapse
Affiliation(s)
- He Li
- Hunan Clinical Research Center in Gynecologic Cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zhao-Yi Liu
- Hunan Clinical Research Center in Gynecologic Cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Nayiyuan Wu
- Hunan Clinical Research Center in Gynecologic Cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yong-Chang Chen
- Hunan Clinical Research Center in Gynecologic Cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Jing Wang
- Hunan Clinical Research Center in Gynecologic Cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China. .,Department of Gynecologic Cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
31
|
Tarsounas M, Sung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication. Nat Rev Mol Cell Biol 2020; 21:284-299. [PMID: 32094664 PMCID: PMC7204409 DOI: 10.1038/s41580-020-0218-z] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
The tumour suppressor breast cancer type 1 susceptibility protein (BRCA1) promotes DNA double-strand break (DSB) repair by homologous recombination and protects DNA replication forks from attrition. BRCA1 partners with BRCA1-associated RING domain protein 1 (BARD1) and other tumour suppressor proteins to mediate the initial nucleolytic resection of DNA lesions and the recruitment and regulation of the recombinase RAD51. The discovery of the opposing functions of BRCA1 and the p53-binding protein 1 (53BP1)-associated complex in DNA resection sheds light on how BRCA1 influences the choice of homologous recombination over non-homologous end joining and potentially other mutagenic pathways of DSB repair. Understanding the functional crosstalk between BRCA1-BARD1 and its cofactors and antagonists will illuminate the molecular basis of cancers that arise from a deficiency or misregulation of chromosome damage repair and replication fork maintenance. Such knowledge will also be valuable for understanding acquired tumour resistance to poly(ADP-ribose) polymerase (PARP) inhibitors and other therapeutics and for the development of new treatments. In this Review, we discuss recent advances in elucidating the mechanisms by which BRCA1-BARD1 functions in DNA repair, replication fork maintenance and tumour suppression, and its therapeutic relevance.
Collapse
Affiliation(s)
- Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
32
|
Abstract
In this review, Slade provides an overview of the molecular mechanisms and cellular consequences of PARP and PARG inhibition. The author also highlights the clinical performance of four PARP inhibitors used in cancer therapy (olaparib, rucaparib, niraparib, and talazoparib) and discusses the predictive biomarkers of inhibitor sensitivity and mechanisms of resistance as well as the means of overcoming them through combination therapy. Oxidative and replication stress underlie genomic instability of cancer cells. Amplifying genomic instability through radiotherapy and chemotherapy has been a powerful but nonselective means of killing cancer cells. Precision medicine has revolutionized cancer therapy by putting forth the concept of selective targeting of cancer cells. Poly(ADP-ribose) polymerase (PARP) inhibitors represent a successful example of precision medicine as the first drugs targeting DNA damage response to have entered the clinic. PARP inhibitors act through synthetic lethality with mutations in DNA repair genes and were approved for the treatment of BRCA mutated ovarian and breast cancer. PARP inhibitors destabilize replication forks through PARP DNA entrapment and induce cell death through replication stress-induced mitotic catastrophe. Inhibitors of poly(ADP-ribose) glycohydrolase (PARG) exploit and exacerbate replication deficiencies of cancer cells and may complement PARP inhibitors in targeting a broad range of cancer types with different sources of genomic instability. Here I provide an overview of the molecular mechanisms and cellular consequences of PARP and PARG inhibition. I highlight clinical performance of four PARP inhibitors used in cancer therapy (olaparib, rucaparib, niraparib, and talazoparib) and discuss the predictive biomarkers of inhibitor sensitivity, mechanisms of resistance as well as the means of overcoming them through combination therapy.
Collapse
Affiliation(s)
- Dea Slade
- Department of Biochemistry, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
33
|
Krenning L, van den Berg J, Medema RH. Life or Death after a Break: What Determines the Choice? Mol Cell 2019; 76:346-358. [PMID: 31561953 DOI: 10.1016/j.molcel.2019.08.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
Abstract
DNA double-strand breaks (DSBs) pose a constant threat to genomic integrity. Such DSBs need to be repaired to preserve homeostasis at both the cellular and organismal levels. Hence, the DNA damage response (DDR) has evolved to repair these lesions and limit their toxicity. The initiation of DNA repair depends on the activation of the DDR, and we know that the strength of DDR signaling may differentially affect cellular viability. However, we do not fully understand what determines the cytotoxicity of a DSB. Recent work has identified genomic location, (in)correct DNA repair pathway usage, and cell-cycle position as contributors to DSB-induced cytotoxicity. In this review, we discuss how these determinants affect cytotoxicity, highlight recent discoveries, and identify open questions that could help to improve our understanding about cell fate decisions after a DNA DSB.
Collapse
Affiliation(s)
- Lenno Krenning
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jeroen van den Berg
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Vafaizadeh V, Peuhu E, Mikkola ML, Khaled WT, Bentires-Alj M, Koledova Z. The Eleventh ENBDC Workshop: Advances in Technology Help to Unveil Mechanisms of Mammary Gland Development and Cancerogenesis. J Mammary Gland Biol Neoplasia 2019; 24:201-206. [PMID: 31494779 DOI: 10.1007/s10911-019-09436-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 02/02/2023] Open
Abstract
The eleventh annual workshop of the European Network for Breast Development and Cancer, Methods in mammary gland biology and breast cancer, took place on the 16th to 18th of May 2019 in Weggis, Switzerland. The main topics of the meeting were high resolution genomics and proteomics for the study of mammary gland development and cancer, breast cancer signaling, tumor microenvironment, preclinical models of breast cancer, and tissue morphogenesis. Exciting novel findings in, or highly relevant to, mammary gland biology and breast cancer field were presented, with insights into the methods used to obtain them. Among others, the discussed methods included single-cell RNA sequencing, genetic barcoding, lineage tracing, spatial transcriptomics, optogenetics, genetic mouse models and organoids.
Collapse
Affiliation(s)
- Vida Vafaizadeh
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Cancer Research Laboratory FICAN West, University of Turku and Turku University Hospital, Turku, Finland
| | - Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Mohamed Bentires-Alj
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
35
|
Noordermeer SM, van Attikum H. PARP Inhibitor Resistance: A Tug-of-War in BRCA-Mutated Cells. Trends Cell Biol 2019; 29:820-834. [PMID: 31421928 DOI: 10.1016/j.tcb.2019.07.008] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Poly-(ADP)-ribose polymerase (PARP) inhibition is synthetic lethal with deficiency for homologous recombination (HR), a pathway essential for DNA double-strand break repair. PARP inhibitors (PARPi) therefore hold great promise for the treatment of tumors with disruptive mutations in BRCA1/2 or other HR factors. Unfortunately, PARPi resistance has proved to be a major problem in the clinic. Knowledge about PARPi resistance is expanding quickly, revealing four main mechanisms that alter drug availability, affect (de)PARylation enzymes, restore HR, or restore replication fork stability. We discuss how studies on resistance mechanisms have yielded important insights into the regulation of DNA double-strand break (DSB) repair and replication fork protection, and how these studies could pave the way for novel treatment options to target resistance mechanisms or acquired vulnerabilities.
Collapse
Affiliation(s)
- Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, The Netherlands.
| | - Haico van Attikum
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
36
|
Wakefield MJ, Nesic K, Kondrashova O, Scott CL. Diverse mechanisms of PARP inhibitor resistance in ovarian cancer. Biochim Biophys Acta Rev Cancer 2019; 1872:188307. [PMID: 31381953 DOI: 10.1016/j.bbcan.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Matthew John Wakefield
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Victoria 3052, Australia.
| | - Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Clare L Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Victoria 3052, Australia.
| |
Collapse
|
37
|
Pantelidou C, Sonzogni O, De Oliveria Taveira M, Mehta AK, Kothari A, Wang D, Visal T, Li MK, Pinto J, Castrillon JA, Cheney EM, Bouwman P, Jonkers J, Rottenberg S, Guerriero JL, Wulf GM, Shapiro GI. PARP Inhibitor Efficacy Depends on CD8 + T-cell Recruitment via Intratumoral STING Pathway Activation in BRCA-Deficient Models of Triple-Negative Breast Cancer. Cancer Discov 2019; 9:722-737. [PMID: 31015319 DOI: 10.1158/2159-8290.cd-18-1218] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 01/21/2023]
Abstract
Combinatorial clinical trials of PARP inhibitors with immunotherapies are ongoing, yet the immunomodulatory effects of PARP inhibition have been incompletely studied. Here, we sought to dissect the mechanisms underlying PARP inhibitor-induced changes in the tumor microenvironment of BRCA1-deficient triple-negative breast cancer (TNBC). We demonstrate that the PARP inhibitor olaparib induces CD8+ T-cell infiltration and activation in vivo, and that CD8+ T-cell depletion severely compromises antitumor efficacy. Olaparib-induced T-cell recruitment is mediated through activation of the cGAS/STING pathway in tumor cells with paracrine activation of dendritic cells and is more pronounced in HR-deficient compared with HR-proficient TNBC cells and in vivo models. CRISPR-mediated knockout of STING in cancer cells prevents proinflammatory signaling and is sufficient to abolish olaparib-induced T-cell infiltration in vivo. These findings elucidate an additional mechanism of action of PARP inhibitors and provide a rationale for combining PARP inhibition with immunotherapies for the treatment of TNBC. SIGNIFICANCE: This work demonstrates cross-talk between PARP inhibition and the tumor microenvironment related to STING/TBK1/IRF3 pathway activation in cancer cells that governs CD8+ T-cell recruitment and antitumor efficacy. The data provide insight into the mechanism of action of PARP inhibitors in BRCA-associated breast cancer.This article is highlighted in the In This Issue feature, p. 681.
Collapse
Affiliation(s)
- Constantia Pantelidou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Olmo Sonzogni
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mateus De Oliveria Taveira
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Department of Imaging, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Anita K Mehta
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aditi Kothari
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Dan Wang
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tanvi Visal
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michelle K Li
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Jocelin Pinto
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Jessica A Castrillon
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emily M Cheney
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Peter Bouwman
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gerburg M Wulf
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts. .,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
38
|
Minten EV, Yu DS. DNA Repair: Translation to the Clinic. Clin Oncol (R Coll Radiol) 2019; 31:303-310. [PMID: 30876709 DOI: 10.1016/j.clon.2019.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022]
Abstract
It has been well established that an accumulation of mutations in DNA, whether caused by external sources (e.g. ultraviolet light, radioactivity) or internal sources (e.g. metabolic by-products, such as reactive oxygen species), has the potential to cause a cell to undergo carcinogenesis and increase the risk for the development of cancer. Therefore, it is critically important for a cell to have the capacity to properly respond to and repair DNA damage as it occurs. The DNA damage response (DDR) describes a collection of DNA repair pathways that aid in the protection of genomic integrity by detecting myriad types of DNA damage and initiating the correct DNA repair pathway. In many instances, a deficiency in the DDR, whether inherited or spontaneously assumed, can increase the risk of carcinogenesis and ultimately tumorigenesis through the accumulation of mutations that fail to be properly repaired. Interestingly, although disruption of the DDR can lead to the initial genomic instability that can ultimately cause carcinogenesis, the DDR has also proven to be an invaluable target for anticancer drugs and therapies. Making matters more complicated, the DDR is also involved in the resistance to first-line cancer therapy. In this review, we will consider therapies already in use in the clinic and ongoing research into other avenues of treatment that target DNA repair pathways in cancer.
Collapse
Affiliation(s)
- E V Minten
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - D S Yu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
39
|
Pettitt SJ, Lord CJ. Dissecting PARP inhibitor resistance with functional genomics. Curr Opin Genet Dev 2019; 54:55-63. [PMID: 30954761 DOI: 10.1016/j.gde.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/02/2019] [Indexed: 01/24/2023]
Abstract
The poly-(ADP-ribose) polymerase (PARP) inhibitor (PARPi) olaparib was the first licenced cancer drug that targeted an inherited form of cancer, namely ovarian cancers caused by germline BRCA1 or BRCA2 gene mutations. Multiple different PARPi have now been approved for use in a wider group of gynaecological cancers as well as for the treatment of BRCA-gene mutant breast cancer. Despite these advances, resistance to PARPi is a common clinical phenotype. Understanding, at the molecular level, how tumour cells respond to PARPi has the potential to inform how these drugs should be used clinically and since the discovery of this drug class, multiple different functional genomic strategies have been employed to dissect PARPi sensitivity and resistance. These have included genetic perturbation via classical gene targeting, gene silencing by siRNA or shRNA or transposon mutagenesis techniques. Recently, CRISPR-Cas9-based mutagenesis has greatly expanded the available range of relevant preclinical models and the precision of mutagenesis. Here, we review how these approaches have been used either in low-throughput, hypothesis-testing experiments or in the setting of large, hypothesis-generating, genetic screens aimed at understanding the molecular basis of PARPi sensitivity and resistance.
Collapse
Affiliation(s)
- Stephen J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
40
|
Abstract
Inhibitors of poly(ADP-ribose) polymerase (PARPi) have entered the clinic for the treatment of patients with cancers that lack homology-directed DNA repair, but drug resistance remains a clinical hurdle. Recent advances in the identification of PARPi resistance mechanisms have yielded a better understanding of DNA end protection and the relevance of endogenous poly(ADP-ribose) glycohydrolase, highlighting new vulnerabilities.
Collapse
|