1
|
Poustforoosh A. Scaffold Hopping Method for Design and Development of Potential Allosteric AKT Inhibitors. Mol Biotechnol 2024:10.1007/s12033-024-01307-2. [PMID: 39463205 DOI: 10.1007/s12033-024-01307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Targeting AKT is a practical strategy for cancer therapy in many cancer types. Targeted inhibitors of AKT are attractive solutions for inhibiting the interconnected signaling pathways, like PI3K/Akt/mTOR. Allosteric inhibitors are more desirable among different classes of AKT inhibitors as they could be more specific with fewer off-target proteins. In this study, a ligand/structure-based pipeline was developed to design new allosteric AKT inhibitors by employing the core hopping method. Triciribine, a traditional allosteric AKT inhibitor was used as the template, and the FDA-approved kinase inhibitors for cancer treatment were considered as the cores. The allosteric site in the crystal structure of AKT1 was used to screen the designed compounds. The results were further evaluated using molecular docking, ADME/T analysis, molecular dynamics (MD) simulation, and binding free energy calculations. The outcomes introduced 24 newly designed inhibitors, amongst which three compounds C6, C20, and C16 showed remarkable binding affinity to AKT1. While the docking scores for triciribine was around - 8.6 kcal/mol, the docking scores of these compounds were about - 11 to - 13 kcal/mol. The MD results indicated that designed compounds target the essential residues of the PH domain and kinase domain of AKT, such as Trp80, Thr211, Tyr272, Asp274, and Asp292. Scaffold hopping is a tremendous tool for designing novel anti-cancer agents by improving already known and potential drug compounds. The designed compounds are worth to be examined by experimental investigation in vitro and in vivo.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Sharma A, Sharma M, Bharate SB. N-Benzyl piperidine Fragment in Drug Discovery. ChemMedChem 2024; 19:e202400384. [PMID: 38924676 DOI: 10.1002/cmdc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The N-benzyl piperidine (N-BP) structural motif is commonly employed in drug discovery due to its structural flexibility and three-dimensional nature. Medicinal chemists frequently utilize the N-BP motif as a versatile tool to fine-tune both efficacy and physicochemical properties in drug development. It provides crucial cation-π interactions with the target protein and also serves as a platform for optimizing stereochemical aspects of potency and toxicity. This motif is found in numerous approved drugs and clinical/preclinical candidates. This review focuses on the applications of the N-BP motif in drug discovery campaigns, emphasizing its role in imparting medicinally relevant properties. The review also provides an overview of approved drugs, the clinical and preclinical pipeline, and discusses its utility for specific therapeutic targets and indications, along with potential challenges.
Collapse
Affiliation(s)
- Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| |
Collapse
|
3
|
Chen X, Ma R, Wu W, Gao R, Shu Y, Dong M, Guo M, Tang D, Li D, Ji S. Wighteone, a prenylated flavonoid from licorice, inhibits growth of SW480 colorectal cancer cells by allosteric inhibition of Akt. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118195. [PMID: 38641080 DOI: 10.1016/j.jep.2024.118195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/31/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is a frequently used herbal medicine worldwide, and is used to treat cough, hepatitis, cancer and influenza in clinical practice of traditional Chinese medicine. Modern pharmacological studies indicate that prenylated flavonoids play an important role in the anti-tumor activity of licorice, especially the tumors in stomach, lung, colon and liver. Wighteone is one of the main prenylated flavonoids in licorice, and its possible effect and target against colorectal cancer have not been investigated. AIM OF THE STUDY This study aimed to investigate the anti-colorectal cancer effect and underlying mechanism of wighteone. MATERIALS AND METHODS SW480 human colorectal cancer cells were used to evaluate the in vitro anti-colorectal cancer activity and Akt regulation effect of wighteone by flow cytometry, phosphoproteomic and Western blot analysis. Surface plasmon resonance (SPR) assay, molecular docking and dynamics simulation, and kinase activity assay were used to investigate the direct interaction between wighteone and Akt. A nude mouse xenograft model with SW480 cells was used to verify the in vivo anti-colorectal cancer activity of wighteone. RESULTS Wighteone inhibited phosphorylation of Akt and its downstream kinases in SW480 cells, which led to a reduction in cell viability. Wighteone had direct interaction with both PH and kinase domains of Akt, which locked Akt in a "closed" conformation with allosteric inhibition, and Gln79, Tyr272, Arg273 and Lys297 played the most critical role due to their hydrogen bond and hydrophobic interactions with wighteone. Based on Akt overexpression or activation in SW480 cells, further mechanistic studies suggested that wighteone-induced Akt inhibition led to cycle arrest, apoptosis and autophagic death of SW480 cells. Moreover, wighteone exerted in vivo anti-colorectal cancer effect and Akt inhibition activity in the nude mouse xenograft model. CONCLUSION Wighteone could inhibit growth of SW480 cells through allosteric inhibition of Akt, which led to cell cycle arrest, apoptosis and autophagic death. The results contributed to understanding of the anti-tumor mechanism of licorice, and also provided a rationale to design novel Akt allosteric inhibitors for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Xiaofei Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ruili Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Weiguo Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ran Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Yikang Shu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Mingxin Dong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510640, China.
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Danhua Li
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
4
|
Buchholz M, Majchrzak-Stiller B, Peters I, Hahn S, Skrzypczyk L, Beule L, Uhl W, Braumann C, Strotmann J, Höhn P. Maintenance Therapy for Pancreatic Cancer, a New Approach Based on the Synergy between the Novel Agent GP-2250 (Misetionamide) and Gemcitabine. Cancers (Basel) 2024; 16:2612. [PMID: 39061250 PMCID: PMC11275110 DOI: 10.3390/cancers16142612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The novel Oxathiazinane derivative GP-2250 (Misetionamide) displays antineoplastic activity in vitro and in vivo, as previously shown in pancreatic cancer cells and in patient-derived mouse xenografts (PDX). Currently, GP 2250 is under phase I clinical trial in pancreatic ductal adenocarcinoma (PDAC). GP-2250 in combination with Gemcitabine displays a high synergistic capacity in various primary and established pancreatic cancer cell lines. Additionally, in the eight PDX models tested, the drug combination was superior in reducing tumor volume with an aggregate tumor regression (ATR) of 74% compared to Gemcitabine alone (ATR: 10%). Similarly, in a PDX maintenance setting following two weeks of treatment with nab-Paclitaxel plus Gemcitabine, the combination of GP-2250 plus Gemcitabine resulted in outstanding tumor control (ATR: 79%) compared to treatment with Gemcitabine alone (ATR: 60%). Furthermore, GP-2250 reduced the ratio of tumor-initiating CD133+ markers on the surface of PDAC cells in spheroid cultures, indicating a possible mechanism for the synergistic effect of both substances. Considering the high tolerability of GP 2250, these results may open up a new approach to maintenance therapy with GP-2250/Gemcitabine combination following nab-Paclitaxel plus Gemcitabine as first-line treatment.
Collapse
Affiliation(s)
- Marie Buchholz
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Britta Majchrzak-Stiller
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Ilka Peters
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Stephan Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, 44780 Bochum, Germany;
| | - Lea Skrzypczyk
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Lena Beule
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Waldemar Uhl
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Chris Braumann
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
- Department of General, Visceral and Vascular Surgery, Evangelische Kliniken Gelsenkirchen, Akademisches Lehrkrankenhaus der Universität Duisburg-Essen, 45878 Gelsenkirchen, Germany
| | - Johanna Strotmann
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Philipp Höhn
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| |
Collapse
|
5
|
Yin J, Chen J, Hong JH, Huang Y, Xiao R, Liu S, Deng P, Sun Y, Chai KXY, Zeng X, Chan JY, Guan P, Wang Y, Wang P, Tong C, Yu Q, Xia X, Ong CK, Teh BT, Xiong Y, Tan J. 4EBP1-mediated SLC7A11 protein synthesis restrains ferroptosis triggered by MEK inhibitors in advanced ovarian cancer. JCI Insight 2024; 9:e177857. [PMID: 38842940 PMCID: PMC11383183 DOI: 10.1172/jci.insight.177857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/05/2024] [Indexed: 08/13/2024] Open
Abstract
Loss of ferroptosis contributes to the development of human cancer, and restoration of ferroptosis has been demonstrated as a potential therapeutic strategy in cancer treatment. However, the mechanisms of how ferroptosis escape contributes to ovarian cancer (OV) development are not well elucidated. Here, we show that ferroptosis negative regulation signatures correlated with the tumorigenesis of OV and were associated with poor prognosis, suggesting that restoration of ferroptosis represents a potential therapeutic strategy in OV. High-throughput drug screening with a kinase inhibitor library identified MEK inhibitors as ferroptosis inducers in OV cells. We further demonstrated that MEK inhibitor-resistant OV cells were less vulnerable to trametinib-induced ferroptosis. Mechanistically, mTOR/eIF4E binding protein 1 (4EBP1) signaling promoted solute carrier family 7 member 11 (SLC7A11) protein synthesis, leading to ferroptosis inhibition in MEK inhibitor-resistant cells. Dual inhibition of MEK and mTOR/4EBP1 signaling restrained the protein synthesis of SLC7A11 via suppression of the mTOR/4EBP1 axis to reactivate ferroptosis in resistant cells. Together, these findings provide a promising therapeutic option for OV treatment through ferroptosis restoration by the combined inhibition of MEK and mTOR/4EBP1 pathways.
Collapse
Affiliation(s)
- Jiaxin Yin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Han Hong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Yulin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shini Liu
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yichen Sun
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kelila Xin Ye Chai
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, and
| | - Xian Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Peiyong Guan
- Genome Institute of Singapore, A*STAR, Singapore
| | - Yali Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peili Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chongjie Tong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiang Yu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Genome Institute of Singapore, A*STAR, Singapore
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Choon Kiat Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, and
- Genome Institute of Singapore, A*STAR, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Ying Xiong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Hainan Academy of Medical Science, Hainan Medical University, Haikou, China
| |
Collapse
|
6
|
Bhujbal SP, Jun J, Park H, Moon J, Min K, Hah JM. Gaining Insights into Key Structural Hotspots within the Allosteric Binding Pockets of Protein Kinases. Int J Mol Sci 2024; 25:4725. [PMID: 38731943 PMCID: PMC11084947 DOI: 10.3390/ijms25094725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Protein kinases are essential regulators of cell function and represent one of the largest and most diverse protein families. They are particularly influential in signal transduction and coordinating complex processes like the cell cycle. Out of the 518 human protein kinases identified, 478 are part of a single superfamily sharing catalytic domains that are related in sequence. The dysregulation of protein kinases due to certain mutations has been associated with various diseases, including cancer. Although most of the protein kinase inhibitors identified as type I or type II primarily target the ATP-binding pockets of kinases, the structural and sequential resemblances among these pockets pose a significant challenge for selective inhibition. Therefore, targeting allosteric pockets that are beside highly conserved ATP pockets has emerged as a promising strategy to prevail current limitations, such as poor selectivity and drug resistance. In this article, we compared the binding pockets of various protein kinases for which allosteric (type III) inhibitors have already been developed. Additionally, understanding the structure and shape of existing ligands could aid in identifying key interaction sites within the allosteric pockets of kinases. This comprehensive review aims to facilitate the design of more effective and selective allosteric inhibitors.
Collapse
Affiliation(s)
- Swapnil P. Bhujbal
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea; (S.P.B.); (J.J.); (H.P.); (J.M.); (K.M.)
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Joonhong Jun
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea; (S.P.B.); (J.J.); (H.P.); (J.M.); (K.M.)
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Haebeen Park
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea; (S.P.B.); (J.J.); (H.P.); (J.M.); (K.M.)
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Jihyun Moon
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea; (S.P.B.); (J.J.); (H.P.); (J.M.); (K.M.)
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Kyungbae Min
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea; (S.P.B.); (J.J.); (H.P.); (J.M.); (K.M.)
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Jung-Mi Hah
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea; (S.P.B.); (J.J.); (H.P.); (J.M.); (K.M.)
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| |
Collapse
|
7
|
Pervanidis KA, D'Angelo GD, Weisner J, Brandherm S, Rauh D. Akt Inhibitor Advancements: From Capivasertib Approval to Covalent-Allosteric Promises. J Med Chem 2024; 67:6052-6063. [PMID: 38592948 DOI: 10.1021/acs.jmedchem.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Akt kinase is vital in cell growth, survival, metabolism, and migration. Dysregulation of Akt signaling is implicated in cancer and metabolic disorders. In the context of cancer, overactive Akt promotes cell survival and proliferation. This has spurred extensive research into developing Akt inhibitors as potential therapeutic agents to disrupt aberrant Akt signaling. Akt inhibitors are classified into three main types: ATP-competitive, allosteric, and covalent-allosteric inhibitors (CAAIs). ATP-competitive inhibitors compete with ATP for binding to Akt, allosteric inhibitors interact with the Pleckstrin homology (PH) domain, and covalent-allosteric inhibitors form covalent bonds, making them more potent and selective. Notably, capivasertib (AZD5363), a potent ATP-competitive Akt inhibitor, received FDA approval in November 2023 for use in combination with the estrogen receptor degrader fulvestrant to treat breast cancer. Challenges remain, including improving selectivity, identifying biomarkers to tailor treatments, and enhancing therapeutic efficacy while minimizing adverse effects. Particularly covalent-allosteric inhibitors hold promise for future more effective and personalized treatments.
Collapse
Affiliation(s)
- Kosmas Alexandros Pervanidis
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Giovanni Danilo D'Angelo
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Jörn Weisner
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- KyDo Therapeutics, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Sven Brandherm
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- KyDo Therapeutics, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
8
|
Onishi T, Takashima T, Shibahara K, Takagi S, Tanaka S, Mori M, Odashima H, Osawa Y, Hattori M. Transcriptome analysis of an AKT inhibitor-resistant endometrial cancer cell line. Pharmacol Rep 2024; 76:379-389. [PMID: 38478219 DOI: 10.1007/s43440-024-00581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Drug resistance in endometrial cancer (EC) is a serious problem and a barrier to improving prognosis. The PI3K/AKT/mTOR pathway is highly activated in EC and can serve as a potential therapeutic target. Inhibitors against AKT have been developed, but resistance to these inhibitors is a concern. This study aimed to establish AKT inhibitor resistant cell lines and identify differentially expressed genes (DEGs) between parental and AKT inhibitor resistant cell lines to understand the mechanism of drug resistance to AKT inhibitors in EC. METHODS The sensitivity of eight EC cell lines to AKT inhibitor was analyzed. One of them was used to establish a drug-resistant cell line. DEGs were examined using RNA sequencing (RNA-seq). Furthermore, DEGs were comprehensively analyzed to identify hub genes. Hub genes were evaluated using quantitative real-time polymerase chain reaction. RESULTS RNA-seq identified 617 DEGs. Hub genes were selected using bioinformatics analysis. The top 10 hub genes were TNF, CDH1, CCND1, COL1A1, CDH2, ICAM1, CAV1, THBS1, NCAM1, and CDKN2A. Relative mRNA expression was significantly upregulated for TNF, CDH1, CCND1, THBS1, p16INK4a, and p14ARF and significantly downregulated for CDH2, ICAM1, and NCAM1 in borussertib-resistant EC cell line. CONCLUSIONS Drug resistance to AKT inhibitors may depend on genes related to cell adhesion-mediated resistance and transforming growth factor β signaling.
Collapse
Affiliation(s)
- Takafumi Onishi
- Department of Medical Technology and Sciences, Faculty of Health Sciences, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto, 607-8175, Japan.
- Research Center for Life and Health Sciences, Kyoto Tachibana University, Kyoto, Japan.
| | - Tsuyoshi Takashima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuki Shibahara
- Department of Medical Life Sciences, School of Medical Life Sciences, Kyushu University of Health and Welfare, Miyazaki, Japan
- Cancer Cell Institute, Kyushu University of Health and Welfare, Miyazaki, Japan
| | - Shoji Takagi
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, Okayama, Japan
- Kake Institute of Cytopathology, Okayama, Japan
| | - Shinichi Tanaka
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Michihiro Mori
- Department of Health and Nutrition, Faculty of Health Science, Kio University, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
| | - Hirokazu Odashima
- Department of Medical Technology and Sciences, Faculty of Health Sciences, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto, 607-8175, Japan
- Research Center for Life and Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Yukihiko Osawa
- Department of Medical Technology and Sciences, Faculty of Health Sciences, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto, 607-8175, Japan
- Research Center for Life and Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Manabu Hattori
- Department of Medical Technology and Sciences, Faculty of Health Sciences, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto, 607-8175, Japan
- Research Center for Life and Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| |
Collapse
|
9
|
Bulle A, Liu P, Seehra K, Bansod S, Chen Y, Zahra K, Somani V, Khawar IA, Chen HP, Dodhiawala PB, Li L, Geng Y, Mo CK, Mahsl J, Ding L, Govindan R, Davies S, Mudd J, Hawkins WG, Fields RC, DeNardo DG, Knoerzer D, Held JM, Grierson PM, Wang-Gillam A, Ruzinova MB, Lim KH. Combined KRAS-MAPK pathway inhibitors and HER2-directed drug conjugate is efficacious in pancreatic cancer. Nat Commun 2024; 15:2503. [PMID: 38509064 PMCID: PMC10954758 DOI: 10.1038/s41467-024-46811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Targeting the mitogen-activated protein kinase (MAPK) cascade in pancreatic ductal adenocarcinoma (PDAC) remains clinically unsuccessful. We aim to develop a MAPK inhibitor-based therapeutic combination with strong preclinical efficacy. Utilizing a reverse-phase protein array, we observe rapid phospho-activation of human epidermal growth factor receptor 2 (HER2) in PDAC cells upon pharmacological MAPK inhibition. Mechanistically, MAPK inhibitors lead to swift proteasomal degradation of dual-specificity phosphatase 6 (DUSP6). The carboxy terminus of HER2, containing a TEY motif also present in extracellular signal-regulated kinase 1/2 (ERK1/2), facilitates binding with DUSP6, enhancing its phosphatase activity to dephosphorylate HER2. In the presence of MAPK inhibitors, DUSP6 dissociates from the protective effect of the RING E3 ligase tripartite motif containing 21, resulting in its degradation. In PDAC patient-derived xenograft (PDX) models, combining ERK and HER inhibitors slows tumour growth and requires cytotoxic chemotherapy to achieve tumour regression. Alternatively, MAPK inhibitors with trastuzumab deruxtecan, an anti-HER2 antibody conjugated with cytotoxic chemotherapy, lead to sustained tumour regression in most tested PDXs without causing noticeable toxicity. Additionally, KRAS inhibitors also activate HER2, supporting testing the combination of KRAS inhibitors and trastuzumab deruxtecan in PDAC. This study identifies a rational and promising therapeutic combination for clinical testing in PDAC patients.
Collapse
Affiliation(s)
- Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Peng Liu
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kuljeet Seehra
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sapana Bansod
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yali Chen
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kiran Zahra
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vikas Somani
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Iftikhar Ali Khawar
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hung-Po Chen
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yutong Geng
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chia-Kuei Mo
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jay Mahsl
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Li Ding
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sherri Davies
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jacqueline Mudd
- Section of Hepatobiliary Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - William G Hawkins
- Section of Hepatobiliary Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ryan C Fields
- Section of Hepatobiliary Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David G DeNardo
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Jason M Held
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Fujita H, Arai S, Arakawa H, Hamamoto K, Kato T, Arai T, Nitta N, Hotta K, Hosokawa N, Ohbayashi T, Takahashi C, Inokuma Y, Tamai I, Yano S, Kunishima M, Watanabe Y. Drug-drug conjugates of MEK and Akt inhibitors for RAS-mutant cancers. Bioorg Med Chem 2024; 102:117674. [PMID: 38457912 DOI: 10.1016/j.bmc.2024.117674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Controlling RAS mutant cancer progression remains a significant challenge in developing anticancer drugs. Whereas Ras G12C-covalent binders have received clinical approval, the emergence of further mutations, along with the activation of Ras-related proteins and signals, has led to resistance to Ras binders. To discover novel compounds to overcome this bottleneck, we focused on the concurrent and sustained blocking of two major signaling pathways downstream of Ras. To this end, we synthesized 25 drug-drug conjugates (DDCs) by combining the MEK inhibitor trametinib with Akt inhibitors using seven types of linkers with structural diversity. The DDCs were evaluated for their cell permeability/accumulation and ability to inhibit proliferation in RAS-mutant cell lines. A representative DDC was further evaluated for its effects on signaling proteins, induction of apoptosis-related proteins, and the stability of hepatic metabolic enzymes. These in vitro studies identified a series of DDCs, especially those containing a furan-based linker, with promising properties as agents for treating RAS-mutant cancers. Additionally, in vivo experiments in mice using the two selected DDCs revealed prolonged half-lives and anticancer efficacies comparable to those of trametinib. The PK profiles of trametinib and the Akt inhibitor were unified through the DDC formation. The DDCs developed in this study have potential as drug candidates for the broad inhibition of RAS-mutant cancers.
Collapse
Affiliation(s)
- Hikaru Fujita
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kana Hamamoto
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Toshiyuki Kato
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tsubasa Arai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Nanaka Nitta
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuki Hotta
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Natsuko Hosokawa
- Department of Rheumatology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Takako Ohbayashi
- Department of Rheumatology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Chiaki Takahashi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Yasuhide Inokuma
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628 Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021 Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan.
| | - Yoshihiro Watanabe
- Innovative Clinical Research Center, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan.
| |
Collapse
|
11
|
Song L, Xu J, Shi Y, Zhao H, Zhang M, Wang Y, Cui Y, Chai X. An integrated strategy of UPLC-Q-TOF-MS analysis, network pharmacology, and molecular docking to explore the chemical constituents and mechanism of Zixue Powder against febrile seizures. Heliyon 2024; 10:e23865. [PMID: 38192830 PMCID: PMC10772254 DOI: 10.1016/j.heliyon.2023.e23865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Febrile seizures (FS) are the most common type of seizures for children. As a commonly used representative cold formula for resuscitation, Zixue Powder (ZP) has shown great efficacy for the treatment of FS in clinic, while its active ingredients and underlying mechanism remain largely unclear. This study aimed to preliminarily elucidate the material basis of ZP and the potential mechanism for the treatment of FS through ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), network pharmacology, and molecular docking. UPLC-Q-TOF-MS was firstly applied to characterize the ingredients in ZP, followed by network pharmacology to explore the potential bioactive ingredients and pathways of ZP against FS. Furthermore, molecular docking technique was employed to verify the binding affinity between the screened active ingredients and targets. As a result, 75 ingredients were identified, containing flavonoids, chromogenic ketones, triterpenes and their saponins, organic acids, etc. Through the current study, we focused on 13 potential active ingredients and 14 key potential anti-FS targets of ZP, such as IL6, STAT3, TNF, and MMP9. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that inflammatory response, EGFR tyrosine kinase inhibitor resistance, AGE-RAGE signaling pathway in diabetic complications, and neuroactive ligand-receptor interaction were the main anti-FS signaling pathways. Licochalcones A and B, 26-deoxycimicifugoside, and hederagenin were screened as the main potential active ingredients by molecular docking. In conclusion, this study provides an effective in-depth investigation of the chemical composition, potential bioactive components, and possible anti-FS mechanism of ZP, which lays the foundation for pharmacodynamic studies and clinical applications of ZP.
Collapse
Affiliation(s)
- Lingling Song
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jian Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanqiong Shi
- Department of Pharmacy, Xuhui District Central Hospital, Shanghai, 200031, China
| | - Hemiao Zhao
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Ying Cui
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
12
|
Peng CX, Liang F, Xia YH, Zhao KL, Hou MH, Zhang GJ. Recent Advances and Challenges in Protein Structure Prediction. J Chem Inf Model 2024; 64:76-95. [PMID: 38109487 DOI: 10.1021/acs.jcim.3c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Artificial intelligence has made significant advances in the field of protein structure prediction in recent years. In particular, DeepMind's end-to-end model, AlphaFold2, has demonstrated the capability to predict three-dimensional structures of numerous unknown proteins with accuracy levels comparable to those of experimental methods. This breakthrough has opened up new possibilities for understanding protein structure and function as well as accelerating drug discovery and other applications in the field of biology and medicine. Despite the remarkable achievements of artificial intelligence in the field, there are still some challenges and limitations. In this Review, we discuss the recent progress and some of the challenges in protein structure prediction. These challenges include predicting multidomain protein structures, protein complex structures, multiple conformational states of proteins, and protein folding pathways. Furthermore, we highlight directions in which further improvements can be conducted.
Collapse
Affiliation(s)
- Chun-Xiang Peng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Fang Liang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yu-Hao Xia
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Kai-Long Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Ming-Hua Hou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Gui-Jun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
13
|
Bye BA, Jack J, Pierce A, Walsh RM, Eades A, Chalise P, Olou A, VanSaun MN. Combined PI3K and MAPK inhibition synergizes to suppress PDAC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553438. [PMID: 37645960 PMCID: PMC10462031 DOI: 10.1101/2023.08.15.553438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Oncogenic KRAS mutations are nearly ubiquitous in pancreatic ductal adenocarcinoma (PDAC), yet therapeutic attempts to target KRAS as well as its target MAPK pathway effectors have shown limited success due to the difficulty to pharmacologically target KRAS, inherent drug resistance in PDAC cells, and acquired resistance through activation of alternative mitogenic pathways such JAK-STAT and PI3K-AKT. While KRAS canonically drives the MAPK signaling pathway via RAF-MEK-ERK, it is also known to play a role in PI3K-AKT signaling. Our therapeutic study targeted the PI3K-AKT pathway with the drug Omipalisib (p110α/β/δ/γ and mTORC1/2 inhibitor) in combination with MAPK pathway targeting drug Trametinib (MEK1/2 inhibitor) or SHP099-HCL (SHP099), which is an inhibitor of the KRAS effector SHP2. Western blot analysis demonstrated that application of Trametinib or SHP099 alone selectively blocked ERK phosphorylation (pERK) but failed to suppress phosphorylated AKT (pAKT) and in some instances increased pAKT levels. Conversely, Omipalisib alone successfully inhibited pAKT but failed to suppress pERK. Therefore, we hypothesized that a combination therapeutic comprised of Omipalisib with either Trametinib or SHP099 would inhibit two prominent mitogenic pathways, MEK and PI3K-AKT, to more effectively suppress pancreatic cancer. In vitro studies demonstrated that both Omipalisib/Trametinib and Omipalisib/SHP099 combination therapeutic strategies were generally more effective than treatment with each drug individually at reducing proliferation, colony formation, and cell migration compared to vehicle controls. Additionally, we found that while combination Omipalisib/SHP099 treatment reduced implanted tumor growth in vivo , the Omipalisib/Trametinib treatment was significantly more effective. Therefore, we additionally tested the Omipalisib/Trametinib combination therapeutic in the highly aggressive PKT (Ptf1a cre , LSL-Kras G12D , TGFbR2 fl/fl ) spontaneous mouse model of PDAC. We subsequently found that PKT mice treated with the Omipalisib/Trametinib combination therapeutic survived significantly longer than mice treated with either drug alone, and more than doubled the mean survival time of vehicle control mice. Altogether, our data support the importance of a dual treatment strategy targeting both MAPK and PI3K-AKT pathways.
Collapse
|
14
|
Primavera E, Palazzotti D, Barreca ML, Astolfi A. Computer-Aided Identification of Kinase-Targeted Small Molecules for Cancer: A Review on AKT Protein. Pharmaceuticals (Basel) 2023; 16:993. [PMID: 37513905 PMCID: PMC10384952 DOI: 10.3390/ph16070993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
AKT (also known as PKB) is a serine/threonine kinase that plays a pivotal regulatory role in the PI3K/AKT/mTOR signaling pathway. Dysregulation of AKT activity, especially its hyperactivation, is closely associated with the development of various human cancers and resistance to chemotherapy. Over the years, a wide array of AKT inhibitors has been discovered through experimental and computational approaches. In this regard, herein we present a comprehensive overview of AKT inhibitors identified using computer-assisted drug design methodologies (including docking-based and pharmacophore-based virtual screening, machine learning, and quantitative structure-activity relationships) and successfully validated small molecules endowed with anticancer activity. Thus, this review provides valuable insights to support scientists focused on AKT inhibition for cancer treatment and suggests untapped directions for future computer-aided drug discovery efforts.
Collapse
Affiliation(s)
- Erika Primavera
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, 06123 Perugia, Italy
| | - Deborah Palazzotti
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, 06123 Perugia, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, 06123 Perugia, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
15
|
Zhang Z, Zhang H, Liao X, Tsai HI. KRAS mutation: The booster of pancreatic ductal adenocarcinoma transformation and progression. Front Cell Dev Biol 2023; 11:1147676. [PMID: 37152291 PMCID: PMC10157181 DOI: 10.3389/fcell.2023.1147676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It has a poor response to conventional therapy and has an extremely poor 5-year survival rate. PDAC is driven by multiple oncogene mutations, with the highest mutation frequency being observed in KRAS. The KRAS protein, which binds to GTP, has phosphokinase activity, which further activates downstream effectors. KRAS mutation contributes to cancer cell proliferation, metabolic reprogramming, immune escape, and therapy resistance in PDAC, acting as a critical driver of the disease. Thus, KRAS mutation is positively associated with poorer prognosis in pancreatic cancer patients. This review focus on the KRAS mutation patterns in PDAC, and further emphases its role in signal transduction, metabolic reprogramming, therapy resistance and prognosis, hoping to provide KRAS target therapy strategies for PDAC.
Collapse
Affiliation(s)
- Zining Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Heng Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hsiang-i Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Guo B, Zheng H, Jiang H, Li X, Guan N, Zuo Y, Zhang Y, Yang H, Wang X. Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy. Brief Bioinform 2023; 24:6995409. [PMID: 36682005 DOI: 10.1093/bib/bbac628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 12/25/2022] [Indexed: 01/23/2023] Open
Abstract
Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitation, in a novel end-to-end architecture (named FeatNN), we develop a coevolutionary strategy to jointly represent the structure and sequence features of proteins and ultimately optimize the mathematical models for predicting CPA. Furthermore, from the perspective of data-driven approach, we proposed a rational method that can utilize both high- and low-quality databases to optimize the accuracy and generalization ability of FeatNN in CPA prediction tasks. Notably, we visually interpret the feature interaction process between sequence and structure in the rationally designed architecture. As a result, FeatNN considerably outperforms the state-of-the-art (SOTA) baseline in virtual drug evaluation tasks, indicating the feasibility of this approach for practical use. FeatNN provides an outstanding method for higher CPA prediction accuracy and better generalization ability by efficiently representing multimodal information of proteins via a coevolutionary strategy.
Collapse
Affiliation(s)
- Binjie Guo
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hanyu Zheng
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Haohan Jiang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Xiaodan Li
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Naiyu Guan
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yanming Zuo
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yicheng Zhang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hengfu Yang
- School of Computer Science, Hunan First Normal University, Changsha, 410205 Hunan, China
| | - Xuhua Wang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001 Jiangsu, China
| |
Collapse
|
17
|
Stehle J, Weisner J, Eichhorn L, Rauh D, Drescher M. Insights into the Conformational Plasticity of the Protein Kinase Akt1 by Multi-Lateral Dipolar Spectroscopy. Chemistry 2023; 29:e202203959. [PMID: 36795969 DOI: 10.1002/chem.202203959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
The serine/threonine kinase Akt1 is part of the PI3 K/Akt pathway and plays a key role in the regulation of various cellular processes such as cell growth, proliferation, and apoptosis. Here, we analyzed the elasticity between the two domains of the kinase Akt1, connected by a flexible linker, recording a wide variety of distance restraints by electron paramagnetic resonance (EPR) spectroscopy. We studied full length Akt1 and the influence of the cancer-associated mutation E17K. The conformational landscape in the presence of different modulators, like different types of inhibitors and membranes was presented, revealing a tuned flexibility between the two domains, dependent on the bound molecule.
Collapse
Affiliation(s)
- Juliane Stehle
- Department of Chemistry and, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Jörn Weisner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Leanne Eichhorn
- Department of Chemistry and, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, TU Dortmund University, Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Malte Drescher
- Department of Chemistry and, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
18
|
He R, Zhang H, Zhao H, Yin X, Lu J, Gu C, Gao J, Xu Q. Multiomics Analysis Reveals Cuproptosis-Related Signature for Evaluating Prognosis and Immunotherapy Efficacy in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15020387. [PMID: 36672336 PMCID: PMC9856392 DOI: 10.3390/cancers15020387] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cuproptosis is a copper-induced form of mitochondrial cell death which is engaged in the proliferation and migration of a variety of tumors. Nevertheless, the role of cuproptosis in tumor microenvironment (TME) remodeling and antitumor therapy is still poorly understood. We characterized two diverse cuproptosis-associated molecular isoforms in CRC which exhibit distinct prognostic and TME characteristics. Subsequently, we constructed a cuproptosis-associated prognostic model containing five genes and divided the patients into a high CPS-score group and a low CPS-score group. Univariate and multivariate Cox analyses showed that the CPS score could be used as an independent prognostic factor. The nomogram, and its consequent calibration curves, indicated that this prognostic signature had good predictive power for CRC. The analysis of single-cell sequencing data showed the significant expression of HES4 and SPHK1 in various immune and stromal (including fibroblasts) cells. Further studies showed that tumor mutational burden (TMB), high microsatellite instability (MSI-H) ratio, immune checkpoint blockade (ICB), and human leukocyte antigen (HLA) gene expression all positively correlated with the CPS score, predicting a better reaction to immunotherapy in high CPS-core patients. The CPS score constructed from cuproptosis subtypes can be used as a predictive tool to evaluate the prognosis of CRC patients and their response to immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qing Xu
- Correspondence: ; Tel.: +86-13661778856
| |
Collapse
|
19
|
Yang H, Zhou X, Fu D, Le C, Wang J, Zhou Q, Liu X, Yuan Y, Ding K, Xiao Q. Targeting RAS mutants in malignancies: successes, failures, and reasons for hope. Cancer Commun (Lond) 2023; 43:42-74. [PMID: 36316602 PMCID: PMC9859734 DOI: 10.1002/cac2.12377] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 01/22/2023] Open
Abstract
RAS genes are the most frequently mutated oncogenes and play critical roles in the development and progression of malignancies. The mutation, isoform (KRAS, HRAS, and NRAS), position, and type of substitution vary depending on the tissue types. Despite decades of developing RAS-targeted therapies, only small subsets of these inhibitors are clinically effective, such as the allele-specific inhibitors against KRASG12C . Targeting the remaining RAS mutants would require further experimental elucidation of RAS signal transduction, RAS-altered metabolism, and the associated immune microenvironment. This study reviews the mechanisms and efficacy of novel targeted therapies for different RAS mutants, including KRAS allele-specific inhibitors, combination therapies, immunotherapies, and metabolism-associated therapies.
Collapse
Affiliation(s)
- Hang Yang
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Xinyi Zhou
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Dongliang Fu
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Chenqin Le
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Jiafeng Wang
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Quan Zhou
- Department of Cell BiologySchool of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiangrui Liu
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ying Yuan
- Department of Medical Oncologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Qian Xiao
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| |
Collapse
|
20
|
Xu F, Zhang X, Chen Z, He S, Guo J, Yu L, Wang Y, Hou C, Ai-Furas H, Zheng Z, Smaill JB, Patterson AV, Zhang ZM, Chen L, Ren X, Ding K. Discovery of Isoform-Selective Akt3 Degraders Overcoming Osimertinib-Induced Resistance in Non-Small Cell Lung Cancer Cells. J Med Chem 2022; 65:14032-14048. [PMID: 36173763 DOI: 10.1021/acs.jmedchem.2c01246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
EGFR inhibitor therapies have brought significant benefit to NSCLC patients. However, all patients gradually progress to acquired resistance via diverse mechanisms. Akt3 overexpression but not Akt1/2 is one of the found molecular events that mediate osimertinib (1) resistance in NSCLC patients. Here, we report 12l as the first bona fide isoform-selective Akt3 degrader which potently induced proteasomal degradation of the target both in vitro and in vivo, whereas its effects on Akt1/2 were minimal. Using 12l as a tool, non-canonical function of Akt3 was validated to contribute greatly to survival of 1-resistant H1975OR NSCLC cells. Degrader 12l potently suppressed the growth of H1975OR as well as several NSCLC cell lines with low nanomolar IC50 values and demonstrated promising in vivo antitumor efficacy in nude mice bearing H1975OR or PC9 NSCLC xenograft models. Selective degradation of Akt3 may be considered as a novel strategy for human cancer therapy.
Collapse
Affiliation(s)
- Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China
| | - Xin Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China
| | - Zhipeng Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Sheng He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lei Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yongjin Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Caiyun Hou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hawaa Ai-Furas
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zongyao Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liang Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaomei Ren
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 210530, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 210530, China
| |
Collapse
|
21
|
Page N, Wappett M, O'Dowd CR, O'Rourke M, Gavory G, Zhang L, Rountree JSS, Jordan L, Barker O, Gibson H, Boyd C, Feutren-Burton S, McLean E, Trevitt G, Harrison T. Identification and development of a subtype-selective allosteric AKT inhibitor suitable for clinical development. Sci Rep 2022; 12:15715. [PMID: 36127435 PMCID: PMC9489722 DOI: 10.1038/s41598-022-20208-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
The serine/threonine protein kinase AKT plays a pivotal role within the PI3K pathway in regulating cellular proliferation and apoptotic cellular functions, and AKT hyper-activation via gene amplification and/or mutation has been implicated in multiple human malignancies. There are 3 AKT isoenzymes (AKT1-3) which mediate critical, non-redundant functions. We present the discovery and development of ALM301, a novel, allosteric, sub-type selective inhibitor of AKT1/2. ALM301 binds in an allosteric pocket created by the combined movement of the PH domain and the catalytic domain, resulting in a DFG out conformation. ALM301 was shown to be highly selective against a panel of over 450 kinases and potently inhibited cellular proliferation. These effects were particularly pronounced in MCF-7 cells containing a PI3KCA mutation. Subsequent cellular downstream pathway analysis in this sensitive cell line revealed potent inhibition of pAKT signalling up to 48 h post dosing. ALM301 treatment was well tolerated in an MCF-7 xenograft model and led to a dose-dependent reduction in tumour growth. Enhanced efficacy was observed in combination with tamoxifen. In summary, ALM301 is a highly specific AKT 1/2 inhibitor with an excellent pharmacological profile suitable for further clinical development.
Collapse
Affiliation(s)
- Natalie Page
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Mark Wappett
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Colin R O'Dowd
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Martin O'Rourke
- Amphista Therapeutics, BioCity, Bo'Ness Rd, Newhouse, Chapelhall, Motherwell, ML1 5UH, UK
| | - Gerald Gavory
- Ridgeline Therapeutics GmbH, Technologiepark, Hochbergerstrasse 60C, 4057, Basel, Switzerland
| | - Lixin Zhang
- Shenyang University of Chemical Technology, Shenyang, China
| | - J S Shane Rountree
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Linda Jordan
- Globachem, Alderley Park, 2 BioHub, Mereside, Macclesfield, SK10 4TG, UK
| | - Oliver Barker
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Hayley Gibson
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Caroline Boyd
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Stephanie Feutren-Burton
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Estelle McLean
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Graham Trevitt
- Sygnature Discovery, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Timothy Harrison
- Almac Discovery Ltd, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK. .,Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK.
| |
Collapse
|
22
|
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176:103749. [PMID: 35728737 DOI: 10.1016/j.critrevonc.2022.103749] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazine Pisana per la Scienza, Pisa, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Schauperl M, Denny RA. AI-Based Protein Structure Prediction in Drug Discovery: Impacts and Challenges. J Chem Inf Model 2022; 62:3142-3156. [PMID: 35727311 DOI: 10.1021/acs.jcim.2c00026] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins are the molecular machinery of the human body, and their malfunctioning is often responsible for diseases, making them crucial targets for drug discovery. The three-dimensional structure of a protein determines its biological function, its conformational state determines substrates, cofactors, and protein binding. Rational drug discovery employs engineered small molecules to selectively interact with proteins to modulate their function. To selectively target a protein and to design small molecules, knowing the protein structure with all its specific conformation is critical. Unfortunately, for a large number of proteins relevant for drug discovery, the three-dimensional structure has not yet been experimentally solved. Therefore, accurately predicting their structure based on their amino acid sequence is one of the grant challenges in biology. Recently, AlphaFold2, a machine learning application based on a deep neural network, was able to predict unknown structures of proteins with an unprecedented accuracy. Despite the impressive progress made by AlphaFold2, nature still challenges the field of structure prediction. In this Perspective, we explore how AlphaFold2 and related methods help make drug design more efficient. Furthermore, we discuss the roles of predicting domain-domain orientations, all relevant conformational states, the influence of posttranslational modifications, and conformational changes due to protein binding partners. We highlight where further improvements are needed for advanced machine learning methods to be successfully and frequently used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Michael Schauperl
- Department of Computational Sciences HotSpot Therapeutics 50 Milk Street, Boston, Massachusetts 02110, United States
| | - Rajiah Aldrin Denny
- Department of Computational Sciences HotSpot Therapeutics 50 Milk Street, Boston, Massachusetts 02110, United States
| |
Collapse
|
24
|
Zhang Y, Zhang C, Li J, Jiang M, Guo S, Yang G, Zhang L, Wang F, Yi S, Wang J, Fu Y, Zhang Y. Inhibition of AKT induces p53/SIRT6/PARP1-dependent parthanatos to suppress tumor growth. Cell Commun Signal 2022; 20:93. [PMID: 35715817 PMCID: PMC9205131 DOI: 10.1186/s12964-022-00897-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/09/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Targeting AKT suppresses tumor growth through inducing apoptosis, however, during which whether other forms of cell death occurring is poorly understood. METHODS The effects of increasing PARP1 dependent cell death (parthanatos) induced by inhibiting AKT on cell proliferation were determined by CCK-8 assay, colony formation assay, Hoechst 33,258 staining and analysis of apoptotic cells by flow cytometry. For the detailed mechanisms during this process, Western blot analysis, qRT-PCR analysis, immunofluorescence and co-immunoprecipitation were performed. Moreover, the inhibition of tumor growth by inducing p53/SIRT6/PARP1-dependent parthanatos was further verified in the xenograft mouse model. RESULTS For the first time, we identified that inhibiting AKT triggered parthanatos, a new form of regulated cell death, leading to colon cancer growth suppression. For the mechanism investigation, we found that after pharmacological or genetic AKT inhibition, p53 interacted with SIRT6 and PARP1 directly to activate it, and promoted the formation of PAR polymer. Subsequently, PAR polymer transported to outer membrane of mitochondria and resulted in AIF releasing and translocating to nucleus thus promoting cell death. While, blocking PARP1 activity significantly rescued colon cancer from death. Furthermore, p53 deletion or mutation eliminated PAR polymer formation, AIF translocation, and PARP1 dependent cell death, which was promoted by overexpression of SIRT6. Meanwhile, reactive oxygen species production was elevated after inhibition of AKT, which might also play a role in the occurrence of parthanatos. In addition, inhibiting AKT initiated protective autophagy simultaneously, which advanced tumor survival and growth. CONCLUSION Our findings demonstrated that AKT inhibition induced p53-SIRT6-PARP1 complex formation and the activation of parthanatos, which can be recognized as a novel potential therapeutic strategy for cancer. Video Abstract.
Collapse
Affiliation(s)
- Yizheng Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,School of Biomedical Sciences, Hunan University, Changsha, 410082, China.,Department of Pathology and Neuropathology, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Chuchu Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Jiehan Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Meimei Jiang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Shuning Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lingling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Feng Wang
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, 200072, China
| | - Shiqi Yi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yingjie Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China. .,School of Biomedical Sciences, Hunan University, Changsha, 410082, China. .,College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
25
|
Levina A, Fleming KD, Burke JE, Leonard TA. Activation of the essential kinase PDK1 by phosphoinositide-driven trans-autophosphorylation. Nat Commun 2022; 13:1874. [PMID: 35387990 PMCID: PMC8986801 DOI: 10.1038/s41467-022-29368-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/08/2022] [Indexed: 12/18/2022] Open
Abstract
3-phosphoinositide-dependent kinase 1 (PDK1) is an essential serine/threonine protein kinase, which plays a crucial role in cell growth and proliferation. It is often referred to as a 'master' kinase due to its ability to activate at least 23 downstream protein kinases implicated in various signaling pathways. In this study, we have elucidated the mechanism of phosphoinositide-driven PDK1 auto-activation. We show that PDK1 trans-autophosphorylation is mediated by a PIP3-mediated face-to-face dimer. We report regulatory motifs in the kinase-PH interdomain linker that allosterically activate PDK1 autophosphorylation via a linker-swapped dimer mechanism. Finally, we show that PDK1 is autoinhibited by its PH domain and that positive cooperativity of PIP3 binding drives switch-like activation of PDK1. These results imply that the PDK1-mediated activation of effector kinases, including Akt, PKC, Sgk, S6K and RSK, many of whom are not directly regulated by phosphoinositides, is also likely to be dependent on PIP3 or PI(3,4)P2.
Collapse
Affiliation(s)
- Aleksandra Levina
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Medical Biochemistry, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
26
|
Huan J, Grivas P, Birch J, Hansel DE. Emerging Roles for Mammalian Target of Rapamycin (mTOR) Complexes in Bladder Cancer Progression and Therapy. Cancers (Basel) 2022; 14:1555. [PMID: 35326708 PMCID: PMC8946148 DOI: 10.3390/cancers14061555] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway regulates important cellular functions. Aberrant activation of this pathway, either through upstream activation by growth factors, loss of inhibitory controls, or molecular alterations, can enhance cancer growth and progression. Bladder cancer shows high levels of mTOR activity in approximately 70% of urothelial carcinomas, suggesting a key role for this pathway in this cancer. mTOR signaling initiates through upstream activation of phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) and results in activation of either mTOR complex 1 (mTORC1) or mTOR complex 2 (mTORC2). While these complexes share several key protein components, unique differences in their complex composition dramatically alter the function and downstream cellular targets of mTOR activity. While significant work has gone into analysis of molecular alterations of the mTOR pathway in bladder cancer, this has not yielded significant benefit in mTOR-targeted therapy approaches in urothelial carcinoma to date. New discoveries regarding signaling convergence onto mTOR complexes in bladder cancer could yield unique insights the biology and targeting of this aggressive disease. In this review, we highlight the functional significance of mTOR signaling in urothelial carcinoma and its potential impact on future therapy implications.
Collapse
Affiliation(s)
- Jianya Huan
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| | - Petros Grivas
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, Seattle, WA 98195, USA;
| | - Jasmine Birch
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| | - Donna E. Hansel
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| |
Collapse
|
27
|
Xie J, Wang S. Small Interfering RNA in Colorectal Cancer Liver Metastasis Therapy. Technol Cancer Res Treat 2022; 21:15330338221103318. [PMID: 35899305 PMCID: PMC9340422 DOI: 10.1177/15330338221103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is associated with numerous genetic disorders and cellular abnormalities, and liver metastasis is a common health concern in patients with CRC. Exploring newer and more efficient therapies to block liver metastasis is pivotal for prolonging patient survival. Therefore, small interfering RNAs (siRNAs) are expected to be remarkable tools capable of regulating gene expression by participating in a process called RNA interference (RNAi). RNAi is a biological process among eukaryotes wherein specific messenger RNA (mRNA) molecules are destroyed and gene expression is inhibited. This technology is a promising therapeutic agent in the treatment of CRC liver metastasis (CRLM). Nevertheless, crucial problems in siRNA therapeutics, including inherent poor serum stability and nonspecific uptake into biological systems, must be recognized. For this reason, delivery systems are being developed in an attempt to solve these problems. Here, we discuss the utility of siRNA therapy for the treatment of CRCLM by targeting the major metastasis-related signaling pathways. siRNA therapy has the potential to be one of the most effective methods for CRLM treatment in the future.
Collapse
Affiliation(s)
- Junlin Xie
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal
Cancer Translational Research, Cancer Institute, Peking University Shenzhen
Hospital, Shenzhen-Peking University-Hong Kong University of Science and
Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal
Cancer Translational Research, Cancer Institute, Peking University Shenzhen
Hospital, Shenzhen-Peking University-Hong Kong University of Science and
Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| |
Collapse
|
28
|
Yu X, Xu J, Xie L, Wang L, Shen Y, Cahuzac KM, Chen X, Liu J, Parsons RE, Jin J. Design, Synthesis, and Evaluation of Potent, Selective, and Bioavailable AKT Kinase Degraders. J Med Chem 2021; 64:18054-18081. [PMID: 34855399 PMCID: PMC8819633 DOI: 10.1021/acs.jmedchem.1c01476] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The serine/threonine kinase AKT functions as a critical node of the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (m-TOR) signaling pathway. Aberrant activation and overexpression of AKT are strongly correlated with numerous human cancers. To date, only two AKT degraders with no structure-activity relationship (SAR) results have been reported. Through extensive SAR studies on various linkers, E3 ligase ligands, and AKT binding moieties, we identified two novel and potent AKT proteolysis targeting chimera (PROTAC) degraders: von Hippel-Lindau (VHL)-recruiting degrader 13 (MS98) and cereblon (CRBN)-recruiting degrader 25 (MS170). These two compounds selectively induced robust AKT protein degradation, inhibited downstream signaling, and suppressed cancer cell proliferation. Moreover, these two degraders exhibited good plasma exposure levels in mice through intraperitoneal injection. Overall, our comprehensive SAR studies led to the discovery of degraders 13 and 25, which are potentially useful chemical tools to investigate biological and pathogenic functions of AKT in vitro and in vivo.
Collapse
Affiliation(s)
| | | | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Li Wang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kaitlyn M. Cahuzac
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ramon E. Parsons
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
29
|
Wang B, Wu H, Hu C, Wang H, Liu J, Wang W, Liu Q. An overview of kinase downregulators and recent advances in discovery approaches. Signal Transduct Target Ther 2021; 6:423. [PMID: 34924565 PMCID: PMC8685278 DOI: 10.1038/s41392-021-00826-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Since the clinical approval of imatinib, the discovery of protein kinase downregulators entered a prosperous age. However, challenges still exist in the discovery of kinase downregulator drugs, such as the high failure rate during development, side effects, and drug-resistance problems. With the progress made through multidisciplinary efforts, an increasing number of new approaches have been applied to solve the above problems during the discovery process of kinase downregulators. In terms of in vitro and in vivo drug evaluation, progress was also made in cellular and animal model platforms for better and more clinically relevant drug assessment. Here, we review the advances in drug design strategies, drug property evaluation technologies, and efficacy evaluation models and technologies. Finally, we discuss the challenges and perspectives in the development of kinase downregulator drugs.
Collapse
Affiliation(s)
- Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Haizhen Wang
- Hefei PreceDo pharmaceuticals Co., Ltd, Hefei, Anhui, 230088, People's Republic of China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
30
|
Li HL, Cheng Y, Zhou ZW, Long HZ, Luo HY, Wen DD, Cheng L, Gao LC. Isoliensinine induces cervical cancer cell cycle arrest and apoptosis by inhibiting the AKT/GSK3α pathway. Oncol Lett 2021; 23:8. [PMID: 34820007 PMCID: PMC8607237 DOI: 10.3892/ol.2021.13126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Isoliensinine is a bis-benzylisoquinoline alkaloid that can be isolated from the lotus Nelumbo nucifera Gaertn. It has been reported to exert a variety of anti-cancer properties. In the present study, the potential effects of isoliensinine on cervical cancer Siha, HeLa, Caski and C33A cell lines were investigated by using Cell Counting Kit-8 (CCK-8), flow cytometry, western blotting and reverse transcription-PCR (RT-PCR) to measure cell proliferation, the cell cycle and apoptosis, in addition to elucidating the underlying molecular mechanism. Protein levels of p21, CDK2, Cyclin E, Mcl-1, cleaved Caspase-9, AKT, phosphorylated-AKT, glycogen synthase kinase (Gsk)3α, PTEN, and mRNA levels of p21, p15, p27, CDK2, CDK4, Cyclin E, Cyclin D, Gsk3α, Gsk3β and PTEN were measured. Molecular docking assays were used to calculate the strength of binding of isoliensinine to AKT using AutoDock 4.0. Isoliensinine was found to induce cell cycle arrest at the G0/G1 phase by upregulating p21 expression and downregulating CDK2 and cyclin E in cervical cancer cells. In addition, in previous research, isoliensinine promoted cell apoptosis by downregulating myeloid-cell leukemia 1 expression and activating caspase-9. Upstream, isoliensinine significantly downregulated AKT (S473) phosphorylation and GSK3α expression in a dose- and time-dependent manner. The AKT inhibitor AKTi-1/2 enhanced the function of isoliensinine on cell cycle arrest and apoptosis through the AKT/GSK3α pathway. AutoDock analysis showed that isoliensinine can bind to the AKT protein. These findings suggest that isoliensinine can induce cervical cancer cell cycle arrest and apoptosis by inhibiting the AKT/GSK3α pathway, which represents a novel strategy for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Hong-Li Li
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China.,School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Yan Cheng
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Affiliated to School of Pharmacy, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zi-Wei Zhou
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Affiliated to School of Pharmacy, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui-Zhi Long
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Affiliated to School of Pharmacy, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong-Yu Luo
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Affiliated to School of Pharmacy, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Dan-Dan Wen
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China
| | - Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Li-Chen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Affiliated to School of Pharmacy, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
31
|
Coleman N, Moyers JT, Harbery A, Vivanco I, Yap TA. Clinical Development of AKT Inhibitors and Associated Predictive Biomarkers to Guide Patient Treatment in Cancer Medicine. Pharmgenomics Pers Med 2021; 14:1517-1535. [PMID: 34858045 PMCID: PMC8630372 DOI: 10.2147/pgpm.s305068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
The serine/threonine kinase AKT is a critical effector of the phosphoinositide 3-kinase (PI3K) signaling cascade and has a pivotal role in cell growth, proliferation, survival, and metabolism. AKT is one of the most commonly activated pathways in human cancer and dysregulation of AKT-dependent pathways is associated with the development and maintenance of a range of solid tumors. There are multiple small-molecule inhibitors targeting different components of the PI3K/AKT pathway currently at various stages of clinical development, in addition to new combination strategies aiming to boost the therapeutic efficacy of these drugs. Correlative and translational studies have been undertaken in the context of clinical trials investigating AKT inhibitors, however the identification of predictive biomarkers of response and resistance to AKT inhibition remains an unmet need. In this review, we discuss the biological function and activation of AKT, discuss its contribution to tumor development and progression, and review the efficacy and toxicity data from clinical trials, including both AKT inhibitor monotherapy and combination strategies with other agents. We also discuss the promise and challenges associated with the development of AKT inhibitors and associated predictive biomarkers of response and resistance.
Collapse
Affiliation(s)
- Niamh Coleman
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin T Moyers
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, Irvine, Orange, CA, USA
| | - Alice Harbery
- Division of Cancer Therapeutics, Institute of Cancer Research, London, SM2 5NG, UK
| | - Igor Vivanco
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Cellular model system to dissect the isoform-selectivity of Akt inhibitors. Nat Commun 2021; 12:5297. [PMID: 34489430 PMCID: PMC8421423 DOI: 10.1038/s41467-021-25512-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
The protein kinase Akt plays a pivotal role in cellular processes. However, its isoforms' distinct functions have not been resolved to date, mainly due to the lack of suitable biochemical and cellular tools. Against this background, we present the development of an isoform-dependent Ba/F3 model system to translate biochemical results on isoform specificity to the cellular level. Our cellular model system complemented by protein X-ray crystallography and structure-based ligand design results in covalent-allosteric Akt inhibitors with unique selectivity profiles. In a first proof-of-concept, the developed molecules allow studies on isoform-selective effects of Akt inhibition in cancer cells. Thus, this study will pave the way to resolve isoform-selective roles in health and disease and foster the development of next-generation therapeutics with superior on-target properties.
Collapse
|
33
|
Serafim RAM, Elkins JM, Zuercher WJ, Laufer SA, Gehringer M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J Med Chem 2021; 65:1132-1170. [PMID: 34477374 DOI: 10.1021/acs.jmedchem.1c00980] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over 20 years after the approval of the first-in-class protein kinase inhibitor imatinib, the biological function of a significant fraction of the human kinome remains poorly understood while most research continues to be focused on few well-validated targets. Given the strong genetic evidence for involvement of many kinases in health and disease, the understudied fraction of the kinome holds a large and unexplored potential for future therapies. Specific chemical probes are indispensable tools to interrogate biology enabling proper preclinical validation of novel kinase targets. In this Perspective, we highlight recent case studies illustrating the development of high-quality chemical probes for less-studied kinases and their application in target validation. We spotlight emerging techniques and approaches employed in the generation of chemical probes for protein kinases and beyond and discuss the associated challenges and opportunities.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - William J Zuercher
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
34
|
Truebestein L, Hornegger H, Anrather D, Hartl M, Fleming KD, Stariha JTB, Pardon E, Steyaert J, Burke JE, Leonard TA. Structure of autoinhibited Akt1 reveals mechanism of PIP 3-mediated activation. Proc Natl Acad Sci U S A 2021; 118:e2101496118. [PMID: 34385319 PMCID: PMC8379990 DOI: 10.1073/pnas.2101496118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The protein kinase Akt is one of the primary effectors of growth factor signaling in the cell. Akt responds specifically to the lipid second messengers phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2] via its PH domain, leading to phosphorylation of its activation loop and the hydrophobic motif of its kinase domain, which are critical for activity. We have now determined the crystal structure of Akt1, revealing an autoinhibitory interface between the PH and kinase domains that is often mutated in cancer and overgrowth disorders. This interface persists even after stoichiometric phosphorylation, thereby restricting maximum Akt activity to PI(3,4,5)P3- or PI(3,4)P2-containing membranes. Our work helps to resolve the roles of lipids and phosphorylation in the activation of Akt and has wide implications for the spatiotemporal control of Akt and potentially lipid-activated kinase signaling in general.
Collapse
Affiliation(s)
- Linda Truebestein
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald Hornegger
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Core Facility, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Core Facility, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jordan T B Stariha
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria;
- Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
35
|
KRASG12C inhibitor: combing for combination. Biochem Soc Trans 2021; 48:2691-2701. [PMID: 33242077 DOI: 10.1042/bst20200473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Oncogenic mutation in KRAS is one of the most common alterations in human cancer. After decades of extensive research and unsuccessful drug discovery programs, therapeutic targeting of KRAS mutant tumour is at an exciting juncture. The discovery of mutation-specific inhibitors of KRASG12C and early positive findings from clinical trials has raised the hope of finally having a drug to treat a significant segment of KRAS mutant cancer patients. Crucially, it has also re-energized the RAS field to look beyond G12C mutation and find new innovative targeting opportunities. However, the early clinical trial data also indicates that there is significant variation in response among patients and that monotherapy treatment with KRASG12C inhibitors (G12Ci) alone is unlikely to be sufficient to elicit a sustained response. Understanding the molecular mechanism of variation in patient response and identifying possible combination opportunities, which could be exploited to achieve durable and significant responses and delay emergence of resistance, is central to the success of G12Ci therapy. Given the specificity of G12Ci, toxicity is expected to be minimal. Therefore, it might be possible to combine G12Ci with other targeted agents which have previously been explored to tackle KRAS mutant cancer but deemed too toxic, e.g. MEK inhibitor. Ongoing clinical trials will shed light on clinical resistance to G12C inhibitors, however extensive work is already ongoing to identify the best combination partners. This review provides an update on combination opportunities which could be explored to maximize the benefit of this new exciting drug.
Collapse
|
36
|
Li H, Prever L, Hirsch E, Gulluni F. Targeting PI3K/AKT/mTOR Signaling Pathway in Breast Cancer. Cancers (Basel) 2021; 13:3517. [PMID: 34298731 PMCID: PMC8304822 DOI: 10.3390/cancers13143517] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the primary cause of cancer death in women worldwide. Although early diagnosis and cancer growth inhibition has significantly improved breast cancer survival rate over the years, there is a current need to develop more effective systemic treatments to prevent metastasis. One of the most commonly altered pathways driving breast cancer cell growth, survival, and motility is the PI3K/AKT/mTOR signaling cascade. In the past 30 years, a great surge of inhibitors targeting these key players has been developed at a rapid pace, leading to effective preclinical studies for cancer therapeutics. However, the central role of PI3K/AKT/mTOR signaling varies among diverse biological processes, suggesting the need for more specific and sophisticated strategies for their use in cancer therapy. In this review, we provide a perspective on the role of the PI3K signaling pathway and the most recently developed PI3K-targeting breast cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (H.L.); (L.P.); (E.H.)
| |
Collapse
|
37
|
Wargasetia TL, Ratnawati H, Widodo N, Widyananda MH. Bioinformatics Study of Sea Cucumber Peptides as Antibreast Cancer Through Inhibiting the Activity of Overexpressed Protein (EGFR, PI3K, AKT1, and CDK4). Cancer Inform 2021; 20:11769351211031864. [PMID: 34345161 PMCID: PMC8283226 DOI: 10.1177/11769351211031864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is the most common type of cancer in women globally. The overexpressed proteins, including EGFR, PI3K, AKT1, and CDK4, have a role in the growth of breast cancer cells. The 3D peptide structure of sea cucumber Cucumaria frondosa was modeled and then docked with EGFR, PI3K, AKT1, and CDK4 proteins using AutoDock Vina software. The docking result, which has the best binding affinity value, is continued with molecular dynamics simulation. The docking results showed that all peptides bind to the active sites of the four proteins. WPPNYQW and YDWRF peptides bind to proteins with lower binding affinity values than positive controls. The four proteins were in a stable state when complexed with the WPPNYQW peptide, which was seen from the RMSD and RMSF value. PI3K-YDWRF and AKT1-YDWRF complexes are stable, characterized by high RMSD values and increased volatility in several amino acids. WPPNYQW peptide has high potential as an antibreast cancer agent because it binds to the active sites of the four proteins with low binding affinity values and stable interactions. Meanwhile, the YDWRF peptide interacts with the four proteins with low binding affinity values, but the interaction is only stable on PI3K and AKT1 proteins.
Collapse
Affiliation(s)
| | - Hana Ratnawati
- Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Nashi Widodo
- Biology Department, Faculty of Mathematics and Natural Sciences, The University of Brawijaya, Malang, Indonesia
| | | |
Collapse
|
38
|
Martorana F, Motta G, Pavone G, Motta L, Stella S, Vitale SR, Manzella L, Vigneri P. AKT Inhibitors: New Weapons in the Fight Against Breast Cancer? Front Pharmacol 2021; 12:662232. [PMID: 33995085 PMCID: PMC8118639 DOI: 10.3389/fphar.2021.662232] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 01/07/2023] Open
Abstract
The serine/threonine kinase AKT is a key component of the PI3K/AKT/mTOR signaling pathway as it exerts a pivotal role in cell growth, proliferation, survival, and metabolism. Deregulation of this pathway is a common event in breast cancer including hormone receptor-positive (HR+) disease, HER2-amplified, and triple negative tumors. Hence, targeting AKT represents an attractive treatment option for many breast cancer subtypes, especially those resistant to conventional treatments. Several AKT inhibitors have been recently developed and two ATP-competitive compounds, capivasertib and ipatasertib, have been extensively tested in phase I and II clinical trials either alone, with chemotherapy, or with hormonal agents. Additionally, phase III trials of capivasertib and ipatasertib are already under way in HR+ and triple-negative breast cancer. While the identification of predictive biomarkers of response and resistance to AKT inhibition represents an unmet need, new combination strategies are under investigation aiming to boost the therapeutic efficacy of these drugs. As such, trials combining capivasertib and ipatasertib with CDK4/6 inhibitors, immune checkpoint inhibitors, and PARP inhibitors are currently ongoing. This review summarizes the available evidence on AKT inhibition in breast cancer, reporting both efficacy and toxicity data from clinical trials along with the available translational correlates and then focusing on the potential use of these drugs in new combination strategies.
Collapse
Affiliation(s)
- Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Gianmarco Motta
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
- Medical Oncology, A. O. U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Giuliana Pavone
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
- Medical Oncology, A. O. U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Lucia Motta
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
- Medical Oncology, A. O. U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
- Medical Oncology, A. O. U. Policlinico “G. Rodolico—S. Marco”, Catania, Italy
| |
Collapse
|
39
|
Brown WS, McDonald PC, Nemirovsky O, Awrey S, Chafe SC, Schaeffer DF, Li J, Renouf DJ, Stanger BZ, Dedhar S. Overcoming Adaptive Resistance to KRAS and MEK Inhibitors by Co-targeting mTORC1/2 Complexes in Pancreatic Cancer. Cell Rep Med 2020; 1:100131. [PMID: 33294856 PMCID: PMC7691443 DOI: 10.1016/j.xcrm.2020.100131] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/22/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
Activating KRAS mutations are found in over 90% of pancreatic ductal adenocarcinomas (PDACs), yet KRAS has remained a difficult target to inhibit pharmacologically. Here, we demonstrate, using several human and mouse models of PDACs, rapid acquisition of tumor resistance in response to targeting KRAS or MEK, associated with integrin-linked kinase (ILK)-mediated increased phosphorylation of the mTORC2 component Rictor, and AKT. Although inhibition of mTORC1/2 results in a compensatory increase in ERK phosphorylation, combinatorial treatment of PDAC cells with either KRAS (G12C) or MEK inhibitors, together with mTORC1/2 inhibitors, results in synergistic cytotoxicity and cell death reflected by inhibition of pERK and pRictor/pAKT and of downstream regulators of protein synthesis and cell survival. Relative to single agents alone, this combination leads to durable inhibition of tumor growth and metastatic progression in vivo and increased survival. We have identified an effective combinatorial treatment strategy using clinically viable inhibitors, which can be applied to PDAC tumors with different KRAS mutations.
Collapse
Affiliation(s)
- Wells S. Brown
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Oksana Nemirovsky
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Shannon Awrey
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Shawn C. Chafe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - David F. Schaeffer
- Pancreas Centre BC, Vancouver General Hospital, Vancouver, BC V3Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Jinyang Li
- Gastroenterology Division, Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Renouf
- Medical Oncology, BC Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - Ben Z. Stanger
- Gastroenterology Division, Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
40
|
Avoiding or Co-Opting ATP Inhibition: Overview of Type III, IV, V, and VI Kinase Inhibitors. NEXT GENERATION KINASE INHIBITORS 2020. [PMCID: PMC7359047 DOI: 10.1007/978-3-030-48283-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As described in the previous chapter, most kinase inhibitors that have been developed for use in the clinic act by blocking ATP binding; however, there is growing interest in identifying compounds that target kinase activities and functions without interfering with the conserved features of the ATP-binding site. This chapter will highlight alternative approaches that exploit unique kinase structural features that are being targeted to identify more selective and potent inhibitors. The figure below, adapted from (Sammons et al., Molecular Carcinogenesis 58:1551–1570, 2019), provides a graphical description of the various approaches to manipulate kinase activity. In addition to the type I and II inhibitors, type III kinase inhibitors have been identified to target sites adjacent to the ATP-binding site in the catalytic domain. New information on kinase structure and substrate-binding sites has enabled the identification of type IV kinase inhibitor compounds that target regions outside the catalytic domain. The combination of targeting unique allosteric sites outside the catalytic domain with ATP-targeted compounds has yielded a number of novel bivalent type V kinase inhibitors. Finally, emerging interest in the development of irreversible compounds that form selective covalent interactions with key amino acids involved in kinase functions comprise the class of type VI kinase inhibitors.
Collapse
|
41
|
Lazaro G, Kostaras E, Vivanco I. Inhibitors in AKTion: ATP-competitive vs allosteric. Biochem Soc Trans 2020; 48:933-943. [PMID: 32453400 PMCID: PMC7329346 DOI: 10.1042/bst20190777] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Aberrant activation of the PI3K pathway is one of the commonest oncogenic events in human cancer. AKT is a key mediator of PI3K oncogenic function, and thus has been intensely pursued as a therapeutic target. Multiple AKT inhibitors, broadly classified as either ATP-competitive or allosteric, are currently in various stages of clinical development. Herein, we review the evidence for AKT dependence in human tumours and focus on its therapeutic targeting by the two drug classes. We highlight the future prospects for the development and implementation of more effective context-specific AKT inhibitors aided by our increasing knowledge of both its regulation and some previously unrecognised non-canonical functions.
Collapse
Affiliation(s)
- Glorianne Lazaro
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., SM2 5NG London, U.K
| | - Eleftherios Kostaras
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., SM2 5NG London, U.K
| | - Igor Vivanco
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., SM2 5NG London, U.K
| |
Collapse
|
42
|
Landel I, Quambusch L, Depta L, Rauh D. Spotlight on AKT: Current Therapeutic Challenges. ACS Med Chem Lett 2020; 11:225-227. [PMID: 32184947 DOI: 10.1021/acsmedchemlett.9b00548] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The protein kinase B (Akt) exemplifies an important switch of cell death and survival within the PI3K/Akt signaling pathway, which renders Akt a valuable target in diseases such as cancer. Herein, we give a short overview of clinical applications involving Akt, outline promising and innovative approaches to investigate the role of this kinase in diseases, and highlight the current challenges that require thorough investigation to set the groundwork for successful therapeutic strategies.
Collapse
Affiliation(s)
- Ina Landel
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Lena Quambusch
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Laura Depta
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
43
|
Ponz-Sarvise M, Corbo V, Tiriac H, Engle DD, Frese KK, Oni TE, Hwang CI, Öhlund D, Chio IIC, Baker LA, Filippini D, Wright K, Bapiro TE, Huang P, Smith P, Yu KH, Jodrell DI, Park Y, Tuveson DA. Identification of Resistance Pathways Specific to Malignancy Using Organoid Models of Pancreatic Cancer. Clin Cancer Res 2019; 25:6742-6755. [PMID: 31492749 PMCID: PMC6858952 DOI: 10.1158/1078-0432.ccr-19-1398] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/25/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE KRAS is mutated in the majority of pancreatic ductal adenocarcinoma. MAPK and PI3K-AKT are primary KRAS effector pathways, but combined MAPK and PI3K inhibition has not been demonstrated to be clinically effective to date. We explore the resistance mechanisms uniquely employed by malignant cells. EXPERIMENTAL DESIGN We evaluated the expression and activation of receptor tyrosine kinases in response to combined MEK and AKT inhibition in KPC mice and pancreatic ductal organoids. In addition, we sought to determine the therapeutic efficacy of targeting resistance pathways induced by MEK and AKT inhibition in order to identify malignant-specific vulnerabilities. RESULTS Combined MEK and AKT inhibition modestly extended the survival of KPC mice and increased Egfr and ErbB2 phosphorylation levels. Tumor organoids, but not their normal counterparts, exhibited elevated phosphorylation of ERBB2 and ERBB3 after MEK and AKT blockade. A pan-ERBB inhibitor synergized with MEK and AKT blockade in human PDA organoids, whereas this was not observed for the EGFR inhibitor erlotinib. Combined MEK and ERBB inhibitor treatment of human organoid orthotopic xenografts was sufficient to cause tumor regression in short-term intervention studies. CONCLUSIONS Analyses of normal and tumor pancreatic organoids revealed the importance of ERBB activation during MEK and AKT blockade primarily in the malignant cultures. The lack of ERBB hyperactivation in normal organoids suggests a larger therapeutic index. In our models, pan-ERBB inhibition was synergistic with dual inhibition of MEK and AKT, and the combination of a pan-ERBB inhibitor with MEK antagonists showed the highest activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Mariano Ponz-Sarvise
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Vincenzo Corbo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Dannielle D Engle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | | | - Tobiloba E Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York
| | - Chang-Il Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Daniel Öhlund
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Iok In Christine Chio
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Lindsey A Baker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Dea Filippini
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Kevin Wright
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Tashinga E Bapiro
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | | | - Paul Smith
- IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Kenneth H Yu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Medical College at Cornell University, New York, New York
| | - Duncan I Jodrell
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, The University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
44
|
Quambusch L, Landel I, Depta L, Weisner J, Uhlenbrock N, Müller MP, Glanemann F, Althoff K, Siveke JT, Rauh D. Covalent‐Allosteric Inhibitors to Achieve Akt Isoform‐Selectivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lena Quambusch
- Faculty of Chemistry and Chemical BiologyTU Dortmund University and Drug Discovery Hub Dortmund (DDHD)Zentrum für Integrierte Wirkstoffforschung (ZIW) Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Ina Landel
- Faculty of Chemistry and Chemical BiologyTU Dortmund University and Drug Discovery Hub Dortmund (DDHD)Zentrum für Integrierte Wirkstoffforschung (ZIW) Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Laura Depta
- Faculty of Chemistry and Chemical BiologyTU Dortmund University and Drug Discovery Hub Dortmund (DDHD)Zentrum für Integrierte Wirkstoffforschung (ZIW) Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Jörn Weisner
- Faculty of Chemistry and Chemical BiologyTU Dortmund University and Drug Discovery Hub Dortmund (DDHD)Zentrum für Integrierte Wirkstoffforschung (ZIW) Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Niklas Uhlenbrock
- Faculty of Chemistry and Chemical BiologyTU Dortmund University and Drug Discovery Hub Dortmund (DDHD)Zentrum für Integrierte Wirkstoffforschung (ZIW) Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Matthias P. Müller
- Faculty of Chemistry and Chemical BiologyTU Dortmund University and Drug Discovery Hub Dortmund (DDHD)Zentrum für Integrierte Wirkstoffforschung (ZIW) Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Franziska Glanemann
- Institute of Developmental Cancer TherapeuticsWest German Cancer Center, University Hospital Essen Essen Germany
- Division of Solid Tumor Translational OncologyGerman Cancer Consortium (DKTK, partner site Essen) and German Research Center (DKFZ) Heidelberg Germany
| | - Kristina Althoff
- Institute of Developmental Cancer TherapeuticsWest German Cancer Center, University Hospital Essen Essen Germany
- Division of Solid Tumor Translational OncologyGerman Cancer Consortium (DKTK, partner site Essen) and German Research Center (DKFZ) Heidelberg Germany
| | - Jens T. Siveke
- Institute of Developmental Cancer TherapeuticsWest German Cancer Center, University Hospital Essen Essen Germany
- Division of Solid Tumor Translational OncologyGerman Cancer Consortium (DKTK, partner site Essen) and German Research Center (DKFZ) Heidelberg Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical BiologyTU Dortmund University and Drug Discovery Hub Dortmund (DDHD)Zentrum für Integrierte Wirkstoffforschung (ZIW) Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
45
|
Quambusch L, Landel I, Depta L, Weisner J, Uhlenbrock N, Müller MP, Glanemann F, Althoff K, Siveke JT, Rauh D. Covalent-Allosteric Inhibitors to Achieve Akt Isoform-Selectivity. Angew Chem Int Ed Engl 2019; 58:18823-18829. [PMID: 31584233 PMCID: PMC6972997 DOI: 10.1002/anie.201909857] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/24/2019] [Indexed: 02/03/2023]
Abstract
Isoforms of protein kinase Akt are involved in essential processes including cell proliferation, survival, and metabolism. However, their individual roles in health and disease have not been thoroughly evaluated. Thus, there is an urgent need for perturbation studies, preferably mediated by highly selective bioactive small molecules. Herein, we present a structure‐guided approach for the design of structurally diverse and pharmacologically beneficial covalent‐allosteric modifiers, which enabled an investigation of the isoform‐specific preferences and the important residues within the allosteric site of the different isoforms. The biochemical, cellular, and structural evaluations revealed interactions responsible for the selective binding profiles. The isoform‐selective covalent‐allosteric Akt inhibitors that emerged from this approach showed a conclusive structure–activity relationship and broke ground in the development of selective probes to delineate the isoform‐specific functions of Akt kinases.
Collapse
Affiliation(s)
- Lena Quambusch
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Ina Landel
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Laura Depta
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Jörn Weisner
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Niklas Uhlenbrock
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Matthias P Müller
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Franziska Glanemann
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Research Center (DKFZ), Heidelberg, Germany
| | - Kristina Althoff
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Research Center (DKFZ), Heidelberg, Germany
| | - Jens T Siveke
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
46
|
Vollono L, Falconi M, Gaziano R, Iacovelli F, Dika E, Terracciano C, Bianchi L, Campione E. Potential of Curcumin in Skin Disorders. Nutrients 2019; 11:E2169. [PMID: 31509968 PMCID: PMC6770633 DOI: 10.3390/nu11092169] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Curcumin is a compound isolated from turmeric, a plant known for its medicinal use. Recently, there is a growing interest in the medical community in identifying novel, low-cost, safe molecules that may be used in the treatment of inflammatory and neoplastic diseases. An increasing amount of evidence suggests that curcumin may represent an effective agent in the treatment of several skin conditions. We examined the most relevant in vitro and in vivo studies published to date regarding the use of curcumin in inflammatory, neoplastic, and infectious skin diseases, providing information on its bioavailability and safety profile. Moreover, we performed a computational analysis about curcumin's interaction towards the major enzymatic targets identified in the literature. Our results suggest that curcumin may represent a low-cost, well-tolerated, effective agent in the treatment of skin diseases. However, bypass of limitations of its in vivo use (low oral bioavailability, metabolism) is essential in order to conduct larger clinical trials that could confirm these observations. The possible use of curcumin in combination with traditional drugs and the formulations of novel delivery systems represent a very promising field for future applicative research.
Collapse
Affiliation(s)
- Laura Vollono
- Dermatology Unit, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1-00133 Rome, Italy
| | - Roberta Gaziano
- Microbiology Section, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Federico Iacovelli
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1-00133 Rome, Italy
| | - Emi Dika
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Via Massarenti, 1-40138 Bologna, Italy
| | - Chiara Terracciano
- Neurology Unit, Guglielmo de Saliceto Hospital, 29121-29122 Piacenza, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy.
| |
Collapse
|
47
|
Albrecht W. Highlight report: Role of PD-L1 in never-smokers. EXCLI JOURNAL 2019; 18:439-441. [PMID: 31423121 PMCID: PMC6694700 DOI: 10.17179/excli2019-1516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo)
| |
Collapse
|