1
|
Wang L, Yao Q, Guo X, Wang B, Si J, Wang X, Jing S, Yan M, Shi Y, Song G, Shen X, Guan J, Zhao Y, Zhu C. Targeted delivery of CEBPA-saRNA for the treatment of pancreatic ductal adenocarcinoma by transferrin receptor aptamer decorated tetrahedral framework nucleic acid. J Nanobiotechnology 2024; 22:392. [PMID: 38965606 PMCID: PMC11223357 DOI: 10.1186/s12951-024-02665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), remains a highly lethal malignancy with limited therapeutic options and a dismal prognosis. By targeting the underlying molecular abnormalities responsible for PDAC development and progression, gene therapy offers a promising strategy to overcome the challenges posed by conventional radiotherapy and chemotherapy. This study sought to explore the therapeutic potential of small activating RNAs (saRNAs) specifically targeting the CCAAT/enhancer-binding protein alpha (CEBPA) gene in PDAC. To overcome the challenges associated with saRNA delivery, tetrahedral framework nucleic acids (tFNAs) were rationally engineered as nanocarriers. These tFNAs were further functionalized with a truncated transferrin receptor aptamer (tTR14) to enhance targeting specificity for PDAC cells. The constructed tFNA-based saRNA formulation demonstrated exceptional stability, efficient saRNA release ability, substantial cellular uptake, biocompatibility, and nontoxicity. In vitro experiments revealed successful intracellular delivery of CEBPA-saRNA utilizing tTR14-decorated tFNA nanocarriers, resulting in significant activation of tumor suppressor genes, namely, CEBPA and its downstream effector P21, leading to notable inhibition of PDAC cell proliferation. Moreover, in a mouse model of PDAC, the tTR14-decorated tFNA-mediated delivery of CEBPA-saRNA effectively upregulated the expression of the CEBPA and P21 genes, consequently suppressing tumor growth. These compelling findings highlight the potential utility of saRNA delivered via a designed tFNA nanocarrier to induce the activation of tumor suppressor genes as an innovative therapeutic approach for PDAC.
Collapse
Affiliation(s)
- Li Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Geriatric Medical Center, Shanghai, China
| | - Xuerui Guo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Bingmei Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingye Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shisong Jing
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Yan
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yan Shi
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiyu Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Yicheng Zhao
- China-Japan Union Hospital of Jilin University, Changchun, China.
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China.
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou, China.
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Yuasa H, Morino N, Wagatsuma T, Munekane M, Ueda S, Matsunaga M, Uchida Y, Katayama T, Katoh T, Kambe T. ZNT5-6 and ZNT7 play an integral role in protein N-glycosylation by supplying Zn 2+ to Golgi α-mannosidase II. J Biol Chem 2024; 300:107378. [PMID: 38762179 PMCID: PMC11209640 DOI: 10.1016/j.jbc.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
The stepwise addition of monosaccharides to N-glycans attached to client proteins to generate a repertoire of mature proteins involves a concerted action of many glycosidases and glycosyltransferases. Here, we report that Golgi α-mannosidase II (GMII), a pivotal enzyme catalyzing the first step in the conversion of hybrid- to complex-type N-glycans, is activated by Zn2+ supplied by the early secretory compartment-resident ZNT5-ZNT6 heterodimers (ZNT5-6) and ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in marked accumulation of hybrid-type and complex/hybrid glycans with concomitant reduction of complex- and high-mannose-type glycans. In cells lacking the ZNT5-6 and ZNT7 functions, the GMII activity is substantially decreased. In contrast, the activity of its homolog, lysosomal mannosidase (LAMAN), is not decreased. Moreover, we show that the growth of pancreatic cancer MIA PaCa-2 cells lacking ZNT5-6 and ZNT7 is significantly decreased in a nude mouse xenograft model. Our results indicate the integral roles of ZNT5-6 and ZNT7 in N-glycosylation and highlight their potential as novel target proteins for cancer therapy.
Collapse
Affiliation(s)
- Hana Yuasa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naho Morino
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sachiko Ueda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mayu Matsunaga
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuo Uchida
- Department of Molecular Systems Pharmaceutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima City, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Toshihiko Katoh
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Jian S, Kong D, Tian J. Expression of miR-425-5p in Pancreatic Carcinoma and Its Correlation with Tumor Immune Microenvironment. J INVEST SURG 2023; 36:2216756. [PMID: 37455016 DOI: 10.1080/08941939.2023.2216756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/17/2023] [Indexed: 07/18/2023]
Abstract
Background: Pancreatic carcinoma (PC) is a global health threat with a high death rate. miRNAs are implicated in tumor initiation and progression. This study explored the expression of miR-425-5p in PC patients and its correlation with tumor immune microenvironment (TIME).Method: miR-425-5p expression in cancer tissues and adjacent non-tumor tissues of PC patients was examined by RT-qPCR. The levels of immune cells and cytokines were measured by flow cytometry and ELISA. The correlation of miR-425-5p with TNM stage and TIME was assessed by Spearman method. The death of PC patients was recorded through 36-month follow-ups. The prognosis of patients was assessed by Kaplan-Meier curves.Results: miR-425-5p expression was upregulated in PC tissues and elevated with increasing TNM stage. miR-425-5p expression was positively correlated with TNM stage. The PC tissues had decreased levels of CD3+, CD4+, CD8+, and natural killer (NK) cells, CD4+/CD8+ ratio, IL-2, and INF-γ, but increased levels of Tregs, IL-4, IL-10, and TGF-β. miR-425-5p level in cancer tissues was positively correlated with Tregs/IL-10/TGF-β, but negatively related to CD3+/CD4+/CD8+/NK cells and IL-2/INF-γ. Moreover, high miR-425-5p expression predicted a poor prognosis in PC patients.Conclusion: miR-425-5p is upregulated in PC patients and is prominently associated with the TIME, and high miR-425-5p predicts a poor prognosis in PC patients.
Collapse
Affiliation(s)
- Shuo Jian
- Department of Oncology, Suining Central Hospital, Suining, Sichuan Province, China
| | - Dehua Kong
- Department of Oncology, Suining Central Hospital, Suining, Sichuan Province, China
| | - Jieli Tian
- Department of Oncology, Suining Central Hospital, Suining, Sichuan Province, China
| |
Collapse
|
4
|
Barberio M, Pizzicannella M, Barbieri V, Benedicenti S, Mita MT, Rubichi F, Altamura A, Giaracuni G, Crafa F, Milizia A, Viola MG. Inframesocolic main pancreatic vessels-first approach for minimally invasive radical antegrade modular pancreaticosplenectomy (RAMPS): technical description and first experience. Updates Surg 2023; 75:1729-1734. [PMID: 37466897 DOI: 10.1007/s13304-023-01594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
Radical modular antegrade pancreaticosplenectomy (RAMPS) improves posterior tumor-free margins during resections of pancreatic neoplasia involving the body or tail. However, minimally invasive RAMPS is technically challenging and has been reported seldom. We present for the first time a minimally invasive RAMPS technique with an innovative approach providing early dissection and control of the main peripancreatic vessels from an inframesocolic embryonal window, suitable for laparoscopy and robotics. Minimally invasive RAMPS with inframesocolic main pancreatic vessels-first approach was performed at the Tricase Hospital (Italy) from May 2017 to April 2022 in 11 consecutive patients with neoplastic lesions of the pancreas (8 laparoscopic RAMPS and 3 robotic RAMPS). Among the laparoscopic cases, 1 included a portal vein tangential resection and 1 a celiac artery resection (modified Appleby procedure). There were no conversions, no Clavien-Dindo complications > 2, all resections' margins were tumor free, and no 90-day mortality.
Collapse
Affiliation(s)
- Manuel Barberio
- Department of Surgery, Ospedale Card. G. Panico, Via Pio X 4, 73039, Tricase, Italy.
- Department of Research, Institute Against Digestive Cancer (IRCAD), 1, Place de l'Hôpital, 67091, Strasbourg, France.
| | - Margherita Pizzicannella
- Department of Surgery, Ospedale Card. G. Panico, Via Pio X 4, 73039, Tricase, Italy
- IHU Institute of Image-Guided Surgery, Strasbourg, France
| | - Vittoria Barbieri
- Department of Surgery, Ospedale Card. G. Panico, Via Pio X 4, 73039, Tricase, Italy
| | - Sara Benedicenti
- Department of Surgery, Ospedale Card. G. Panico, Via Pio X 4, 73039, Tricase, Italy
| | - Maria Teresa Mita
- Department of Surgery, Ospedale Card. G. Panico, Via Pio X 4, 73039, Tricase, Italy
| | - Francesco Rubichi
- Department of Surgery, Ospedale Card. G. Panico, Via Pio X 4, 73039, Tricase, Italy
| | - Amedeo Altamura
- Department of Surgery, Ospedale Card. G. Panico, Via Pio X 4, 73039, Tricase, Italy
| | - Gloria Giaracuni
- Department of Surgery, Ospedale Card. G. Panico, Via Pio X 4, 73039, Tricase, Italy
| | - Francesco Crafa
- Department of Surgery, Ospedale San G. Moscati, Avellino, Italy
| | - Antonio Milizia
- Department of Surgery, Ospedale Card. G. Panico, Via Pio X 4, 73039, Tricase, Italy
- Department of Surgery, Ospedale Universitario, Verona, Italy
| | | |
Collapse
|
5
|
Rosati A, Marzullo L, De Marco M, De Laurenzi V, D’Amico MF, Turco MC. Toxicity in combined therapies for tumours treatments: a lesson from BAG3 in the TME? Front Immunol 2023; 14:1241543. [PMID: 37554328 PMCID: PMC10406442 DOI: 10.3389/fimmu.2023.1241543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Affiliation(s)
- Alessandra Rosati
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Maria Francesca D’Amico
- Azienda Ospedaliera di Rilievo Nazionale e di Alta Specialità San Giuseppe Moscati (A.O.S.G.), Avellino, Italy
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| |
Collapse
|
6
|
Kuroda Y, Oda T, Shimomura O, Hashimoto S, Akashi Y, Miyazaki Y, Furuya K, Furuta T, Nakahashi H, Louphrasitthiphol P, Mathis BJ, Nakajima T, Tateno H. Lectin-based phototherapy targeting cell surface glycans for pancreatic cancer. Int J Cancer 2023; 152:1425-1437. [PMID: 36412556 PMCID: PMC10107464 DOI: 10.1002/ijc.34362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is resistant to current treatments but lectin-based therapy targeting cell surface glycans could be a promising new horizon. Here, we report a novel lectin-based phototherapy (Lec-PT) that combines the PDAC targeting ability of rBC2LCN lectin to a photoabsorber, IRDye700DX (rBC2-IR700), resulting in a novel and highly specific near-infrared, light-activated, anti-PDAC therapy. Lec-PT cytotoxicity was first verified in vitro with a human PDAC cell line, Capan-1, indicating that rBC2-IR700 is only cytotoxic upon cellular binding and exposure to near-infrared light. The therapeutic efficacy of Lec-PT was subsequently verified in vivo using cell lines and patient-derived, subcutaneous xenografting into nude mice. Significant accumulation of rBC2-IR700 occurs as early as 2 hours postintravenous administration while cytotoxicity is only achieved upon exposure to near-infrared light. Repeated treatments further slowed tumor growth. Lec-PT was also assessed for off-target toxicity in the orthotopic xenograft model. Shielding of intraperitoneal organs from near-infrared light minimized off-target toxicity. Using readily available components, Lec-PT specifically targeted pancreatic cancer with high reproducibility and on-target, inducible toxicity. Rapid clinical development of this method is promising as a new modality for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yukihito Kuroda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Osamu Shimomura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shinji Hashimoto
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshimasa Akashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshihiro Miyazaki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiromitsu Nakahashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Pakavarin Louphrasitthiphol
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Bryan J Mathis
- International Medical Center, University of Tsukuba Hospital, Tsukuba, Japan
| | - Takahito Nakajima
- Department of Radiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
7
|
Huang X, Chi H, Gou S, Guo X, Li L, Peng G, Zhang J, Xu J, Nian S, Yuan Q. An Aggrephagy-Related LncRNA Signature for the Prognosis of Pancreatic Adenocarcinoma. Genes (Basel) 2023; 14:124. [PMID: 36672865 PMCID: PMC9859148 DOI: 10.3390/genes14010124] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a common, highly malignant, and aggressive gastrointestinal tumor. The conventional treatment of PAAD shows poor results, and patients have poor prognosis. The synthesis and degradation of proteins are essential for the occurrence and development of tumors. Aggrephagy is a type of autophagy that selectively degrades aggregated proteins. It decreases the formation of aggregates by degrading proteins, thus reducing the harm to cells. By breaking down proteins, it decreases the formation of aggregates; thus, minimizing damage to cells. For evaluating the response to immunotherapy and prognosis in PAAD patients, in this study, we developed a reliable signature based on aggrephagy-related genes (ARGs). We obtained 298 AGGLncRNAs. Based on the results of one-way Cox and LASSO analyses, the lncRNA signature was constructed. In the risk model, the prognosis of patients in the low-risk group was noticeably better than that of the patients in the high-risk group. Additionally, the ROC curves and nomograms validated the capacity of the risk model to predict the prognosis of PAAD. The patients in the low-risk and high-risk groups showed considerable variations in functional enrichment and immunological analysis. Regarding drug sensitivity, the low-risk and high-risk groups had different half-maximal inhibitory concentrations (IC50).
Collapse
Affiliation(s)
- Xueyuan Huang
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Siqi Gou
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Xiyuan Guo
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lin Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Jiayu Xu
- Statistics Department, School of Science, Minzu University of China, Beijing 100081, China
| | - Siji Nian
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Qing Yuan
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
8
|
Xu Z, Yu W, Li L, Wang G. Identification of pyroptosis-related gene signature for predicting prognosis of patients with pancreatic cancer using bioinformatics. Medicine (Baltimore) 2022; 101:e31043. [PMID: 36253973 PMCID: PMC9575720 DOI: 10.1097/md.0000000000031043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pancreatic cancer, a common digestive system malignancy, is dubbed the "king of cancers". The role of pyrophosis-related genes (PRGs) in pancreatic cancer prognosis is yet unknown. In pancreatic cancer and normal tissue, we discovered 9 PRGs that are expressed differently in pancreatic cancer and healthy tissue. Based on the differential expression of PRGs, 2 clusters of pancreatic cancer cases could be identified. The 2 groups had significant disparities in total survival time. The prognostic model of a 5-PRGs signature was created using least absolute shrinkage and selection operator (LASSO) method. The median risk score was used to split pancreatic cancer patients in The Cancer Genome Atlas (TCGA) cohort into 2 groups: low risk and high risk. Patients classified as low-risk had significantly higher survival rates than those classified as high-risk (P < .01). The same results were obtained by validating them against the Gene Expression Omnibus database (P = .030). Cox regression statistical analysis showed that risk score was an independent predictor of overall survival in pancreatic cancer patients. Functional enrichment analysis revealed that apoptosis, cell proliferation, and cell cycle-related biological processes and signaling pathways were enriched. Additionally, the immunological status of the high-risk group worsened. In conclusion, a novel pyroptosis-related gene signature can be used to predict pancreatic cancer patient prognosis.
Collapse
Affiliation(s)
- Zhongbo Xu
- Emergency Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Wenyan Yu
- The Research Center for Differentiation and Development of Basic Theories of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lin Li
- Emergency Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Guojuan Wang
- Department of Oncology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- *Correspondence: Guojuan Wang, Department of Oncology, Affiliated Hospital of Jiangxi University of Chinese Medicine, No.445, Bayi Avenue, Nanchang 330006, Jiangxi, China (e-mail: )
| |
Collapse
|
9
|
Wang X, Kuang W, Ding J, Li J, Ji M, Chen W, Shen H, Shi Z, Wang D, Wang L, Yang P. Systematic Identification of the RNA-Binding Protein STAU2 as a Key Regulator of Pancreatic Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14153629. [PMID: 35892886 PMCID: PMC9367319 DOI: 10.3390/cancers14153629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Pancreatic adenocarcinoma (PAAD) is one of the most common tumors of the gastrointestinal tract and is difficult to diagnose and treat due to tumor heterogeneity and the immunosuppressive tumor microenvironment. RNA-binding proteins have been studied and their dysregulation has been found to play a key role in altering RNA metabolism in various malignancies. STAU2 is one of them. To investigate the role of STAU2 in PAAD, we monitored the signaling pathway by regulating substrate mRNA and experimentally confirmed that STAU2 is the most potential biomarker for the occurrence and development of PAAD. Furthermore, we found that high expression of STAU2 not only contributes to immune evasion but also correlates with sensitivity to chemotherapeutic agents, suggesting that STAU2 may be a potential target for combined natural therapy. These results demonstrate that STAU2 is a novel prognostic and diagnostic biomarker for PAAD, revealing STAU2′s utility in cancer therapy and drug development. Abstract Pancreatic adenocarcinoma (PAAD) is a highly aggressive cancer. RNA-binding proteins (RBPs) regulate highly dynamic post-transcriptional processes and perform very important biological functions. Although over 1900 RBPs have been identified, most are considered markers of tumor progression, and further information on their general role in PAAD is not known. Here, we report a bioinformatics analysis that identified five hub RBPs and produced a high-value prognostic model based on The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets. Among these, the prognostic signature of the double-stranded RNA binding protein Staufen double-stranded RNA (STAU2) was identified. Firstly, we found that it is a highly expressed critical regulator of PAAD associated with poor clinical outcomes. Accordingly, the knockdown of STAU2 led to a profound decrease in PAAD cell growth, migration, and invasion and induced apoptosis of PAAD cells. Furthermore, through multiple omics analyses, we identified the key target genes of STAU2: Palladin cytoskeletal associated protein (PALLD), Heterogeneous nuclear ribonucleoprotein U (HNRNPU), SERPINE1 mRNA Binding Protein 1 (SERBP1), and DEAD-box polypeptide 3, X-Linked (DDX3X). Finally, we found that a high expression level of STAU2 not only helps PAAD evade the immune response but is also related to chemotherapy drug sensitivity, which implies that STAU2 could serve as a potential target for combinatorial therapy. These findings uncovered a novel role for STAU2 in PAAD aggression and resistance, suggesting that it probably represents a novel therapeutic and drug development target.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (X.W.); (P.Y.); Tel.: +86-13681986682 (P.Y.)
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minghui Ji
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weijiao Chen
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Shen
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongrui Shi
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Dawei Wang
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines of China Pharmaceutical University, Jiangsu Key Laboratory of Drug Design and Optimization of China Pharmaceutical University, Nanjing 210009, China; (W.K.); (J.D.); (J.L.); (M.J.); (W.C.); (H.S.); (Z.S.); (D.W.); (L.W.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (X.W.); (P.Y.); Tel.: +86-13681986682 (P.Y.)
| |
Collapse
|
10
|
Kuang W, Wang X, Ding J, Li J, Ji M, Chen W, Wang L, Yang P. PTPN2, A Key Predictor of Prognosis for Pancreatic Adenocarcinoma, Significantly Regulates Cell Cycles, Apoptosis, and Metastasis. Front Immunol 2022; 13:805311. [PMID: 35154122 PMCID: PMC8829144 DOI: 10.3389/fimmu.2022.805311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Objective This study conducted a comprehensive analysis of the members of the PTPN family and emphasized the key role of PTPN2 as a potential therapeutic target and diagnostic biomarker in improving the survival rate of PAAD. Method Oncomine was used to analyze the pan-cancer expression of the PTPN gene family. The Cancer Genome Atlas (TCGA) data as well as Genotype-Tissue Expression (GTEx) data were downloaded to analyze the expression and prognosis of PTPNs. The diagnosis of PTPNs was evaluated by the experimental ROC curve. The protein-protein interaction (PPI) network was constructed by combining STRING and Cytoscape. The genes of 50 proteins most closely related to PTPN2 were screened and analyzed by GO and KEGG enrichment. The differentially expressed genes of PTPN2 were found by RNA sequencing, and GSEA enrichment analysis was carried out to find the downstream pathways and targets, which were verified by online tools and experiments. Finally, the relationship between PTPN2 and immune cell infiltration in PAAD, and the relationship with immune score and immune checkpoint were studied. Result The expression patterns and the prognostic value of multiple PTPNs in PAAD have been reported through bioinformatic analyzes. Among these members, PTPN2 is the most important prognostic signature that regulates the progression of PAAD by activating JAK-STAT signaling pathway. Comparison of two PAAD cell lines with normal pancreatic epithelial cell lines revealed that PTPN2 expression was up-regulated as a key regulator of PAAD, which was associated with poor prognosis. Knockdown of PTPN2 caused a profound decrease in PAAD cell growth, migration, invasion, and induced PAAD cell cycle and apoptosis. In addition, we conducted a series of enrichment analyses to investigate the PTPN2-binding proteins and the PTPN2 expression-correlated genes. We suggest that STAT1 and EGFR are the key factors to regulate PTPN2, which are involved in the progression of PAAD. Meanwhile, the silencing of PTPN2 induced the repression of STAT1 and EGFR expression. Conclusion These findings provide a comprehensive analysis of the PTPN family members, and for PAAD, they also demonstrate that PTPN2 is a diagnostic biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghui Ji
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weijiao Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
De Marco M, Gauttier V, Pengam S, Mary C, Ranieri B, Basile A, Festa M, Falco A, Reppucci F, Cammarota AL, Acernese F, De Laurenzi V, Sala G, Brongo S, Miyasaka M, Shalapour S, Vanhove B, Poirier N, Iaccarino R, Karin M, Turco MC, Rosati A, Marzullo L. Concerted BAG3 and SIRPα blockade impairs pancreatic tumor growth. Cell Death Dis 2022; 8:94. [PMID: 35241649 PMCID: PMC8894496 DOI: 10.1038/s41420-022-00817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
The BAG3- and SIRPα- mediated pathways trigger distinct cellular targets and signaling mechanisms in pancreatic cancer microenvironment. To explore their functional connection, we investigated the effects of their combined blockade on cancer growth in orthotopic allografts of pancreatic cancer mt4–2D cells in immunocompetent mice. The anti-BAG3 + anti-SIRPα mAbs treatment inhibited (p = 0.007) tumor growth by about the 70%; also the number of metastatic lesions was decreased, mostly by the effect of the anti-BAG3 mAb. Fibrosis and the expression of the CAF activation marker α-SMA were reduced by about the 30% in animals treated with anti-BAG3 mAb compared to untreated animals, and appeared unaffected by treatment with the anti-SIRPα mAb alone; however, the addition of anti-SIRPα to anti-BAG3 mAb in the combined treatment resulted in a > 60% (p < 0.0001) reduction of the fibrotic area and a 70% (p < 0.0001) inhibition of CAF α-SMA positivity. Dendritic cells (DCs) and CD8+ lymphocytes, hardly detectable in the tumors of untreated animals, were modestly increased by single treatments, while were much more clearly observable (p < 0.0001) in the tumors of the animals subjected to the combined treatment. The effects of BAG3 and SIRPα blockade do not simply reflect the sum of the effects of the single blockades, indicating that the two pathways are connected by regulatory interactions and suggesting, as a proof of principle, the potential therapeutic efficacy of a combined BAG3 and SIRPα blockade in pancreatic cancer.
Collapse
Affiliation(s)
- Margot De Marco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| | | | | | | | - Bianca Ranieri
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Anna Basile
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| | - Michela Festa
- BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy.,Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Antonia Falco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| | - Francesca Reppucci
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Fausto Acernese
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Vincenzo De Laurenzi
- BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Sergio Brongo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Masayuki Miyasaka
- Immunology Frontier Research Center, Osaka University, Yamada-oka, Suita, Japan
| | - Shabnam Shalapour
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | | | | | - Roberta Iaccarino
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Michael Karin
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy. .,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy.
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| |
Collapse
|
12
|
Amintas S, Fernandez B, Chauvet A, Chiche L, Laurent C, Belleannée G, Marty M, Buscail E, Dabernat S. KRAS gene mutation quantification in the resection or venous margins of pancreatic ductal adenocarcinoma is not predictive of disease recurrence. Sci Rep 2022; 12:2976. [PMID: 35194118 PMCID: PMC8864048 DOI: 10.1038/s41598-022-07004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients eligible for curative surgery undergo unpredictable disease relapse. Even patients with a good pathological response after neoadjuvant treatment (NAT) remain susceptible to recurrent PDAC. Molecular analysis of R0 margins may identify patients with a worse prognosis. The molecular status of mutant KRAS (exon 2, codon 12/13) was analysed retrospectively by digital droplet PCR in tumour areas, venous and resection margins of resected tumours, either undergoing up-front surgery (UFS) or after NAT with a good pathological response. Expectedly, tumour tissues or remnants from patients who underwent NAT presented lower KRAS mutant allele frequencies (MAF) than patients eligible for UFS. Similarly, ypT1 tumour MAFs were greater than the ypT0 tumour remnant MAFs in the NAT group. Mutant KRAS status in margins did not distinguish NAT subgroups. It was not predictive of shorter recurrence-free or overall survival within or between groups. KRAS-double negativity in both venous and resection margins did not identify patients with a better prognosis, regardless of the groups. The cohorts ‘sizes were small due to limited numbers of patients meeting the inclusion criteria, but KRAS-positivity or MAFs in resection and venous margins did not carry prognostic value. Comparison of margins from good versus bad responders receiving NAT may provide better clinical value.
Collapse
Affiliation(s)
- Samuel Amintas
- Université de Bordeaux, 33000, Bordeaux, France.,Inserm U1312 «BoRdeaux Institute of onCology», BRIC, Team Biotherapy Genetics and Oncology, 33000, Bordeaux, France.,Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000, Bordeaux, France
| | - Benjamin Fernandez
- Université de Bordeaux, 33000, Bordeaux, France.,Inserm U1312 «BoRdeaux Institute of onCology», BRIC, Team Biotherapy Genetics and Oncology, 33000, Bordeaux, France.,Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000, Bordeaux, France
| | - Alexandre Chauvet
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000, Bordeaux, France
| | - Laurence Chiche
- Université de Bordeaux, 33000, Bordeaux, France.,Inserm U1312 «BoRdeaux Institute of onCology», BRIC, Team Biotherapy Genetics and Oncology, 33000, Bordeaux, France.,Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000, Bordeaux, France
| | - Christophe Laurent
- Université de Bordeaux, 33000, Bordeaux, France.,Inserm U1312 «BoRdeaux Institute of onCology», BRIC, Team Biotherapy Genetics and Oncology, 33000, Bordeaux, France.,Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000, Bordeaux, France
| | | | - Marion Marty
- Inserm U1312 «BoRdeaux Institute of onCology», BRIC, Team Biotherapy Genetics and Oncology, 33000, Bordeaux, France
| | - Etienne Buscail
- Centre Hospitalier Universitaire (CHU) de Toulouse, 31000, Toulouse, France.,Inserm, UMR-1220, IRSD, 31000, Toulouse, France.,Université de Toulouse III, 31000, Toulouse, France
| | - Sandrine Dabernat
- Université de Bordeaux, 33000, Bordeaux, France. .,Inserm U1312 «BoRdeaux Institute of onCology», BRIC, Team Biotherapy Genetics and Oncology, 33000, Bordeaux, France. .,Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
13
|
Trebska-McGowan K, Chaib M, Alvarez MA, Kansal R, Pingili AK, Shibata D, Makowski L, Glazer ES. TGF-β Alters the Proportion of Infiltrating Immune Cells in a Pancreatic Ductal Adenocarcinoma. J Gastrointest Surg 2022; 26:113-121. [PMID: 34260016 DOI: 10.1007/s11605-021-05087-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/27/2021] [Indexed: 01/31/2023]
Abstract
PURPOSE Immunotherapy, such as checkpoint inhibitors against anti-programmed death-ligand 1 (PD-L1), has not been successful in treating patients with pancreatic ductal adenocarcinoma (PDAC). Tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and the TGF-β cytokine are critical in anti-cancer immunity. We hypothesized that TGF-β enhances the immunosuppressive effects of TAM, MDSC, and DC presence in tumors. METHODS Using a murine PDAC cell line derived from a genetically engineered mouse model, we orthotopically implanted treated cells plus drug embedded in Matrigel into immunocompetent mice. Treatments included saline control, TGF-β1, or a TGF-β receptor 1 small molecule inhibitor, galunisertib. We investigated TAM, MDSC, DC, and TAM PD-L1 expression with flow cytometry in tumors. Separately, we used the TIMER2.0 database to analyze TAM and PD-L1 gene expression in human PDAC tumors in TCGA database. RESULTS TGF-β did not alter MDSC or DC frequencies in the primary tumors. However, in PDAC metastases to the liver, TGF-β decreased the proportion of MDSCs (P=0.022) and DCs (P=0.005). TGF-β significantly increased the percent of high PD-L1 expressing TAMs (32 ± 6 % vs. 12 ± 5%, P=0.013) but not the proportion of TAMs in primary and metastatic tumors. TAM PD-L1 gene expression in TCGA PDAC database was significantly correlated with tgb1 and tgfbr1 gene expression (P<0.01). CONCLUSIONS TGF-β is important in PDAC anti-tumor immunity, demonstrating context-dependent impact on immune cells. TGF-β has an overall immunosuppressive effect mediated by TAM PD-L1 expression and decreased presence of DCs. Future investigations will focus on enhancing anti-cancer immune effects of TGF-β receptor inhibition.
Collapse
Affiliation(s)
- Kasia Trebska-McGowan
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA
| | - Mehdi Chaib
- Division of Hematology Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
| | - Marcus A Alvarez
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA
| | - Rita Kansal
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA
| | - Ajeeth K Pingili
- Division of Hematology Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
| | - David Shibata
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA
- Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, USA
| | - Liza Makowski
- Division of Hematology Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
- Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, USA
| | - Evan S Glazer
- Divisiion of Surgical Oncology, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave, Suite 325, Memphis, TN, 38163, USA.
- Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, USA.
| |
Collapse
|
14
|
Kang BW, Chau I. Emerging agents for metastatic pancreatic cancer: spotlight on early phase clinical trials. Expert Opin Investig Drugs 2021; 30:1089-1107. [PMID: 34727804 DOI: 10.1080/13543784.2021.1995354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite the recent development of new chemotherapeutic regimens and combination strategies, metastatic pancreatic cancer (mPC) still shows only a modest response to conventional cytotoxic agents. However, several novel therapeutic agents targeting the unique features of mPC are showing promise in clinical trials. AREA COVERED This article reviews the current state of development of new agents targeting various systems and molecular pathways. We searched PubMed and clinicaltrials.gov in September 2021 with a special focus on ongoing early phase clinical trials to identify the promising therapeutic strategies for mPC. EXPERT OPINION Extensive tumor heterogeneity, complex tumor microenvironment, genetic alterations of the oncogenic signaling pathways, metabolic dysregulation, and a low immunogenicity are hurdles for current treatment approaches. Ongoing research efforts strive to overcome these hurdles and are showing some promising early results.
Collapse
Affiliation(s)
- Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Kyungpook National University, Daegu, Republic of Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London, Surrey, UK
| |
Collapse
|
15
|
Construction of a five-gene prognostic model based on immune-related genes for the prediction of survival in pancreatic cancer. Biosci Rep 2021; 41:229064. [PMID: 34143198 PMCID: PMC8252190 DOI: 10.1042/bsr20204301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose: To identify differentially expressed immune-related genes (DEIRGs) and construct a model with survival-related DEIRGs for evaluating the prognosis of patients with pancreatic cancer (PC). Methods: Six microarray gene expression datasets of PC from the Gene Expression Omnibus (GEO) and Immunology Database and Analysis Portal (ImmPort) were used to identify DEIRGs. RNA sequencing and clinical data from The Cancer Genome Atlas Program-Pancreatic Adenocarcinoma (TCGA-PAAD) database were used to establish the prognostic model. Univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses were applied to determine the final variables of the prognostic model. The median risk score was used as the cut-off value to classify samples into low- and high-risk groups. The prognostic model was further validated using an internal validation set of TCGA and an external validation set of GSE62452. Results: In total, 142 DEIRGs were identified from six GEO datasets, 47 were survival-related DEIRGs. A prognostic model comprising five genes (i.e., ERAP2, CXCL9, AREG, DKK1, and IL20RB) was established. High-risk patients had poor survival compared with low-risk patients. The 1-, 2-, 3-year area under the receiver operating characteristic (ROC) curve of the model reached 0.85, 0.87, and 0.93, respectively. Additionally, the prognostic model reflected the infiltration of neutrophils and dendritic cells. The expression of most characteristic immune checkpoints was significantly higher in the high-risk group versus the low-risk group. Conclusions: The five-gene prognostic model showed reliably predictive accuracy. This model may provide useful information for immunotherapy and facilitate personalized monitoring for patients with PC.
Collapse
|
16
|
Ferrarini I, Louie A, Zhou L, El-Deiry WS. ONC212 is a Novel Mitocan Acting Synergistically with Glycolysis Inhibition in Pancreatic Cancer. Mol Cancer Ther 2021; 20:1572-1583. [PMID: 34224362 DOI: 10.1158/1535-7163.mct-20-0962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/08/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
ONC212 is a fluorinated imipridone with preclinical efficacy against pancreatic and other malignancies. Although mitochondrial protease ClpP was identified as an ONC212-binding target, the mechanism leading to cancer cell death is incompletely understood. We investigated mitochondrial dysfunction and metabolic rewiring triggered by ONC212 in pancreatic cancer, a deadly malignancy with an urgent need for novel therapeutics. We found ClpP is expressed in pancreatic cancer cells and is required for ONC212 cytotoxicity. ClpX, the regulatory binding partner of ClpP, is suppressed upon ONC212 treatment. Immunoblotting and extracellular flux analysis showed ONC212 impairs oxidative phosphorylation (OXPHOS) with decrease in mitochondrial-derived ATP production. Although collapse of mitochondrial function is observed across ONC212-treated cell lines, only OXPHOS-dependent cells undergo apoptosis. Cells relying on glycolysis undergo growth arrest and upregulate glucose catabolism to prevent ERK1/2 inhibition and apoptosis. Glucose restriction or combination with glycolytic inhibitor 2-deoxy-D-glucose synergize with ONC212 and promote apoptosis in vitro and in vivo Thus, ONC212 is a novel mitocan targeting oxidative metabolism in pancreatic cancer, leading to different cellular outcomes based on divergent metabolic programs.
Collapse
Affiliation(s)
- Isacco Ferrarini
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Department of Medicine, Section of Hematology, Cancer Research and Cell Biology Laboratory, University of Verona, Verona, Italy.,Department of Pathology and Laboratory medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Rhode Island.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Anna Louie
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Department of Pathology and Laboratory medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Rhode Island.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Department of Surgery, Brown University, Lifespan Health System and Warren, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Department of Pathology and Laboratory medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Rhode Island.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island. .,Department of Pathology and Laboratory medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Rhode Island.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|