1
|
de Faria FCC, Khurshid S, Sarchet P, Tahara S, Casadei L, Grignol V, Karna R, Rentsch S, Sp N, Beane JD, Mazzoccoli L, Montes M, Nigita G, Sharick JT, Leight JL, Calore F, Chandler DS, Pollock RE. Oncogenic Functions of Alternatively Spliced MDM2-ALT2 Isoform in Retroperitoneal Liposarcoma. Int J Mol Sci 2024; 25:13516. [PMID: 39769278 PMCID: PMC11676768 DOI: 10.3390/ijms252413516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Retroperitoneal liposarcoma (RPLPS) is one of the most common histologic subtypes of soft tissue sarcoma (STS). Complete surgical resection remains the mainstay treatment, while the high rate of locoregional recurrence constitutes the predominant cause of mortality. Well-differentiated (WDLPS) and dedifferentiated (DDLPS) liposarcoma are the most frequent subtypes of RPLPS and present amplified MDM2 gene as a hallmark. However, there are few reports evaluating the role of alternatively spliced MDM2 transcripts in RPLPS. In this study, we assessed MDM2-ALT2 expression levels in a cohort of RPLPS patients and evaluated the biological functions of the MDM2-ALT2 isoform in vitro in DDLPS cell lines. Using BaseScope™ and qPCR, we demonstrated that MDM2-Full Length (MDM2-FL) and MDM2-ALT2 expression levels were upregulated in RPLPS patient-derived tissue samples compared to normal adjacent to tumor tissue (NAT). DDLPS cells overexpressing MDM2-FL or MDM2-ALT2 had higher proliferation rates and increased migration and invasion capacities, as well as increased protein levels of p-AKT, mTOR, p70S6K, MMP2, and cJun. Simultaneous overexpression of MDM2-ALT2 and AKT silencing showed that AKT inhibition impaired p-p70S6K and MMP2 protein increased levels and led to significantly decreased proliferation and migration rates compared to cells overexpressing MDM2-ALT2 only. Taken together, our data suggest that MDM2-ALT2 may promote RPLPS progression.
Collapse
Affiliation(s)
- Fernanda Costas C. de Faria
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Safiya Khurshid
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Patricia Sarchet
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sayumi Tahara
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Lucia Casadei
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Valerie Grignol
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Roma Karna
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sydney Rentsch
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nipin Sp
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Joal D. Beane
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Luciano Mazzoccoli
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Research, Columbus, OH 43210, USA
| | - Matias Montes
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Joe T. Sharick
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jennifer L. Leight
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Federica Calore
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dawn S. Chandler
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Raphael E. Pollock
- The James Comprehensive Cancer Center, Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Liu H, Wang X, Liu L, Yan B, Qiu F, Zhou B. Targeting liposarcoma: unveiling molecular pathways and therapeutic opportunities. Front Oncol 2024; 14:1484027. [PMID: 39723387 PMCID: PMC11668776 DOI: 10.3389/fonc.2024.1484027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
In recent years, an increasing number of studies have utilized molecular biology techniques to reveal important molecular heterogeneity among different subtypes of liposarcoma. Each subtype exhibits distinct genetic patterns and molecular pathways, which may serve as important targets for molecular therapy. In the present review, we focus on the molecular characteristics, molecular diagnostics, driver genes, and molecular mechanisms of liposarcoma. We also discuss the clinical research progress of related targeted therapies, with an aim to provide a reference and crucial insights for colleagues in the field.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xi Wang
- Department of Oncology, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Lingyan Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Bingsong Yan
- Department of Hepatobiliary Surgery, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Fabo Qiu
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Li N, Li H, Wei L, Chen H, Wu Z, Yuwen S, Yang S. The Downregulation of MMP23B Facilitates the Suppression of Vitality and Induction of Apoptosis in Endometrial Cancer Cells. Reprod Sci 2024; 31:3452-3461. [PMID: 38782818 PMCID: PMC11527946 DOI: 10.1007/s43032-024-01581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Endometrial cancer is a malignant tumor that commonly occurs in the female reproductive system and its incidence is still increasing. The mechanism of the development of endometrial cancer has not yet been fully clarified, so we need to continuously study the relevant mechanisms of endometrial cancer and continue to explore its biomarkers in order to discover more precise and effective treatment methods for endometrial cancer. RT-qPCR (Real-Time quantitative Polymerase Chain Reaction) experiments were used to detect the expression level of MMP23B (Matrix Metalloproteinase 23B) in endometrial cancer cells; the clinical data of the TCGA (The Cancer Genome Atlas) database were downloaded, and gene expression profiles were analyzed to investigate the correlation between MMP23B (Matrix Metalloproteinase 23B) and the survival prognosis of endometrial cancer, and functional enrichment analysis was performed on MMP23B (Matrix Metalloproteinase 23B) related genes. After silencing MMP23B (Matrix Metalloproteinase 23B), CCK8 (Cell Counting Kit-8), RT-qPCR (Real-Time quantitative Polymerase Chain Reaction), scratch assay, and transwell assay were used to detect cell viability, levels of apoptotic factors, migration rate, and invasion number of endometrial cancer, respectively. MMP23B (Matrix Metalloproteinase 23B) was highly expressed in endometrial cancer, which is closely related to a poor survival prognosis for endometrial cancer, and may act on endometrial cancer through apoptosis-related functions. The downregulation of MMP23B (Matrix Metalloproteinase 23B) reduced the cell viability of endometrial cancer cells, upregulated the expression levels of CASP3 (Caspase-3), CASP8 (Caspase-8) and CASP9 (Caspase-9) in cells, and inhibited cell migration and invasion.
Collapse
Affiliation(s)
- Ning Li
- Department of Gynaecology and Obstetrics, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hua Li
- Department of Pathology, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lijuan Wei
- Institute of Basic Medical Science, Medicine and Health Research Institute of Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Hui Chen
- Institute of Basic Medical Science, Medicine and Health Research Institute of Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Zhaorong Wu
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Si Yuwen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Sufang Yang
- Department of Reproductive Health and Infertility, Guangxi International Zhuang Medicine Hospital, Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Guo S, Wang X, Shan D, Xiao Y, Ju L, Zhang Y, Wang G, Qian K. The detection, biological function, and liquid biopsy application of extracellular vesicle-associated DNA. Biomark Res 2024; 12:123. [PMID: 39402599 PMCID: PMC11476736 DOI: 10.1186/s40364-024-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Cell-derived extracellular vesicles (EVs), which carry diverse biomolecules such as nucleic acids, proteins, metabolites, and lipids reflecting their cell of origin, are released under both physiological and pathological conditions. EVs have been demonstrated to mediate cell-to-cell communication and serve as biomarkers. EV-associated DNA (EV-DNA) comprises genomic and mitochondrial DNA (i.e., gDNA and mtDNA) fragments. Some studies have revealed that EV-DNA can represent the full nuclear genome and mitochondrial genome of parental cells. Furthermore, DNA fragments loaded into EVs are stable and can be transferred to recipient cells to regulate their biological functions. In this review, we summarized and discussed EV-DNA research advances with an emphasis on EV-DNA detection at the population-EV and single-EV levels, gene transfer-associated biological functions, and clinical applications as biomarkers for disease liquid biopsy. We hope that this review will provide potential directions or guidance for future EV-DNA investigations.
Collapse
Affiliation(s)
- Shan Guo
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xin Wang
- Center for Disease Control and Prevention of Hubei Province, Wuhan, China
| | - Danni Shan
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center, Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Gang Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
5
|
Lian Y, Chen J, Han J, Zhao B, Wu J, Li X, Yue M, Hou M, Wu T, Ye T, Han X, Sun T, Tu M, Zhang K, Liu G, An Y. Deciphering the prognostic and therapeutic significance of BAG1 and BAG2 for predicting distinct survival outcome and effects on liposarcoma. Sci Rep 2024; 14:23084. [PMID: 39366981 PMCID: PMC11452671 DOI: 10.1038/s41598-024-67659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/15/2024] [Indexed: 10/06/2024] Open
Abstract
Liposarcoma (LPS) is the second most common kind of soft tissue sarcoma, and a heterogeneous malignant tumor derived from adipose tissue. Up to now, the prognostic value of BAG1 or BAG2 in LPS has not been defined yet. Expression profiling data of LPS patients were collected from TCGA and GEO database. Survival curves were plotted to verify the outcome differences of patients based on BAG1 or BAG2 expression. Univariate and multivariate Cox regression models were used to analyze the prognostic ability of BAG1 or BAG2. Chaperone's regulators BAG1 and BAG2 were identified as prognostic biomarkers for LPS patients, which exhibited distinct expression patterns and survival outcome prediction performances. Patients with high BAG2 expression and/or low BAG1 expression had worse prognosis. Enrichment analysis showed that BAG1 was involved in negative regulation of TGF-β signaling. Low expression of BAG1 was associated with high abundance of regulatory T cells (Tregs). The 2-gene signature model further confirmed the improved risk assessment performance of BAG1 and BAG2: high risk patients displayed poor prognosis. BAG1 and BAG2 are supposed to be potential prognostic biomarkers for LPS and have impacts on liposarcomagenesis and immune infiltration in distinctive manners, which may function as potential therapy targets (BAG1 agonists/BAG2 inhibitors) for LPS.
Collapse
Affiliation(s)
- Yingying Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiahao Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jialin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xinyu Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tinggai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Ting Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Guangchao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- School of Stomatology, Henan University, Kaifeng, 475004, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Han Y, Ye S, Liu B. Roles of extracellular vesicles derived from healthy and obese adipose tissue in inter-organ crosstalk and potential clinical implication. Front Endocrinol (Lausanne) 2024; 15:1409000. [PMID: 39268243 PMCID: PMC11390393 DOI: 10.3389/fendo.2024.1409000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles containing bioactive molecules including proteins, nucleic acids and lipids that mediate intercellular and inter-organ communications, holding promise as potential therapeutics for multiple diseases. Adipose tissue (AT) serves as a dynamically distributed energy storage organ throughout the body, whose accumulation leads to obesity, a condition characterized by infiltration with abundant immune cells. Emerging evidence has illustrated that EVs secreted by AT are the novel class of adipokines that regulate the homeostasis between AT and peripheral organs. However, most of the studies focused on the investigations of EVs derived from adipocytes or adipose-derived stem cells (ADSCs), the summarization of functions in cellular and inter-organ crosstalk of EVs directly derived from adipose tissue (AT-EVs) are still limited. Here, we provide a systemic summary on the key components and functions of EVs derived from healthy adipose tissue, showing their significance on the tissue recovery and metabolic homeostasis regulation. Also, we discuss the harmful influences of EVs derived from obese adipose tissue on the distal organs. Furthermore, we elucidate the potential applications and constraints of EVs from healthy patients lipoaspirates as therapeutic agents, highlighting the potential of AT-EVs as a valuable biological material with broad prospects for future clinical use.
Collapse
Affiliation(s)
- Yue Han
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Sheng Ye
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Bowen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Life Sciences, Westlake University, Hangzhou, China
| |
Collapse
|
7
|
Ramos CC, Pires J, Gonzalez E, Garcia-Vallicrosa C, Reis CA, Falcon-Perez JM, Freitas D. Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:371-396. [PMID: 39697630 PMCID: PMC11648493 DOI: 10.20517/evcna.2024.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 12/20/2024]
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by unintentional loss of skeletal muscle and body fat. This syndrome is frequently associated with different types of cancer and negatively affects the prognosis and outcome of these patients. It involves a dynamic interplay between tumor cells and adipose tissue, where tumor-derived extracellular vesicles (EVs) play a crucial role in mediating intercellular communication. Tumor cells release EVs containing bioactive molecules such as hormones (adrenomedullin, PTHrP), pro-inflammatory cytokines (IL-6), and miRNAs (miR-1304-3p, miR-204-5p, miR-155, miR-425-3p, miR-146b-5p, miR-92a-3p), which can trigger lipolysis and induce the browning of white adipocytes contributing to a cancer cachexia phenotype. On the other hand, adipocyte-derived EVs can reprogram the metabolism of tumor cells by transporting fatty acids and enzymes involved in fatty acid oxidation, resulting in tumor growth and progression. These vesicles also carry leptin and key miRNAs (miR-155-5p, miR-10a-3p, miR-30a-3p, miR-32a/b, miR-21), thereby supporting tumor cell proliferation, metastasis formation, and therapy resistance. Understanding the intricate network underlying EV-mediated communication between tumor cells and adipocytes can provide critical insights into the mechanisms driving cancer cachexia. This review consolidates current knowledge on the crosstalk between tumor cells and adipose tissue mediated by EVs and offers valuable insights for future research. It also addresses controversial topics in the field and possible therapeutic approaches to manage cancer cachexia and ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Cátia C. Ramos
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
| | - José Pires
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | | | | | - Celso A. Reis
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | - Juan M. Falcon-Perez
- Exosomes Laboratory, CIC bioGUNE-BRTA, CIBERehd, Derio 48160, Spain
- IKERBASQUE Research Foundation, Bilbao 48009, Spain
| | - Daniela Freitas
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
| |
Collapse
|
8
|
Singh PK, Sarchet P, Hord C, Casadei L, Pollock R, Prakash S. Mechanical property estimation of sarcoma-relevant extracellular vesicles using transmission electron microscopy. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e158. [PMID: 38966868 PMCID: PMC11222873 DOI: 10.1002/jex2.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/18/2024] [Accepted: 05/11/2024] [Indexed: 07/06/2024]
Abstract
Analysis of single extracellular vesicles (EVs) has the potential to yield valuable label-free information on their morphological structure, biomarkers and therapeutic targets, though such analysis is hindered by the lack of reliable and quantitative measurements of the mechanical properties of these compliant nanoscale particles. The technical challenge in mechanical property measurements arises from the existing tools and methods that offer limited throughput, and the reported elastic moduli range over several orders of magnitude. Here, we report on a flow-based method complemented by transmission electron microscopy (TEM) imaging to provide a high throughput, whole EV deformation analysis for estimating the mechanical properties of liposarcoma-derived EVs as a function of their size. Our study includes extracting morphological data of EVs from a large dataset of 432 TEM images, with images containing single to multiple EVs, and implementing the thin-shell deformation theory. We estimated the elastic modulus, E = 0.16 ± 0.02 MPa (mean±SE) for small EVs (sEVs; 30-150 nm) and E = 0.17 ± 0.03 MPa (mean±SE) for large EVs (lEVs; >150 nm). To our knowledge, this is the first report on the mechanical property estimation of LPS-derived EVs and has the potential to establish a relationship between EV size and EV mechanical properties.
Collapse
Affiliation(s)
- Premanshu Kumar Singh
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Patricia Sarchet
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Catherine Hord
- Center for Life Sciences EducationThe Ohio State UniversityColumbusOhioUSA
| | - Lucia Casadei
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Raphael Pollock
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Shaurya Prakash
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
9
|
Tahara S, Sharma S, de Faria FCC, Sarchet P, Tomasello L, Rentsch S, Karna R, Calore F, Pollock RE. Comparison of three-dimensional cell culture techniques of dedifferentiated liposarcoma and their integration with future research. Front Cell Dev Biol 2024; 12:1362696. [PMID: 38500686 PMCID: PMC10945377 DOI: 10.3389/fcell.2024.1362696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Background: Dedifferentiated liposarcoma is a formidable sarcoma subtype due to its high local recurrence rate and resistance to medical treatment. While 2D cell cultures are still commonly used, 3D cell culture systems have emerged as a promising alternative, particularly scaffold-based techniques that enable the creation of 3D models with more accurate cell-stroma interactions. Objective: To investigate how 3D structures with or without the scaffold existence would affect liposarcoma cell lines growth morphologically and biologically. Methods: Lipo246 and Lipo863 cell lines were cultured in 3D using four different methods; Matrigel® ECM scaffold method, Collagen ECM scaffold method, ULA plate method and Hanging drop method, in addition to conventional 2D cell culture methods. All samples were processed for histopathological analysis (HE, IHC and DNAscope™), Western blot, and qPCR; moreover, 3D collagen-based models were treated with different doses of SAR405838, a well-known inhibitor of MDM2, and cell viability was assessed in comparison to 2D model drug response. Results: Regarding morphology, cell lines behaved differently comparing the scaffold-based and scaffold-free methods. Lipo863 formed spheroids in Matrigel® but not in collagen, while Lipo246 did not form spheroids in either collagen or Matrigel®. On the other hand, both cell lines formed spheroids using scaffold-free methods. All samples retained liposarcoma characteristic, such as high level of MDM2 protein expression and MDM2 DNA amplification after being cultivated in 3D. 3D collagen samples showed higher cell viability after SAR40538 treatment than 2D models, while cells sensitive to the drug died by apoptosis or necrosis. Conclusion: Our results prompt us to extend our investigation by applying our 3D models to further oncological relevant applications, which may help address unresolved questions about dedifferentiated liposarcoma biology.
Collapse
Affiliation(s)
- Sayumi Tahara
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Soumya Sharma
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Fernanda Costas Casal de Faria
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Patricia Sarchet
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Luisa Tomasello
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sydney Rentsch
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Roma Karna
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Raphael E. Pollock
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
10
|
Dean DC, Feng W, Walker RL, Thanindratarn P, Temple HT, Trent JC, Rosenberg AE, Hornicek FJ, Duan Z. Discoidin Domain Receptor Tyrosine Kinase 1 (DDR1) Is a Novel Therapeutic Target in Liposarcoma: A Tissue Microarray Study. Clin Orthop Relat Res 2023; 481:2140-2153. [PMID: 37768856 PMCID: PMC10567009 DOI: 10.1097/corr.0000000000002865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Liposarcoma is the most commonly diagnosed subtype of soft tissue sarcoma. As these tumors often arise near vital organs and neurovascular structures, complete resection can be challenging; consequently, recurrence rates are high. Additionally, available chemotherapeutic agents have shown limited benefit and substantial toxicities. There is, therefore, a clear and unmet need for novel therapeutics for liposarcoma. Discoidin domain receptor tyrosine kinase 1 (DDR1) is involved in adhesion, proliferation, differentiation, migration, and metastasis in several cancers. However, the expression and clinical importance of DDR1 in liposarcoma are unknown. QUESTIONS/PURPOSES The purposes of this study were to assess (1) the expression, (2) the association between DDR1 and survival, and (3) the functional roles of DDR1 in liposarcoma. METHODS The correlation between DDR1 expression in tumor tissues and clinicopathological features and survival was assessed via immunohistochemical staining of a liposarcoma tissue microarray. It contained 53 samples from 42 patients with liposarcoma and 11 patients with lipoma. The association between DDR1 and survival in liposarcoma was analyzed by Kaplan-Meier plots and log-rank tests. The DDR1 knockout liposarcoma cell lines were generated by CRISPR-Cas9 technology. The DDR1-specific and highly selective DDR1 inhibitor 7RH was applied to determine the impact of DDR1 expression on liposarcoma cell growth and proliferation. In addition, the effect of DDR1 inhibition on liposarcoma growth was further accessed in a three-dimensional cell culture model to mimic DDR1 effects in vivo. RESULTS The results demonstrate elevated expression of DDR1 in all liposarcoma subtypes relative to benign lipomas. Specifically, high DDR1 expression was seen in 55% (23 of 42) of liposarcomas and no benign lipomas. However, DDR1 expression was not found to be associated with poor survival in patients with liposarcoma. DDR1 knockout or treatment of 7RH showed decreased liposarcoma cell growth and proliferation. CONCLUSION DDR1 is aberrantly expressed in liposarcoma, and it contributes to several markers of oncogenesis in these tumors. CLINICAL RELEVANCE This work supports DDR1 as a promising therapeutic target in liposarcoma.
Collapse
Affiliation(s)
- Dylan C. Dean
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wenlong Feng
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Robert L. Walker
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pichaya Thanindratarn
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand
| | - H. Thomas Temple
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan C. Trent
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew E. Rosenberg
- Departments of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
11
|
Tien PC, Chen X, Elzey BD, Pollock RE, Kuang S. Notch signaling regulates a metabolic switch through inhibiting PGC-1α and mitochondrial biogenesis in dedifferentiated liposarcoma. Oncogene 2023; 42:2521-2535. [PMID: 37433985 PMCID: PMC10575759 DOI: 10.1038/s41388-023-02768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Human dedifferentiated liposarcoma (DDLPS) is a rare but lethal cancer with no driver mutations being identified, hampering the development of targeted therapies. We and others recently reported that constitutive activation of Notch signaling through overexpression of the Notch1 intracellular domain (NICDOE) in murine adipocytes leads to tumors resembling human DDLPS. However, the mechanisms underlying the oncogenic functions of Notch activation in DDLPS remains unclear. Here, we show that Notch signaling is activated in a subset of human DDLPS and correlates with poor prognosis and expression of MDM2, a defining marker of DDLPS. Metabolic analyses reveal that murine NICDOE DDLPS cells exhibit markedly reduced mitochondrial respiration and increased glycolysis, mimicking the Warburg effect. This metabolic switch is associated with diminished expression of peroxisome proliferator-activated receptor gamma coactivator 1α (Ppargc1a, encoding PGC-1α protein), a master regulator of mitochondrial biogenesis. Genetic ablation of the NICDOE cassette rescues the expression of PGC-1α and mitochondrial respiration. Similarly, overexpression of PGC-1α is sufficient to rescue mitochondria biogenesis, inhibit the growth and promote adipogenic differentiation of DDLPS cells. Together, these data demonstrate that Notch activation inhibits PGC-1α to suppress mitochondrial biogenesis and drive a metabolic switch in DDLPS.
Collapse
Affiliation(s)
- Pei-Chieh Tien
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Raphael E Pollock
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
12
|
Agnoletto C, Pignochino Y, Caruso C, Garofalo C. Exosome-Based Liquid Biopsy Approaches in Bone and Soft Tissue Sarcomas: Review of the Literature, Prospectives, and Hopes for Clinical Application. Int J Mol Sci 2023; 24:ijms24065159. [PMID: 36982236 PMCID: PMC10048895 DOI: 10.3390/ijms24065159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The knowledge of exosome impact on sarcoma development and progression has been implemented in preclinical studies thanks to technological advances in exosome isolation. Moreover, the clinical relevance of liquid biopsy is well established in early diagnosis, prognosis prediction, tumor burden assessment, therapeutic responsiveness, and recurrence monitoring of tumors. In this review, we aimed to comprehensively summarize the existing literature pointing out the clinical relevance of detecting exosomes in liquid biopsy from sarcoma patients. Presently, the clinical utility of liquid biopsy based on exosomes in patients affected by sarcoma is under debate. The present manuscript collects evidence on the clinical impact of exosome detection in circulation of sarcoma patients. The majority of these data are not conclusive and the relevance of liquid biopsy-based approaches in some types of sarcoma is still insufficient. Nevertheless, the utility of circulating exosomes in precision medicine clearly emerged and further validation in larger and homogeneous cohorts of sarcoma patients is clearly needed, requiring collaborative projects between clinicians and translational researchers for these rare cancers.
Collapse
Affiliation(s)
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy
- Candiolo Cancer Instute, FPO-IRCCS, 10060 Torino, Italy
| | - Chiara Caruso
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Immunology and Molecular Oncology Diagnostic Unit, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy
| |
Collapse
|
13
|
Casadei L, Sarchet P, de Faria FCC, Calore F, Nigita G, Tahara S, Cascione L, Wabitsch M, Hornicek FJ, Grignol V, Croce CM, Pollock RE. In situ hybridization to detect DNA amplification in extracellular vesicles. J Extracell Vesicles 2022; 11:e12251. [PMID: 36043432 PMCID: PMC9428764 DOI: 10.1002/jev2.12251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/07/2022] Open
Abstract
EVs have emerged as an important component in tumour initiation, progression and metastasis. Although notable progresses have been made, the detection of EV cargoes remain significantly challenging for researchers to practically use; faster and more convenient methods are required to validate the EV cargoes, especially as biomarkers. Here we show, the possibility of examining embedded EVs as substrates to be used for detecting DNA amplification through ultrasensitive in situ hybridization (ISH). This methodology allows the visualization of DNA targets in a more direct manner, without time consuming optimization steps or particular expertise. Additionally, formalin-fixed paraffin-embedded (FFPE) blocks of EVs allows long-term preservation of samples, permitting future studies. We report here: (i) the successful isolation of EVs from liposarcoma tissues; (ii) the EV embedding in FFPE blocks (iii) the successful selective, specific ultrasensitive ISH examination of EVs derived from tissues, cell line, and sera; (iv) and the detection of MDM2 DNA amplification in EVs from liposarcoma tissues, cell lines and sera. Ultrasensitive ISH on EVs would enable cargo study while the application of ISH to serum EVs, could represent a possible novel methodology for diagnostic confirmation. Modification of probes may enable researchers to detect targets and specific DNA alterations directly in tumour EVs, thereby facilitating detection, diagnosis, and improved understanding of tumour biology relevant to many cancer types.
Collapse
Affiliation(s)
- Lucia Casadei
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Patricia Sarchet
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | | | - Federica Calore
- Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusOhioUSA
| | - Giovanni Nigita
- Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusOhioUSA
| | - Sayumi Tahara
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Luciano Cascione
- Institute of Oncology Research (IOR), Faculty of Biomedical SciencesUniversità della Svizzera italiana (USI), Bellinzona, Switzerland, Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine Division of Paediatric Endocrinology and Diabetes Centre for Hormonal Disorders in Children and AdolescentsUlm University HospitalUlmGermany
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Centerand the University of Miami Miller School of MedicineMiamiFloridaUSA
| | - Valerie Grignol
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Carlo M. Croce
- Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusOhioUSA
| | | |
Collapse
|
14
|
Tseng WW, Swallow CJ, Strauss DC, Bonvalot S, Rutkowski P, Ford SJ, Gonzalez RJ, Gladdy RA, Gyorki DE, Fairweather M, Lee KW, Albertsmeier M, van Houdt WJ, Fau M, Nessim C, Grignani G, Cardona K, Quagliuolo V, Grignol V, Farma JM, Pennacchioli E, Fiore M, Hayes A, Tzanis D, Skoczylas J, Almond ML, Mullinax JE, Johnston W, Snow H, Haas RL, Callegaro D, Smith MJ, Bouhadiba T, Desai A, Voss R, Sanfilippo R, Jones RL, Baldini EH, Wagner AJ, Catton CN, Stacchiotti S, Thway K, Roland CL, Raut CP, Gronchi A. Management of Locally Recurrent Retroperitoneal Sarcoma in the Adult: An Updated Consensus Approach from the Transatlantic Australasian Retroperitoneal Sarcoma Working Group. Ann Surg Oncol 2022; 29:7335-7348. [PMID: 35767103 DOI: 10.1245/s10434-022-11864-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Surgery is the mainstay of treatment for retroperitoneal sarcoma (RPS), but local recurrence is common. Biologic behavior and recurrence patterns differ significantly among histologic types of RPS, with implications for management. The Transatlantic Australasian RPS Working Group (TARPSWG) published a consensus approach to primary RPS, and to complement this, one for recurrent RPS in 2016. Since then, additional studies have been published, and collaborative discussion is ongoing to address the clinical challenges of local recurrence in RPS. METHODS An extensive literature search was performed, and the previous consensus statements for recurrent RPS were updated after review by TARPSWG members. The search included the most common RPS histologic types: liposarcoma, leiomyosarcoma, solitary fibrous tumor, undifferentiated pleomorphic sarcoma, and malignant peripheral nerve sheath tumor. RESULTS Recurrent RPS management was evaluated from diagnosis to follow-up evaluation. For appropriately selected patients, resection is safe. Nomograms currently are available to help predict outcome after resection. These and other new findings have been combined with expert recommendations to provide 36 statements, each of which is attributed a level of evidence and grade of recommendation. In this updated document, more emphasis is placed on histologic type and clarification of the intent for surgical treatment, either curative or palliative. Overall, the fundamental tenet of optimal care for patients with recurrent RPS remains individualized treatment after multidisciplinary discussion by an experienced team with expertise in RPS. CONCLUSIONS Updated consensus recommendations are provided to help guide decision-making for treatment of locally recurrent RPS and better selection of patients who would potentially benefit from surgery.
Collapse
Affiliation(s)
- William W Tseng
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| | - Carol J Swallow
- Department of Surgical Oncology, Mount Sinai Hospital and Princess Margaret Cancer Centre, and Department of Surgery, University of Toronto, Toronto, Canada.
| | - Dirk C Strauss
- Sarcoma Unit, Department of Surgery, Royal Marsden Hospital, Royal Marsden NHS Foundation Trust, London, UK
| | - Sylvie Bonvalot
- Department of Surgical Oncology, Institut Curie, PSL University, Paris, France
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Samuel J Ford
- Sarcoma Unit, Queen Elizabeth Hospital, Birmingham, UK
| | | | - Rebecca A Gladdy
- Department of Surgical Oncology, Mount Sinai Hospital and Princess Margaret Cancer Centre, and Department of Surgery, University of Toronto, Toronto, Canada
| | - David E Gyorki
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mark Fairweather
- Department of Surgery, Brigham and Women's Hospital, Dana Farber Cancer Institute, Boston, MA, USA
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Markus Albertsmeier
- Department of General, Visceral and Transplantation Surgery, Ludwig-Maximilians-Universität Munich, University Hospital, Munich, Germany
| | - Winan J van Houdt
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Carolyn Nessim
- Department of Surgery, The Ottawa Hospital, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Giovanni Grignani
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Torino, Italy
| | - Kenneth Cardona
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Vittorio Quagliuolo
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Valerie Grignol
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jeffrey M Farma
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Elisabetta Pennacchioli
- Division of Melanoma, Sarcoma and Rare Tumor Surgery, European Institute of Oncology, Milan, Italy
| | - Marco Fiore
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrew Hayes
- Sarcoma Unit, Department of Surgery, Royal Marsden Hospital, Royal Marsden NHS Foundation Trust, London, UK
| | - Dimitri Tzanis
- Department of Surgical Oncology, Institut Curie, PSL University, Paris, France
| | - Jacek Skoczylas
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Max L Almond
- Sarcoma Unit, Queen Elizabeth Hospital, Birmingham, UK
| | - John E Mullinax
- Sarcoma Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Wendy Johnston
- Department of Surgical Oncology, Mount Sinai Hospital and Princess Margaret Cancer Centre, and Department of Surgery, University of Toronto, Toronto, Canada
| | - Hayden Snow
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rick L Haas
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Radiotherapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Dario Callegaro
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Myles J Smith
- Sarcoma Unit, Department of Surgery, Royal Marsden Hospital, Royal Marsden NHS Foundation Trust, London, UK.,The Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Toufik Bouhadiba
- Department of Surgical Oncology, Institut Curie, PSL University, Paris, France
| | - Anant Desai
- Sarcoma Unit, Queen Elizabeth Hospital, Birmingham, UK
| | - Rachel Voss
- Sarcoma Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Roberta Sanfilippo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Robin L Jones
- The Institute of Cancer Research, Chester Beatty Laboratories, London, UK.,Department of Medical Oncology, Royal Marsden NHS Foundation Trust, London, UK
| | - Elizabeth H Baldini
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew J Wagner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles N Catton
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Silvia Stacchiotti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Khin Thway
- Sarcoma Unit, Department of Pathology, Royal Marsden Hospital, Royal Marsden NHS Foundation Trust, London, UK
| | - Christina L Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Dana Farber Cancer Institute, Boston, MA, USA
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | | |
Collapse
|
15
|
Adib A, Sahu R, Mohta S, Pollock RE, Casadei L. Cancer-Derived Extracellular Vesicles: Their Role in Sarcoma. Life (Basel) 2022; 12:life12040481. [PMID: 35454972 PMCID: PMC9029613 DOI: 10.3390/life12040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Soft tissue sarcomas (STS) are rare malignancies with limited responses to anticancer therapy. Extracellular vesicles (EVs) are a heterogeneous group of bi-lipid layer sacs secreted by cells into extracellular space. Investigations of tumor-derived EVs have revealed their functional capabilities, including cell-to-cell communication and their impact on tumorigenesis, progression, and metastasis; however information on the roles of EVs in sarcoma is currently limited. In this review we investigate the role of various EV cargos in sarcoma and the mechanisms by which those cargos can affect the recipient cell phenotype and the aggressivity of the tumor itself. The study of EVs in sarcoma may help establish novel therapeutic approaches that target specific sarcoma subtypes or biologies, thereby improving sarcoma therapeutics in the future.
Collapse
Affiliation(s)
- Anita Adib
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
- Correspondence: (A.A.); (R.S.)
| | - Ruhi Sahu
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
- Correspondence: (A.A.); (R.S.)
| | - Shivangi Mohta
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
| | - Raphael Etomar Pollock
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH 43210, USA;
| | - Lucia Casadei
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
| |
Collapse
|
16
|
Targetable Pathways in the Treatment of Retroperitoneal Liposarcoma. Cancers (Basel) 2022; 14:cancers14061362. [PMID: 35326514 PMCID: PMC8946646 DOI: 10.3390/cancers14061362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/04/2023] Open
Abstract
Liposarcoma (LPS) is the most prevalent soft tissue sarcoma histological subtype. When it occurs in the abdomen the overall survival rate is as low as 10% at 10 years and is fraught with high rates of recurrence, particularly for the more aggressive dedifferentiated subtype. Surgery remains the mainstay of treatment. Systemic therapies for the treatment of metastatic or unresectable disease have low response rates. Deep understanding of well-differentiated and de-differentiated LPS (WDLPS and DDLPS, respectively) oncologic drivers is necessary for the development of new efficacious targeted therapies for the management of this disease. This review discusses the current treatments under evaluation for retroperitoneal DDLPS and the potential targetable pathways in DDLPS.
Collapse
|
17
|
Anti-Cancer Role and Therapeutic Potential of Extracellular Vesicles. Cancers (Basel) 2021; 13:cancers13246303. [PMID: 34944923 PMCID: PMC8699603 DOI: 10.3390/cancers13246303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-cell communication is an important mechanism in biological processes. Extracellular vesicles (EVs), also referred to as exosomes, microvesicles, and prostasomes, are microvesicles secreted by a variety of cells. EVs are nanometer-scale vesicles composed of a lipid bilayer and contain biological functional molecules, such as microRNAs (miRNAs), mRNAs, and proteins. In this review, "EVs" is used as a comprehensive term for vesicles that are secreted from cells. EV research has been developing over the last four decades. Many studies have suggested that EVs play a crucial role in cell-cell communication. Importantly, EVs contribute to cancer malignancy mechanisms such as carcinogenesis, proliferation, angiogenesis, metastasis, and escape from the immune system. EVs derived from cancer cells and their microenvironments are diverse, change in nature depending on the condition. As EVs are thought to be secreted into body fluids, they have the potential to serve as diagnostic markers for liquid biopsy. In addition, cells can encapsulate functional molecules in EVs. Hence, the characteristics of EVs make them suitable for use in drug delivery systems and novel cancer treatments. In this review, the potential of EVs as anti-cancer therapeutics is discussed.
Collapse
|
18
|
Sharma SR, Paonessa NE, Casadei L, Costas De Faria F, Pollock RE, Grignol V. Clinical biomarkers in soft tissue sarcoma A comprehensive review of current soft tissue sarcoma biomarkers. J Surg Oncol 2021; 125:239-245. [PMID: 34586640 DOI: 10.1002/jso.26680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022]
Abstract
Soft tissue sarcomas (STS) are a heterogeneous group of tumors that arise from mesenchymal tissue. Investigation at the molecular level has been challenging due to the rarity of STS and the number of histologic subtypes. However, recent research has provided new insight into potential genomic, proteomic, and immunological biomarkers of STS. The identification of biomarkers can improve diagnosis, prognosis, and prediction of recurrence and treatment response. This review provides an understanding of biomarkers, discussing the current status of biomarker research in STS.
Collapse
Affiliation(s)
- Soumya R Sharma
- James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Nadia E Paonessa
- James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Lucia Casadei
- James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Raphael E Pollock
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Valerie Grignol
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Tang F, Tie Y, Wei YQ, Tu CQ, Wei XW. Targeted and immuno-based therapies in sarcoma: mechanisms and advances in clinical trials. Biochim Biophys Acta Rev Cancer 2021; 1876:188606. [PMID: 34371128 DOI: 10.1016/j.bbcan.2021.188606] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/04/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Sarcomas represent a distinct group of rare malignant tumors with high heterogeneity. Limited options with clinical efficacy for the metastatic or local advanced sarcoma existed despite standard therapy. Recently, targeted therapy according to the molecular and genetic phenotype of individual sarcoma is a promising option. Among these drugs, anti-angiogenesis therapy achieved favorable efficacy in sarcomas. Inhibitors targeting cyclin-dependent kinase 4/6, poly-ADP-ribose polymerase, insulin-like growth factor-1 receptor, mTOR, NTRK, metabolisms, and epigenetic drugs are under clinical evaluation for sarcomas bearing the corresponding signals. Immunotherapy represents a promising and favorable method in advanced solid tumors. However, most sarcomas are immune "cold" tumors, with only alveolar soft part sarcoma and undifferentiated pleomorphic sarcoma respond to immune checkpoint inhibitors. Cellular therapies with TCR-engineered T cells, chimeric antigen receptor T cells, tumor infiltrating lymphocytes, and nature killer cells transfer show therapeutic potential. Identifying tumor-specific antigens and exploring immune modulation factors arguing the efficacy of these immunotherapies are the current challenges. This review focuses on the mechanisms, advances, and potential strategies of targeted and immune-based therapies in sarcomas.
Collapse
Affiliation(s)
- Fan Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopeadics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Quan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chong-Qi Tu
- Department of Orthopeadics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xia-Wei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Tseng WW, Pollock RE, Grignol VP. Disease Biology is "King" in Retroperitoneal Liposarcoma. Ann Surg Oncol 2021; 28:832-834. [PMID: 34338924 DOI: 10.1245/s10434-021-10472-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 11/18/2022]
Affiliation(s)
- William W Tseng
- Division of Breast, Endocrine and Soft Tissue Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Raphael E Pollock
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Valerie P Grignol
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
21
|
Casadei L, Choudhury A, Sarchet P, Mohana Sundaram P, Lopez G, Braggio D, Balakirsky G, Pollock R, Prakash S. Cross-flow microfiltration for isolation, selective capture and release of liposarcoma extracellular vesicles. J Extracell Vesicles 2021; 10:e12062. [PMID: 33643547 PMCID: PMC7887429 DOI: 10.1002/jev2.12062] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
We present a resource‐efficient approach to fabricate and operate a micro‐nanofluidic device that uses cross‐flow filtration to isolate and capture liposarcoma derived extracellular vesicles (EVs). The isolated extracellular vesicles were captured using EV‐specific protein markers to obtain vesicle enriched media, which was then eluted for further analysis. Therefore, the micro‐nanofluidic device integrates the unit operations of size‐based separation with CD63 antibody immunoaffinity‐based capture of extracellular vesicles in the same device to evaluate EV‐cargo content for liposarcoma. The eluted media collected showed ∼76% extracellular vesicle recovery from the liposarcoma cell conditioned media and ∼32% extracellular vesicle recovery from dedifferentiated liposarcoma patient serum when compared against state‐of‐art extracellular vesicle isolation and subsequent quantification by ultracentrifugation. The results reported here also show a five‐fold increase in amount of critical liposarcoma‐relevant extracellular vesicle cargo obtained in 30 min presenting a significant advance over existing state‐of‐art.
Collapse
Affiliation(s)
- Lucia Casadei
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA
| | - Adarsh Choudhury
- Department of Mechanical and Aerospace Engineering The Ohio State University Columbus Ohio USA
| | - Patricia Sarchet
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA
| | | | - Gonzalo Lopez
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA
| | - Danielle Braggio
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA
| | - Gita Balakirsky
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA
| | - Raphael Pollock
- Department of Mechanical and Aerospace Engineering The Ohio State University Columbus Ohio USA
| | - Shaurya Prakash
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA.,Department of Mechanical and Aerospace Engineering The Ohio State University Columbus Ohio USA
| |
Collapse
|
22
|
Grünewald TGP, Alonso M, Avnet S, Banito A, Burdach S, Cidre‐Aranaz F, Di Pompo G, Distel M, Dorado‐Garcia H, Garcia‐Castro J, González‐González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal‐Esquivel C, Morales‐Molina Á, Musa J, Ohmura S, Ory B, Pereira‐Silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen‐Jonkers YMH, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med 2020; 12:e11131. [PMID: 33047515 PMCID: PMC7645378 DOI: 10.15252/emmm.201911131] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.
Collapse
Affiliation(s)
- Thomas GP Grünewald
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Division of Translational Pediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), Hopp Children's Cancer Center (KiTZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Marta Alonso
- Program in Solid Tumors and BiomarkersFoundation for the Applied Medical ResearchUniversity of Navarra PamplonaPamplonaSpain
| | - Sofia Avnet
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Ana Banito
- Pediatric Soft Tissue Sarcoma Research GroupGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Florencia Cidre‐Aranaz
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | - Gemma Di Pompo
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | | | | | | | | | - Merve Kasan
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | | | - Fernando Lecanda
- Division of OncologyAdhesion and Metastasis LaboratoryCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Silvia Lemma
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Dario L Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | | | | | - Julian Musa
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Shunya Ohmura
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | - Miguel Pereira‐Silva
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Francesca Perut
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- CIBER en oncología (CIBERONC)MadridSpain
| | | | - Nada Al Shaaili
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Shabnam Shaabani
- Department of Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Kristina Shiavone
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Snehadri Sinha
- Department of Oral and Maxillofacial DiseasesUniversity of HelsinkiHelsinkiFinland
| | | | - Marcel Trautmann
- Division of Translational PathologyGerhard‐Domagk‐Institute of PathologyMünster University HospitalMünsterGermany
| | - Maria Vela
- Hospital La Paz Institute for Health Research (IdiPAZ)MadridSpain
| | | | | | - Marta Zalacain
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | - Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Andrej Lissat
- University Children′s Hospital Zurich – Eleonoren FoundationKanton ZürichZürichSwitzerland
| | - William R English
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Dominique Heymann
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
- Université de NantesInstitut de Cancérologie de l'OuestTumor Heterogeneity and Precision MedicineSaint‐HerblainFrance
| |
Collapse
|
23
|
Liu W, Tong H, Zhang C, Zhuang R, Guo H, Lv C, Yang H, Lin Q, Guo X, Wang Z, Wang Y, Shen F, Wang S, Dai C, Wang G, Liu J, Lu W, Zhang Y, Zhou Y. Integrated genomic and transcriptomic analysis revealed mutation patterns of de-differentiated liposarcoma and leiomyosarcoma. BMC Cancer 2020; 20:1035. [PMID: 33115433 PMCID: PMC7592539 DOI: 10.1186/s12885-020-07456-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background Treating patients with advanced sarcomas is challenging due to great histologic diversity among its subtypes. Leiomyosarcoma (LMS) and de-differentiated liposarcoma (DDLPS) are two common and aggressive subtypes of soft tissue sarcoma (STS). They differ significantly in histology and clinical behaviors. However, the molecular driving force behind the difference is unclear. Methods We collected 20 LMS and 12 DDLPS samples and performed whole exome sequencing (WES) to obtain their somatic mutation profiles. We also performed RNA-Seq to analyze the transcriptomes of 8 each of the LMS and DDLPS samples and obtained information about differential gene expression, pathway enrichment, immune cell infiltration in tumor microenvironment, and chromosomal rearrangement including gene fusions. Selected gene fusion events from the RNA-seq prediction were checked by RT-PCR in tandem with Sanger sequencing. Results We detected loss of function mutation and deletion of tumor suppressors mostly in LMS, and oncogene amplification mostly in DDLPS. A focal amplification affecting chromosome 12q13–15 region which encodes MDM2, CDK4 and HMGA2 is notable in DDLPS. Mutations in TP53, ATRX, PTEN, and RB1 are identified in LMS but not DDLPS, while mutation of HERC2 is only identified in DDLPS but not LMS. RNA-seq revealed overexpression of MDM2, CDK4 and HMGA2 in DDLPS and down-regulation of TP53 and RB1 in LMS. It also detected more fusion events in DDLPS than LMS (4.5 vs. 1, p = 0.0195), and the ones involving chromosome 12 in DDLPS stand out. RT-PCR and Sanger sequencing verified the majority of the fusion events in DDLPS but only one event in LMS selected to be tested. The tumor microenvironmental signatures are highly correlated with histologic types. DDLPS has more endothelial cells and fibroblasts content than LMS. Conclusions Our analysis revealed different recurrent genetic variations in LMS and DDLPS including simultaneous upregulation of gene expression and gene copy number amplification of MDM2 and CDK4. Up-regulation of tumor related genes is favored in DDLPS, while loss of suppressor function is favored in LMS. DDLPS harbors more frequent fusion events which can generate neoepitopes and potentially targeted by personalized immune treatment.
Collapse
Affiliation(s)
- Wenshuai Liu
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hanxing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenlu Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongyuan Zhuang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Guo
- GenomiCare Biotechnology (Shanghai) Co. Ltd., Shanghai, China
| | - Chentao Lv
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hua Yang
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qiaowei Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Guo
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiming Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Shen
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengzhou Wang
- GenomiCare Biotechnology (Shanghai) Co. Ltd., Shanghai, China
| | - Chun Dai
- GenomiCare Biotechnology (Shanghai) Co. Ltd., Shanghai, China
| | - Guan Wang
- GenomiCare Biotechnology (Shanghai) Co. Ltd., Shanghai, China
| | - Jun Liu
- GenomiCare Biotechnology (Shanghai) Co. Ltd., Shanghai, China
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Quan M, Kuang S. Exosomal Secretion of Adipose Tissue during Various Physiological States. Pharm Res 2020; 37:221. [PMID: 33063193 PMCID: PMC7953939 DOI: 10.1007/s11095-020-02941-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Exosomes are secreted extracellular vesicles containing a wide array of biologically active components. Recent studies have demonstrated that exosomes serve as an important vehicle for extracellular communication and exert systemic effects on the physiology of organisms. Adipose tissues (ATs) play a key role in balancing systemic energy homeostasis as a central hub for fatty acid metabolism. At the same time, proper endocrine function of ATs has also been shown to be crucial for regulating physiological and metabolic health. The endocrine function of ATs is partially mediated by AT-derived exosomes that regulate metabolic homeostasis, such as insulin signaling, lipolysis, and inflammation. During the pathogenesis of obesity, metabolic syndrome, and cancer, exosomes shed by the resident cells in ATs may also have a role in regulating the progression of these diseases along with associated pathologies. In this review, we summarize the contents of AT-derived exosomes and their effects on various cell populations along with possible underlying molecular mechanisms. We further discuss the potential applications of exosomes as a drug delivery tool and therapeutic target.
Collapse
Affiliation(s)
- Menchus Quan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
25
|
Sundaram PM, Casadei L, Lopez G, Braggio D, Balakirsky G, Pollock R, Prakash S. Multi-Layer Micro-Nanofluidic Device for Isolation and Capture of Extracellular Vesicles Derived from Liposarcoma Cell Conditioned Media. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2020; 29:776-782. [PMID: 33519169 PMCID: PMC7839931 DOI: 10.1109/jmems.2020.3006786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report on isolation, capture, and subsequent elution for analysis of extracellular vesicles derived from human liposarcoma cell conditioned media, using a multi-layer micro-nanofluidic device operated with tangential flow separation. Our device integrates size-based separation followed by immunoaffinity-based capture of extracellular vesicles in the same device. For liposarcomas, this is the first report on isolating, capturing, and then eluting the extracellular vesicles using a micro-nanofluidic device. The results show a significantly higher yield of the eluted extracellular vesicles (~84%) compared to the current methods of ultracentrifugation (~6%) and ExoQuick-based separations (~16%).
Collapse
Affiliation(s)
- Prashanth Mohana Sundaram
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Lucia Casadei
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Gonzalo Lopez
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Danielle Braggio
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Gita Balakirsky
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Raphael Pollock
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering and is also an affiliate of the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
26
|
Tien PC, Quan M, Kuang S. Sustained activation of notch signaling maintains tumor-initiating cells in a murine model of liposarcoma. Cancer Lett 2020; 494:27-39. [PMID: 32866607 DOI: 10.1016/j.canlet.2020.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Cells in a tumor are heterogeneous, often including a small number of tumor-initiating cells (TICs) and the majority of cancerous and non-cancerous cells. We have previously reported that constitutive activation of Notch signaling in adipocytes of mice leads to dedifferentiated liposarcoma (DDLPS), an aggressive liposarcoma (LPS) with no effective treatment. Here, we explored the role of Notch signaling in cellular heterogeneity of LPS. We performed serial transplantations to enrich for TICs, and derived cells exhibiting sustained Notch activation (mLPS1 cells) and cells with normal Notch activity (mLPS2 cells). Both mLPS1 and mLPS2 cells proliferated rapidly, and neither exhibited contact inhibition. However, only the mLPS1 cells exhibited tumorigenicity and gave rise to LPS upon engraftment into mice. The mLPS1 cells also highly expressed markers of cancer stem cells (Cd133), mesenchymal stem cells (Cd73, Cd90, Cd105, Dlk1) and the long non-coding RNA Rian. By contrast, the mLPS2 cells accumulated lipid droplets and expressed mature adipocyte markers when induced to differentiate. Most importantly, CRISPR-mediated disruption of Notch abrogated the tumorigenic properties of mLPS1 cells. These results reveal a key role of Notch signaling in maintaining TICs in LPS.
Collapse
Affiliation(s)
- Pei-Chieh Tien
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Menchus Quan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
27
|
Casadei L, Pollock RE. Extracellular vesicle cross-talk in the liposarcoma microenvironment. Cancer Lett 2020; 487:27-33. [PMID: 32470489 DOI: 10.1016/j.canlet.2020.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/14/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Liposarcoma (LPS) is the most prevalent soft tissue sarcoma; among the four different LPS subtypes, dedifferentiated liposarcoma (DDLPS) is especially worrisome given its propensity for local and distant recurrence, with an overall survival rate of only 10% at 10 years. Our understanding of the molecular drivers of this disease is rudimentary at best; knowledge about how DDLPS interacts with cells in the tumor microenvironment (TME) is also lacking. Extracellular vesicle (EVs) have been studied in a number of different systems concerning their ability to influence the TME transferring bioactive molecules. In this review, we outline the role of the TME in the DDLPS progression and recurrence, focusing on the interplay between EVs released from the tumor and their target recipient cells in the TME. Success in the understanding of this process will be critical to an enhanced understanding of the underlying biologic drivers at play, potentially leading to new therapeutic strategies of benefit to patients with this disease.
Collapse
Affiliation(s)
- Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Raphael E Pollock
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
28
|
Casadei L, Pollock RE. Cracking the riddle of dedifferentiated liposarcoma: is EV-MDM2 a key? Oncoscience 2020; 7:10-13. [PMID: 32258243 PMCID: PMC7105156 DOI: 10.18632/oncoscience.497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Dedifferentiated liposarcoma (DDLPS) is molecularly characterized by wt p53 and MDM2 gene amplification causing MDM2 protein over-production, the key oncogenic process in DDLPS. Commonly located in fat-bearing retroperitoneal areas, almost 60% of DDLPS patients undergo multifocal recurrence, typically amenable to palliative treatment only, and occasionally develop distant metastasis. These factors lead to an abysmal 10% 10 year overall survival rate.
Tumor cell-derived extracellular vesicles (EVs) can facilitate loco-regional malignancy dissemination by depositing molecular factors that participate in the development of pre-metastatic niches for tumor cell implantation and growth. High number of MDM2 DNA molecules was identified within EVs from DDLPS patient serum (ROC vs normal; 0.95) as well as from DDLPS cell lines. This MDM2 DNA could be transferred to preadipocytes (P-a), a major and ubiquitous cellular component of the DDLPS tumor microenvironment (TME), with subsequent P-a production of matrix metalloproteinase 2 (MMP2), a critical component in the metastatic cascade. From here the hypothesis that the DDLPS microenvironment (specifically P-a cells) may participate in DDLPS recurrence events.
Since multifocal loco-regional DDLPS spreading is the main cause of the remarkably high lethality of this disease, a better understanding of the underlying oncogenic processes and their regulatory mechanisms is essential to improve the outcome of this devastating disease.
Collapse
Affiliation(s)
- Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Raphael E Pollock
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|