1
|
Liapodimitri A, Tetens AR, Craig-Schwartz J, Lunsford K, Skalitzky KO, Koldobskiy MA. Progress Toward Epigenetic Targeted Therapies for Childhood Cancer. Cancers (Basel) 2024; 16:4149. [PMID: 39766049 PMCID: PMC11674401 DOI: 10.3390/cancers16244149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Among the most significant discoveries from cancer genomics efforts has been the critical role of epigenetic dysregulation in cancer development and progression. Studies across diverse cancer types have revealed frequent mutations in genes encoding epigenetic regulators, alterations in DNA methylation and histone modifications, and a dramatic reorganization of chromatin structure. Epigenetic changes are especially relevant to pediatric cancers, which are often characterized by a low rate of genetic mutations. The inherent reversibility of epigenetic lesions has led to an intense interest in the development of epigenetic targeted therapies. Additionally, the recent appreciation of the interplay between the epigenome and immune regulation has sparked interest in combination therapies and synergistic immunotherapy approaches. Further, the recent appreciation of epigenetic variability as a driving force in cancer evolution has suggested new roles for epigenetic therapies in limiting plasticity and resistance. Here, we review recent progress and emerging directions in the development of epigenetic targeted therapeutics and their promise across the landscape of childhood cancers.
Collapse
Affiliation(s)
- Athanasia Liapodimitri
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Ashley R. Tetens
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Jordyn Craig-Schwartz
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kayleigh Lunsford
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kegan O. Skalitzky
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Michael A. Koldobskiy
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Farrell KB, Das S, Nordeen SK, Lambert JR, Thamm DH. VDX-111 targets proliferative pathways in canine cancer cell lines. PLoS One 2024; 19:e0303470. [PMID: 38771847 PMCID: PMC11108205 DOI: 10.1371/journal.pone.0303470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
VDX-111 (also identified as AMPI-109) is a vitamin D derivative which has shown anticancer activity. To further assess the function of this compound against multiple cancer types, we examined the efficacy of VDX-111 against a panel of 30 well characterized canine cancer cell lines. Across a variety of cancer types, VDX-111 induced widely variable growth inhibition, cell death, and migration inhibition, at concentrations ranging from 10 nM to 1 μM. Growth inhibition sensitivity did not correlate strongly with tumor cell histotype; however, it was significantly correlated with the expression of genes in multiple cell signaling pathways, including the MAPK and PI3K-AKT pathways. We confirmed inhibition of these signaling pathways as likely participants in the effects of VDX-111. These results suggest that a subset of canine tumors may be sensitive to treatment with VDX-111, and suggests possible predictive markers of drug sensitivity and pharmacodynamic biomarkers of drug exposure that could be employed in future clinical trials.
Collapse
Affiliation(s)
- Kristen B. Farrell
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States of America
| | - Sunetra Das
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States of America
| | - Steven K. Nordeen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - James R. Lambert
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Douglas H. Thamm
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
3
|
Li Y, Zhu T, Yang J, Zhang Q, Xu S, Ge S, Jia R, Zhang J, Fan X. EHMT2 promotes tumorigenesis in GNAQ/11-mutant uveal melanoma via ARHGAP29-mediated RhoA pathway. Acta Pharm Sin B 2024; 14:1187-1203. [PMID: 38486999 PMCID: PMC10935147 DOI: 10.1016/j.apsb.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 12/02/2023] [Indexed: 03/17/2024] Open
Abstract
Constitutive activation of GNAQ/11 is the initiative oncogenic event in uveal melanoma (UM). Direct targeting GNAQ/11 has yet to be proven feasible as they are vital for a plethora of cellular functions. In search of genetic vulnerability for UM, we found that inhibition of euchromatic histone lysine methyltransferase 2 (EHMT2) expression or activity significantly reduced the proliferation and migration capacity of cancer cells. Notably, elevated expression of EHMT2 had been validated in UM samples. Furthermore, Kaplan-Meier survival analysis indicated high EHMT2 protein level was related to poor recurrence-free survival and a more advanced T stage. Chromatin immunoprecipitation sequencing analysis and the following mechanistic investigation showed that ARHGAP29 was a downstream target of EHMT2. Its transcription was suppressed by EHMT2 in a methyltransferase-dependent pattern in GNAQ/11-mutant UM cells, leading to elevated RhoA activity. Rescuing constitutively active RhoA in UM cells lacking EHMT2 restored oncogenic phenotypes. Simultaneously blocking EHMT2 and GNAQ/11 signaling in vitro and in vivo showed a synergistic effect on UM growth, suggesting the driver role of these two key molecules. In summary, our study shows evidence for an epigenetic program of EHMT2 regulation that influences UM progression and indicates inhibiting EHMT2 and MEK/ERK simultaneously as a therapeutic strategy in GNAQ/11-mutant UM.
Collapse
Affiliation(s)
- Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Tianyu Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Qianqian Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Jianming Zhang
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| |
Collapse
|
4
|
Das D, Leung JY, Balamurugan S, Tergaonkar V, Loh AHP, Chiang CM, Taneja R. BRD4 isoforms have distinct roles in tumour progression and metastasis in rhabdomyosarcoma. EMBO Rep 2024; 25:832-852. [PMID: 38191874 PMCID: PMC10897194 DOI: 10.1038/s44319-023-00033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
BRD4, a bromodomain and extraterminal (BET) protein, is deregulated in multiple cancers and has emerged as a promising drug target. However, the function of the two main BRD4 isoforms (BRD4-L and BRD4-S) has not been analysed in parallel in most cancers. This complicates determining therapeutic efficacy of pan-BET inhibitors. In this study, using functional and transcriptomic analysis, we show that BRD-L and BRD4-S isoforms play distinct roles in fusion negative embryonal rhabdomyosarcoma. BRD4-L has an oncogenic role and inhibits myogenic differentiation, at least in part, by activating myostatin expression. Depletion of BRD4-L in vivo impairs tumour progression but does not impact metastasis. On the other hand, depletion of BRD4-S has no significant impact on tumour growth, but strikingly promotes metastasis in vivo. Interestingly, BRD4-S loss results in the enrichment of BRD4-L and RNA Polymerase II at integrin gene promoters resulting in their activation. In fusion positive alveolar rhabdomyosarcoma, BRD4-L is unrestricted in its oncogenic role, with no evident involvement of BRD4-S. Our work unveils isoform-specific functions of BRD4 in rhabdomyosarcoma.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology, Healthy Longevity and NUS Center for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Jia Yu Leung
- Department of Physiology, Healthy Longevity and NUS Center for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Shivaranjani Balamurugan
- Department of Physiology, Healthy Longevity and NUS Center for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity and NUS Center for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
5
|
Pagolu SLB, Parekh N. Protocol for Analyzing Epigenetic Regulation Mechanisms in Breast Cancer. Methods Mol Biol 2024; 2812:275-306. [PMID: 39068369 DOI: 10.1007/978-1-0716-3886-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
DNA methylation and gene expression are two critical aspects of the epigenetic landscape that contribute significantly to cancer pathogenesis. Analysis of aberrant genome-wide methylation patterns can provide insights into how these affect the cancer transcriptome and possible clinical implications for cancer diagnosis and treatment. The role of tumor suppressors and oncogenes is well known in tumorigenesis. Epigenetic alterations can significantly impact the expression and function of these critical genes, contributing to the initiation and progression of cancer. This protocol chapter presents a unified workflow to explore the role of DNA methylation in gene expression regulation in breast cancer by identifying differentially expressed genes whose promoter or gene body regions are differentially methylated using various Bioconductor packages in R environment. Functional enrichment analysis of these genes can help in understanding the mechanisms leading to tumorigenesis due to epigenetic alterations.
Collapse
Affiliation(s)
- Sri Lakshmi Bhavani Pagolu
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, Telangana, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Abd Elmoneim HM, Huwait HF, Nafady-Hego H, Mohamed FA. PROGNOSTIC IMPLICATIONS OF PD-L1 EXPRESSION AND LOSS OF PTEN IN PATIENTS WITH RHABDOMYOSARCOMA, EWING'S SARCOMA AND OSTEOSARCOMA. Exp Oncol 2023; 45:337-350. [PMID: 38186021 DOI: 10.15407/exp-oncology.2023.03.337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND In children, osteosarcoma (OS), Ewing's sarcoma (ES), and rhabdomyosarcoma (RMS) are the most common sarcomas. A link between the anti-programmed death ligand-1 PD-L1 and the tumor suppressor phosphatase and tensin homologue (PTEN) expression has been described in many tumors. The aim of this work is to determine clinicopathological relationships and the possible prognostic significance of PD-L1 and PTEN expression in rhabdomyosarcoma (RMS), Ewing's sarcoma (ES), and osteosarcoma (OS). MATERIALS AND METHODS Expression of PD-L1 and PTEN were examined by immunohistochemistry in 45 archival RMS, ES, and OS cases. RESULTS The positive expression of PD-L1 was found in 16.7% and 31.6% of ES and OS, respectively. The negative PD-L1 was related to a substantially longer survival in ES cases (p = 0.045), but positive PD-L1 expression was significantly associated with the increased tumor stage and vascular invasion in the OS cases (p = 0.005 and p = 0.002), respectively. On the other hand, PTEN loss was strongly associated with deep tumor, high tumor grade, and recurrence in RMS (p = 0.002, p = 0.045, and p = 0.026, respectively). However, PTEN loss was significantly absent in ES as tumor grade increased (p = 0.031). It is noteworthy that tumor recurrence, the loss of PTEN, and positive PD-L1 were all considered predictive factors in OS patients (p = 0.045, p = 0.032, and p = 0.02, respectively). CONCLUSIONS In children, OS and ES have positive PD-L1 expression, which has an independent unfavorable prognostic effect and raises the possibility of using PD-L1 as a therapeutic target. OS, ES, and RMS prognosis are all predicted by PTEN loss.
Collapse
Affiliation(s)
- H M Abd Elmoneim
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - H F Huwait
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - H Nafady-Hego
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
- Laboratory Department, Al Tahrir Medical Center, Doha, Qatar
| | - Fez A Mohamed
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Chen S, Ma J, Xiao Y, Zhou D, He P, Chen Y, Zheng X, Lin H, Qiu F, Yuan Y, Zhong J, Li X, Pan X, Fang Z, Wang C. RNA Interference against ATP as a Gene Therapy Approach for Prostate Cancer. Mol Pharm 2023; 20:5214-5225. [PMID: 37733628 DOI: 10.1021/acs.molpharmaceut.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Chemotherapeutic agents targeting energy metabolism have not achieved satisfactory results in different types of tumors. Herein, we developed an RNA interference (RNAi) method against adenosine triphosphate (ATP) by constructing an interfering plasmid-expressing ATP-binding RNA aptamer, which notably inhibited the growth of prostate cancer cells through diminishing the availability of cytoplasmic ATP and impairing the homeostasis of energy metabolism, and both glycolysis and oxidative phosphorylation were suppressed after RNAi treatment. Further identifying the mechanism underlying the effects of ATP aptamer, we surprisingly found that it markedly reduced the activity of membrane ionic channels and membrane potential which led to the dysfunction of mitochondria, such as the decrease of mitochondrial number, reduction in the respiration rate, and decline of mitochondrial membrane potential and ATP production. Meanwhile, the shortage of ATP impeded the formation of lamellipodia that are essential for the movement of cells, consequently resulting in a significant reduction of cell migration. Both the downregulation of the phosphorylation of AMP-activated protein kinase (AMPK) and endoplasmic reticulum kinase (ERK) and diminishing of lamellipodium formation led to cell apoptosis as well as the inhibition of angiogenesis and invasion. In conclusion, as the first RNAi modality targeting the blocking of ATP consumption, the present method can disturb the respiratory chain and ATP pool, which provides a novel regime for tumor therapies..
Collapse
Affiliation(s)
- Shuangya Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Jisheng Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yunbei Xiao
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Dongyan Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Ping He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yajing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Xiaolu Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
- Pharmaceutical Department, Jinhua Central Hospital, Jinhua, Zhejiang 321000, China
| | - Hui Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Feng Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yuying Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Jiaben Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Zhiyuan Fang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| |
Collapse
|
8
|
Das D, Leung JY, Tergaonkar V, Loh AHP, Chiang CM, Taneja R. BRD4 isoforms have distinct roles in tumor progression and metastasis in embryonal rhabdomyosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550665. [PMID: 37546805 PMCID: PMC10402065 DOI: 10.1101/2023.07.26.550665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BRD4, a bromodomain and extraterminal (BET) protein, is deregulated in multiple cancers and has emerged as a promising drug target. However, the function of the two main BRD4 isoforms (BRD4-L and BRD4-S) has not been analyzed in parallel in most cancers. This complicates determining therapeutic efficacy of pan-BET inhibitors. In this study, using functional and transcriptomic analysis, we show that BRD-L and BRD4-S isoforms play distinct roles in embryonal rhabdomyosarcoma. BRD4-L has an oncogenic role and inhibits myogenic differentiation, at least in part, by activating myostatin expression. Depletion of BRD4-L in vivo impairs tumor progression but does not impact metastasis. On the other hand, depletion of BRD4-S has no significant impact on tumor growth, but strikingly promotes metastasis in vivo . Interestingly, BRD4-S loss results in the enrichment of BRD4-L and RNA Polymerase II at integrin gene promoters resulting in their activation. Our work unveils isoform-specific functions of BRD4 and demonstrates that BRD4-S functions as a gatekeeper to constrain the full oncogenic potential of BRD4-L.
Collapse
|
9
|
Pomella S, Danielli SG, Alaggio R, Breunis WB, Hamed E, Selfe J, Wachtel M, Walters ZS, Schäfer BW, Rota R, Shipley JM, Hettmer S. Genomic and Epigenetic Changes Drive Aberrant Skeletal Muscle Differentiation in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:2823. [PMID: 37345159 DOI: 10.3390/cancers15102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children and adolescents, represents an aberrant form of skeletal muscle differentiation. Both skeletal muscle development, as well as regeneration of adult skeletal muscle are governed by members of the myogenic family of regulatory transcription factors (MRFs), which are deployed in a highly controlled, multi-step, bidirectional process. Many aspects of this complex process are deregulated in RMS and contribute to tumorigenesis. Interconnected loops of super-enhancers, called core regulatory circuitries (CRCs), define aberrant muscle differentiation in RMS cells. The transcriptional regulation of MRF expression/activity takes a central role in the CRCs active in skeletal muscle and RMS. In PAX3::FOXO1 fusion-positive (PF+) RMS, CRCs maintain expression of the disease-driving fusion oncogene. Recent single-cell studies have revealed hierarchically organized subsets of cells within the RMS cell pool, which recapitulate developmental myogenesis and appear to drive malignancy. There is a large interest in exploiting the causes of aberrant muscle development in RMS to allow for terminal differentiation as a therapeutic strategy, for example, by interrupting MEK/ERK signaling or by interfering with the epigenetic machinery controlling CRCs. In this review, we provide an overview of the genetic and epigenetic framework of abnormal muscle differentiation in RMS, as it provides insights into fundamental mechanisms of RMS malignancy, its remarkable phenotypic diversity and, ultimately, opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Sara G Danielli
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rita Alaggio
- Department of Pathology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy
| | - Willemijn B Breunis
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Ebrahem Hamed
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Zoe S Walters
- Translational Epigenomics Team, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rossella Rota
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University Medical Center Freiburg, 790106 Freiburg, Germany
| |
Collapse
|
10
|
Karthik N, Lee JJH, Soon JLJ, Chiu HY, Loh AHP, Ong DST, Tam WL, Taneja R. Histone variant H3.3 promotes metastasis in alveolar rhabdomyosarcoma. J Pathol 2023; 259:342-356. [PMID: 36573560 DOI: 10.1002/path.6048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The relatively quiet mutational landscape of rhabdomyosarcoma (RMS) suggests that epigenetic deregulation could be central to oncogenesis and tumour aggressiveness. Histone variants have long been recognised as important epigenetic regulators of gene expression. However, the role of histone variants in RMS has not been studied hitherto. In this study, we show that histone variant H3.3 is overexpressed in alveolar RMS (ARMS), an aggressive subtype of RMS. Functionally, knockdown of H3F3A, which encodes for H3.3, significantly impairs the ability of ARMS cells to undertake migration and invasion and reduces Rho activation. In addition, a striking reduction in metastatic tumour burden and improved survival is apparent in vivo. Using RNA-sequencing and ChIP-sequencing analyses, we identified melanoma cell adhesion molecule (MCAM/CD146) as a direct downstream target of H3.3. Loss of H3.3 resulted in a reduction in the presence of active marks and an increase in the occupancy of H1 at the MCAM promoter. Cell migration and invasion were rescued in H3F3A-depleted cells through MCAM overexpression. Moreover, we identified G9a, a lysine methyltransferase encoded by EHMT2, as an upstream regulator of H3F3A. Therefore, this study identifies a novel H3.3 dependent axis involved in ARMS metastasis. These findings establish the potential of MCAM as a therapeutic target for high-risk ARMS patients. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nandini Karthik
- Department of Physiology, Healthy Longevity and NUS Cancer Centre for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jane Jia Hui Lee
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Joshua Ling Jun Soon
- Department of Physiology, Healthy Longevity and NUS Cancer Centre for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hsin Yao Chiu
- Department of Physiology, Healthy Longevity and NUS Cancer Centre for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology and NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity and NUS Cancer Centre for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Wang X, Xiao Y, Dong Y, Wang Z, Yi J, Wang J, Wang X, Zhou H, Zhang L, Shi Y. A20 interacts with mTORC2 to inhibit the mTORC2/Akt/Rac1 signaling axis in hepatocellular carcinoma cells. Cancer Gene Ther 2023; 30:424-436. [PMID: 36411371 DOI: 10.1038/s41417-022-00562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
A20 acts as a tumor suppressor in hepatocellular carcinoma, especially inhibiting metastasis of the malignant cells. However, the mechanisms whereby A20 plays the inhibitory roles are not understood completely. Rac1 signaling is essential for cell migration in hepatocellular carcinoma metastasis. Nevertheless, it is not known whether and how A20 inhibits Rac1 signaling to suppress the migration of hepatocellular carcinoma cell. Thereby, we analyzed the relationship between A20 and Rac1 activation, as well as the activity of Akt and mTORC2, two signaling components upstream of Rac1, using gain and loss of function experiments. We found that the overexpression of A20 repressed, while the knockdown or knockout of A20 promoted, the activation of Rac1, Akt and mTORC2 in hepatocellular carcinoma cells. Moreover, the inhibitory effect of A20 on the mTORC2/Akt/Rac1 signaling axis was due to the interaction between A20 and mTORC2 complex. The binding of A20 to mTORC2 was mediated by the ZnF7 domain of A20 and M1 ubiquitin chain in the mTORC2 complex. Furthermore, A20 inhibited metastasis of hepatocellular carcinoma cells via restraining mTORC2 in a hepatocellular carcinoma xenograft mouse model. These findings revealed the relationship between A20 and mTORC2, and explained the molecular mechanisms of A20 in inhibition of hepatocellular carcinoma metastasis.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ying Xiao
- Laboratory of Cellular and Molecular Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanlei Dong
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhida Wang
- Department of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, China
| | - Jing Yi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianing Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyan Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongyu Shi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
12
|
Moghaddam M, Vivarelli S, Falzone L, Libra M, Bonavida B. Cancer resistance via the downregulation of the tumor suppressors RKIP and PTEN expressions: therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:170-207. [PMID: 37205308 PMCID: PMC10185445 DOI: 10.37349/etat.2023.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 05/21/2023] Open
Abstract
The Raf kinase inhibitor protein (RKIP) has been reported to be underexpressed in many cancers and plays a role in the regulation of tumor cells' survival, proliferation, invasion, and metastasis, hence, a tumor suppressor. RKIP also regulates tumor cell resistance to cytotoxic drugs/cells. Likewise, the tumor suppressor, phosphatase and tensin homolog (PTEN), which inhibits the phosphatidylinositol 3 kinase (PI3K)/AKT pathway, is either mutated, underexpressed, or deleted in many cancers and shares with RKIP its anti-tumor properties and its regulation in resistance. The transcriptional and posttranscriptional regulations of RKIP and PTEN expressions and their roles in resistance were reviewed. The underlying mechanism of the interrelationship between the signaling expressions of RKIP and PTEN in cancer is not clear. Several pathways are regulated by RKIP and PTEN and the transcriptional and post-transcriptional regulations of RKIP and PTEN is significantly altered in cancers. In addition, RKIP and PTEN play a key role in the regulation of tumor cells response to chemotherapy and immunotherapy. In addition, molecular and bioinformatic data revealed crosstalk signaling networks that regulate the expressions of both RKIP and PTEN. These crosstalks involved the mitogen-activated protein kinase (MAPK)/PI3K pathways and the dysregulated nuclear factor-kappaB (NF-κB)/Snail/Yin Yang 1 (YY1)/RKIP/PTEN loop in many cancers. Furthermore, further bioinformatic analyses were performed to investigate the correlations (positive or negative) and the prognostic significance of the expressions of RKIP or PTEN in 31 different human cancers. These analyses were not uniform and only revealed that there was a positive correlation between the expression of RKIP and PTEN only in few cancers. These findings demonstrated the existence of signaling cross-talks between RKIP and PTEN and both regulate resistance. Targeting either RKIP or PTEN (alone or in combination with other therapies) may be sufficient to therapeutically inhibit tumor growth and reverse the tumor resistance to cytotoxic therapies.
Collapse
Affiliation(s)
- Matthew Moghaddam
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
- Correspondence: Benjamin Bonavida, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), 1602 Molecular Sciences Building, 609 Charles E. Young Drive, East Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
The RNA helicase DDX5 cooperates with EHMT2 to sustain alveolar rhabdomyosarcoma growth. Cell Rep 2022; 40:111267. [PMID: 36044855 DOI: 10.1016/j.celrep.2022.111267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood characterized by the inability to exit the proliferative myoblast-like stage. The alveolar fusion positive subtype (FP-RMS) is the most aggressive and is mainly caused by the expression of PAX3/7-FOXO1 oncoproteins, which are challenging pharmacological targets. Here, we show that the DEAD box RNA helicase 5 (DDX5) is overexpressed in alveolar RMS cells and that its depletion and pharmacological inhibition decrease FP-RMS viability and slow tumor growth in xenograft models. Mechanistically, we provide evidence that DDX5 functions upstream of the EHMT2/AKT survival signaling pathway, by directly interacting with EHMT2 mRNA, modulating its stability and consequent protein expression. We show that EHMT2 in turns regulates PAX3-FOXO1 activity in a methylation-dependent manner, thus sustaining FP-RMS myoblastic state. Together, our findings identify another survival-promoting loop in FP-RMS and highlight DDX5 as a potential therapeutic target to arrest RMS growth.
Collapse
|
14
|
Chiu HY, Loh AHP, Taneja R. Mitochondrial calcium uptake regulates tumour progression in embryonal rhabdomyosarcoma. Cell Death Dis 2022; 13:419. [PMID: 35490194 PMCID: PMC9056521 DOI: 10.1038/s41419-022-04835-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022]
Abstract
AbstractEmbryonal rhabdomyosarcoma (ERMS) is characterised by a failure of cells to complete skeletal muscle differentiation. Although ERMS cells are vulnerable to oxidative stress, the relevance of mitochondrial calcium homoeostasis in oncogenesis is unclear. Here, we show that ERMS cell lines as well as primary tumours exhibit elevated expression of the mitochondrial calcium uniporter (MCU). MCU knockdown resulted in impaired mitochondrial calcium uptake and a reduction in mitochondrial reactive oxygen species (mROS) levels. Phenotypically, MCU knockdown cells exhibited reduced cellular proliferation and motility, with an increased propensity to differentiate in vitro and in vivo. RNA-sequencing of MCU knockdown cells revealed a significant reduction in genes involved in TGFβ signalling that play prominent roles in oncogenesis and inhibition of myogenic differentiation. Interestingly, modulation of mROS production impacted TGFβ signalling. Our study elucidates mechanisms by which mitochondrial calcium dysregulation promotes tumour progression and suggests that targeting the MCU complex to restore mitochondrial calcium homoeostasis could be a therapeutic avenue in ERMS.
Collapse
|
15
|
Nachiyappan A, Soon JLJ, Lim HJ, Lee VK, Taneja R. EHMT1 promotes tumor progression and maintains stemness by regulating ALDH1A1 expression in alveolar rhabdomyosarcoma. J Pathol 2022; 256:349-362. [PMID: 34897678 DOI: 10.1002/path.5848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 11/06/2022]
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer with poor prognosis. Cancer stem cells (CSCs) are seeds for tumor relapse and metastasis. However, pathways that maintain stemness genes are not fully understood. Here, we report that the enzyme euchromatic histone lysine methyltransferase 1 (EHMT1) is expressed in primary and relapse ARMS tumors. EHMT1 suppression impaired motility and induced differentiation in ARMS cell lines and reduced tumor progression in a mouse xenograft model in vivo. RNA sequencing of EHMT1-depleted cells revealed downregulation of ALDH1A1 that is associated with CSCs. Consistent with this, inhibition of ALDH1A1 expression and activity mimicked EHMT1 depletion phenotypes and reduced tumorsphere formation. Mechanistically, we demonstrate that EHMT1 does not bind to the ALDH1A1 promoter but activates it by stabilizing C/EBPβ, a known regulator of ALDH1A1 expression. Our findings identify a role for EHMT1 in maintenance of stemness by regulating ALDH1A1 expression and suggest that targeting ALDH+ cells is a promising strategy in ARMS. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alamelu Nachiyappan
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joshua Ling Jun Soon
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Victor Km Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
16
|
Fatema K, Luelling S, Kirkham M, Pavek A, Heyneman AL, Barrott J. Epigenetics and precision medicine in bone and soft tissue sarcomas. EPIGENETICS IN PRECISION MEDICINE 2022:147-191. [DOI: 10.1016/b978-0-12-823008-4.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Shrestha R, Mohankumar K, Martin G, Hailemariam A, Lee SO, Jin UH, Burghardt R, Safe S. Flavonoids kaempferol and quercetin are nuclear receptor 4A1 (NR4A1, Nur77) ligands and inhibit rhabdomyosarcoma cell and tumor growth. J Exp Clin Cancer Res 2021; 40:392. [PMID: 34906197 PMCID: PMC8670039 DOI: 10.1186/s13046-021-02199-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Flavonoids exhibit both chemopreventive and chemotherapeutic activity for multiple tumor types, however, their mechanisms of action are not well defined. Based on some of their functional and gene modifying activities as anticancer agents, we hypothesized that kaempferol and quercetin were nuclear receptor 4A1 (NR4A1, Nur77) ligands and confirmed that both compounds directly bound NR4A1 with KD values of 3.1 and 0.93 μM, respectively. METHODS The activities of kaempferol and quercetin were determined in direct binding to NR4A1 protein and in NR4A1-dependent transactivation assays in Rh30 and Rh41 rhabdomyosarcoma (RMS) cells. Flavonoid-dependent effects as inhibitors of cell growth, survival and invasion were determined in XTT and Boyden chamber assays respectively and changes in protein levels were determined by western blots. Tumor growth inhibition studies were carried out in athymic nude mice bearing Rh30 cells as xenografts. RESULTS Kaempferol and quercetin bind NR4A1 protein and inhibit NR4A1-dependent transactivation in RMS cells. NR4A1 also regulates RMS cell growth, survival, mTOR signaling and invasion. The pro-oncogenic PAX3-FOXO1 and G9a genes are also regulated by NR4A1 and, these pathways and genes are all inhibited by kaempferol and quercetin. Moreover, at a dose of 50 mg/kg/d kaempferol and quercetin inhibited tumor growth in an athymic nude mouse xenograft model bearing Rh30 cells. CONCLUSION These results demonstrate the clinical potential for repurposing kaempferol and quercetin for clinical applications as precision medicine for treating RMS patients that express NR4A1 in order to increase the efficacy and decrease dosages of currently used cytotoxic drugs.
Collapse
Affiliation(s)
- Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Greg Martin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Amanuel Hailemariam
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu, 42601, Republic of Korea
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Robert Burghardt
- Department of Veterinary Integrated Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA.
| |
Collapse
|
18
|
Li H, Li S, Lin Y, Chen S, Yang L, Huang X, Wang H, Yu X, Zhang L. Artificial exosomes mediated spatiotemporal-resolved and targeted delivery of epigenetic inhibitors. J Nanobiotechnology 2021; 19:364. [PMID: 34789273 PMCID: PMC8597284 DOI: 10.1186/s12951-021-01107-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/31/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Malignant tumor is usually associated with epigenetic dysregulation, such as overexpression of histone deacetylase (HDAC), thus HDAC has emerged as a therapeutic target for cancer. Histone deacetylase inhibitor has been approved for clinical use to treat hematological cancers. However, the low solubility, short circulation lifetime, and high cytotoxicity partially limited their applications in solid tumor. METHODS The upconversion nanoparticles (UC) modified with mesoporous silica (SUC) was used to load an HDACI, suberoylanilide hydroxamic acid (SAHA), and further camouflaged with M1 macrophage-derived exosome membranes (EMS). EMS was characterized in size and compositions. We also analyzed the epigenetic regulation induced by EMS. Furthermore, we evaluate the biodistribution and in vivo tumor inhibition after the systemic administration of EMS. RESULTS This novel style spatiotemporal-resolved drug delivery system, EMS showed a high loading efficiency of SAHA. EMS could be taken up by lung cancer cells and lead to efficient epigenetic inhibition. We found that the integrin α4β1 on M1-EM, was crucial for the homing of EMS to tumor tissues for the first time. In tumor-bearing mice, EMS showed spatiotemporal-resolved properties and facilitated the drug accumulation in the tumors, which induced superior anti-tumor effects. CONCLUSION This novel style of spatiotemporal-resolved nanoparticles can be used as a theranostic platform for lung cancer therapy.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Songpei Li
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yinshan Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Sheng Chen
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Langyu Yang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Xin Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hao Wang
- Department of Oncology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Lingmin Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
19
|
Protein Arginine Methyltransferase (PRMT) Inhibitors-AMI-1 and SAH Are Effective in Attenuating Rhabdomyosarcoma Growth and Proliferation in Cell Cultures. Int J Mol Sci 2021; 22:ijms22158023. [PMID: 34360791 PMCID: PMC8348967 DOI: 10.3390/ijms22158023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a malignant soft tissue cancer that develops mostly in children and young adults. With regard to histopathology, four rhabdomyosarcoma types are distinguishable: embryonal, alveolar, pleomorphic and spindle/sclerosing. Currently, increased amounts of evidence indicate that not only gene mutations, but also epigenetic modifications may be involved in the development of RMS. Epigenomic changes regulate the chromatin architecture and affect the interaction between DNA strands, histones and chromatin binding proteins, thus, are able to control gene expression. The main aim of the study was to assess the role of protein arginine methyltransferases (PRMT) in the cellular biology of rhabdomyosarcoma. In the study we used two pan-inhibitors of PRMT, called AMI-1 and SAH, and evaluated their effects on proliferation and apoptosis of RMS cells. We observed that AMI-1 and SAH reduce the invasive phenotype of rhabdomyosarcoma cells by decreasing their proliferation rate, cell viability and ability to form cell colonies. In addition, microarray analysis revealed that these inhibitors attenuate the activity of the PI3K-Akt signaling pathway and affect expression of genes related to it.
Collapse
|
20
|
Zhou M, Zhang X, Liu C, Nie D, Li S, Lai P, Jin Y. Targeting protein lysine methyltransferase G9A impairs self-renewal of chronic myelogenous leukemia stem cells via upregulation of SOX6. Oncogene 2021; 40:3564-3577. [PMID: 33931742 DOI: 10.1038/s41388-021-01799-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 01/23/2023]
Abstract
The application of tyrosine kinase inhibitors (TKIs) in clinic has revolutionized chronic myelogenous leukemia (CML) treatment, but fails to eliminate leukemia stem cells (LSCs), which are considered as roots of drug resistance and disease relapse. Thus, eradication of LSCs may be a promising strategy for curing CML. In this study, we found that protein lysine methyltransferase G9A was overexpressed in CML LSCs. The upregulation of G9A by BCR-ABL was independent on its tyrosine kinase activity. Knockdown of G9A by shRNAs or pharmacological inhibition of G9A by UNC0642 significantly suppressed survival and impaired self-renewal capacity of CML LSCs. Inhibition of G9a eradicated LSCs in CML mice driven by BCR-ABL gene and dramatically prolonged survival of the mice. Ex vivo treatment with G9A inhibitor inhibited long-term engraftment of CML CD34+ cells in immunodeficient mice. Mechanically, tumor suppressor SOX6 was identified as a direct target of G9A in CML LSCs by RNA-seq analysis. Silencing Sox6 at least partially rescued G9a knockdown-mediated LSCs elimination in vivo. Our findings improve the understanding of LSC regulation network and validate G9A as a therapeutic target in CML LSCs. Targeting G9A may be considered as an additional strategy for the treatment of patients with CML.
Collapse
Affiliation(s)
- Min Zhou
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiuli Zhang
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chang Liu
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuyi Li
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Peilong Lai
- Department of Hematology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanli Jin
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
21
|
Walters ZS, Aladowicz E, Villarejo-Balcells B, Nugent G, Selfe JL, Eve P, Blagg J, Rossanese O, Shipley J. Role for the Histone Demethylase KDM4B in Rhabdomyosarcoma via CDK6 and CCNA2: Compensation by KDM4A and Apoptotic Response of Targeting Both KDM4B and KDM4A. Cancers (Basel) 2021; 13:1734. [PMID: 33917420 PMCID: PMC8038694 DOI: 10.3390/cancers13071734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 01/10/2023] Open
Abstract
Histone demethylases are epigenetic modulators that play key roles in regulating gene expression related to many critical cellular functions and are emerging as promising therapeutic targets in a number of tumor types. We previously identified histone demethylase family members as overexpressed in the pediatric sarcoma, rhabdomyosarcoma. Here we show high sensitivity of rhabdomyosarcoma cells to a pan-histone demethylase inhibitor, JIB-04 and identify a key role for the histone demethylase KDM4B in rhabdomyosarcoma cell growth through an RNAi-screening approach. Decreasing KDM4B levels affected cell cycle progression and transcription of G1/S and G2/M checkpoint genes including CDK6 and CCNA2, which are bound by KDM4B in their promoter regions. However, after sustained knockdown of KDM4B, rhabdomyosarcoma cell growth recovered. We show that this can be attributed to acquired molecular compensation via recruitment of KDM4A to the promoter regions of CDK6 and CCNA2 that are otherwise bound by KDM4B. Furthermore, upfront silencing of both KDM4B and KDM4A led to RMS cell apoptosis, not seen by reducing either alone. To circumvent compensation and elicit stronger therapeutic responses, our study supports targeting histone demethylase sub-family proteins through selective poly-pharmacology as a therapeutic approach.
Collapse
Affiliation(s)
- Zoë S. Walters
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
- Cancer Sciences, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Ewa Aladowicz
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
| | - Barbara Villarejo-Balcells
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
| | - Gary Nugent
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (G.N.); (P.E.); (J.B.); (O.R.)
| | - Joanna L. Selfe
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
| | - Paul Eve
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (G.N.); (P.E.); (J.B.); (O.R.)
| | - Julian Blagg
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (G.N.); (P.E.); (J.B.); (O.R.)
| | - Olivia Rossanese
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (G.N.); (P.E.); (J.B.); (O.R.)
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
| |
Collapse
|
22
|
Shrestha R, Mohankumar K, Jin UH, Martin G, Safe S. The Histone Methyltransferase Gene G9A Is Regulated by Nuclear Receptor 4A1 in Alveolar Rhabdomyosarcoma Cells. Mol Cancer Ther 2020; 20:612-622. [PMID: 33277444 DOI: 10.1158/1535-7163.mct-20-0474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
The histone methyltransferase G9A (EHMT2) gene catalyzes methylation of histone 3 lysine 9 (H3K9), and this gene silencing activity contributes to the tumor promoter-like activity of G9A in several tumor types including alveolar rhabdomyosarcoma (ARMS). Previous studies show the orphan nuclear receptor 4A1 (NR4A1, Nur77) is overexpressed in rhabdomyosarcoma and exhibits pro-oncogenic activity. In this study, we show that knockdown of NR4A1 in ARMS cells decreased expression of G9A mRNA and protein. Moreover, treatment of ARMS cells with several bis-indole-derived NR4A1 ligands (antagonists) including 1,1-bis(3'-indolyl)-1-(4-hydroxyphenyl)methane (CDIM8), 3,5-dimethyl (3,5-(CH3)2), and 3-bromo-5-methoxy (3-Br-5-OCH3) analogs also decreased G9A expression. Furthermore, NR4A1 antagonists also decreased G9A expression in breast, lung, liver, and endometrial cancer cells confirming that G9A is an NR4A1-regulated gene in ARMS and other cancer cell lines. Mechanistic studies showed that the NR4A1/Sp1 complex interacted with the GC-rich 511 region of the G9A promoter to regulate G9A gene expression. Moreover, knockdown of NR4A1 or treatment with NR4A1 receptor antagonists decreased overall H3K9me2, H3K9me2 associated with the PTEN promoter, and PTEN-regulated phospho-Akt. In vivo studies showed that the NR4A1 antagonist (3-Br-5-OCH3) inhibited tumor growth in athymic nude mice bearing Rh30 ARMS cells and confirmed that G9A was an NR4A1-regulated gene that can be targeted by NR4A1 receptor antagonists.
Collapse
Affiliation(s)
- Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Gregory Martin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas. .,Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
23
|
Pal A, Leung JY, Ang GCK, Rao VK, Pignata L, Lim HJ, Hebrard M, Chang KT, Lee VK, Guccione E, Taneja R. EHMT2 epigenetically suppresses Wnt signaling and is a potential target in embryonal rhabdomyosarcoma. eLife 2020; 9:57683. [PMID: 33252038 PMCID: PMC7728445 DOI: 10.7554/elife.57683] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Wnt signaling is downregulated in embryonal rhabdomyosarcoma (ERMS) and contributes to the block of differentiation. Epigenetic mechanisms leading to its suppression are unknown and could pave the way toward novel therapeutic modalities. We demonstrate that EHMT2 suppresses canonical Wnt signaling by activating expression of the Wnt antagonist DKK1. Inhibition of EHMT2 expression or activity in human ERMS cell lines reduced DKK1 expression and elevated canonical Wnt signaling resulting in myogenic differentiation in vitro and in mouse xenograft models in vivo. Mechanistically, EHMT2 impacted Sp1 and p300 enrichment at the DKK1 promoter. The reduced tumor growth upon EHMT2 deficiency was reversed by recombinant DKK1 or LGK974, which also inhibits Wnt signaling. Consistently, among 13 drugs targeting chromatin modifiers, EHMT2 inhibitors were highly effective in reducing ERMS cell viability. Our study demonstrates that ERMS cells are vulnerable to EHMT2 inhibitors and suggest that targeting the EHMT2-DKK1-β-catenin node holds promise for differentiation therapy.
Collapse
Affiliation(s)
- Ananya Pal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Yu Leung
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Gareth Chin Khye Ang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luca Pignata
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maxime Hebrard
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kenneth Te Chang
- Department of Pathology, KK Women and Children's Hospital, Singapore, Singapore
| | - Victor Km Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Leung JY, Chia K, Ong DST, Taneja R. Interweaving Tumor Heterogeneity into the Cancer Epigenetic/Metabolic Axis. Antioxid Redox Signal 2020; 33:946-965. [PMID: 31841357 DOI: 10.1089/ars.2019.7942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Significance: The epigenomic/metabolic landscape in cancer has been studied extensively in the past decade and forms the basis of various drug targets. Yet, cancer treatment remains a challenge, with clinical trials exhibiting limited efficacy and high relapse rates. Patients respond differently to therapy, which is fundamentally attributed to tumor heterogeneity, both across and within tumors. This review focuses on the interactions between the heterogeneous tumor microenvironment (TME) and the epigenomic/metabolic axis in cancer, as well as the emerging technologies under development to aid heterogeneity studies. Recent Advances: Interlinks between epigenetics and metabolism in cancer have been reported. Emerging studies have unveiled interactions between the TME and cancer cells that play a critical role in regulating epigenetics and reprogramming cancer metabolism, suggesting a three-way cross talk. Critical Issues: This cross talk accentuates the multiplex nature of cancer, and the importance of considering tumor heterogeneity in various epigenomic/metabolic cancer studies. Future Directions: With the advancement in single-cell profiling, it may be possible to identify cancer subclones and their unique vulnerabilities to develop a multimodal therapy. Drugs targeting the TME are currently being studied, and a better understanding of the TME in regulating cancer epigenetics and metabolism may hold the key to identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Jia Yu Leung
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kimberly Chia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Bellamy J, Szemes M, Melegh Z, Dallosso A, Kollareddy M, Catchpoole D, Malik K. Increased Efficacy of Histone Methyltransferase G9a Inhibitors Against MYCN-Amplified Neuroblastoma. Front Oncol 2020; 10:818. [PMID: 32537432 PMCID: PMC7269128 DOI: 10.3389/fonc.2020.00818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
Targeted inhibition of proteins modulating epigenetic changes is an increasingly important priority in cancer therapeutics, and many small molecule inhibitors are currently being developed. In the case of neuroblastoma (NB), a pediatric solid tumor with a paucity of intragenic mutations, epigenetic deregulation may be especially important. In this study we validate the histone methyltransferase G9a/EHMT2 as being associated with indicators of poor prognosis in NB. Immunological analysis of G9a protein shows it to be more highly expressed in NB cell-lines with MYCN amplification, which is a primary determinant of dismal outcome in NB patients. Furthermore, G9a protein in primary tumors is expressed at higher levels in poorly differentiated/undifferentiated NB, and correlates with high EZH2 expression, a known co-operative oncoprotein in NB. Our functional analyses demonstrate that siRNA-mediated G9a depletion inhibits cell growth in all NB cell lines, but, strikingly, only triggers apoptosis in NB cells with MYCN amplification, suggesting a synthetic lethal relationship between G9a and MYCN. This pattern of sensitivity is also evident when using small molecule inhibitors of G9a, UNC0638, and UNC0642. The increased efficacy of G9a inhibition in the presence of MYCN-overexpression is also demonstrated in the SHEP-21N isogenic model with tet-regulatable MYCN. Finally, using RNA sequencing, we identify several potential tumor suppressor genes that are reactivated by G9a inhibition in NB, including the CLU, FLCN, AMHR2, and AKR1C1-3. Together, our study underlines the under-appreciated role of G9a in NB, especially in MYCN-amplified tumors.
Collapse
Affiliation(s)
- Jacob Bellamy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Zsombor Melegh
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Cellular Pathology, Southmead Hospital, Bristol, United Kingdom
| | - Anthony Dallosso
- Department of Cellular Pathology, Southmead Hospital, Bristol, United Kingdom
| | - Madhu Kollareddy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Daniel Catchpoole
- The Kids Research Institute, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
26
|
Liu Y, Yang EJ, Shi C, Mou PK, Zhang B, Wu C, Lyu J, Shim JS. Histone Acetyltransferase (HAT) P300/CBP Inhibitors Induce Synthetic Lethality in PTEN-Deficient Colorectal Cancer Cells through Destabilizing AKT. Int J Biol Sci 2020; 16:1774-1784. [PMID: 32398948 PMCID: PMC7211175 DOI: 10.7150/ijbs.42197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/24/2020] [Indexed: 01/03/2023] Open
Abstract
PTEN, a tumor suppressor, is found loss of function in many cancers, including colorectal cancer. To identify the synthetic lethal compounds working with PTEN deficiency, we performed a synthetic lethality drug screening with PTEN-isogenic colorectal cancer cells. From the screening, we found that PTEN-/- colorectal cancer cells were sensitive to anacardic acid, a p300/CBP histone acetyltransferase (HAT) inhibitor. Anacardic acid significantly reduced the viability of PTEN-/- cells not in PTEN+/+ cells via inducing apoptosis. Inhibition of HAT activity of p300/CBP by anacardic acid reduced the acetylation of histones at the promoter region and inhibited the transcription of Hsp70 family of proteins. The down-regulation of Hsp70 family proteins led to the reduction of AKT-Hsp70 complex formation, AKT destabilization and decreased the level of phosphorylated AKT at Ser473, all of which are vital for the survival of PTEN-/- colorectal cells. The synthetic lethality effect of anacardic acid was further validated in tumor xenograft mice models, where PTEN-/- colorectal tumors showed greater sensitivity to anacardic acid treatment than PTEN+/+ tumors. These data suggest that anacardic acid induced synthetic lethality by inhibiting HAT activity of p300/CBP, thereby reducing Hsp70 transcription and destabilizing AKT in PTEN deficient colorectal cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau
| |
Collapse
|