1
|
Sun Q, Lei X, Yang X. CircRNAs as upstream regulators of miRNA//HMGA2 axis in human cancer. Pharmacol Ther 2024; 263:108711. [PMID: 39222752 DOI: 10.1016/j.pharmthera.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
High mobility group protein A2 (HMGA2) is widely recognized as a chromatin-binding protein, whose overexpression is observed in nearly all human cancers. It exerts its oncogenic effects by influencing various cellular processes such as the epithelial-mesenchymal transition, cell differentiation, and DNA damage repair. MicroRNA (miRNA) serves as a pivotal gene expression regulator, concurrently modulating multiple genes implicated in cancer progression, including HMGA2. It also serves as a significant biomarker for cancer. Circular RNA (circRNA) plays a crucial role in gene regulation primarily by sequestering miRNAs and impeding their ability to enhance the expression of other genes, including HMGA2. Increasingly, studies have underscored the vital role of miRNA/HMGA2 interactions in cancer. Given the significance of circRNA as an upstream regulatory mediator and the complexity of regulatory mechanisms, we hereby present a comprehensive overview of the pivotal role of circRNAs as upstream regulators of the miRNA//HMGA2 axis in human cancers. This insight may herald a novel direction for future cancer research.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Xue H, Hu Z, Liu S, Zhang S, Yang W, Li J, Yan C, Zhang J, Zhang J, Lei X. The mechanism of NF-κB-TERT feedback regulation of granulosa cell apoptosis in PCOS rats. PLoS One 2024; 19:e0312115. [PMID: 39453929 PMCID: PMC11508119 DOI: 10.1371/journal.pone.0312115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 10/27/2024] Open
Abstract
Patients with Polycystic ovary syndrome (PCOS) have chronic low-grade ovarian inflammation. Inflammation can cause telomere dysfunction, and telomere and telomerase complex are also involved in regulating inflammation. However, the specific mechanisms of inflammatory signaling feedback and telomere-telomerase mutual regulation remain to be discovered. This study elucidates the role of Nuclear factor kappa-B (NF-κB)-Telomerase reverse transcriptase (TERT) feedback in PCOS granulosa cell apoptosis. Using letrozole and a high-fat diet, a PCOS rat model was established, along with a Lipopolysaccharide (LPS) -treated KGN cell inflammation model was established. NF-κB and TERT inhibitors (BAY 11-7082 and BIBR1532) were then administered to LPS-induced KGN cells. PCOS rats displayed disrupted estrous cycles, increased weight, elevated serum testosterone, cystic follicles, granulosa cell layer thinning, and reduced corpora lutea count (P are all less than 0.05). In PCOS rat ovaries, NF-κB, Interleukin-6 (IL-6), Tumor Necrosis Factor α (TNF-α), TERT, Bax, and Caspase-3 exhibited notable upregulation, while Bcl-2 decreased, with telomere elongation (P are all less than 0.05). There were significant correlations among NF-κB-related inflammatory factors, TERT and apoptotic factors, and they were positively correlated with Bax and Caspase-3, and negatively correlated with Bcl-2 (P are all less than 0.05). LPS-treated KGN cells demonstrated increased expression of inflammatory and pro-apoptotic factors, later restored post-treatment with NF-κB and TERT inhibitors (P are all less than 0.05). In conclusion, TERT may induce granulosa cell apoptosis by participating in the regulation of the NF-κB signaling pathway, thereby mediating the chronic inflammatory response of PCOS through downstream inflammatory factors IL-6 and TNF-α.
Collapse
Affiliation(s)
- Haoxuan Xue
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zecheng Hu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shun Liu
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wenqin Yang
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiasi Li
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chulin Yan
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiaming Zhang
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Zhang
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaocan Lei
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Patel NM, Patel PH, Bhogal RH, Harrington KJ, Singanayagam A, Kumar S. Altered Microbiome Promotes Pro-Inflammatory Pathways in Oesophago-Gastric Tumourigenesis. Cancers (Basel) 2024; 16:3426. [PMID: 39410045 PMCID: PMC11476036 DOI: 10.3390/cancers16193426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
INTRODUCTION The upper gastrointestinal microbiome is a dynamic entity that is involved in numerous processes including digestion, production of vitamins and protection against pathogens. Many external and intrinsic factors may cause changes in the proportions of bacteria within the microbial community, termed 'dysbiosis'. A number of these have been identified as risk factors for a range of diseases, including oesophago-gastric carcinoma. MATERIALS AND METHODS A narrative review was conducted to elucidate the current evidence on the role of the microbiome in promoting oesophago-gastric tumourigenesis. Significant causes of dysbiosis including age, medications and GORD were examined and key pro-inflammatory pathways implicated in tumourigenesis and their interaction with the microbiome were described. RESULTS AND DISCUSSION An association between microbial dysbiosis and development of oesophago-gastric cancer may be mediated via activation of pro-inflammatory pathways, the inflammasome and the innate immune system. Advances in sequencing technology allow microbial communities to be fingerprinted by sequencing the 16S rRNA gene, enabling a deeper understanding of the genera that may be implicated in driving tumourigenesis. CONCLUSIONS Developing a greater understanding of the influence of the microbiota on oesophago-gastric tumourigenesis may enable advances to be made in the early detection of malignancy and in the development of novel systemic therapies, leading to improved rates of survival.
Collapse
Affiliation(s)
- Nikhil Manish Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Pranav Harshad Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ricky Harminder Bhogal
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Kevin Joseph Harrington
- Targeted Therapy Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Sacheen Kumar
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
- Department of Upper Gastrointestinal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic London Hospital, London SW1X 7HY, UK
| |
Collapse
|
4
|
Chang K, Zhu LF, Wu TT, Zhang SQ, Yu ZC. Network Pharmacology and in vitro Experimental Verification on Intervention of Oridonin on Non-Small Cell Lung Cancer. Chin J Integr Med 2024:10.1007/s11655-024-4116-7. [PMID: 39331210 DOI: 10.1007/s11655-024-4116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVE To explore the key target molecules and potential mechanisms of oridonin against non-small cell lung cancer (NSCLC). METHODS The target molecules of oridonin were retrieved from SEA, STITCH, SuperPred and TargetPred databases; target genes associated with the treatment of NSCLC were retrieved from GeneCards, DisGeNET and TTD databases. Then, the overlapping target molecules between the drug and the disease were identified. The protein-protein interaction (PPI) was constructed using the STRING database according to overlapping targets, and Cytoscape was used to screen for key targets. Molecular docking verification were performed using AutoDockTools and PyMOL software. Using the DAVID database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted. The impact of oridonin on the proliferation and apoptosis of NSCLC cells was assessed using cell counting kit-8, cell proliferation EdU image kit, and Annexin V-FITC/PI apoptosis kit respectively. Moreover, real-time quantitative PCR and Western blot were used to verify the potential mechanisms. RESULTS Fifty-six target molecules and 12 key target molecules of oridonin involved in NSCLC treatment were identified, including tumor protein 53 (TP53), Caspase-3, signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase kinase 8 (MAPK8), and mammalian target of rapamycin (mTOR). Molecular docking showed that oridonin and its key target molecules bind spontaneously. GO and KEGG enrichment analyses revealed cancer, apoptosis, phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), and other signaling pathways. In vitro experiments showed that oridonin inhibited the proliferation, induced apoptosis, downregulated the expression of Bcl-2 and Akt, and upregulated the expression of Caspase-3. CONCLUSION Oridonin can act on multiple targets and pathways to exert its inhibitory effects on NSCLC, and its mechanism may be related to upregulating the expression of Caspase-3 and downregulating the expressions of Akt and Bcl-2.
Collapse
Affiliation(s)
- Ke Chang
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Li-Fei Zhu
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Ting-Ting Wu
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Si-Qi Zhang
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Zi-Cheng Yu
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| |
Collapse
|
5
|
Ye YX, Pan JC, Wang HC, Zhang XT, Zhu HL, Liu XH. Advances in small-molecule fluorescent probes for the study of apoptosis. Chem Soc Rev 2024; 53:9133-9189. [PMID: 39129564 DOI: 10.1039/d4cs00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
6
|
Guo J, Ma X, Liu D, Wang F, Xia J, Zhang B, Zhao P, Zhong F, Chen L, Long Q, Jiang L, Zhang S, Liao N, Wang J, Wu W, Sun J, Huang M, Cheng Z, Huang G, Zou C. A distinct subset of urothelial cells with enhanced EMT features promotes chemotherapy resistance and cancer recurrence by increasing COL4A1-ITGB1 mediated angiogenesis. Drug Resist Updat 2024; 76:101116. [PMID: 38968684 DOI: 10.1016/j.drup.2024.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Drug resistance and tumor recurrence remain clinical challenges in the treatment of urothelial carcinoma (UC). However, the underlying mechanism is not fully understood. Here, we performed single-cell RNA sequencing and identified a subset of urothelial cells with epithelial-mesenchymal transition (EMT) features (EMT-UC), which is significantly correlated with chemotherapy resistance and cancer recurrence. To validate the clinical significance of EMT-UC, we constructed EMT-UC like cells by introducing overexpression of two markers, Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and Desmin (DES), and examined their histological distribution characteristics and malignant phenotypes. EMT-UC like cells were mainly enriched in UC tissues from patients with adverse prognosis and exhibited significantly elevated EMT, migration and gemcitabine tolerance in vitro. However, EMT-UC was not specifically identified from tumorous tissues, certain proportion of them were also identified in adjacent normal tissues. Tumorous EMT-UC highly expressed genes involved in malignant behaviors and exhibited adverse prognosis. Additionally, tumorous EMT-UC was associated with remodeled tumor microenvironment (TME), which exhibited high angiogenic and immunosuppressive potentials compared with the normal counterparts. Furthermore, a specific interaction of COL4A1 and ITGB1 was identified to be highly enriched in tumorous EMT-UC, and in the endothelial component. Targeting the interaction of COL4A1 and ITGB1 with specific antibodies significantly suppressed tumorous angiogenesis and alleviated gemcitabine resistance of UC. Overall, our findings demonstrated that the driven force of chemotherapy resistance and recurrence of UC was EMT-UC mediated COL4A1-ITGB1 interaction, providing a potential target for future UC treatment.
Collapse
Affiliation(s)
- Jinan Guo
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Xiaoshi Ma
- The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Dongcheng Liu
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Shenzhen Aier Eye Hospital, Shenzhen, Guangdong, PR China
| | - Fei Wang
- Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, PR China
| | - Jinquan Xia
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Bin Zhang
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Pan Zhao
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Fuhua Zhong
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Lipeng Chen
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qiaoyun Long
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Lu Jiang
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Siyu Zhang
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Naikai Liao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jigang Wang
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Weiqing Wu
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Jichao Sun
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Mou Huang
- The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, PR China
| | - Zhiqiang Cheng
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
| | - Guixiao Huang
- The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, PR China.
| | - Chang Zou
- The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, PR China.
| |
Collapse
|
7
|
Abdelnasser SM, Abu-Shahba N. Bacillus sonorinses derived exopolysaccharide enhances cell cycle arrest, apoptosis, necrosis, autophagy and COX-2 down regulation in liver cancer cells. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 43:e00848. [PMID: 39027919 PMCID: PMC11254948 DOI: 10.1016/j.btre.2024.e00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most serious types of cancer that accounts for numerous cancer deaths worldwide. HCC is poorly prognosed and is a highly chemotherapy-resistant tumor. Therefore, new treatments are urgently needed. Exopolysaccharides (EPS-1) produced from the novel Bacillus sonorensis strain was found to exhibit chemopreventive effects against cancer. Objective Evaluating the anti-cancer cytotoxic effect of exopolysaccharides (EPS-1) produced by the newly studied Bacillus sonorensis strain SAmt2. Methods The cytotoxic activity was investigated through cell cycle, apoptosis, and autophagy analyses using flow cytometry technique. Also, the effect of EPS-1 on Huh7 release of COX-2 was examined using ELISA. Results Our results revealed that EPS-1exhibit an anti-proliferative effect on Huh7 cells through decreasing the percentage of cells at the S-phase and G2 phase, while increasing the cell population at the sub-G1 and G1 phases. Apoptosis analysis showed that EPS-1 increased necrotic and apoptotic cell fractions in EPS-1 treated Huh7. In addition, it induced significant autophagic cell death in the Huh7.Finally, antiproliferative and apoptosis induction results were supportedby ELISA assay results where the protein level of COX-2 was declined. Conclusion : In conclusion, EPS-1 derived from B. sonorensis SAmt2, is a promising proliferation inhibitor of Huh7 cells with potential anticancer effects.
Collapse
Affiliation(s)
- Salma M. Abdelnasser
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Giza 12622, Egypt
| | - Nourhan Abu-Shahba
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, Giza 12622, Egypt
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
8
|
Zhou Y, Ye F, Zhang L, Kang Q, Luo Y, Jiang N, Lou L, Mao Y, Wang L, Jin F. The role of DNA damage response in human embryonic stem cells exposed to atmospheric oxygen tension: Implications for embryo development and differentiation. Reprod Toxicol 2024; 128:108648. [PMID: 38909692 DOI: 10.1016/j.reprotox.2024.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Previous retrospective cohort studies have found that, compared with oxygen tension in the uterus and fallopian tubes (2 %-8 %), exposure of pre-implantation embryos to atmospheric oxygen tension (AtmO2, 20 %) during assisted reproductive technology(ART) can affect embryo quality, pregnancy outcomes and offspring health. However, current research on the effects and mechanisms of AtmO2 on the development of embryos and offspring is mainly limited to animal experiments. Human embryonic stem cells (hESCs) play a special and irreplaceable role in the study of early human embryonic development. In this study, we used hESCs as a model to elucidate the possible effects and mechanisms of AtmO2 exposure on human embryonic development. We found that exposure to AtmO2 can reduce cell viability, produce oxidative stress, increase DNA damage, initiate DNA repair, activate autophagy, and increase cell apoptosis. We also noticed that approximately 50 % of hESCs survived, adapted and proliferated through high expression of self-renewal and pluripotency regulatory factors, and affected embryoid body differentiation. These data indicate that hESCs experience oxidative stress, accumulation of DNA damage, and activate DNA damage response under the selective pressure of AtmO2.Some hESCs undergo cell death, whereas other hESCs adapt and proliferate through increased expression of self-renewal genes. The current findings provide in vitro evidence that exposure to AtmO2 during the early preimplantation stage negatively affects hESCs.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fenglei Ye
- Department of Obstetrics, Maternal and Child Health Hospital, Lishui, China
| | - Linyun Zhang
- Department of Obstetrics and Gynecology, Hangzhou TCM Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Quanmin Kang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yujia Luo
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Jiang
- Department of Reproductive Endocrinology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Lou
- Department of Reproductive Endocrinology, Affiliated Dongyang Hospital, Wenzhou Medical University, Jinhua, China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Kruschel RD, Barbosa MG, Almeida MJ, Xavier CPR, Vasconcelos MH, McCarthy FO. Discovery of Potent Isoquinolinequinone N-Oxides to Overcome Cancer Multidrug Resistance. J Med Chem 2024; 67:13909-13924. [PMID: 39093920 PMCID: PMC11345829 DOI: 10.1021/acs.jmedchem.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Multidrug resistance (MDR) of human tumors has resulted in an immediate need to develop appropriate new drugs. This work outlines the development of 20 potent IQQ N-oxide derivatives in two isomeric families, both exhibiting nanomolar GI50 against human tumor cell lines. Preliminary NCI-60 tumor screening sees the C(6) isomers achieve a mean GI50 > 2 times lower than the corresponding C(7) isomers. MDR evaluation of nine selected compounds reveals that each presents lower GI50 concentrations in two MDR tumor cell lines. Four of the series display nanomolar GI50 values against MDR cells, having selectivity ratios up to 2.7 versus the sensitive (parental) cells. The most potent compound 25 inhibits the activity of drug efflux pumps in MDR cells, causes significant ROS accumulation, and potently inhibits cell proliferation, causing alterations in the cell cycle profile. Our findings are confirmed by 3D spheroid models, providing new candidates for studies against MDR cancers.
Collapse
Affiliation(s)
- Ryan D. Kruschel
- School
of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 K8AF, Ireland
| | - Mélanie
A. G. Barbosa
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
- FFUP−Faculty
of Pharmacy of the University of Porto, 4050-313 Porto Portugal
| | - Maria João Almeida
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
| | - Cristina P. R. Xavier
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
| | - M. Helena Vasconcelos
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
- FFUP−Faculty
of Pharmacy of the University of Porto, 4050-313 Porto Portugal
| | - Florence O. McCarthy
- School
of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
10
|
Lv L, Zhou F, Quan Y, Fan Y, Bao Y, Dou Y, Qu H, Dai X, Zhao H, Zheng S, Zhao C, Yang L. Demethylzeylasteral exerts potent efficacy against non-small-cell lung cancer via the P53 signaling pathway. Transl Oncol 2024; 46:101989. [PMID: 38781861 PMCID: PMC11141460 DOI: 10.1016/j.tranon.2024.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Lung cancer has one of the highest mortality rates worldwide, with non-small-cell lung cancer (NSCLC) constituting approximately 85% of all cases. Demethylzeylasteral (DEM), extracted from Tripterygium wilfordii Hook F, exhibits notable anti-tumor properties. In this study, we revealed that DEM could effectively induce NSCLC cell apoptosis. Specifically, DEM can dose-dependently suppress the viability and migration of human NSCLC cells. RNA-seq analysis revealed that DEM regulates the P53-signaling pathway, which was further validated by assessing crucial proteins involved in this pathway. Biacore analysis indicated that DEM has high affinity with the P53 protein. The CDX model demonstrated DEM's anti-tumor actions. This work provided evidence that DEM-P53 interaction stabilizes P53 protein and triggers downstream anti-tumor activities. These findings indicate that DEM treatment holds promise as a potential therapeutic approach for NSCLC, which warrants further clinical assessment in patients with NSCLC.
Collapse
Affiliation(s)
- Linxi Lv
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Feng Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yizhou Quan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiwei Fan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yunjia Bao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yaning Dou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongyan Qu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuanxuan Dai
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Suqing Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Chengguang Zhao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
11
|
Sun Z, Han J, Xu J, Song W, Cui Y, Liu Y, Yang L, Meng X, Huang J, Gao Q, Liu S. Discovery of the Next-Generation Platinum-Based Anticancer Agents for Combating Oxaliplatin-Induced Drug Resistance. J Med Chem 2024; 67:10190-10210. [PMID: 38845105 DOI: 10.1021/acs.jmedchem.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Oxaliplatin-based chemotherapy has proven to be one of the most effective treatments for advanced or metastatic colorectal cancer. However, increasing clinical resistance to oxaliplatin poses unprecedented challenges for both patients and clinicians. Despite extensive efforts to combat this issue, to date, no new molecules have been discovered that can successfully replace oxaliplatin. With the aim of developing a new generation of Pt(II)-based anticancer agents in response to the challenges of oxaliplatin-induced drug resistance, we performed a systematic screening of new Pt(II)-complexes with a quantitative structure-activity relationship (QSAR) study based on their antiresistance activity against oxaliplatin-resistant colon cancer cells. The results revealed that both the structure and chirality of the chelating ligand had a significant impact on the antiresistance properties of the Pt(II)-complexes. Our study culminated in the identification of chiral R-binaphthyldiamine-ligated Pt(II)-malonatoglycoconjugates that can completely counteract oxaliplatin resistance with excellent in vitro and in vivo potency.
Collapse
Affiliation(s)
- Ziru Sun
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jianbin Han
- Department of Biology, Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| | - Jun Xu
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Weijie Song
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, P. R. China
| | - Yujun Cui
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- Transplantation Center, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin 300192, P. R. China
| | - Yang Liu
- Department of Biology, Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| | - Liu Yang
- Department of Biology, Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| | - Xiaoqi Meng
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jie Huang
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Qingzhi Gao
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Shengnan Liu
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- Department of Biology, Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| |
Collapse
|
12
|
Du C, Hu S, Li Y, Xu H, Qiao R, Guan Y, Zhang X. The NF-κB/FXR/TonEBP pathway protects renal medullary interstitial cells against hypertonic stress. J Cell Mol Med 2024; 28:e18409. [PMID: 38769917 PMCID: PMC11106643 DOI: 10.1111/jcmm.18409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Farnesoid X receptor (FXR), a ligand-activated transcription factor, plays an important role in maintaining water homeostasis by up-regulating aquaporin 2 (AQP2) expression in renal medullary collecting ducts; however, its role in the survival of renal medullary interstitial cells (RMICs) under hypertonic conditions remains unclear. We cultured primary mouse RMICs and found that the FXR was expressed constitutively in RMICs, and that its expression was significantly up-regulated at both mRNA and protein levels by hypertonic stress. Using luciferase and ChIP assays, we found a potential binding site of nuclear factor kappa-B (NF-κB) located in the FXR gene promoter which can be bound and activated by NF-κB. Moreover, hypertonic stress-induced cell death in RMICs was significantly attenuated by FXR activation but worsened by FXR inhibition. Furthermore, FXR increased the expression and nuclear translocation of hypertonicity-induced tonicity-responsive enhance-binding protein (TonEBP), the expressions of its downstream target gene sodium myo-inositol transporter (SMIT), and heat shock protein 70 (HSP70). The present study demonstrates that the NF-κB/FXR/TonEBP pathway protects RMICs against hypertonic stress.
Collapse
Affiliation(s)
- Chunxiu Du
- Wuhu HospitalEast China Normal UniversityWuhuAnhuiChina
- Health Science CenterEast China Normal UniversityShanghaiChina
| | - Shuyuan Hu
- Division of NephrologyAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongJiangsuChina
| | - Yaqing Li
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Hu Xu
- Health Science CenterEast China Normal UniversityShanghaiChina
| | - Rongfang Qiao
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Youfei Guan
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Xiaoyan Zhang
- Wuhu HospitalEast China Normal UniversityWuhuAnhuiChina
- Health Science CenterEast China Normal UniversityShanghaiChina
| |
Collapse
|
13
|
Lv H, Liu P, Hu H, Li X, Li P. MiR-98-5p plays suppressive effects on IL-1β-induced chondrocyte injury associated with osteoarthritis by targeting CASP3. J Orthop Surg Res 2024; 19:239. [PMID: 38615043 PMCID: PMC11015643 DOI: 10.1186/s13018-024-04628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/14/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND This study aims to explore how miR-98-5p affects osteoarthritis, focusing on its role in chondrocyte inflammation, apoptosis, and extracellular matrix (ECM) degradation. METHODS Quantitative real-time PCR was used to measure miR-98-5p and CASP3 mRNA levels in OA cartilage tissues and IL-1β-treated CHON-001 cells. We predicted miR-98-5p and CASP3 binding sites using TargetScan and confirmed them via luciferase reporter assays. Chondrocyte viability was analyzed using CCK-8 assays, while pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) were quantified via ELISA. Caspase-3 activity was examined to assess apoptosis, and Western blotting was conducted for protein marker quantification. RESULTS Our results showed lower miR-98-5p levels in both OA cartilage and IL-1β-stimulated cells. Increasing miR-98-5p resulted in reduced pro-inflammatory cytokines, decreased caspase-3 activity, and improved cell viability. Furthermore, miR-98-5p overexpression hindered IL-1β-induced ECM degradation, evident from the decline in MMP-13 and β-catenin levels, and an increase in COL2A1 expression. MiR-98-5p's impact on CASP3 mRNA directly influenced its expression. Mimicking miR-98-5p's effects, CASP3 knockdown also inhibited IL-1β-induced inflammation, apoptosis, and ECM degradation. In contrast, CASP3 overexpression negated the suppressive effects of miR-98-5p. CONCLUSIONS In conclusion, our data collectively suggest that miR-98-5p plays a protective role against IL-1β-induced damage in chondrocytes by targeting CASP3, highlighting its potential as a therapeutic target for OA.
Collapse
Affiliation(s)
- Hang Lv
- Department of Orthopedics, Hanan Branch, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 411, Guogeli Street, Nangang District, Harbin City, 150060, Heilongjiang Province, China
| | - Peiran Liu
- Department of Orthopedics, Hanan Branch, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 411, Guogeli Street, Nangang District, Harbin City, 150060, Heilongjiang Province, China
| | - Hai Hu
- Department of Orthopedics, Hanan Branch, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 411, Guogeli Street, Nangang District, Harbin City, 150060, Heilongjiang Province, China
| | - Xiaodong Li
- Orthopedic ward, The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 2 Xiangjiang Road, Xiangfang District, Harbin City, 150000, Heilongjiang Province, China
| | - Pengfei Li
- Department of Orthopedics, Hanan Branch, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 411, Guogeli Street, Nangang District, Harbin City, 150060, Heilongjiang Province, China.
| |
Collapse
|
14
|
Li Q, Shi M, Ang Y, Yu P, Wan B, Lin B, Chen W, Yue Z, Shi Y, Liu F, Wang H, Duan M, Long Y, Bao H. Hydrogen ameliorates endotoxin-induced acute lung injury through AMPK-mediated bidirectional regulation of Caspase3. Mol Immunol 2024; 168:64-74. [PMID: 38428216 DOI: 10.1016/j.molimm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Septic lung injury is characterized by uncontrollable inflammatory infiltrations and acute onset bilateral hypoxemia. Evidence has emerged of the beneficial effect of hydrogen in acute lung injury (ALI), but the underlying mechanism is unclear. In this research, the recovery action of hydrogen on lipopolysaccharide (LPS)-induced ALI in mice and A549 cells was investigated. The 7-day survival rate and body weight of mice were measured after intraperitoneal injection of LPS. Lung function was determined by a whole body plethysmography (WBP) system using the indicators respiratory rate and enhanced pause. Hematoxylin and eosin (HE) staining confirmed the signs of pulmonary edema and inflammatory ooze. Reverse transcription-polymerase chain reaction (RT-PCR) quantification was used to detect the expression of inflammatory factors. Western blotting analysis evaluated the expression levels of involved proteins in the AMP-activated protein kinase (AMPK) pathway. The experimental results confirmed that hydrogen provided an essential solution to the dissipative effects of LPS on survival rate, weight loss and lung function. The LPS-stimulated inflammatory factors, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were also suppressed by hydrogen in A549 cells. Western blot analysis showed that hydrogen significantly upregulated the levels of phosphorylated AMPK (p-AMPK) and lowered the LPS-induced increased expression of dynamin-related protein 1 (Drp1) and Caspase3. These findings prove that hydrogen attenuated LPS-treated ALI by activating the AMPK pathway, supporting the feasibility of hydrogen treatment for sepsis.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu 210000, China; Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Min Shi
- Department of Anesthesiology, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Yang Ang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Pan Yu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Bing Wan
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Bin Lin
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Wei Chen
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Zichuan Yue
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Yadan Shi
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Faqi Liu
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Hao Wang
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Manlin Duan
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China; Department of Anesthesiology, BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Jiangsu 210019, China.
| | - Yun Long
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China.
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu 210000, China.
| |
Collapse
|
15
|
Nano M, Montell DJ. Apoptotic signaling: Beyond cell death. Semin Cell Dev Biol 2024; 156:22-34. [PMID: 37988794 DOI: 10.1016/j.semcdb.2023.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Apoptosis is the best described form of regulated cell death, and was, until relatively recently, considered irreversible once particular biochemical points-of-no-return were activated. In this manuscript, we examine the mechanisms cells use to escape from a self-amplifying death signaling module. We discuss the role of feedback, dynamics, propagation, and noise in apoptotic signaling. We conclude with a revised model for the role of apoptosis in animal development, homeostasis, and disease.
Collapse
Affiliation(s)
- Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
16
|
Ge W, Yuan G, Wang D, Dong L. Exploring the therapeutic mechanisms and prognostic targets of Biochanin A in glioblastoma via integrated computational analysis and in vitro experiments. Sci Rep 2024; 14:3783. [PMID: 38360888 PMCID: PMC10869694 DOI: 10.1038/s41598-024-53442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor and is characterized by a poor prognosis and high recurrence and mortality rates. Biochanin A (BCA) exhibits promising clinical anti-tumor effects. In this study, we aimed to explore the pharmacological mechanisms by which BCA acts against GBM. Network pharmacology was employed to identify overlapping target genes between BCA and GBM. Differentially expressed genes from the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) database were visualized using VolcaNose. Interactions among these overlapping genes were analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins database. Protein-protein interaction networks were constructed using Cytoscape 3.8.1. The Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology enrichment analyses were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Survival analyses for these genes were performed using the GEPIA2 database. The Chinese Glioma Genome Atlas database was used to study the correlations between key prognostic genes. Molecular docking was confirmed using the DockThor database and visualized with PyMol software. Cell viability was assessed via the CCK-8 assay, apoptosis and the cell cycle stages were examined using flow cytometry, and protein expression was detected using western blotting. In all, 63 genes were initially identified as potential targets for BCA in treating GBM. Enrichment analysis suggested that the pharmacological mechanisms of BCA primarily involved cell cycle inhibition, induction of cell apoptosis, and immune regulation. Based on these findings, AKT1, EGFR, CASP3, and MMP9 were preliminarily predicted as key prognostic target genes for BCA in GBM treatment. Furthermore, molecular docking analysis suggested stable binding of BCA to the target protein. In vitro experiments revealed the efficacy of BCA in inhibiting GBM, with an IC50 value of 98.37 ± 2.21 μM. BCA inhibited cell proliferation, induced cell apoptosis, and arrested the cell cycle of GBM cells. Furthermore, the anti-tumor effects of BCA on U251 cells were linked to the regulation of the target protein. We utilized integrated bioinformatics analyses to predict targets and confirmed through experiments that BCA possesses remarkable anti-tumor activities. We present a novel approach for multi-target treatment of GBM using BCA.
Collapse
Affiliation(s)
- Wanwen Ge
- Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Guoqiang Yuan
- Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Dongping Wang
- Gansu Provincial Hospital, Lanzhou, 730000, China.
- Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Li Dong
- Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Tienoue Fotso HM, Mbong Angie MA, Ntentie FR, Makamwe I, Edoun Ebouel FL, Kenjing Ndansack E, Julius Oben E. Aqueous Extract of Leaves and Flowers of Acmella caulirhiza Reduces the Proliferation of Cancer Cells by Underexpressing Some Genes and Activating Caspase-3. Biochem Res Int 2024; 2024:3293305. [PMID: 38371392 PMCID: PMC10874292 DOI: 10.1155/2024/3293305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/16/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
The increasing prevalence of cancers and the multiple side effects of cancer treatments have led researchers to constantly search for plants containing bioactive compounds with cell death properties. This work aimed at evaluating the antiproliferative effect of an Acmella caulirhiza extract. After evaluation of the in vitro antioxidant potential of the three extracts of Acmella caulirhiza (aqueous (AE-Ac), hydroethanolic (HEE-Ac), and ethanolic (EE-Ac)) through the scavenging of DPPH● and NO● radicals, the extract with the best antioxidant activity was selected for bioactive compound assessment and antiproliferative tests. Subsequently, the cytotoxic activity was evaluated on the viability of breast (MCF-7), brain (CT2A, SB-28, and GL-261), colon (MC-38), and skin (YUMM 1.7 and B16-F1) cancer lines using the MTT method. Then, the line where the extract was the most active was selected to evaluate the expression of certain genes involved in cancerogenesis by RT-PCR and the expression of cleaved caspase-3 involved in cell death mechanism by western blot. The AE-Ac showed the best scavenging activity with IC50s of 0.52 and 0.02 for DPPH● and NO●, respectively. This AE-Ac was found to contain alkaloids, flavonoids, and tannins and was more active on YUMM 1.7 cells (IC50 = 149.42 and 31.99 μg/mL for 24 and 48 h, respectively). Results also showed that AE-Ac downregulated the expression of inflammation (IL-1b (p = 0.017) and IL-6 (p = 0.028)), growth factors (PDGF (p = 0.039), IGF (p = 0.034), E2F1(p = 0.038), and E2F2(p = 0.016)), and antiapoptotic protein genes (Bcl-2 (p = 0.028) and Bcl-6 (p = 0.039)). The cleaved caspase-3 was positively modulated by the AE-Ac inducing thus cell death by apoptosis. AE-Ac showed inhibitory effects on the expression of genes involved in cancer progression making it a potential health intervention agent that can be exploited in cancer therapy protocols.
Collapse
Affiliation(s)
| | - Mary-Ann Mbong Angie
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box: 812, Yaounde, Cameroon
| | - Françoise Raïssa Ntentie
- Department of Biological Science, Higher Teachers' Training College, University of Yaounde 1, P.O. Box: 47, Yaounde, Cameroon
| | - Inelle Makamwe
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box: 812, Yaounde, Cameroon
| | - Ferdinand Lanvin Edoun Ebouel
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box: 812, Yaounde, Cameroon
- Centre for Food and Nutrition Research, Institute of Medical Research and Medicinal Plant Studies, MINRESI, P.O. Box: 13033, Yaounde, Cameroon
| | | | - Enyong Julius Oben
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box: 812, Yaounde, Cameroon
- Cameroon Nutrition and Dietetics Research Center, J&A Oben Foundation, P.O. Box: 8348, Yaounde, Cameroon
| |
Collapse
|
18
|
Li N, Zhang Q, Dai S, Rao W, Shi H, Ding L, Hong M. Angiotensin-(1-7) plays an important role in regulating spermatogenesis in Trachemys scripta elegans under salinity stress. J Exp Biol 2024; 227:jeb246742. [PMID: 38149682 DOI: 10.1242/jeb.246742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
Elevation in water salinity can threaten the spermatogenesis and fertility of freshwater animals. The role of the renin-angiotensin system (RAS) in regulating spermatogenesis has attracted considerable attention. Our previous study found that red-eared sliders (Trachemys scripta elegans), could survive in 10 PSU water for over 1 year. To understand the chronic impact of salinity on testicular spermatogenesis and underlying mechanisms, male T. s. elegans were subjected to treatment with water of 5 PSU and 10 PSU for a year, and spermatogenesis and regulation of the RAS signal pathway was assessed. Results showed induced inflammation in the testes of T. s. elegans in the 10 PSU group, as evidenced by a decrease in the number of testicular germ cells from 1586 to 943. Compared with the control group, the levels of proinflammatory genes, including TNF-α, IL-12A and IL-6 were elevated 3.1, 0.3, and 1.4 times, respectively, in animals exposed to 10 PSU water. Testicular antiapoptotic processes of T. s. elegans might involve the vasoactive peptide angiotensin-(1-7) in the RAS, as its level was significantly increased from 220.2 ng ml-1 in controls to 419.2 ng ml-1 in the 10 PSU group. As expected, specific inhibitor (A-779) for the Ang-(1-7) acceptor effectively prevented the salinity-induced upregulation of genes encoding anti-inflammatory and antiapoptotic factors (TGF-β1, Bcl-6) in the testis of the 10 PSU animals, whereas it promoted the upregulation of proinflammatory and proapoptotic factors (TNF-α, IL-12A, IL-6, Bax and caspase-3). Our data indicated that Ang-(1-7) attenuates the effect of salinity on inflammation and apoptosis of the testis in T. s. elegans. A new perspective to prevent salinity-induced testis dysfunction is provided.
Collapse
Affiliation(s)
- Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Qiongyu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Shiyu Dai
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Wenzhuo Rao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
19
|
Huang P, Cheng H, Ji J, Zhang W, Ma J, Wei D, Ren L. LncRNA Miat knockdown enhances pirarubicin-mediated anticancer sensitivity in breast cancer cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:23-30. [PMID: 37598394 DOI: 10.1002/tox.23940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Pirarubicin (THP) is a widely used antitumor agent in clinical practice, but its reduced sensitivity during treatment has limited its use. The aim of this study was to investigate the role and mechanism of LncRNA Miat knockdown in improving THP sensitivity. We assessed the role of Miat overexpression/knockdown on THP-mediated 4T1 anticancer activity by CCK8, TUNEL, flow cytometry, wound healing assay, Transwell, Ca2+ , real time quantitative PCR (RT-qPCR) and Western blot. The results showed that Miat expression was higher in 4T1 mouse breast cancer cells than in HC11 mouse mammary epithelial cells, while THP decreased Miat expression in 4T1. Miat knockdown in combination with further reduced cell viability, promoted apoptosis and inhibited migration compared to THP alone. This may be related to the reduction of calcium ions in 4T1. In conclusion, Miat knockdown enhanced the sensitivity of THP to 4T1 by inhibiting calcium channels.
Collapse
Affiliation(s)
- Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongyuan Cheng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jiahua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wenqing Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dexian Wei
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
20
|
Luo S, Chen Y, Zhao R, Ma D, Zhao Y, Zhang Y, Jiang J, Yu W. Application of omics technology to investigate the mechanism underlying the role of San Hua Tang in regulating microglia polarization and blood-brain barrier protection following ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116640. [PMID: 37196812 DOI: 10.1016/j.jep.2023.116640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE San Hua Tang (SHT) was first mentioned in the book "The Collection of Plain Questions about Pathogenesis, Qi, and Life." SHT has the effect of dispelling wind and dredging collaterals, dredging viscera, and guiding stagnation, and is used in the treatment of ischemic stroke (IS). SHT is composed of Rheum palmatum L., Magnolia officinalis Rehder & E.H.Wilson, Citrus assamensis S.Dutta & S.C.Bhattacharya, and Notopterygium tenuifolium M.L.Sheh & F.T.Pu, which is the traditional prescription of the Tongxia method for the treatment of stroke. Tongxia is one of the "eight methods" used in traditional Chinese medicine, which plays a role in treating diseases by promoting gastrointestinal peristalsis and defecation. Studies have demonstrated a close relationship between gut microbiota metabolism and cerebral stroke; however, the role of SHT in IS treatment through gut microbiota or intestinal metabolites is unclear. AIM OF THE STUDY To explore the connotation of the Xuanfu theory and clarify the mechanism underlying SHT-mediated opening Xuanfu methods. Through metabolomics, 16S rRNA gene sequencing, and molecular biology techniques, research on the changes in the gut microbiota and blood-brain barrier (BBB) will highlight greater strategies for the treatment of stroke. MATERIALS AND METHODS We used pseudo-germ-free (PGF) rats combined with an ischemia/reperfusion (I/R) rat model for the follow-up experimental research. PGF rats were prepared by the intragastric administration of an antibiotic cocktail for 6 days, following which SHT was administered for 5 consecutive days. The I/R model was performed 1 day following the concluding administration of SHT. We detected the neurological deficit score, cerebral infarct volume, serum inflammatory factor levels (interleukin IL-6, IL-10, IL-17, and tumor necrosis factor alpha), tight junction-related proteins (Zonula occludens-1, Occludin, and Claudin-5), and small glue plasma cell-associated proteins (Cluster of Differentiation 16/Cluster of Differentiation 206, Matrix metalloproteinase, ionized calcium-binding adapter molecule 1, and C-X3-C Motif Chemokine Ligand 1) 24 h following I/R. Using 16S rRNA gene sequencing and non-targeted metabolomics analysis, we explored the relationship between fecal microecology and serum metabolites. Eventually, we analyzed the correlation between the gut microbiota and plasma metabolic profile as well as the mechanism underlying the SHT-mediated regulation of gut microbiota to protect the BBB following stroke. RESULTS In IS treatment, SHT is principally involved in reducing neurological injury and the volume of cerebral infarction; protecting the intestinal mucosal barrier; increasing the levels of acetic acid, butyric acid, and propionic acid; promoting the transformation of microglia to the M2 state; reducing inflammatory reactions; and enhancing tight junctions. These therapeutic effects were not observed in the group treated with antibiotics alone or that treated with SHT in combination with antibiotics, thereby indicating SHT plays a therapeutic role through the gut microbiota. CONCLUSION SHT regulates the gut microbiota, inhibits pro-inflammatory factors in rats with IS, alleviates an inflammatory injury of the BBB, and plays a protective role in the brain.
Collapse
Affiliation(s)
- Shan Luo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Province Hospital of Chinese Medicine, Shijiazhuang, 050011, China.
| | - Yuanchun Chen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China.
| | - Ruoxi Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China.
| | - Donglai Ma
- College of Pharmacy, Hebei University of Chinese Medicine, 050200, Shijiazhuang, Hebei, China.
| | - Yanmeng Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Diseases, Shijiazhuang, 050000, China.
| | - Ying Zhang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Diseases, Shijiazhuang, 050000, China; The Basic Medicine College, Hebei University of Chinese Medicine, 050200, Shijiazhuang, Hebei, China.
| | - Jianming Jiang
- College of Pharmacy, Hebei University of Chinese Medicine, 050200, Shijiazhuang, Hebei, China.
| | - Wentao Yu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Diseases, Shijiazhuang, 050000, China; College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China; Hebei International Joint Research Centre for Acupuncture and Moxibustion of Traditional Chinese Medicine, Shijiazhuang, 050020, China.
| |
Collapse
|
21
|
Huang W, Huang X, Yang L, Han W, Zhu Z, Wang Y, Chen R. Network Pharmacology and Molecular Docking Analysis Exploring the Mechanism of Tripterygium wilfordii in the Treatment of Oral Lichen Planus. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1448. [PMID: 37629739 PMCID: PMC10456824 DOI: 10.3390/medicina59081448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Background: Oral lichen planus (OLP) is an infrequent autoimmune disease of the oral mucosa, which affects up to 2% of the world population. An investigation of Tripterygium wilfordii's mechanism of action for treating OLP was conducted, and a theoretical basis was provided for improving current treatment regimens. Materials and Methods: We used a network pharmacological approach to gain insight into the molecular mechanism of Tripterygium wilfordii in the treatment of OLP. Then, potential protein targets between Tripterygium wilfordii and OLP were analyzed through a drug-target network. This was followed by KEGG enrichment analysis and Gene Ontology (GO) classification. Finally, for molecular docking, AutoDock Vina was used. Results: A protein-protein interaction (PPI) network was constructed by analyzing the common targets of a total of 51 wilfordii-OLP interactions from different databases. The GO and KEGG enrichment analyses showed that the treatment of OLP with Tripterygium wilfordii mainly involves lipopolysaccharide response, bacterial molecular response, positive regulation of cytokine production, and leukocyte proliferation, and the signaling pathways mainly include the AGE-RAGE, NF-κB, Toll-like receptor, IL-17, HIF-1, and TNF signaling pathways. The molecular docking results showed that β-sitosterol, kaempferol, hederagenin, and triptolide have a higher affinity for AKT1, TNF, CASP3, and PTGS2, respectively. Based on the CytoNCA analysis of common targets, 19 key targets, including AKT1, TNF, VEGFA, STAT3, CXCL8, PTGS2, TP53, and CASP3, and their connections were identified. Conclusions: Preliminarily, this study reveals that Tripterygium wilfordii interferes with OLP by interacting with multiple targets through multiple accesses, as validated by molecular docking.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanyin Wang
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, No. 81, Meishan Road, Shushan District, Hefei 230032, China; (W.H.); (X.H.); (L.Y.); (W.H.); (Z.Z.)
| | - Ran Chen
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, No. 81, Meishan Road, Shushan District, Hefei 230032, China; (W.H.); (X.H.); (L.Y.); (W.H.); (Z.Z.)
| |
Collapse
|
22
|
Shi X, Huang B, Zhu J, Yamaguchi T, Hu A, Tabuchi M, Watanabe D, Yoshikawa S, Mizushima S, Mizushima A, Xia S. A network pharmacology-based investigation of emodin against pancreatic adenocarcinoma. Medicine (Baltimore) 2023; 102:e33521. [PMID: 37335741 DOI: 10.1097/md.0000000000033521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most common malignancies worldwide with an increasing incidence and poor outcome due to the lack of effective diagnostic and treatment methods. Emerging evidence implicates that emodin displays extensive spectrum anticancer properties. Differential expression genes in PAAD patients were analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) website, and the targets of emodin were obtained via Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. Subsequently, enrichment analyses were performed using R software. A protein-protein interaction (PPI) network was constructed by STRING database and Cytoscape software was used to identify the hub genes. Prognostic value and immune infiltration landscapes were explored through Kaplan-Meier plotter (KM plotter) website and the Single-Sample Gene Set Enrichment Analysis package of R. Finally, molecular docking was used to computationally verify the interaction of ligand and receptor proteins. A total of 9191 genes were significantly differentially expressed in PAAD patients and 34 potential targets of emodin were obtained. Intersections of the 2 groups were considered as potential targets of emodin against PAAD. Functional enrichment analyses illustrated that these potential targets were linked to numerous pathological processes. Hub genes identified through PPI networks were correlated with poor prognosis and infiltration level of different immune cells in PAAD patients. Perhaps emodin interacted with the key molecules and regulate the activity of them. We revealed the inherent mechanism of emodin against PAAD with the aid of network pharmacology, which provided reliable evidence and a novel guideline for clinical treatment.
Collapse
Affiliation(s)
- Xueying Shi
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Bingqian Huang
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jingyi Zhu
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Takuji Yamaguchi
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Ailing Hu
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Masahiro Tabuchi
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Watanabe
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Seiichiro Yoshikawa
- Cancer therapeutic center, Juntendo University Urayasu Hospital, Chiba, Japan
| | | | - Akio Mizushima
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Liu G, Chen J, Bao Z. Promising antitumor effects of the curcumin analog DMC-BH on colorectal cancer cells. Aging (Albany NY) 2023; 15:2221-2236. [PMID: 36971681 PMCID: PMC10085616 DOI: 10.18632/aging.204610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/04/2023] [Indexed: 04/07/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system worldwide. DMC-BH, a curcumin analog, has been reported to possess anticancer properties against human gliomas. However, its effects and mechanism on CRC cells are still unknown. Our present study demonstrated that DMC-BH had stronger cytostatic ability than curcumin against CRC cells in vitro and in vivo. It effectively inhibited the proliferation and invasion and promoted the apoptosis of HCT116 and HT-29 cells. RNA-Seq and data analysis indicated that its effects might be mediated by regulation of the PI3K/AKT signaling. Western blotting further confirmed that it dose-dependently suppressed the phosphorylation of PI3K, AKT and mTOR. The Akt pathway activator SC79 reversed the proapoptotic effects of DMC-BH on CRC cells, indicating that its effects are mediated by PI3K/AKT/mTOR signaling. Collectively, the results of the present study suggest that DMC-BH exerts more potent effects than curcumin against CRC by inactivating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Gang Liu
- Department of General Surgery, Suzhou Medical College of Soochow University, Suzhou 215300, Jiangsu Province, China
- Department of General Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, Jiangsu Province, China
| | - Jian Chen
- Department of General Surgery, Suzhou Medical College of Soochow University, Suzhou 215300, Jiangsu Province, China
- Department of General Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, Jiangsu Province, China
| | - Zhicheng Bao
- Department of Rehabilitation, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| |
Collapse
|
24
|
Sun L, Yao C, Li X, Wang Y, Wang R, Wang M, Liu Q, Montell DJ, Shao C, Gong Y, Sun G. Anastasis confers ovarian cancer cells increased malignancy through elevated p38 MAPK activation. Cell Death Differ 2023; 30:809-824. [PMID: 36447048 PMCID: PMC9984481 DOI: 10.1038/s41418-022-01081-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Activation of executioner caspases was once considered as a point of no return in apoptosis. However, in recent years, accumulating evidence has demonstrated that cells can survive executioner caspase activation in response to apoptotic stimuli through a process called anastasis. In this study, we developed a reporter system, mCasExpress, to track mammalian cells that survive executioner caspase activation. We demonstrate that anastatic ovarian cancer cells acquire enhanced migration following their transient exposure to apoptotic stimulus TRAIL or Paclitaxel. Moreover, anastatic cancer cells secrete more pro-angiogenic factors that enable tumor angiogenesis, growth and metastasis. Mechanistically, we demonstrate that activation of p38 MAPK, which occurs in a caspase-dependent manner in response to apoptotic stress to promote anastasis, persists at a higher level in anastatic cancer cells even after removal of apoptotic stimuli. Importantly, p38 is essential for the elevated migratory and angiogenic capacity in the anastatic cells. Our work unveils anastasis as a potential driver of tumor angiogenesis and metastasis.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chen Yao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaojiao Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Denise J Montell
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA, 93106, USA
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institute for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, 215123, Jiangsu, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
25
|
Candesartan protects against unilateral peripheral limb ischemia in type-2 diabetic rats: Possible contribution of PI3K-Akt-eNOS-VEGF angiogenic signaling pathway. Int Immunopharmacol 2023; 116:109817. [PMID: 36773570 DOI: 10.1016/j.intimp.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
Type-2 diabetes (T2DM) is known to be highly associated with increased risk for vascular complications including peripheral arterial diseases (PAD). Critical limb ischemia (CLI) is the most advanced stage of PAD. Current therapeutic options for diabetic patients experiencing vascular complications are limited to surgical revascularization with no effective pharmacotherapy available for clinical settings. This study is dedicated to evaluate the angiogenic potential of candesartan an angiotensin-II receptor blocker in an experimental model of vascular complications associating T2DM. T2DM was induced in rats through feeding with high fat diet for 6 weeks, followed by injection with streptozotocin (STZ, 30 mg/kg; i.p). After establishment of T2DM, unilateral CLI was induced through the ligation and excision of superficial femoral artery. Candesartan treatment (10 or 30 mg/kg; orally) was initiated one day post CLI and thereafter once daily for up to 14 days. T2DM rats that underwent CLI demonstrated impaired angiogenic signaling, increased inflammation and apoptosis in gastrocnemius muscle (GC). Candesartan reversed ischemic insult in T2DM rats subjected to unilateral CLI and induced reparative angiogenesis that was evident by increase in p-PI3K/PI3K, p-Akt/Akt, p-eNOS/eNOS, p-VEGFR2/VEGFR2 ratios, and VEGF levels. Candesartan treatment also increased levels of HO-1; while decreased caspase-3 apoptotic marker and levels of inflammatory markers; NF-κB and TNF-α, all of which were accompanied by preserved histological manifestations of GC muscles. Candesartan was able to combat limb ischemia under diabetic conditions which could pave the way for its therapeutic utility for diabetic patients experiencing vascular complications in clinical setting.
Collapse
|
26
|
Huang A, Wang Z, Tang H, Jia Z, Ji X, Yang X, Jiang W. Bardoxolone Methyl Ameliorates Myocardial Ischemia/Reperfusion Injury by Activating the Nrf2/HO-1 Signaling Pathway. Cardiovasc Ther 2023; 2023:5693732. [PMID: 36874247 PMCID: PMC9977528 DOI: 10.1155/2023/5693732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Background Myocardial ischemia/reperfusion (I/R) injury is a severe heart problem resulting from restoring coronary blood flow to the myocardium after ischemia. This study is aimed at ascertaining the therapeutic efficiency and action mechanism of bardoxolone methyl (BARD) in myocardial I/R injury. Methods In male rats, myocardial ischemia was performed for 0.5 h, and then, reperfusion lasted for 24 h. BARD was administrated in the treatment group. The animal's cardiac function was measured. Myocardial I/R injury serum markers were detected via ELISA. The 2,3,5-triphenyltetrazolium chloride (TTC) staining was used to estimate the infarction. H&E staining was used to evaluate the cardiomyocyte damage, and Masson trichrome staining was used to observe the proliferation of collagen fiber. The apoptotic level was assessed via the caspase-3 immunochemistry and TUNEL staining. Oxidative stress was measured through malondialdehyde, 8-hydroxy-2'-deoxyguanosine, superoxide dismutase, and inducible nitric oxide synthases. The alteration of the Nrf2/HO-1 pathway was confirmed via western blot, immunochemistry, and PCR analysis. Results The protective effect of BARD on myocardial I/R injury was observed. In detail, BARD decreased cardiac injuries, reduced cardiomyocyte apoptosis, and inhibited oxidative stress. For mechanisms, BARD treatment significantly activates the Nrf2/HO-1 pathway. Conclusion BARD ameliorates myocardial I/R injury by inhibiting oxidative stress and cardiomyocyte apoptosis via activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Anwu Huang
- Department of Cardiology, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhaolin Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hua Tang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhuyin Jia
- Department of Cardiology, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Xiaojun Ji
- Department of Cardiology, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Xuehua Yang
- Department of Cardiology, Shanghai Zhongye Hospital, Shanghai, China
| | - Wenbing Jiang
- Department of Cardiology, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| |
Collapse
|
27
|
Zhan X, Jiang L, Wang L, Liu J, Kang S, Liu H, Lin L. A novel angiogenic effect of PCSK9- regulated genes. Gene X 2023; 852:147051. [PMID: 36427678 DOI: 10.1016/j.gene.2022.147051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Since the discovery of the Proprotein Convertase Subtilisin/Kexin Type 9(PCSK9) gene has been involved in regulating low-density lipoprotein metabolism and cardiovascular disease (CVD), many therapeutic strategies directly targeting PCSK9 have been introduced. PCSK9 gain of function (GoF) mutations are associated with autosomal dominant hypercholesterolemia (ADH) and premature atherosclerosis. In contrast, PCSK9 loss of function (LOF) mutations have cardioprotective effects and can lead to familial hypo cholesterol in some instances. However, its potential impacts beyond the typical effects on lipid metabolism have not been elucidated. Therefore the study aimed to identify and verify PCSK9's possible effects beyond its traditional role in lipid metabolism. METHODS The S127R is a PCSK9 gain of function mutation. Firstly, We used the data of the gene expression Omnibus(GEO) database to identify the differentially expressed genes between S127R mutation carriers and ordinary people. Secondly, the identification and analysis of significant genes were performed with various bioinformatics programs. Thirdly, to verify the possible effect and the potential pathways of PCSK9 on angiogenesis, we constructed PCSK9 low and high expression models by transfecting PCSK9-siRNA (small interfering RNA) and PCSK9-plasmid complex into human umbilical vein endothelial cells (HUVECs), respectively. Furthermore, Wound-Healing Assay and Capillary tube formation assay were applied to measure the effect of PCSK9 on angiogenesis. Fourthly, the expression level of VEGFR2 and the significant genes between PCSK9 low and high expression models were verified by quantitative real-time PCR. All data were analysed by GraphPad Prism 8 software. RESULTS 88 DEGs were identified, including 45 up-regulated and 43 down-regulated DEGs. Furthermore, we identified the six genes (MMP9, CASP3, EGR1, NGFR, LEFTY1 and NODAL) as significantly different genes between PCSK9-S127R and Control hiPSC. Further, we found that these significant difference genes were mainly associated with angiogenesis after enrichment analysis. To verify the possible effect of PCSK9 on angiogenesis, we constructed low and high-expression PCSK9 models by transfecting siRNA and PCSK9-plasmid complex into human umbilical vein endothelial cells (HUVECs), respectively. The tubule formation test and Wound healing assays showed that overexpression of PCSK9 had an inhibitory effect on angiogenesis, which could be reversed by decreasing the expression of PCSK9. Moreover, bioinformatics analysis indicated that the six hub genes (MMP9, CASP3, EGR1, NGFR, LEFTY1 and NODAL) might play a vital role in the biological function of PCSK9 in angiogenesis. Real-time quantitative PCR was applied to clarify the expression profiles of these critical genes in overexpression/knockdown PCSK9. Finally, the expression levels of MMP9, Caspase3, LEFTY1, and NODAL were suppressed by overexpression of PCSK9 and could be alleviated by PCSK9 knockdown. Otherwise, EGR1 had the opposite expression trend, and there was no specific trend of NGFR after repeated experiments. CONCLUSION PCSK9 might play an essential role in angiogenesis, unlike its typical role in lipid metabolism, and MMP9, Caspase3, LEFTY1, NODAL, and EGR1 may be involved in the regulation of angiogenesis as critical genes.
Collapse
Affiliation(s)
- Xiaopeng Zhan
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai
| | - Li Jiang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai
| | - Lufeng Wang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiwen Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng Kang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai
| | - Haibo Liu
- Department of Cardiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai
| |
Collapse
|
28
|
Wu Z, Liu Q, Wageh S, Sun Z, Al-Hartomy OA, Al-Sehemi AG, Yan L, Chen J, Zhang W, Yang J, Zhang H, Liu L. Novel photodynamic therapy using two-dimensional NiPS 3 nanosheets that target hypoxic microenvironments for precise cancer treatment. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:81-98. [PMID: 39633642 PMCID: PMC11501689 DOI: 10.1515/nanoph-2022-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 12/07/2024]
Abstract
Photodynamic therapy (PDT) is a highly promising modality against cancer, but its efficacy is severely limited by the low oxygen content in solid tumors. In this study, a smart photosensitive NiPS3 nanosheet was developed to solve the problem of low oxygen to allow PDT to be performed against tumors. The photosensitized ROS generation mechanism of NiPS3 is the photon-generated electron-hole pathway, which can generate O2 ·- and ·OH at the conduction band and valance band, respectively. More crucial is that ·OH generation doesn't need O2, and the O2 ·- can also work in a low O2 environment, and depleting oxygen in tumor cells. Modified with triphenylphosphine (TPP) and based on density functional theory (DFT) calculations and experimental data, the NiPS3@TPP nano-system underwent targeted action toward mitochondria. In vitro experiments demonstrated that the reactive oxygen species (ROS) produced by NiPS3@TPP altered mitochondrial membrane permeability, which not only prolonged the PDT effect but also resulted in mitochondria apoptosis pathways inducing an apoptosis cascade. In vivo experiments demonstrated the targeting capability with low toxicity of the NiPS3@TPP nano-system. Tumor targeting at the tested dose indicated that it represented a promising biocompatible photosensitizer for in vivo biomedical applications.
Collapse
Affiliation(s)
- Zongze Wu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Quan Liu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah21589, Saudi Arabia
| | - Zhe Sun
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Omar A. Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah21589, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha61413, Saudi Arabia
| | - Lesen Yan
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Jiaojuan Chen
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Wenjian Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Jilin Yang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen518060, Guangdong, P. R. China
| | - Liping Liu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen518020, Guangdong, P. R. China
| |
Collapse
|
29
|
Network Pharmacology and Molecular Docking Analysis on Molecular Targets and Mechanisms of Aidi Injection Treating of Nonsmall Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8350218. [DOI: 10.1155/2022/8350218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Background. Aidi injection (ADI) is a compound preparation injection of Chinese herbs used to treat patients of nonsmall cell lung cancer (NSCLC) in China. This study aimed to reveal the mechanism of ADI in the treatment of NSCLC by using network pharmacology and molecular docking. Methods. The related targets of ADI and NSCLC were obtained from multiple databases. The network diagram of disease-drug-components-targets (DDCT) and protein-protein interaction (PPI) was constructed to screen key targets. Then, the key targets and main signaling pathways were screened by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Next, in order to validate the results of network pharmacology, expression analysis and survival analysis of key genes were performed. Finally, we carried out the technology of molecular docking to further validate the accuracy of the above results. Results. A total of 207 targets of ADI and 5282 targets of NSCLC were obtained finally. Through the construction of DDCT and PPI network diagrams, 28 key targets were finally obtained. The results of the KEGG enrichment analysis indicated that multiple signaling pathways were associated with NSCLC, which included the MAPK signaling pathway, the IL-17 signaling pathway, and the PI3K/AKT signaling pathway. The key genes in the signaling pathway mainly include TP53, CASP3, MMP9, AKT1, PTGS2, and MAPK1. The results of differently expressed analysis of key genes showed that TP53, CASP3, MMP9, AKT1, PTGS2, and MAPK1 had statistical differences in lung squamous cell carcinoma (LUSC) compared with normal tissue
. In lung adenocarcinoma (LUAD), the expression of TP53, CASP3, MMP9, AKT1, and PTGS2 had statistical differences compared with normal tissue
, while the expression of MAPK1 had no statistical difference
. The results of survival analysis of key genes showed that AKT1, MAPK1, CASP3, MMP9, TP53, and PTGS2 had statistical differences in the OS or RFS of NSCLC patients
. In addition, the results of molecular docking indicated that the key genes and the main components have good docking activity. Conclusions. This study revealed the potential mechanism of ADI in the treatment of NSCLC with multipathways and multitargets and provided a scientific basis for the in-depth study of ADI in the treatment of NSCLC.
Collapse
|
30
|
Wynen H, Taylor E, Heyland A. Thyroid hormone-induced cell death in sea urchin metamorphic development. J Exp Biol 2022; 225:284353. [PMID: 36412991 PMCID: PMC10112870 DOI: 10.1242/jeb.244560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Thyroid hormones (THs) are important regulators of development, metabolism and homeostasis in metazoans. Specifically, they have been shown to regulate the metamorphic transitions of vertebrates and invertebrates alike. Indirectly developing sea urchin larvae accelerate the formation of juvenile structures in response to thyroxine (T4) treatment, while reducing their larval arm length. The mechanisms underlying larval arm reduction are unknown and we hypothesized that programmed cell death (PCD) is linked to this process. To test this hypothesis, we measured larval arm retraction in response to different THs (T4, T3, rT3, Tetrac) and assessed cell death in larvae using three different methods (TUNEL, YO-PRO-1 and caspase-3 activity) in the sea urchin Strongylocentrotus purpuratus. We also compared the extent of PCD in response to TH treatment before and after the invagination of the larval ectoderm, which marks the initiation of juvenile development in larval sea urchin species. We found that T4 treatment results in the strongest reduction of larval arms but detected a significant increase of PCD in response to T4, T3 and Tetrac in post-ingression but not pre-ingression larvae. As post-ingression larvae have initiated metamorphic development and therefore allocate resources to both larval and the juvenile structures, these results provide evidence that THs regulate larval development differentially via PCD. PCD in combination with cell proliferation likely has a key function in sea urchin development.
Collapse
Affiliation(s)
- Hannah Wynen
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Elias Taylor
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Andreas Heyland
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
31
|
Kitaeva KV, Chulpanova DS, Zhuravleva MN, Filin IY, Deviatiiarov RM, Ballard-Reisch AC, Rizvanov AA, Solovyeva VV. Characteristics and Resistance to Cisplatin of Human Neuroblastoma Cells Co-Cultivated with Immune and Stromal Cells. Bioengineering (Basel) 2022; 9:655. [PMID: 36354566 PMCID: PMC9687654 DOI: 10.3390/bioengineering9110655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2023] Open
Abstract
We investigated the features of the morphology and cytokine profiles of neuroblastoma SH-SY5Y cells, bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs), and peripheral blood mononuclear cells (PBMCs) in double (BM-MSCs + SH-SY5Y cells) and triple (BM-MSCs + SH-SY5Y cells + PBMCs) co-cultures incubated on plastic and Matrigel. Cells in the co-cultures communicated by vesicular transport and by exchanging membrane and cytoplasmic components. The cytokine profile of double and triple co-cultures incubated on Matrigel and plastic had differences and showed the highest concentration of a number of chemokines/cytokines, such as CXCL8/IL-8, I-TAC/CXCL11, IP10/CXCL10, MDC/CCL22, MIP-1α/CCL3, IL-1β, ENA-78/CXCL5, Gro-α/CXCL1, MCP-1/CCL2, TERC/CCL25, CXCL8/IL-8, and IL-6. High concentrations of inflammatory chemokines/cytokines in the conditioned medium of triple co-culture form a chronic inflammation, which brings the presented co-cultivation system closer to a natural tumor. Triple co-cultures were more resistant to cisplatin (CDDP) than the double- and monoculture of SH-SY5Y. The mRNA levels of BCL2, BCL2L1, RAC1, CAV1, CASP3, and BAX genes were changed in cells after co-culturing and CDDP treatment in double and triple co-cultures. The expression of the BCL2, BAX, CAV1, and CASP3 proteins in SH-SY5Y cells after the triple co-culture and CAV1 and BAX protein expression in SH-SY5Y cells after the double co-culture were determined. This study demonstrated the nature of the cellular interactions between components of tumor niche and the intercellular influence on chemoresistance observed in our tumor model, which should enable the development of novel test systems for anti-tumor agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
32
|
Wang G, Fan F, Sun C, Hu Y. Looking into Endoplasmic Reticulum Stress: The Key to Drug-Resistance of Multiple Myeloma? Cancers (Basel) 2022; 14:5340. [PMID: 36358759 PMCID: PMC9654020 DOI: 10.3390/cancers14215340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/22/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, resulting from the clonal proliferation of malignant plasma cells within the bone marrow. Despite significant advances that have been made with novel drugs over the past two decades, MM patients often develop therapy resistance, especially to bortezomib, the first-in-class proteasome inhibitor that was approved for treatment of MM. As highly secretory monoclonal protein-producing cells, MM cells are characterized by uploaded endoplasmic reticulum stress (ERS), and rely heavily on the ERS response for survival. Great efforts have been made to illustrate how MM cells adapt to therapeutic stresses through modulating the ERS response. In this review, we summarize current knowledge on the mechanisms by which ERS response pathways influence MM cell fate and response to treatment. Moreover, based on promising results obtained in preclinical studies, we discuss the prospect of applying ERS modulators to overcome drug resistance in MM.
Collapse
Affiliation(s)
- Guangqi Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Fengjuan Fan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Chunyan Sun
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
33
|
Wu G, Hao Q, Liu B, Zhou J, Fan C, Liu R. Network pharmacology-based screening of the active ingredients and mechanisms of evodiae fructus anti-glioblastoma multiforme. Medicine (Baltimore) 2022; 101:e30853. [PMID: 36181021 PMCID: PMC9524918 DOI: 10.1097/md.0000000000030853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Evodiae fructus has been shown to have anti-glioblastoma multiforme (GBM) effects. However, its anti-GBM active components and mechanism remain unclear. In this study, the active components of evodiae fructus were screened by network pharmacology to explore the possible molecular mechanism of resistance to GBM. MATERIALS AND METHODS The main active ingredients of evodiae fructus were derived from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Batch-traditional Chinese medicine (TCM). TCMSP and Swiss absorption, distribution, metabolism and elimination (ADME) predict genetic targets for ingredients that meet pharmacological criteria. GBM-related targets were obtained from DisGeNet, GeneCards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and TCGA. A Venn diagram was used to obtain the common targets of evodiae fructus and GBM. Protein-protein interaction (PPI) networks and component-disease target networks were constructed using Cytoscape 3.8.1 software for visualization. GBM gene differential expression was visualized by VolcaNoseR, and potential targets were enriched by Gene Ontology (GO) function and annotated by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway by SRplot. Molecular docking verification was conducted using AutoDock Vina software. RESULTS According to the screening conditions, 24 active components and 80 drug targets were obtained. The PPI network contains 80 proteins. The molecular docking verification showed the molecular docking affinity of the core active compounds in evodiae fructus with CASP3, JUN, EGFR, and AKT1. CONCLUSIONS This study preliminarily identified the various molecular targets and multiple pathways of evodiae fructus against GBM.
Collapse
Affiliation(s)
- Gang Wu
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Qingpei Hao
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Bo Liu
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Jingru Zhou
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Cungang Fan
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, China
- *Correspondence: Ruen Liu, Department of Neurosurgery, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, China (e-mail: )
| |
Collapse
|
34
|
Qian J, Wan W, Fan M. HMOX1 silencing prevents doxorubicin-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis by downregulating CTGF. Gen Thorac Cardiovasc Surg 2022; 71:280-290. [PMID: 36008747 DOI: 10.1007/s11748-022-01867-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Doxorubicin is a type of effective antitumor drug but can contribute to cardiomyocyte injuries. We aimed to dissect the mechanism of the HMOX1/CTGF axis in DOX-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis. METHODS Bioinformatics analysis was conducted to retrieve differentially expressed genes in a DOX-induced mouse model. Mouse cardiomyocytes, HL-1 cells, were induced with l µM DOX, after which gain- or loss-of-function assays were applied. CCK-8, fluorescent probe assay, flow cytometry, and corresponding kits were employed to detect cell viability, ROS levels, mitochondrial membrane potential and cell apoptosis, and GSH and Fe2+ contents, respectively. qRT-PCR or Western blot assay was adopted to test HMOX1, CTGF, BCL-2, Caspase3, Cleaved-Caspase3, and GPX4 expression. RESULTS Bioinformatics analysis showed that HMOX1 and CTGF were highly expressed in DOX-induced mice and correlated with each other. Also, HMOX1 and CTGF expression was high in HL-1 cells after DOX treatment, along with an obvious decrease in cell viability and GSH and GPX4 expression, an increase in ROS levels, apoptosis, and Fe2+ contents, and mitochondrial membrane potential dysfunction or loss. HMOX1 or CTGF silencing diminished cell apoptosis, Cleaved-Caspase3 expression, Fe2+ contents, and ROS levels, enhanced cell viability and the expression of GSH, GPX4, and BCL-2, and recovered mitochondrial membrane potential in DOX-induced HL-1 cells. Nevertheless, the effects of HMOX1 silencing on the viability, apoptosis, ferroptosis, and mitochondrial dysfunction of DOX-induced HL-1 cells were counteracted by CTGF overexpression. CONCLUSIONS In conclusion, HMOX1 silencing decreased CTGF expression to alleviate DOX-induced injury, mitochondrial dysfunction, and ferroptosis of mouse cardiomyocytes.
Collapse
Affiliation(s)
- Jia Qian
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China
| | - Wenting Wan
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China
| | - Min Fan
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China.
| |
Collapse
|
35
|
Xie F, Liu Z, Wang P, Cai M, Li Y, Yan J, Lin Q, Luo F. Self-Delivering Nanodrugs Developed via Small-Molecule-Directed Assembly and Macrophage Cloaking for Sonodynamic-Augmented Immunotherapy. Adv Healthc Mater 2022; 11:e2102770. [PMID: 35575205 DOI: 10.1002/adhm.202102770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/09/2022] [Indexed: 01/24/2023]
Abstract
The self-delivery of sonosensitizers and immunomodulators to tumor areas, which is highly recommended for enhancing sonodynamic immunotherapy, remains a challenge. Herein, a self-delivering nanodrug (HB-NLG8189, drug loading: ≈100 wt%) is developed by the small-molecule self-assembly of "HB" (a new clinical photosensitizer) and NLG8189 (indoleamine-(2,3)-dioxygenase (IDO) pathway inhibitor) for sonodynamic-augmented immunotherapy; this preparation method ensures the absence of excipient-related toxicity and immunogenicity. To evade immune recognition and prolong the circulation time, the HB-NLG8189 nanodrugs are camouflaged using macrophage cell membranes (MPCMs). The constructed HB-NLG8189@MPCM nanodrugs show an ability to preferentially accumulate within tumors. Upon ultrasound triggering, the HB-NLG8189@MPCM is able to generate reactive oxygen species efficiently for robust sonodynamic therapy; it induces immunogenic cell death, initiates an antitumor immune response to activate tumor-specific effector T cells, and promotes the secretion of inflammatory cytokines. The concomitant delivery of NLG8189 reverses the immunosuppressive tumor microenvironment by restraining IDO-1 activation and the intratumoral infiltration of regulatory T cells. Sonodynamic-augmented immunotherapy with HB-NLG8189@MPCM significantly inhibits the growth of both primary and distant tumors with little systemic toxicity. The biomimetic self-delivery nanodrug provides a promising paradigm for improving sonodynamic immunotherapy.
Collapse
Affiliation(s)
- Fang Xie
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| | - Zongjunlin Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350007, P. R. China
| | - Meimei Cai
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| | - Yang Li
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350007, P. R. China
| | - Jianghua Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| |
Collapse
|
36
|
Sun T, Zhang X, Hou C, Yu S, Zhang Y, Yu Z, Kong L, Liu C, Feng L, Wang D, Ni G. Cold Plasma Irradiation Attenuates Atopic Dermatitis via Enhancing HIF-1α-Induced MANF Transcription Expression. Front Immunol 2022; 13:941219. [PMID: 35911675 PMCID: PMC9329666 DOI: 10.3389/fimmu.2022.941219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cold atmospheric plasma has been widely applied in medical treatment clinically, especially skin diseases. However, the mechanism of cold atmospheric plasma on the treatment of skin diseases is still undefined. In this study, dinitrofluorobenzene-induced atopic dermatitis mice model was constructed. Cold atmospheric plasma was able to decrease skin cells apoptosis, relieve skin inflammation, ER stress and oxidative stress caused by dinitrofluorobenzene stimulation, which was mediated by cold atmospheric plasma-induced MANF expression. In terms of mechanism, hypoxia-inducible factor-1α expression was increased intracellularly after cold atmospheric plasma treatment, which further bound to the promoter region of manf gene and enhanced MANF transcriptional expression. This study reveals that cold atmospheric plasma has a positive effect on atopic dermatitis treatment, also demonstrates the regulatory mechanism of cold atmospheric plasma on MANF expression via HIF-1α, which indicates the potential medical application of cold atmospheric plasma for atopic dermatitis treatment.
Collapse
Affiliation(s)
- Tao Sun
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Xinru Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chao Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shujun Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yujing Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhuo Yu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ling Kong
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Changqing Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Guohua Ni, ; Dong Wang, ; Lijie Feng,
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Guohua Ni, ; Dong Wang, ; Lijie Feng,
| | - Guohua Ni
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
- *Correspondence: Guohua Ni, ; Dong Wang, ; Lijie Feng,
| |
Collapse
|
37
|
Ma RJ, Ma C, Hu K, Zhao MM, Zhang N, Sun ZG. Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review). Int J Oncol 2022; 61:105. [PMID: 35856449 PMCID: PMC9339493 DOI: 10.3892/ijo.2022.5395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer globally, and the overall 5-year survival rate is only 20%. Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in EC, and its activation is associated with a poor prognosis. STAT3 can be activated by canonical pathways such as the JAK/STAT3 pathway as well as non-canonical pathways including the Wnt/STAT3 and COX2/PGE2/STAT3 pathways. Activated STAT3, present as phosphorylated STAT3 (p-STAT3), can be transported into the nucleus to regulate downstream genes, including VEGF, cyclin D1, Bcl-xL, and matrix metalloproteinases (MMPs), to promote cancer cell proliferation and induce resistance to therapy. Non-coding RNAs, including microRNAs (miRNAs/miRs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), play a vital role in regulating the STAT3 signaling pathway in EC. Several miRNAs promote or suppress the function of STAT3 in EC, while lncRNAs and circRNAs primarily promote the effects of STAT3 and the progression of cancer. Additionally, various drugs and natural compounds can target STAT3 to suppress the malignant behavior of EC cells, providing novel insights into potential EC therapies.
Collapse
Affiliation(s)
- Rui-Jie Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Chao Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Kang Hu
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Meng-Meng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Nan Zhang
- Department of Breast Disease Center, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
38
|
Wang D, Xu M, Li F, Gao Y, Sun H. Target Identification-Based Analysis of Mechanism of Betulinic Acid-Induced Cells Apoptosis of Cervical Cancer SiHa. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth most common female malignancy with high morbidity and mortality, which urgently needs novel anti-cancer drugs. Accumulating investigations have focused on the antitumor activity of betulinic acid (BA), which is a natural compound with low toxicity and high efficiency. Although the effect of BA on SiHa cells is obvious, the specific mechanism is seldom studied. Target identification is an important part of research on the internal mechanism of action. In this current study, an integrated method based on literature collection, target prediction, enrichment analysis, network analysis, and western blotting experiments was performed to identify the potential key targets of BA-induced apoptosis. Then, combined with the identified potential key targets, the specific mechanism of BA-induced cervical cancer SiHa cells apoptosis was elucidated. Our present study demonstrated that BA significantly reduces the viability of cervical cancer SiHa cells in a dose- and time-dependent manner. In addition, 8 potential key targets (AKT1, CASP8, LMNA, TNF, BCL2, CASP3, PARP1, and XIAP) were obtained through our integrated target identification method. Meanwhile, western blotting showed that within a certain concentration range, the expression of cleaved-caspase 3, cleaved-PARP, and cytochrome c increased with the BA concentration, while XIAP was almost unchanged. Therefore, the effect of BA on cervical cancer is noticeable. BA-induced SiHa cells apoptosis is a multi-molecule coordinated process. In this process, BA is not only a participant in either the extrinsic or intrinsic pathways, but also a regulator of apoptosis effector molecules of the CASP3/PARP1 axis.
Collapse
Affiliation(s)
- Dan Wang
- Zhejiang Hospital, Hangzhou, China
| | - Mengjin Xu
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Li
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Gao
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Sun
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
39
|
Zhou J, Wang L, Peng C, Peng F. Co-Targeting Tumor Angiogenesis and Immunosuppressive Tumor Microenvironment: A Perspective in Ethnopharmacology. Front Pharmacol 2022; 13:886198. [PMID: 35784750 PMCID: PMC9242535 DOI: 10.3389/fphar.2022.886198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor angiogenesis is one of the most important processes of cancer deterioration via nurturing an immunosuppressive tumor environment (TME). Targeting tumor angiogenesis has been widely accepted as a cancer intervention approach, which is also synergistically associated with immune therapy. However, drug resistance is the biggest challenge of anti-angiogenesis therapy, which affects the outcomes of anti-angiogeneic agents, and even combined with immunotherapy. Here, emerging targets and representative candidate molecules from ethnopharmacology (including traditional Chinese medicine, TCM) have been focused, and they have been proved to regulate tumor angiogenesis. Further investigations on derivatives and delivery systems of these molecules will provide a comprehensive landscape in preclinical studies. More importantly, the molecule library of ethnopharmacology meets the viability for targeting angiogenesis and TME simultaneously, which is attributed to the pleiotropy of pro-angiogenic factors (such as VEGF) toward cancer cells, endothelial cells, and immune cells. We primarily shed light on the potentiality of ethnopharmacology against tumor angiogenesis, particularly TCM. More research studies concerning the crosstalk between angiogenesis and TME remodeling from the perspective of botanical medicine are awaited.
Collapse
Affiliation(s)
- Jianbo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| |
Collapse
|
40
|
Fan X, Zhang L, Huang J, Zhong Y, Fan Y, Zhou T, Lu M. An Integrated Immune-Related Bioinformatics Analysis in Glioma: Prognostic Signature’s Identification and Multi-Omics Mechanisms’ Exploration. Front Genet 2022; 13:889629. [PMID: 35601497 PMCID: PMC9114310 DOI: 10.3389/fgene.2022.889629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/18/2022] [Indexed: 12/05/2022] Open
Abstract
As the traditional treatment for glioma, the most common central nervous system malignancy with poor prognosis, the efficacy of high-intensity surgery combined with radiotherapy and chemotherapy is not satisfactory. The development of individualized scientific treatment strategy urgently requires the guidance of signature with clinical predictive value. In this study, five prognosis-related differentially expressed immune-related genes (PR-DE-IRGs) (CCNA2, HMGB2, CASP3, APOBEC3C, and BMP2) highly associated with glioma were identified for a prognostic model through weighted gene co-expression network analysis, univariate Cox and lasso regression. Kaplan-Meier survival curves, receiver operating characteristic curves and other methods have shown that the model has good performance in predicting the glioma patients’ prognosis. Further combined nomogram provided better predictive performance. The signature’s guiding value in clinical treatment has also been verified by multiple analysis results. We also constructed a comprehensive competing endogenous RNA (ceRNA) regulatory network based on the protective factor BMP2 to further explore its potential role in glioma progression. Numerous immune-related biological functions and pathways were enriched in a high-risk population. Further multi-omics integrative analysis revealed a strong correlation between tumor immunosuppressive environment/IDH1 mutation and signature, suggesting that their cooperation plays an important role in glioma progression.
Collapse
Affiliation(s)
- Xin Fan
- Department of Emergency Medicine, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingling Zhang
- School of Stomatology, Nanchang University, Nanchang, China
| | - Junwen Huang
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Yun Zhong
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Yanting Fan
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Tong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Lu
- Department of Emergency Medicine, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao, China
- *Correspondence: Min Lu,
| |
Collapse
|
41
|
Liu Y, Feng J, Yuan K, Wu Z, Hu L, Lu Y, Li K, Guo J, Chen J, Ma C, Pang X. The oncoprotein BCL6 enables solid tumor cells to evade genotoxic stress. eLife 2022; 11:69255. [PMID: 35503721 PMCID: PMC9064299 DOI: 10.7554/elife.69255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Genotoxic agents remain the mainstay of cancer treatment. Unfortunately, the clinical benefits are often countered by a rapid tumor adaptive response. Here, we report that the oncoprotein B cell lymphoma 6 (BCL6) is a core component that confers solid tumor adaptive resistance to genotoxic stress. Multiple genotoxic agents promoted BCL6 transactivation, which was positively correlated with a weakened therapeutic efficacy and a worse clinical outcome. Mechanistically, we discovered that treatment with the genotoxic agent etoposide led to the transcriptional reprogramming of multiple pro-inflammatory cytokines, among which the interferon-α and interferon-γ responses were substantially enriched in resistant cells. Our results further revealed that the activation of interferon/signal transducer and activator of transcription 1 axis directly upregulated BCL6 expression. The increased expression of BCL6 further repressed the tumor suppressor PTEN and consequently enabled resistant cancer cell survival. Accordingly, targeted inhibition of BCL6 remarkably enhanced etoposide-triggered DNA damage and apoptosis both in vitro and in vivo. Our findings highlight the importance of BCL6 signaling in conquering solid tumor tolerance to genotoxic stress, further establishing a rationale for a combined approach with genotoxic agents and BCL6-targeted therapy.
Collapse
Affiliation(s)
- Yanan Liu
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Juanjuan Feng
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kun Yuan
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhengzhen Wu
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Longmiao Hu
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yue Lu
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kun Li
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiawei Guo
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jing Chen
- Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan, China
| | - Chengbin Ma
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiufeng Pang
- Changning Maternity and Infant Health Hospital, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
42
|
Zhou X, Zhang Z, Shi H, Liu Q, Chang Y, Feng W, Zhu S, Sun S. Effects of Lycium barbarum glycopeptide on renal and testicular injury induced by di(2-ethylhexyl) phthalate. Cell Stress Chaperones 2022; 27:257-271. [PMID: 35362893 PMCID: PMC9106773 DOI: 10.1007/s12192-022-01266-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a common environmental pollutant with renal and reproductive toxicity. Lycium barbarum glycopeptide (LbGp) is the main active component of Lycium barbarum, which can protect the kidney and promote reproduction. Autophagy and apoptosis are the regulatory mechanisms of cell adaptation to external stress. This study investigated whether DEHP and LbGp affect kidney and testis by regulating autophagy and apoptosis. DEHP induced apoptosis in human embryonic kidney-293 (HEK-293) cells and human kidney-2 (HK-2) cells, as well as glomerular enlargement, enhanced renal autophagy and inflammation, decreased testicular germ cells, and enhanced testicular autophagy. LbGp reduced apoptosis in HEK-293 cells and HK-2 cells, reduced glomerular enlargement and renal inflammation, enhanced renal autophagy, increased testicular germ cells, and alleviated testicular autophagy. These results suggested that DEHP induced inflammation to cause kidney injury, mildly enhanced renal autophagy, and also induced excessive autophagy, leading to testicular injury. LbGp reduced inflammation and appropriately enhanced autophagy to alleviate renal injury and also reduced excessive autophagy to alleviate testicular injury. Silent information regulator 1 (SIRT1)/forkhead box O3a (FoxO3a)-mediated autophagy and p38 mitogen-activated protein kinase (p38 MAPK)-mediated inflammation played important roles.
Collapse
Affiliation(s)
- Xianling Zhou
- Department of Nephrology, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, 510630, Guangdong, China
| | - Zhigang Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510630, China
| | - Heng Shi
- Department of Nephrology, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, 510630, Guangdong, China
| | - Qiubo Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510630, China
| | - Yuling Chang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510630, China
| | - Weifeng Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shiping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shengyun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
43
|
Zhou Z, Xu S, Jiang L, Tan Z, Wang J. A Systematic Pan-Cancer Analysis of CASP3 as a Potential Target for Immunotherapy. Front Mol Biosci 2022; 9:776808. [PMID: 35573727 PMCID: PMC9106394 DOI: 10.3389/fmolb.2022.776808] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/02/2022] [Indexed: 01/10/2023] Open
Abstract
CASP3 is the gene encoding caspase-3, a specific protease that cleaves substrates such as poly-ADP ribose polymerase and acetyl-DEVD-7-amino-4-methylcoumarin. This enzymatic activity leads to DNA fragmentation, which is a hallmark of apoptosis. Although recent studies have demonstrated that CASP3 plays a vital role in tumour suppression by promoting apoptosis, these reports did not consider systematic pan-cancer analyses. Therefore, we performed a specific pan-cancer analysis using The Cancer Genome Atlas and Genotype-Tissue Expression databases to analyse CASP3 expression in terms of cancer prognosis, DNA methylation status, tumour mutative burden (TMB), and microsatellite instability (MSI), as well as immune cell infiltration in different tumours and the molecular mechanisms underlying these. We found that CASP3 expression was significantly associated with the prognosis of most tumours. Additionally, promoter methylation status was associated with CASP3 expression in bladder urothelial carcinoma, oesophageal carcinoma, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, lung squamous cell carcinoma, prostate adenocarcinoma, sarcoma, testicular germ cell tumours, and uterine corpus endometrial carcinoma. TMB and MSI were associated with CASP3 expression in 15 tumours. Moreover, CASP3 expression was correlated with the tumour microenvironment in nearly all tumour types. Further, we observed that in addition to apoptosis, CASP3 action plausibly involves B cell activation, antigen presentation, immune responses, chemokine receptors, and inflammatory function. Our study thus provides a relatively comprehensive understanding of the carcinogenicity of CASP3 in different tumours and suggests that CASP3 is a potential prognostic marker.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Head and Neck Surgery, Centre of Otolaryngology-head and Neck Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Bengbu Medical College Graduate School, Bengbu, China
| | - Shiying Xu
- Department of Head and Neck Surgery, Centre of Otolaryngology-head and Neck Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Diagnosis and Treatment of Endocrine Gland Diseases, Hangzhou, China
| | - Liehao Jiang
- Department of Head and Neck Surgery, Centre of Otolaryngology-head and Neck Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Diagnosis and Treatment of Endocrine Gland Diseases, Hangzhou, China
| | - Zhuo Tan
- Department of Head and Neck Surgery, Centre of Otolaryngology-head and Neck Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Diagnosis and Treatment of Endocrine Gland Diseases, Hangzhou, China
| | - Jiafeng Wang
- Department of Head and Neck Surgery, Centre of Otolaryngology-head and Neck Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Diagnosis and Treatment of Endocrine Gland Diseases, Hangzhou, China
- *Correspondence: Jiafeng Wang,
| |
Collapse
|
44
|
Lei Q, Huang X, Zheng L, Zheng F, Dong J, Chen F, Zeng W. Biosensors for Caspase-3: From chemical methodologies to biomedical applications. Talanta 2022; 240:123198. [PMID: 34998139 DOI: 10.1016/j.talanta.2021.123198] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022]
Abstract
Caspase-3 plays irreplaceable roles in apoptosis and related diseases. An imbalance in the measured levels of Caspase-3 is implicated in irreversible apoptosis. Therefore, the detection of Caspase-3 is of great significance for apoptosis imaging and the evaluation effect of early tumor treatment and other diseases. Herein, advances in the recent innovations of Caspase-3 response fluorescence biosensors, including molecular probes and nanoprobes, are systematically summarized in sections corresponding. The performances of various luminescence probes in Caspase-3 detection are discussed intensively in the design strategy of chemical structure, response mechanism and biological application. Finally, the current challenges and prospects of the design of new Caspase-3 responsive fluorescence probes for apoptosis imaging, or similar molecular event are proposed.
Collapse
Affiliation(s)
- Qian Lei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Lijuan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China.
| |
Collapse
|
45
|
Alternative Splicing in Cancer and Immune Cells. Cancers (Basel) 2022; 14:cancers14071726. [PMID: 35406498 PMCID: PMC8996879 DOI: 10.3390/cancers14071726] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
Splicing is a phenomenon enabling the excision of introns from pre-mRNA to give rise to mature mRNA. All the 20,000 genes of the human genome are concerned by this mechanism. Nevertheless, it is estimated that the proteome is composed of more than 100,000 proteins. How to go from 20,000 genes to more than 100,000 proteins? Alternative splicing (AS) is in charge of this diversity of proteins. AS which is found in most of the cells of an organism, participates in normal cells and in particular in immune cells, in the regulation of cellular behavior. In cancer, AS is highly dysregulated and involved in almost all of the hallmarks that characterize tumor cells. In view of the close link that exists between tumors and the immune system, we present in this review the literature relating to alternative splicing and immunotherapy. We also provide a global but not exhaustive view of AS in the immune system and tumor cells linked to the events that can lead to AS dysregulation in tumors.
Collapse
|
46
|
Li L, Wang N, Xiong Y, Guo G, Zhu M, Gu Y. Transcription Factor FOSL1 Enhances Drug Resistance of Breast Cancer Through DUSP7-Mediated Dephosphorylation of PEA15. Mol Cancer Res 2021; 20:515-526. [PMID: 34907034 DOI: 10.1158/1541-7786.mcr-21-0658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/02/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
Breast cancer (BC) represents one of the commonest and deadliest malignancies in women. However, drug resistance has always been a major obstacle to cancer treatment. Transcription factors have been reported to have close association with drug resistance of tumors. Recently, by analyzing the data from Gene Expression Omnibus (GEO) database (id: GSE76540), we found that transcription factor FOSL1 was significantly up-regulated in the transcriptome of doxorubicin-resistant BC cells compared with that in sensitive parental cells. Therefore, we aim to explore the regulatory mechanism of FOSL1 in affecting the drug resistance of BC cells. FOSL1 expression in doxorubicin-resistant BC cells was firstly examined through RT-qPCR, and then its influence on the drug resistance of BC cells was explored through a series of in vitro and in vivo mechanism assays. Results showed that FOSL1 promoted the drug resistance of BC cells to doxorubicin both in intro and in vivo. It positively regulated the transcription of DUSP7 in BC doxorubicin-resistant cells and DUSP7 also enhanced the drug resistance of BC cells. Furthermore, FOSL1 promoted the dephosphorylation of PEA15 through DUSP7. In conclusion, it was verified that FOSL1 promoted the drug resistance in breast cancer through DUSP7-mediated dephosphorylation of PEA15. Implications: These initial findings suggest that the FOSL1/DUSP7/PEA15 pathway may provide a theoretical guidance for BC treatment.
Collapse
Affiliation(s)
- Lin Li
- First Affiliated Hospital of Zhengzhou University
| | - Nan Wang
- First Affiliated Hospital of Zhengzhou University
| | - Youyi Xiong
- First Affiliated Hospital of Zhengzhou University
| | | | - Mingzhi Zhu
- First Affiliated Hospital of Zhengzhou University
| | - Yuanting Gu
- Department of Breast Surgery, First Affiliated Hospital of Zhengzhou University
| |
Collapse
|
47
|
Zhang D, Qi D, Xu Y, Hu C, Zhang X, Yang Q, Shang Z, Zhang G. The S1PR1 agonist SEW2871 promotes the survival of skin flap. Can J Physiol Pharmacol 2021; 99:1280-1287. [PMID: 34310896 DOI: 10.1139/cjpp-2021-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skin flap transfer is an important method to repair and reconstruct various tissue defects; however, avascular necrosis largely affects the success of flap transfer. The sphingosine 1-phosphate receptor 1 (S1PR1) agonist SEW2871 has been proven to ameliorate ischemic injury; however, its effect on flap survival has not been reported. In this study, an experimental skin flap model was established in rats to investigate the roles of SEW2871. The results indicated that SEW2871 greatly increased the survival of the skin flap, alleviated pathological injury, promoted the angiogenesis, and inhibited cells apoptosis in skin flap tissues. SEW2871 activated S1PR1 downstream signaling pathways, including heat shock protein 27 (HSP27), extracellular regulated protein kinases (ERK), and protein kinase B (Akt). In addition, SEW2871 promoted the expression of S1PR1. These findings may provide novel insights for skin flap transfer.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Dongxu Qi
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Yi Xu
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Chunhe Hu
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Xiao Zhang
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Qingjian Yang
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Zikun Shang
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Guisheng Zhang
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| |
Collapse
|
48
|
Dong C, Cao H, Liu Z, Xi L, Shi Y, Yang R. CHML targeted by miR-199a-3p promotes non-small cell lung cancer cell growth via binding to Rab5A. Pathol Res Pract 2021; 227:153626. [PMID: 34649053 DOI: 10.1016/j.prp.2021.153626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/11/2022]
Abstract
Choroideremia-like (CHML) has been demonstrated to be related to the development of urothelial carcinoma, multiple myeloma, and hepatocellular carcinoma. Whereas, the association between CHML and lung cancer remains dimness. CHML expression was analyzed in NSCLC patients from TCGA dataset and evaluated in our collected NSCLC tissues and NSCLC cell lines. The effects of CHML on the proliferation and apoptosis of NSCLC were investigated in A549 and H1299 cells that downregulation of CHML as well as in H1299-induced xenograft mouse model. An upstream miRNA of CHML was further analyzed. Moreover, bioinformatics analysis and co-immunoprecipitation assay were carried out to explore the mechanism of CHML in NSCLC. We found CHML expression was upregulated in NSCLC patients and cell lines compared with their controls. Knockdown of CHML suppressed the viability and BrdU-positive cell number, and elevated the proportion of Tunel-positive cells and levels of Bax/Bcl-2 and cleaved-caspase-3 in NSCLC cells. In mouse models, downregulation of CHML decreased tumor volume and weight, attenuated Ki-67 staining, whereas elevated numbers of Tunel-positive cells, and upregulated levels of Bax/Bcl-2 and cleaved-caspase-3. CHML was demonstrated to be a target of miR-199a-3p. miR-199a-3p inhibitor significantly promoted the proliferation, and attenuated the apoptosis of H1299 cells, which were abrogated by CHML silencing. CHML promoted the proliferation of NSCLC cells via directly binding to Rab5A. Taken together, this study revealed that CHML was an oncogene in NSCLC and it could promote the proliferation and inhibit apoptosis of NSCLC cells through binding to Rab5A. CHML was targeted by miR-199a-3p in this cancer.
Collapse
Affiliation(s)
- Changqing Dong
- Department of Thoracic Surgery, Nanjing Chest Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province 210029, China
| | - Hui Cao
- Department of Thoracic Surgery, Nanjing Chest Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province 210029, China
| | - Zhengcheng Liu
- Department of Thoracic Surgery, Nanjing Chest Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province 210029, China
| | - Lei Xi
- Department of Thoracic Surgery, Nanjing Chest Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province 210029, China
| | - Ye Shi
- Department of Thoracic Surgery, Nanjing Chest Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province 210029, China
| | - Rusong Yang
- Department of Thoracic Surgery, Nanjing Chest Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
49
|
Wang Y, Dong L, Wan F, Chen F, Liu D, Chen D, Long J. MiR-9-3p regulates the biological functions and drug resistance of gemcitabine-treated breast cancer cells and affects tumor growth through targeting MTDH. Cell Death Dis 2021; 12:861. [PMID: 34552061 PMCID: PMC8458456 DOI: 10.1038/s41419-021-04145-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023]
Abstract
This study explored the role of MTDH in regulating the sensitivity of breast cancer cell lines to gemcitabine (Gem) and the potential miRNAs targeting MTDH. The expression of MTDH in cancer tissues and cells was detected by immunohistochemical staining or qRT-PCR. The target genes for MTDH were predicted by bioinformatics and further confirmed by dual-luciferase reporter assay and qRT-PCR. Cancer cells were transfected with siMTDH, MTDH, miR-9-3p inhibitor, or mimics and treated by Gem, then CCK-8, colony formation assay, tube formation assay, flow cytometry, wound healing assay, and Transwell were performed to explore the effects of MTDH, miR-9-3p, and Gem on cancer cell growth, apoptosis, migration, and invasion. Expressions of VEGF, p53, cleaved caspase-3, MMP-2, MMP-9, E-Cadherin, N-Cadherin, and Vimentin were determined by Western blot. MTDH was high-expressed in cancer tissues and cells, and the cells with high-expressed MTDH were less sensitive to Gem, while silencing MTDH expression significantly promoted the effect of Gem on inducing apoptosis, inhibiting cell migration, invasion, and growth, and on regulating protein expressions of cancer cells. Moreover, miR-9-3p had a targeted binding relationship with MTDH, and overexpressed miR-9-3p greatly promoted the toxic effects of Gem on cancer cells and expressions of apoptosis-related proteins, whereas overexpressed MTDH partially reversed such effects of overexpressed miR-9-3p. The study proved that miR-9-3p regulates biological functions, drug resistance, and the growth of Gem-treated breast cancer cells through targeting MTDH.
Collapse
Affiliation(s)
- Yike Wang
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Lifeng Dong
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Fang Wan
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangfang Chen
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Dianlei Liu
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Deqin Chen
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingpei Long
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
50
|
Castillo Ferrer C, Berthenet K, Ichim G. Apoptosis - Fueling the oncogenic fire. FEBS J 2021; 288:4445-4463. [PMID: 33179432 PMCID: PMC8451771 DOI: 10.1111/febs.15624] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Apoptosis, the most extensively studied form of programmed cell death, is essential for organismal homeostasis. Apoptotic cell death has widely been reported as a tumor suppressor mechanism. However, recent studies have shown that apoptosis exerts noncanonical functions and may paradoxically promote tumor growth and metastasis. The hijacking of apoptosis by cancer cells may arise at different levels, either via the interaction of apoptotic cells with their local or distant microenvironment, or through the abnormal pro-oncogenic roles of the main apoptosis effectors, namely caspases and mitochondria, particularly upon failed apoptosis. In this review, we highlight some of the recently described mechanisms by which apoptosis and these effectors may promote cancer aggressiveness. We believe that a better understanding of the noncanonical roles of apoptosis may be crucial for developing more efficient cancer therapies.
Collapse
Affiliation(s)
- Camila Castillo Ferrer
- Cancer Target and Experimental TherapeuticsInstitute for Advanced BiosciencesINSERM U1209CNRS UMR5309Grenoble Alpes UniversityFrance
- EPHEPSL Research UniversityParisFrance
| | - Kevin Berthenet
- Cancer Research Center of Lyon (CRCL) INSERM 1052CNRS 5286LyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCANUniversité de LyonFrance
| | - Gabriel Ichim
- Cancer Research Center of Lyon (CRCL) INSERM 1052CNRS 5286LyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCANUniversité de LyonFrance
| |
Collapse
|