1
|
Li M, Wang Z, Tao J, Jiang H, Yang H, Guo D, Zhao H, He X, Luo S, Jiang X, Yuan L, Xiao L, He H, Yu R, Fang J, Liang T, Mao Z, Xu D, Lu Z. Fructose-1,6-bisphosphatase 1 dephosphorylates and inhibits TERT for tumor suppression. Nat Chem Biol 2024; 20:1505-1513. [PMID: 38538923 DOI: 10.1038/s41589-024-01597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/01/2024] [Indexed: 04/24/2024]
Abstract
Telomere dysfunction is intricately linked to the aging process and stands out as a prominent cancer hallmark. Here we demonstrate that telomerase activity is differentially regulated in cancer and normal cells depending on the expression status of fructose-1,6-bisphosphatase 1 (FBP1). In FBP1-expressing cells, FBP1 directly interacts with and dephosphorylates telomerase reverse transcriptase (TERT) at Ser227. Dephosphorylated TERT fails to translocate into the nucleus, leading to the inhibition of telomerase activity, reduction in telomere lengths, enhanced senescence and suppressed tumor cell proliferation and growth in mice. Lipid nanoparticle-mediated delivery of FBP1 mRNA inhibits liver tumor growth. Additionally, FBP1 expression levels inversely correlate with TERT pSer227 levels in renal and hepatocellular carcinoma specimens and with poor prognosis of the patients. These findings demonstrate that FBP1 governs cell immortality through its protein phosphatase activity and uncover a unique telomerase regulation in tumor cells attributed to the downregulation or deficiency of FBP1 expression.
Collapse
Affiliation(s)
- Min Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zheng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jingjing Tao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuxiao He
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Shudi Luo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoming Jiang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Li Yuan
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Liwei Xiao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Haiyan He
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jing Fang
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Tang X, Xue J, Zhang J, Zhou J. A Gluconeogenesis-Related Genes Model for Predicting Prognosis, Tumor Microenvironment Infiltration, and Drug Sensitivity in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1907-1926. [PMID: 39386981 PMCID: PMC11463187 DOI: 10.2147/jhc.s483664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a prevalent malignancy within the digestive system, known for its poor prognosis. Gluconeogenesis, a critical metabolic pathway, is responsible for the synthesis of glucose in the normal liver. This study aimed to examine the role of gluconeogenesis-related genes (GRGs) in HCC and evaluate their impact on the tumor microenvironment infiltration and drug sensitivity in HCC. Methods We retrieved gene expression and clinical pathological data of HCC from The Cancer Genome Atlas (TCGA) database. This dataset was utilized to develop a prognosis model. The data from The International Cancer Genome Consortium (ICGC) served as an independent validation cohort. A least absolute shrinkage and selection operator (LASSO) regression analysis was applied to a curated panel of GRGs to construct and validate the predictive model. Furthermore, unsupervised consensus clustering, based on the expression levels of GRGs, categorized HCC patients into distinct subgroups. Results A four-gene prognostic model, referred to as GRGs, has been successfully developed with high accuracy and stability for the prediction of HCC patient prognosis. This model enables the stratification of patients into high or low risk groups based on individual risk scores, revealing significant differences in immune infiltration patterns and anti-tumor drug responses. Unsupervised consensus clustering analysis delineated four distinct subgroups of patients, each characterized by a unique prognosis and tumor immune microenvironment (TIME). Conclusion This study is the first to develop a prognostic model incorporating 4-GRGs that effectively predicts the prognosis, tumor microenvironment infiltration, and drug sensitivity in HCC patients. The model based on 4 GRGs may contribute to predict the prognosis, immunotherapy and chemotherapy response of HCC patients.
Collapse
Affiliation(s)
- Xilong Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Jianjin Xue
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Jie Zhang
- Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Jiajia Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| |
Collapse
|
3
|
Yu X, Li S. Specific regulation of epigenome landscape by metabolic enzymes and metabolites. Biol Rev Camb Philos Soc 2024; 99:878-900. [PMID: 38174803 DOI: 10.1111/brv.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Metabolism includes anabolism and catabolism, which play an essential role in many biological processes. Chromatin modifications are post-translational modifications of histones and nucleic acids that play important roles in regulating chromatin-associated processes such as gene transcription. There is a tight connection between metabolism and chromatin modifications. Many metabolic enzymes and metabolites coordinate cellular activities with alterations in nutrient availability by regulating gene expression through epigenetic mechanisms such as DNA methylation and histone modifications. The dysregulation of gene expression by metabolism and epigenetic modifications may lead to diseases such as diabetes and cancer. Recent studies reveal that metabolic enzymes and metabolites specifically regulate chromatin modifications, including modification types, modification residues and chromatin regions. This specific regulation has been implicated in the development of human diseases, yet the underlying mechanisms are only beginning to be uncovered. In this review, we summarise recent studies of the molecular mechanisms underlying the metabolic regulation of histone and DNA modifications and discuss how they contribute to pathogenesis. We also describe recent developments in technologies used to address the key questions in this field. We hope this will inspire further in-depth investigations of the specific regulatory mechanisms involved, and most importantly will shed lights on the development of more effective disease therapies.
Collapse
Affiliation(s)
- Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
4
|
Sun F, Sun Y, Wang X, Zhu J, Chen S, Yu Y, Zhu M, Xu W, Qian H. Engineered mesenchymal stem cell-derived small extracellular vesicles for diabetic retinopathy therapy through HIF-1α/EZH2/PGC-1α pathway. Bioact Mater 2024; 33:444-459. [PMID: 38076648 PMCID: PMC10697990 DOI: 10.1016/j.bioactmat.2023.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 09/04/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness worldwide with limited treatment options. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) hold promise as a cell-free therapy for retinal diseases. In this study, we present evidence that the intravitreal injection of MSC-sEVs improved retinal function and alleviated retinal apoptosis, inflammation, and angiogenesis in both db/db mice and streptozotocin-induced diabetic rats. Mechanistically, hyperglycemia-induced activation of hypoxia-inducible factor-1α (HIF-1α) inhibited the tripartite motif 21 (TRIM21)-mediated ubiquitination and degradation of enhancer of zeste homologue 2 (EZH2), ultimately resulting in the downregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) through EZH2-induced methylation modification. The presence of miR-5068 and miR-10228 in MSC-sEVs targeted the HIF-1α/EZH2/PGC-1α pathway. The blockade of miR-5068 and miR-10228 abolished the retinal therapeutic effects of MSC-sEVs. Additionally, we engineered MSC-sEVs with elevated levels of miR-5068 and miR-10228 to enhance retinal repair efficiency. Together, our findings provide novel insights into the mechanism underlying DR progress and highlight the potential of MSC-sEVs, especially engineered MSC-sEVs, as a therapeutic option for DR.
Collapse
Affiliation(s)
- Fengtian Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - Yuntong Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - Xiaoling Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Laboratory Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361006, Fujian, China
| | - Junyan Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shenyuan Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yifan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Mengyao Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| |
Collapse
|
5
|
Guo Y, Cheng R, Wang Y, Gonzalez ME, Zhang H, Liu Y, Kleer CG, Xue L. Regulation of EZH2 protein stability: new mechanisms, roles in tumorigenesis, and roads to the clinic. EBioMedicine 2024; 100:104972. [PMID: 38244292 PMCID: PMC10835131 DOI: 10.1016/j.ebiom.2024.104972] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
The importance of EZH2 as a key methyltransferase has been well documented theoretically. Practically, the first EZH2 inhibitor Tazemetostat (EPZ6438), was approved by FDA in 2020 and is used in clinic. However, for most solid tumors it is not as effective as desired and the scope of clinical indications is limited, suggesting that targeting its enzymatic activity may not be sufficient. Recent technologies focusing on the degradation of EZH2 protein have drawn attention due to their potential robust effects. This review focuses on the molecular mechanisms that regulate EZH2 protein stability via post-translational modifications (PTMs), mainly including ubiquitination, phosphorylation, and acetylation. In addition, we discuss recent advancements of multiple proteolysis targeting chimeras (PROTACs) strategies and the latest degraders that can downregulate EZH2 protein. We aim to highlight future directions to expand the application of novel EZH2 inhibitors by targeting both EZH2 enzymatic activity and protein stability.
Collapse
Affiliation(s)
- Yunyun Guo
- Cancer Center of Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Rui Cheng
- Cancer Center of Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yuqing Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Maria E Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hongshan Zhang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yang Liu
- Cancer Center of Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Lixiang Xue
- Cancer Center of Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
6
|
Li B, Zhou Q, Wan Q, Qiao X, Chen S, Zhou J, Wuxiao Z, Luo L, Ng SB, Li J, Chng WJ. EZH2 K63-polyubiquitination affecting migration in extranodal natural killer/T-cell lymphoma. Clin Epigenetics 2023; 15:187. [PMID: 38031139 PMCID: PMC10685657 DOI: 10.1186/s13148-023-01606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Overexpressed EZH2 is oncogenically involved in the pathogenesis of different cancerous contexts including extranodal natural killer/T cell lymphoma (ENKTL). However, the underlying mechanisms of EZH2 upregulation have not been fully clarified and it is still difficult to target EZH2 in ENKTL. RESULTS Current study identifies an E3 ligase TRIP12 that triggers K63-linked polyubiquitination of EZH2 in ENKTL and unexpectedly, stabilizes EZH2. As determined by gene expression profiling (GEP), TRIP12 and EZH2 levels correlate with each other in ENKTL patient samples. Aided by quantitative mass spectrometry (MS) and follow-up analysis, we identify K634 as the ubiquitination site of EZH2. Further study confirms that TRIP12-mediated EZH2 K634 ubiquitination enhances the interaction between EZH2 and SUZ12 or CDK1 and increases the level of EZH2 T487 phosphorylation. This study further demonstrates the TRIP12-EZH2 signaling might be regulated by cytoplasmic HSP60. Importantly, the TRIP12-EZH2 axis mediates ENKTL cell migration via accelerating epithelial-mesenchymal transition (EMT). Moreover, our study finds out dexamethasone treatment manipulates TRIP12-EZH2 signaling and may represent a novel therapeutic strategy against ENKTL metastasis. CONCLUSIONS Altogether, TRIP12 induces K63-linked site-specific polyubiquitination of EZH2 for stabilization, which promotes ENKTL cell migration and could be targeted by dexamethasone treatment.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Qidi Zhou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Qin Wan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xuan Qiao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Shangying Chen
- Bioinformatics Core, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Zhijun Wuxiao
- Department of Hematology, Lymphoma and Myeloma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Lei Luo
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jieping Li
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore.
| |
Collapse
|
7
|
Wang B, Liu Y, Liao Z, Wu H, Zhang B, Zhang L. EZH2 in hepatocellular carcinoma: progression, immunity, and potential targeting therapies. Exp Hematol Oncol 2023; 12:52. [PMID: 37268997 DOI: 10.1186/s40164-023-00405-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/15/2023] [Indexed: 06/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death. The accumulation of genetic and epigenetic changes is closely related to the occurrence and development of HCC. Enhancer of zeste homolog 2 (EZH2, a histone methyltransferase) is suggested to be one of the principal factors that mediates oncogenesis by acting as a driver of epigenetic alternation. Recent studies show that EZH2 is widely involved in proliferation and metastasis of HCC cells. In this review, the functions of EZH2 in HCC progression, the role of EZH2 in tumor immunity and the application of EZH2-related inhibitors in HCC therapy are summarized.
Collapse
Affiliation(s)
- Bohan Wang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haofeng Wu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lei Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Hepatobiliary Surgery, Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
- Key Laboratory of Hepatobiliary and Pancreatic Diseases of Shanxi Province (Preparatory), Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| |
Collapse
|
8
|
Zhou J, Lin Y, Kang X, Liu Z, Zou J, Xu F. Hypoxia-mediated promotion of glucose metabolism in non-small cell lung cancer correlates with activation of the EZH2/FBXL7/PFKFB4 axis. Cell Death Dis 2023; 14:326. [PMID: 37179372 PMCID: PMC10182982 DOI: 10.1038/s41419-023-05795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
F-box/LRR-repeat protein 7 (FBXL7) was predicted as a differentially expressed E3 ubiquitin ligase in non-small cell lung cancer (NSCLC), which has been suggested to influence cancer growth and metastasis. In this study, we aimed to decipher the function of FBXL7 in NSCLC and delineate the upstream and downstream mechanisms. FBXL7 expression was verified in NSCLC cell lines and GEPIA-based tissue samples, after which the upstream transcription factor of FBXL7 was bioinformatically identified. The substrate PFKFB4 of the FBXL7 was screened out by tandem affinity purification coupled with mass-spectrometry (TAP/MS). FBXL7 was downregulated in NSCLC cell lines and tissue samples. FBXL7 ubiquitinated and degraded PFKFB4, thus suppressing glucose metabolism and malignant phenotypes of NSCLC cells. Hypoxia-induced HIF-1α upregulation elevated EZH2 and inhibited FBXL7 transcription and reduced its expression, thus promoting PFKFB4 protein stability. By this mechanism, glucose metabolism and the malignant phenotype were enhanced. In addition, knockdown of EZH2 impeded tumor growth through the FBXL7/PFKFB4 axis. In conclusion, our work reveals that the EZH2/FBXL7/PFKFB4 axis plays a regulatory role in glucose metabolism and tumor growth of NSCLC, which is expected to be potential biomarkers for NSCLC.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yang Lin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiuhua Kang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhicheng Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Juntao Zou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Fei Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
9
|
Fructose-1,6-bisphosphatase 1 functions as a protein phosphatase to dephosphorylate histone H3 and suppresses PPARα-regulated gene transcription and tumour growth. Nat Cell Biol 2022; 24:1655-1665. [PMID: 36266488 DOI: 10.1038/s41556-022-01009-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/09/2022] [Indexed: 01/18/2023]
Abstract
Tumour cells exhibit greater metabolic plasticity than normal cells and possess selective advantages for survival and proliferation with unclearly defined mechanisms. Here we demonstrate that glucose deprivation in normal hepatocytes induces PERK-mediated fructose-1,6-bisphosphatase 1 (FBP1) S170 phosphorylation, which converts the FBP1 tetramer to monomers and exposes its nuclear localization signal for nuclear translocation. Importantly, nuclear FBP1 binds PPARα and functions as a protein phosphatase that dephosphorylates histone H3T11 and suppresses PPARα-mediated β-oxidation gene expression. In contrast, FBP1 S124 is O-GlcNAcylated by overexpressed O-linked N-acetylglucosamine transferase in hepatocellular carcinoma cells, leading to inhibition of FBP1 S170 phosphorylation and enhancement of β-oxidation for tumour growth. In addition, FBP1 S170 phosphorylation inversely correlates with β-oxidation gene expression in hepatocellular carcinoma specimens and patient survival duration. These findings highlight the differential role of FBP1 in gene regulation in normal and tumour cells through direct chromatin modulation and underscore the inactivation of its protein phosphatase function in tumour growth.
Collapse
|
10
|
Xu S, Liu H, Tian R, Xie J, Chen S, Luo J, Zhu H, Wang Y, Li Z. Construction and validation of a prognostic model with RNA binding protein-related mRNAs for the HBV-related hepatocellular carcinoma patients. Front Oncol 2022; 12:970613. [PMID: 36212461 PMCID: PMC9539435 DOI: 10.3389/fonc.2022.970613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide with poor clinical outcomes, and the infection of hepatitis B virus (HBV) is the leading cause of this disease. Mounting evidence shows that RNA binding proteins (RBPs) can modulate the progression of cancers. However, the functions and clinical implications of RBP-related mRNAs in HBV-related HCC remain largely unclear. Therefore, we aim to develop a prognostic model based on the RBP-related mRNAs for HBV-related HCC patients. Firstly, we identified 626 differentially expressed RBP-related mRNAs in the HBV-related HCC through the Pearson correlation analysis. Subsequently, the Kaplan-Meier survival, univariate, Least Absolute Shrinkage and Selection Operator (LASSO), and multivariate Cox regression analyses were used to construct a prognostic model comprised of five RBP-related mRNAs. Furthermore, the patients were categorized into the high- and low-risk groups by the prognostic model and the patients in the high-risk group had a poor prognosis. Additionally, the prognostic model was an independent predictor of prognosis, and the accuracy of the prognostic model was proved by the receiver operator characteristic (ROC) analysis. Furthermore, the functional enrichment analysis revealed that various cancer-promoting processes were enriched in the high-risk group. Taken together, our study may provide the HBV-related HCC biomarkers of prognosis to improve the clinical outcomes of patients.
Collapse
Affiliation(s)
- Shaohua Xu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
| | - Hui Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
| | - Renyun Tian
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
| | - Jiahui Xie
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
| | - Su Chen
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
| | - Junyun Luo
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
| | - Haizhen Zhu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
- Research Center of Cancer Prevention & Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Cancer Hospital, Changsha, China
- *Correspondence: Haizhen Zhu, ; Yirong Wang, ; Zhaoyong Li,
| | - Yirong Wang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, China
- *Correspondence: Haizhen Zhu, ; Yirong Wang, ; Zhaoyong Li,
| | - Zhaoyong Li
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
- Research Institute of Hunan University in Chongqing, Chongqing, China
- *Correspondence: Haizhen Zhu, ; Yirong Wang, ; Zhaoyong Li,
| |
Collapse
|
11
|
Bian X, Jiang H, Meng Y, Li YP, Fang J, Lu Z. Regulation of gene expression by glycolytic and gluconeogenic enzymes. Trends Cell Biol 2022; 32:786-799. [PMID: 35300892 DOI: 10.1016/j.tcb.2022.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
Gene transcription and cell metabolism are two fundamental biological processes that mutually regulate each other. Upregulated or altered expression of glucose metabolic genes in glycolysis and gluconeogenesis is a major driving force of enhanced aerobic glycolysis in tumor cells. Importantly, glycolytic and gluconeogenic enzymes in tumor cells acquire moonlighting functions and directly regulate gene expression by modulating chromatin or transcriptional complexes. The mutual regulation between cellular metabolism and gene expression in a feedback mechanism constitutes a unique feature of tumor cells and provides specific molecular and functional targets for cancer treatment.
Collapse
Affiliation(s)
- Xueli Bian
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; Institute of Biomedical Sciences, Nanchang University Medical College, Nanchang 330031, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Ying-Ping Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Jing Fang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
12
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
13
|
Godfrey J, Riscal R, Skuli N, Simon MC. Glucagon signaling via supraphysiologic GCGR can reduce cell viability without stimulating gluconeogenic gene expression in liver cancer cells. Cancer Metab 2022; 10:4. [PMID: 35123542 PMCID: PMC8817478 DOI: 10.1186/s40170-022-00280-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Deregulated glucose metabolism is a critical component of cancer growth and survival, clinically evident via FDG-PET imaging of enhanced glucose uptake in tumor nodules. Tumor cells utilize glucose in a variety of interconnected biochemical pathways to generate energy, anabolic precursors, and other metabolites necessary for growth. Glucagon-stimulated gluconeogenesis opposes glycolysis, potentially representing a pathway-specific strategy for targeting glucose metabolism in tumor cells. Here, we test the hypothesis of whether glucagon signaling can activate gluconeogenesis to reduce tumor proliferation in models of liver cancer.
Methods
The glucagon receptor, GCGR, was overexpressed in liver cancer cell lines consisting of a range of etiologies and genetic backgrounds. Glucagon signaling transduction was measured by cAMP ELISAs, western blots of phosphorylated PKA substrates, and qPCRs of relative mRNA expression of multiple gluconeogenic enzymes. Lastly, cell proliferation and apoptosis assays were performed to quantify the biological effect of glucagon/GCGR stimulation.
Results
Signaling analyses in SNU398 GCGR cells treated with glucagon revealed an increase in cAMP abundance and phosphorylation of downstream PKA substrates, including CREB. qPCR data indicated that none of the three major gluconeogenic genes, G6PC, FBP1, or PCK1, exhibit significantly higher mRNA levels in SNU398 GCGR cells when treated with glucagon; however, this could be partially increased with epigenetic inhibitors. In glucagon-treated SNU398 GCGR cells, flow cytometry analyses of apoptotic markers and growth assays reproducibly measured statistically significant reductions in cell viability. Finally, proliferation experiments employing siCREB inhibition showed no reversal of cell death in SNU398 GCGR cells treated with glucagon, indicating the effects of glucagon in this setting are independent of CREB.
Conclusions
For the first time, we report a potential tumor suppressive role for glucagon/GCGR in liver cancer. Specifically, we identified a novel cell line-specific phenotype, whereby glucagon signaling can induce apoptosis via an undetermined mechanism. Future studies should explore the potential effects of glucagon in diabetic liver cancer patients.
Collapse
|
14
|
Liu Z, You Y, Chen Q, Li G, Pan W, Yang Q, Dong J, Wu Y, Bei JX, Pan C, Li F, Li B. Extracellular vesicle-mediated communication between hepatocytes and natural killer cells promotes hepatocellular tumorigenesis. Mol Ther 2022; 30:606-620. [PMID: 34601133 PMCID: PMC8821954 DOI: 10.1016/j.ymthe.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is frequently characterized by metabolic and immune remodeling in the tumor microenvironment. We previously discovered that liver-specific deletion of fructose-1, 6-bisphosphatase 1 (FBP1), a gluconeogenic enzyme ubiquitously suppressed in HCC tissues, promotes liver tumorigenesis and induces metabolic and immune perturbations closely resembling human HCC. However, the underlying mechanisms remain incompletely understood. Here, we reported that FBP1-deficient livers exhibit diminished amounts of natural killer (NK) cells and accelerated tumorigenesis. Using the diethylnitrosamine-induced HCC mouse model, we analyzed potential changes in the immune cell populations purified from control and FBP1-depleted livers and found that NK cells were strongly suppressed. Mechanistically, FBP1 attenuation in hepatocytes derepresses an zeste homolog 2 (EZH2)-dependent transcriptional program to inhibit PKLR expression. This leads to reduced levels of PKLR cargo proteins sorted into hepatocyte-derived extracellular vesicles (EVs), dampened activity of EV-targeted NK cells, and accelerated liver tumorigenesis. Our study demonstrated that hepatic FBP1 depletion promotes HCC-associated immune remodeling, partly through the transfer of hepatocyte-secreted, PKLR-attenuated EVs to NK cells.
Collapse
Affiliation(s)
- Zhijun Liu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuyu You
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiyi Chen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guobang Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenfeng Pan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiajun Dong
- Department of Neurosurgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital, Sun Yat-sen University, Guangdong 529030, China
| | - Yi Wu
- Department of Neurosurgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital, Sun Yat-sen University, Guangdong 529030, China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510080, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chaoyun Pan
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Fuming Li
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Bo Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510080, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China; RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
15
|
Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma? Drug Resist Updat 2021; 59:100790. [PMID: 34924279 DOI: 10.1016/j.drup.2021.100790] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the third cause of cancer death in men worldwide, and its increasing incidence can be explained by the increasing occurrence of non-alcoholic steatohepatitis (NASH). HCC prognosis is poor, as its 5-year overall survival is approximately 18 % and most cases are diagnosed at an inoperable advanced stage. Moreover, tumor sensitivity to conventional chemotherapeutics (particularly to cisplatin-based regimen), trans-arterial chemoembolization (cTACE), tyrosine kinase inhibitors, anti-angiogenic molecules and immune checkpoint inhibitors is limited. Oncogenic signaling pathways, such as HIF-1α and RAS/PI3K/AKT, may provoke drug resistance by enhancing the aerobic glycolysis ("Warburg effect") in cancer cells. Indeed, this metabolism, which promotes cancer cell development and aggressiveness, also induces extracellular acidity. In turn, this acidity promotes the protonation of drugs, hence abrogating their internalization, since they are most often weakly basic molecules. Consequently, targeting the Warburg effect in these cancer cells (which in turn would reduce the extracellular acidification) could be an effective strategy to increase the delivery of drugs into the tumor. Phosphofructokinase-1 (PFK1) and its activator PFK2 are the main regulators of glycolysis, and they also couple the enhancement of glycolysis to the activation of key signaling cascades and cell cycle progression. Therefore, targeting this "Gordian Knot" in HCC cells would be of crucial importance. Here, we suggest that this could be achieved by citrate administration at high concentration, because citrate is a physiologic inhibitor of PFK1 and PFK2. As shown in various in vitro studies, including HCC cell lines, administration of high concentrations of citrate inhibits PFK1 and PFK2 (and consequently glycolysis), decreases ATP production, counteracts HIF-1α and PI3K/AKT signaling, induces apoptosis, and sensitizes cells to cisplatin treatment. Administration of high concentrations of citrate in animal models (including Ras-driven tumours) has been shown to effectively inhibit cancer growth, reverse cell dedifferentiation, and neutralize intratumor acidity, without apparent toxicity in animal studies. Citrate may also induce a rapid secretion of pro-inflammatory cytokines by macrophages, and it could favour the destruction of cancer stem cells (CSCs) sustaining tumor recurrence. Consequently, this "citrate strategy" could improve the tumor sensitivity to current treatments of HCC by reducing the extracellular acidity, thus enhancing the delivery of chemotherapeutic drugs into the tumor. Therefore, we propose that this strategy should be explored in clinical trials, in particular to enhance cTACE effectiveness.
Collapse
|
16
|
Pan C, Li B, Simon MC. Moonlighting functions of metabolic enzymes and metabolites in cancer. Mol Cell 2021; 81:3760-3774. [PMID: 34547237 DOI: 10.1016/j.molcel.2021.08.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022]
Abstract
The growing field of tumor metabolism has greatly expanded our knowledge of metabolic reprogramming in cancer. Apart from their established roles, various metabolic enzymes and metabolites harbor non-canonical ("moonlighting") functions to support malignant transformation. In this article, we intend to review the current understanding of moonlighting functions of metabolic enzymes and related metabolites broadly existing in cancer cells by dissecting each major metabolic pathway and its regulation of cellular behaviors. Understanding these non-canonical functions may broaden the horizon of the cancer metabolism field and uncover novel therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Chaoyun Pan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510080, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Chakraborty S, Balan M, Sabarwal A, Choueiri TK, Pal S. Metabolic reprogramming in renal cancer: Events of a metabolic disease. Biochim Biophys Acta Rev Cancer 2021; 1876:188559. [PMID: 33965513 PMCID: PMC8349779 DOI: 10.1016/j.bbcan.2021.188559] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
Recent studies have established that tumors can reprogram the pathways involved in nutrient uptake and metabolism to withstand the altered biosynthetic, bioenergetics and redox requirements of cancer cells. This phenomenon is called metabolic reprogramming, which is promoted by the loss of tumor suppressor genes and activation of oncogenes. Because of alterations and perturbations in multiple metabolic pathways, renal cell carcinoma (RCC) is sometimes termed as a "metabolic disease". The majority of metabolic reprogramming in renal cancer is caused by the inactivation of von Hippel-Lindau (VHL) gene and activation of the Ras-PI3K-AKT-mTOR pathway. Hypoxia-inducible factor (HIF) and Myc are other important players in the metabolic reprogramming of RCC. All types of RCCs are associated with reprogramming of glucose and fatty acid metabolism and the tricarboxylic acid (TCA) cycle. Metabolism of glutamine, tryptophan and arginine is also reprogrammed in renal cancer to favor tumor growth and oncogenesis. Together, understanding these modifications or reprogramming of the metabolic pathways in detail offer ample opportunities for the development of new therapeutic targets and strategies, discovery of biomarkers and identification of effective tumor detection methods.
Collapse
Affiliation(s)
- Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, MA 02115, United States of America; Harvard Medical School, Boston, MA 02115, United States of America
| | - Murugabaskar Balan
- Division of Nephrology, Boston Children's Hospital, MA 02115, United States of America; Harvard Medical School, Boston, MA 02115, United States of America
| | - Akash Sabarwal
- Division of Nephrology, Boston Children's Hospital, MA 02115, United States of America; Harvard Medical School, Boston, MA 02115, United States of America
| | - Toni K Choueiri
- Dana Farber Cancer Institute, Boston, MA 02115, United States of America; Harvard Medical School, Boston, MA 02115, United States of America
| | - Soumitro Pal
- Division of Nephrology, Boston Children's Hospital, MA 02115, United States of America; Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
18
|
Chen W, Yu X, Wu Y, Tang J, Yu Q, Lv X, Zha Z, Hu B, Li X, Chen J, Ma L, Workman JL, Li S. The SESAME complex regulates cell senescence through the generation of acetyl-CoA. Nat Metab 2021; 3:983-1000. [PMID: 34183849 DOI: 10.1038/s42255-021-00412-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/14/2021] [Indexed: 11/09/2022]
Abstract
Acetyl-CoA is a central node in carbon metabolism and plays critical roles in regulatory and biosynthetic processes. The acetyl-CoA synthetase Acs2, which catalyses acetyl-CoA production from acetate, is an integral subunit of the serine-responsive SAM-containing metabolic enzyme (SESAME) complex, but the precise function of Acs2 within the SESAME complex remains unclear. Here, using budding yeast, we show that Acs2 within the SESAME complex is required for the regulation of telomere silencing and cellular senescence. Mechanistically, the SESAME complex interacts with the histone acetyltransferase SAS protein complex to promote histone H4K16 acetylation (H4K16ac) enrichment and the occupancy of bromodomain-containing protein, Bdf1, at subtelomeric regions. This interaction maintains telomere silencing by antagonizing the spreading of Sir2 along the telomeres, which is enhanced by acetate. Consequently, dissociation of Sir2 from telomeres by acetate leads to compromised telomere silencing and accelerated chronological ageing. In human endothelial cells, ACSS2, the ortholog of yeast Acs2, also interacts with H4K16 acetyltransferase hMOF and are required for acetate to increase H4K16ac, reduce telomere silencing and induce cell senescence. Altogether, our results reveal a conserved mechanism to connect cell metabolism with telomere silencing and cellular senescence.
Collapse
Affiliation(s)
- Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jie Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaodong Lv
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, China
| | - Zitong Zha
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, China
| | - Bicheng Hu
- The Central Laboratory, Wuhan No.1 Hospital, Wuhan, China
| | - Xin Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jianguo Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
19
|
Myristoylation-mediated phase separation of EZH2 compartmentalizes STAT3 to promote lung cancer growth. Cancer Lett 2021; 516:84-98. [PMID: 34102285 DOI: 10.1016/j.canlet.2021.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/27/2023]
Abstract
N-myristoylation is a crucial signaling and pathogenic modification process that confers hydrophobicity to cytosolic proteins. Although different large-scale approaches have been applied, a large proportion of myristoylated proteins remain to be identified. EZH2 is overexpressed in lung cancer cells and exerts oncogenic effects via its intrinsic methyltransferase activity. Using a well-established click chemistry approach, we found that EZH2 can be modified by myristoylation at its N-terminal glycine in lung cancer cells. Hydrophobic interaction is one of the main forces driving or stabilizing liquid-liquid phase separation (LLPS), raising the possibility that myristoylation can modulate LLPS by mediating hydrophobic interactions. Indeed, myristoylation facilitates EZH2 to form phase-separated liquid droplets in lung cancer cells and in vitro. Furthermore, we provide evidence that myristoylation-mediated LLPS of EZH2 compartmentalizes its non-canonical substrate, STAT3, and activates STAT3 signaling, ultimately resulting in accelerated lung cancer cell growth. Thus, targeting EZH2 myristoylation may have significant therapeutic efficacy in the treatment of lung cancer. Altogether, these observations not only extend the list of myristoylated proteins, but also indicate that hydrophobic lipidation may serve as a novel incentive to induce or maintain LLPS.
Collapse
|
20
|
Xu D, Shao F, Bian X, Meng Y, Liang T, Lu Z. The Evolving Landscape of Noncanonical Functions of Metabolic Enzymes in Cancer and Other Pathologies. Cell Metab 2021; 33:33-50. [PMID: 33406403 DOI: 10.1016/j.cmet.2020.12.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Key pathological, including oncogenic, signaling pathways regulate the canonical functions of metabolic enzymes that serve the cellular metabolic needs. Importantly, these signaling pathways also confer a large number of metabolic enzymes to have noncanonical or nonmetabolic functions that are referred to as "moonlighting" functions. In this review, we highlight how aberrantly regulated metabolic enzymes with such activities play critical roles in the governing of a wide spectrum of instrumental cellular activities, including gene expression, cell-cycle progression, DNA repair, cell proliferation, survival, apoptosis, and tumor microenvironment remodeling, thereby promoting the pathologic progression of disease, including cancer.
Collapse
Affiliation(s)
- Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Fei Shao
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China
| | - Xueli Bian
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University Cancer Center, Hangzhou 310029, China.
| |
Collapse
|
21
|
Leithner K. Epigenetic Marks Repressing Gluconeogenesis in Liver and Kidney Cancer. Cancer Res 2020; 80:657-658. [PMID: 32060227 DOI: 10.1158/0008-5472.can-19-3953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022]
Abstract
Gluconeogenesis is frequently suppressed in tumors arising in gluconeogenic organs and reexpression of a gluconeogenesis enzyme, fructose-1,6-bisphosphatase (FBP1), was found to inhibit tumor growth. In this issue of Cancer Research, Liao and colleagues show that histone H3 trimethylation on lysine 27, induced by polycomb repressive complex 2 (PRC2), is responsible for downregulating FBP1 in liver and kidney cancer cells. Moreover, they identified FBP1 repression as an important downstream mechanism of PRC2-mediated carcinogenesis. FBP1 inhibits glycolysis but also directly interferes with PRC2 function, thus FBP1 and PRC2 are part of a novel negative feedback loop that is deregulated in liver and kidney cancer.See related article by Liao et al., p. 675.
Collapse
Affiliation(s)
- Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
22
|
Tian H, Zhu X, Lv Y, Jiao Y, Wang G. Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect. Cancer Manag Res 2020; 12:5957-5974. [PMID: 32765096 PMCID: PMC7381782 DOI: 10.2147/cmar.s258196] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a tumor that exhibits glucometabolic reprogramming, with a high incidence and poor prognosis. Usually, HCC is not discovered until an advanced stage. Sorafenib is almost the only drug that is effective at treating advanced HCC, and promising metabolism-related therapeutic targets of HCC are urgently needed. The “Warburg effect” illustrates that tumor cells tend to choose aerobic glycolysis over oxidative phosphorylation (OXPHOS), which is closely related to the features of the tumor microenvironment (TME). The HCC microenvironment consists of hypoxia, acidosis and immune suppression, and contributes to tumor glycolysis. In turn, the glycolysis of the tumor aggravates hypoxia, acidosis and immune suppression, and leads to tumor proliferation, angiogenesis, epithelial–mesenchymal transition (EMT), invasion and metastasis. In 2017, a mechanism underlying the effects of gluconeogenesis on inhibiting glycolysis and blockading HCC progression was proposed. Treating HCC by increasing gluconeogenesis has attracted increasing attention from scientists, but few articles have summarized it. In this review, we discuss the mechanisms associated with the TME, glycolysis and gluconeogenesis and the current treatments for HCC. We believe that a treatment combination of sorafenib with TME improvement and/or anti-Warburg therapies will set the trend of advanced HCC therapy in the future.
Collapse
Affiliation(s)
- Huining Tian
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| |
Collapse
|
23
|
Lu C, Ren C, Yang T, Sun Y, Qiao P, Han X, Yu Z. Fructose-1, 6-bisphosphatase 1 interacts with NF-κB p65 to regulate breast tumorigenesis via PIM2 induced phosphorylation. Am J Cancer Res 2020; 10:8606-8618. [PMID: 32754266 PMCID: PMC7392005 DOI: 10.7150/thno.46861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Fructose-1, 6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, was recently shown to be a tumor suppressor and could mediate the activities of multiple transcriptional factors via its non-canonical functions. However, the underlying mechanism of posttranscriptional modification on the non-canonical functions of FBP1 remains elusive. Methods: We employed immunoaffinity purification to identify binding partner(s) and used co-immunoprecipitation to verify their interactions. Kinase reaction was used to confirm PIM2 could phosphorylate FBP1. Overexpression or knockdown proteins were used to assess the role in modulating p65 protein stability. Mechanistic analysis was involved in protein degradation and polyubiquitination assays. Nude mice and PIM2-knockout mice was used to study protein functions in vitro and in vivo. Results: Here, we identified Proviral Insertion in Murine Lymphomas 2 (PIM2) as a new binding partner of FBP1, which could phosphorylate FBP1 on Ser144. Surprisingly, phosphorylated FBP1 Ser144 abrogated its interaction with NF-κB p65, promoting its protein stability through the CHIP-mediated proteasome pathway. Furthermore, phosphorylation of FBP1 on Ser144 increased p65 regulated PD-L1 expression. As a result, phosphorylation of FBP1 on Ser144 promoted breast tumor growth in vitro and in vivo. Moreover, the levels of PIM2 and pSer144-FBP1 proteins were positively correlated with each other in human breast cancer and PIM2 knockout mice. Conclusions: Our findings revealed that phosphorylation noncanonical FBP1 by PIM2 was a novel regulator of NF-κB pathway, and highlights PIM2 inhibitors as breast cancer therapeutics.
Collapse
|
24
|
Shapira SN, Christofk HR. Metabolic Regulation of Tissue Stem Cells. Trends Cell Biol 2020; 30:566-576. [PMID: 32359707 DOI: 10.1016/j.tcb.2020.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Adult tissue stem cells mediate organ homeostasis and regeneration and thus are continually making decisions about whether to remain quiescent, proliferate, or differentiate into mature cell types. These decisions often integrate external cues, such as energy balance and the nutritional status of the organism. Metabolic substrates and byproducts that regulate epigenetic and signaling pathways are now appreciated to have instructive rather than bystander roles in regulating cell fate decisions. In this review, we highlight recent literature focused on how metabolites and dietary manipulations can impact cell fate decisions, with a focus on the regulation of adult tissue stem cells.
Collapse
Affiliation(s)
- Suzanne N Shapira
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|