1
|
Wang J, Fendler NL, Shukla A, Wu SY, Challa A, Lee J, Joachimiak LA, Minna JD, Chiang CM, Vos SM, D'Orso I. ARF alters PAF1 complex integrity to selectively repress oncogenic transcription programs upon p53 loss. Mol Cell 2024; 84:4538-4557.e12. [PMID: 39532099 DOI: 10.1016/j.molcel.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The polymerase associated factor 1 (PAF1) complex (PAF1c) promotes RNA polymerase II (RNA Pol II) transcription at the elongation step; however, how PAF1c transcription activity is selectively regulated during cell fate transitions remains poorly understood. Here, we reveal that the alternative reading frame (ARF) tumor suppressor operates at two levels to restrain PAF1c-dependent oncogenic transcriptional programs upon p53 loss in mouse cells. First, ARF assembles into homo-oligomers to bind the PAF1 subunit to promote PAF1c disassembly, consequently dampening PAF1c interaction with RNA Pol II and PAF1c-dependent transcription. Second, ARF targets the RUNX family transcription factor 1 (RUNX1) to selectively tune gene transcription. Consistently, ARF loss triggers RUNX1- and PAF1c-dependent transcriptional activation of pro-growth ligands (growth differentiation factor/bone morphogenetic protein [GDF/BMP]), promoting a cell-intrinsic GDF/BMP-Smad1/5 axis that aberrantly induce cell growth. Notably, pharmacologic inactivation of GDF/BMP signaling and genetic perturbation of RUNX1 significantly attenuate cell proliferation mediated by dual p53 and ARF loss, offering therapeutic utility. Our data underscore the significance of selective ARF-mediated tumor-suppressive functions through a universal transcriptional regulator.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nikole L Fendler
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA
| | - Ashutosh Shukla
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shwu-Yuan Wu
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeon Lee
- Lydia Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lukasz A Joachimiak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Fontecha-Barriuso M, Villar-Gomez N, Guerrero-Mauvecin J, Martinez-Moreno JM, Carrasco S, Martin-Sanchez D, Rodríguez-Laguna M, Gómez MJ, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, Sanz AB. Runt-related transcription factor 1 (RUNX1) is a mediator of acute kidney injury. J Pathol 2024; 264:396-410. [PMID: 39472111 DOI: 10.1002/path.6355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 11/09/2024]
Abstract
Treatment for acute kidney injury (AKI) is suboptimal. A better understanding of the pathogenesis of AKI may lead to new therapeutic approaches. Kidney transcriptomics of folic acid-induced AKI (FA-AKI) in mice identified Runx1 as the most upregulated RUNX family gene. We then examined the expression of RUNX1 in FA-AKI, in bacterial lipopolysaccharide (LPS)-induced cytokine storm-AKI (CS-AKI), and in human AKI. In cultured mouse tubule cells, we explored the expression and role of RUNX1 in response to the cytokine TWEAK or LPS. A chemical inhibitor of RUNX1 (Ro5-3335) was used in animal models of AKI to test its potential as a therapeutic target. RUNX1 overexpression in FA-AKI was validated at the mRNA and protein levels and localized mainly to tubule cell nuclei. CS-AKI also upregulated kidney RUNX1. Increased tubule and interstitial RUNX1 expression were also observed in human AKI. In cultured mouse tubule cells, the pro-inflammatory cytokine TWEAK and LPS increased RUNX1 and IL-6 expression. Mechanistically, RUNX1 bound to the Il6 gene promoter and RUNX1 targeting with the chemical inhibitor Ro5-3335, or a specific small interfering RNA (siRNA), prevented the TWEAK- and LPS-induced upregulation of IL6 through a RUNX1/NFκB1 p50 pathway. In vivo, preventive Ro5-3335 improved kidney function and reduced inflammation in FA-AKI and CS-AKI. However, Ro5-3335 administration after the insult only improved kidney function in CS-AKI. Kidney transcriptomics identified inflammatory genes and transcription factor mRNAs such as Yap1 and Trp53 as key targets of Ro5-3335 in CS-AKI. In conclusion, RUNX1 contributes to AKI by driving the expression of genes involved in inflammation and represents a novel therapeutic target in AKI. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Natalia Villar-Gomez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Juan Guerrero-Mauvecin
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Julio M Martinez-Moreno
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Susana Carrasco
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Diego Martin-Sanchez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | | | - Manuel J Gómez
- Unidad de Bioinformatica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María D Sanchez-Niño
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Pharmacology, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- IRSIN, Madrid, Spain
| | - Ana B Sanz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| |
Collapse
|
3
|
Bertlin JAC, Pauzaite T, Liang Q, Wit N, Williamson JC, Sia JJ, Matheson NJ, Ortmann BM, Mitchell TJ, Speak AO, Zhang Q, Nathan JA. VHL synthetic lethality screens uncover CBF-β as a negative regulator of STING. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610968. [PMID: 39282259 PMCID: PMC11398426 DOI: 10.1101/2024.09.03.610968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) represents the most common form of kidney cancer and is typified by biallelic inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene. Here, we undertake genome-wide CRISPR/Cas9 screening to reveal synthetic lethal interactors of VHL, and uncover that loss of Core Binding Factor β (CBF-β) causes cell death in VHL-null ccRCC cell lines and impairs tumour establishment and growth in vivo. This synthetic relationship is independent of the elevated activity of hypoxia inducible factors (HIFs) in VHL-null cells, but does involve the RUNX transcription factors that are known binding partners of CBF-β. Mechanistically, CBF-β loss leads to upregulation of type I interferon signalling, and we uncover a direct inhibitory role for CBF-β at the STING locus controlling Interferon Stimulated Gene expression. Targeting CBF-β in kidney cancer both selectively induces tumour cell lethality and promotes activation of type I interferon signalling.
Collapse
Affiliation(s)
- James A C Bertlin
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Qian Liang
- Simmons Comprehensive Cancer Center, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James C Williamson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Jia Jhing Sia
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Brian M Ortmann
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Thomas J Mitchell
- Early Cancer Institute and Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anneliese O Speak
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Qing Zhang
- Simmons Comprehensive Cancer Center, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| |
Collapse
|
4
|
Tian W, Zhao J, Zhang X, Li P, Li X, Hong Y, Li S. RUNX1 regulates MCM2/CDC20 to promote COAD progression modified by deubiquitination of USP31. Sci Rep 2024; 14:13906. [PMID: 38886545 PMCID: PMC11183096 DOI: 10.1038/s41598-024-64726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Xuening Li
- Dalian Medical University, Dalian, China
| | - Yuan Hong
- Clinical Laboratory Center, Dalian Municipal Central Hospital, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Jiang Z, Jiang C, Teng X, Hou Y, Dai S, Liu C, Tuo Z, Bi L, Yang C, Wang J. Exploring the crosstalk of immune cells: The impact of dysregulated RUNX family genes in kidney renal clear cell carcinoma. Heliyon 2024; 10:e29870. [PMID: 38707395 PMCID: PMC11066633 DOI: 10.1016/j.heliyon.2024.e29870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Background Abnormally expressed Runt-associated transcription factor (RUNX) family has been reported in multiple tumors. Nevertheless, the immunological role of RUNX family in kidney renal clear cell carcinoma (KIRC) remains unknown. Methods We studied the RNA-seq data regarding tumor and healthy subjects from several public databases in detail for evaluating the prognostic and immunological functions owned by three RUNX genes in cancer patients. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical (IHC) staining served for detecting their expressions in tumor and normal samples. Results We observed that KIRC patients presented high expressions of RUNX1, RUNX2, and RUNX3. The expressions of three genes were validated by qRT-PCR, which was same as bioinformatical results. Prognostic analysis indicated that the overexpression of RUNX1 and RUNX2 negatively affects the outcomes in patients with KIRC. Related functional predictions indicated that the RUNXs and co-expression genes were significantly related to the immune response pathway. Moreover, three RUNX members were associated with immune infiltration cells and their related gene markers. The expression of RUNX family in several immune cells is positively or negatively correlated, and its dysregulation is obviously associated with the differential distribution of immune cells. RUNX family genes were abnormally expressed in KIRC patients, and were closely related to the crosstalk of immune cells. Conclusions Our findings may help to understand the pathogenesis and immunologic roles of the RUNX family in KIRC patients from new perspectives.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chao Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiangyu Teng
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yidong Hou
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Shuxin Dai
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chang Liu
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhouting Tuo
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Liangkuan Bi
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chao Yang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jinyou Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
6
|
Jokelainen O, Rintala TJ, Fortino V, Pasonen-Seppänen S, Sironen R, Nykopp TK. Differential expression analysis identifies a prognostically significant extracellular matrix-enriched gene signature in hyaluronan-positive clear cell renal cell carcinoma. Sci Rep 2024; 14:10626. [PMID: 38724670 PMCID: PMC11082176 DOI: 10.1038/s41598-024-61426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.
Collapse
Affiliation(s)
- Otto Jokelainen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Teemu J Rintala
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Reijo Sironen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Timo K Nykopp
- Department of Surgery, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Surgery, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Chen X, Wang L, Yang M, Zhao W, Tu J, Liu B, Yuan X. RUNX transcription factors: biological functions and implications in cancer. Clin Exp Med 2024; 24:50. [PMID: 38430423 PMCID: PMC10908630 DOI: 10.1007/s10238-023-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 03/03/2024]
Abstract
Runt-related transcription factors (RUNX) are a family of transcription factors that are essential for normal and malignant hematopoietic processes. Their most widely recognized role in malignancy is to promote the occurrence and development of acute myeloid leukemia. However, it is worth noting that during the last decade, studies of RUNX proteins in solid tumors have made considerable progress, suggesting that these proteins are directly involved in different stages of tumor development, including tumor initiation, progression, and invasion. RUNX proteins also play a role in tumor angiogenesis, the maintenance of tumor cell stemness, and resistance to antitumor drugs. These findings have led to the consideration of RUNX as a tumor biomarker. All RUNX proteins are involved in the occurrence and development of solid tumors, but the role of each RUNX protein in different tumors and the major signaling pathways involved are complicated by tumor heterogeneity and the interacting tumor microenvironment. Understanding how the dysregulation of RUNX in tumors affects normal biological processes is important to elucidate the molecular mechanisms by which RUNX affects malignant tumors.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| |
Collapse
|
8
|
López J, Hogan M, Sutton B, Church S, Angulo J, Nunes-Xavier C. Distinct spatial landscapes in clear-cell renal cell carcinoma as revealed by whole transcriptome analysis. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 21:100690. [PMID: 38292905 PMCID: PMC10825646 DOI: 10.1016/j.iotech.2023.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Clear-cell renal cell carcinoma (ccRCC) is the most common and aggressive form of renal cancer and a paradigm of inter- and intratumor heterogeneity. We carried out an exploratory digital spatial profiling of the tumor interior and periphery of two ccRCC tumor specimens and mapped spatially the molecular and cellular composition of their tumor microenvironment and ecosystem. Materials and methods Digital spatial profiling of the whole transcriptome of 19 regions of interest (ROIs) was carried out from two selected highly immunogenic stage pT3a/grade 3 (G3) and stage pT3a/grade 4 (G4) ccRCC. A total of 9-10 ROIs were selected from distinct areas from each tumor, including tumor interior and tumor periphery, and differences in gene expression were analyzed by RNA sequencing, pathway enrichment analysis, and cell deconvolution. Results The distinct areas from the two locally advanced tumors displayed unique gene expression spatial patterns defining distinct biological pathways. Dimensional reduction analysis showed that the G3 ccRCC, compared to the G4 ccRCC, correlated with more variability between regions from the tumor interior and tumor periphery. Cell deconvolution analysis illustrated higher abundance of immune cells, including macrophages, myeloid dendritic cells, and CD4 T cells, and lower abundance of regulatory T cells in the tumor periphery compared to the tumor interior. Conclusions Transcriptome spatial profiling revealed high inter- and intratumor heterogeneity in the analyzed tumors and provided information with potential clinical utility. This included the finding of less intratumor heterogeneity and more tumor-infiltrated T cells in the ccRCC tumor specimen with a higher grade.
Collapse
Affiliation(s)
- J.I. López
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - B. Sutton
- NanoString Technologies, Seattle, USA
| | | | - J.C. Angulo
- Service of Urology, University Hospital of Getafe, Getafe, Madrid
- Clinical Department, Faculty of Biomedical Sciences, European University of Madrid, Madrid, Spain
| | - C.E. Nunes-Xavier
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| |
Collapse
|
9
|
Zhou Q, Sun Q, Shen Q, Li X, Qian J. Development and implementation of a prognostic model for clear cell renal cell carcinoma based on heterogeneous TLR4 expression. Heliyon 2024; 10:e25571. [PMID: 38380017 PMCID: PMC10877190 DOI: 10.1016/j.heliyon.2024.e25571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Objective Clear cell renal cell carcinoma (ccRCC) is the most common subtype among renal cell carcinomas and has the worst prognosis, originating from renal tubular epithelial cells. Toll-like receptor 4 (TLR4) plays a crucial role in ccRCC proliferation, infiltration, and metastasis. The aim of this study was to construct a prognostic scoring model for ccRCC based on TLR4 expression heterogeneity and to explore its association with immune infiltration, thereby providing insights for the treatment and prognostic evaluation of ccRCC. Methods Using R software, a differential analysis was conducted on normal samples and ccRCC samples, and in conjunction with the KEGG database, a correlation analysis for the clear cell renal cell carcinoma pathway (hsa05211) was carried out. We observed the expression heterogeneity of TLR4 in the TCGA-KIRC cohort and identified its related differential genes (TRGs). Based on the expression levels of TRGs, consensus clustering was employed to identify TLR4-related subtypes, and further clustering heatmaps, principal component, and single-sample gene set enrichment analyses were conducted. Overlapping differential genes (ODEGs) between subtypes were analysed, and combined with survival data, univariate Cox regression, LASSO, and multivariate Cox regression were used to establish a prognostic risk model for ccRCC. This model was subsequently evaluated through ROC analysis, risk factor correlation analysis, independent prognostic factor analysis, and intergroup differential analysis. The ssGSEA model was employed to explore immune heterogeneity in ccRCC, and the performance of the model in predicting patient prognosis was evaluated using box plots and the oncoPredict software package. Results In the TCGA-KIRC cohort, TLR4 expression was notably elevated in ccRCC samples compared to normal samples, correlating with improved survival in the high-expression group. The study identified distinct TLR4-related differential genes and categorized ccRCC into three subtypes with varied survival outcomes. A risk prognosis model based on overlapping differential genes was established, showing significant associations with immune cell infiltration and key immune checkpoints (PD-1, PD-L1, CTLA4). Additionally, drug sensitivity differences were observed between risk groups. Conclusion In the TCGA-KIRC cohort, the expression of TLR4 in ccRCC samples exhibited significant heterogeneity. Through clustering analysis, we identified that the primary immune cells across subtypes are myeloid-derived suppressor cells, central memory CD4 T cells, and regulatory T cells. Furthermore, we successfully constructed a prognostic risk model for ccRCC composed of 17 genes. This model provides valuable references for the prognosis prediction and treatment of ccRCC patients.
Collapse
Affiliation(s)
- Qingbo Zhou
- Department of Internal Medicine, Shaoxing Yuecheng People's Hospital, Shaoxing, China
| | - Qiang Sun
- Department of Internal Medicine, Shaoxing Yuecheng People's Hospital, Shaoxing, China
| | - Qi Shen
- Department of Internal Medicine, Shaoxing Yuecheng People's Hospital, Shaoxing, China
| | - Xinsheng Li
- Department of Internal Medicine, Shaoxing Yuecheng People's Hospital, Shaoxing, China
| | - Jijiang Qian
- Department of Medical Imaging, Shaoxing Yuecheng People's Hospital, Shaoxing, China
| |
Collapse
|
10
|
Guo X, Zhang H, He C, Qin K, Lai Q, Fang Y, Chen Q, Li W, Wang Y, Wang X, Li A, Liu S, Li Q. RUNX1 promotes angiogenesis in colorectal cancer by regulating the crosstalk between tumor cells and tumor associated macrophages. Biomark Res 2024; 12:29. [PMID: 38419056 PMCID: PMC10903076 DOI: 10.1186/s40364-024-00573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignancy worldwide. Angiogenesis and metastasis are the critical hallmarks of malignant tumor. Runt-related transcription factor 1 (RUNX1), an efficient transcription factor, facilitates CRC proliferation, metastasis and chemotherapy resistance. We aimed to investigate the RUNX1 mediated crosstalk between tumor cells and M2 polarized tumor associated macrophages (TAMs) in CRC, as well as its relationship with neoplastic angiogenesis. We found that RUNX1 recruited macrophages and induced M2 polarized TAMs in CRC by promoting the production of chemokine 2 (CCL2) and the activation of Hedgehog pathway. In addition, we found that the M2 macrophage-specific generated cytokine, platelet-derived growth factor (PDGF)-BB, promoted vessel formation both in vitro and vivo. PDGF-BB was also found to enhance the expression of RUNX1 in CRC cell lines, and promote its migration and invasion in vitro. A positive feedback loop of RUNX1 and PDGF-BB was thus formed. In conclusion, our data suggest that RUNX1 promotes CRC angiogenesis by regulating M2 macrophages during the complex crosstalk between tumor cells and TAMs. This observation provides a potential combined therapy strategy targeting RUNX1 and TAMs-related PDGF-BB in CRC.
Collapse
Affiliation(s)
- Xuxue Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haonan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kaiwen Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- The First School of Clinical Medicine), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Qianhui Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weize Li
- The First School of Clinical Medicine), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiqing Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
- Pazhou Lab, Guangzhou, Guangdong, China.
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
11
|
Mei X, Ouyang H, Zhang H, Jia W, Lu B, Zhang J, Ji L. Scutellarin suppresses the metastasis of triple-negative breast cancer via targeting TNFα/TNFR2-RUNX1-triggered G-CSF expression in endothelial cells. Biochem Pharmacol 2023; 217:115808. [PMID: 37716622 DOI: 10.1016/j.bcp.2023.115808] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Triple-negative breast cancer (TNBC) is heterogeneous and aggressive, with high vascularity and frequent metastasis. We have already found natural flavonoid scutellarin (SC) suppressed spontaneous TNBC metastasis via normalizing tumor vasculature in vivo. In this study, supernatant from tumor necrosis factorα (TNFα)-treated human mammary microvascular endothelial cell (HMMEC) promoted cell migration and pseudopod formation in TNBC cells, but these phenomena were disappeared in SC-co-treated HMMEC. TNFα enhanced the expression of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in both HMMEC and human umbilical vein endothelial cell (HUVEC). G-CSF promoted TNBC migration and invasion in vitro, while G-CSF neutralization antibody and SC both inhibited TNBC metastasis in Balb/c mice. SC had no inhibition on the G-CSF-induced TNBC cell migration, but reduced G-CSF content in TNBC tumor tissues and TNFα-stimulated endothelial cells (ECs). SC restricted the nuclear translocation of runt-related transcription factor 1 (RUNX1) in TNBC tumor vessels and TNFα-treated ECs. RUNX1 was found to directly bind to the promoter of G-CSF in TNBC tumor vessels and regulated G-CSF expression. TNF receptor 2 (TNFR2) was crucial for regulating the TNFα-induced RUNX1 activation and G-CSF expression. Notably, SC hindered the interaction between TNFα and TNFR2 via binding to TNFR2. This work demonstrated that SC reduced TNBC metastasis by targeting TNFα/TNFR2-initiated RUNX1 activation and subsequent G-CSF production in TNBC-associated ECs.
Collapse
Affiliation(s)
- Xiyu Mei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Key Laboratory of Pharmacodynamic Material Basis Research in Chinese Medicine of Zhejiang Province, Institute of Basic Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wangya Jia
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingnan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
12
|
Soltysova A, Begerova P, Jakic K, Kozics K, Sramkova M, Meese E, Smolkova B, Gabelova A. Genome-wide DNA methylome and transcriptome changes induced by inorganic nanoparticles in human kidney cells after chronic exposure. Cell Biol Toxicol 2023; 39:1939-1956. [PMID: 34973136 PMCID: PMC10547624 DOI: 10.1007/s10565-021-09680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022]
Abstract
The unique physicochemical properties make inorganic nanoparticles (INPs) an exciting tool in diagnosis and disease management. However, as INPs are relatively difficult to fully degrade and excrete, their unintended accumulation in the tissue might result in adverse health effects. Herein, we provide a methylome-transcriptome framework for chronic effects of INPs, commonly used in biomedical applications, in human kidney TH-1 cells. Renal clearance is one of the most important routes of nanoparticle excretion; therefore, a detailed evaluation of nanoparticle-mediated nephrotoxicity is an important task. Integrated analysis of methylome and transcriptome changes induced by INPs (PEG-AuNPs, Fe3O4NPs, SiO2NPs, and TiO2NPs) revealed significantly deregulated genes with functional classification in immune response, DNA damage, and cancer-related pathways. Although most deregulated genes were unique to individual INPs, a relatively high proportion of them encoded the transcription factors. Interestingly, FOS hypermethylation inversely correlating with gene expression was associated with all INPs exposures. Our study emphasizes the need for a more comprehensive investigation of INPs' biological safety, especially after chronic exposure.
Collapse
Affiliation(s)
- Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 04, Bratislava, Slovakia
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Patricia Begerova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Kristina Jakic
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Katarina Kozics
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Sramkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
13
|
Roy A, Chauhan S, Bhattacharya S, Jakhmola V, Tyagi K, Sachdeva A, Wasai A, Mandal S. Runt-related transcription factors in human carcinogenesis: a friend or foe? J Cancer Res Clin Oncol 2023; 149:9409-9423. [PMID: 37081242 DOI: 10.1007/s00432-023-04769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Cancer is one of the deadliest pathologies with more than 19 million new cases and 10 million cancer-related deaths across the globe. Despite development of advanced therapeutic interventions, cancer remains as a fatal pathology due to lack of early prognostic biomarkers, therapy resistance and requires identification of novel drug targets. METHODS Runt-related transcription factors (Runx) family controls several cellular and physiological functions including osteogenesis. Recent literatures from PubMed was mined and the review was written in comprehensive manner RESULTS: Recent literature suggests that aberrant expression of Runx contributes to tumorigenesis of many organs. Conversely, cell- and tissue-specific tumor suppressor roles of Runx are also reported. In this review, we have provided the structural/functional properties of Runx isoforms and its regulation in context of human cancer. Moreover, in an urgent need to discover novel therapeutic interventions against cancer, we comprehensively discussed the reported oncogenic and tumor suppressive roles of Runx isoforms in several tumor types and discussed the discrepancies that may have risen on Runx as a driver of malignant transformation. CONCLUSION Runx may be a novel therapeutic target against a battery of deadly human cancers.
Collapse
Affiliation(s)
- Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India.
| | - Shivi Chauhan
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Vibhuti Jakhmola
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Komal Tyagi
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Abha Sachdeva
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Abdul Wasai
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| |
Collapse
|
14
|
Song X, Liu J, Liu B, Piao C, Kong C, Li Z. RUNX2 interacts with SCD1 and activates Wnt/β-catenin signaling pathway to promote the progression of clear cell renal cell carcinoma. Cancer Med 2023; 12:5764-5780. [PMID: 36200301 PMCID: PMC10028032 DOI: 10.1002/cam4.5326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/13/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that Runt-associated transcription factor 2 (RUNX2) serves as the main transcription factor for osteoblast differentiation and chondrocyte maturation. RUNX2 is related to a variety of tumors, particularly tumor invasion and metastasis, while the expression and molecular mechanisms of RUNX2 in clear cell renal cell carcinoma (ccRCC) keep to be determined. Stearyl CoA desaturase 1 (SCD1), an endoplasmic reticulum fatty acid desaturase, transfers saturated fatty acids to monounsaturated fatty acids, is expressed highly in numerous malignancies. METHODS The Cancer Genome Atlas (TCGA) datebase and Western blot was used to analyzed the mRNA and protein levels of the target gene in ccRCC tissues and adjacent tissues. The proliferation ability of ccRCC cells was tested by colony forming and EdU assay. The migration ability of cells was detected by transwell assay. Immunoprecipitation was utilized to detect protein-protein interaction. Cycloheximide chase assay was used to measure the half-life of SCD1 protein. RESULTS In this study, the expressions of RUNX2 and SCD1 are increased in ccRCC tissues as well as ccRCC cell lines. Both RUNX2 and SCD1 could promote proliferation and migration in ccRCC cells. Furthermore, RUNX2 could physically interact with SCD1. In addition, the functional degradation and the inactivation of Wnt/β-catenin signaling pathway triggered by the downregulation of RUNX2 could be partly offset by the overexpression of SCD1. CONCLUSION The findings indicate that the RUNX2/SCD1 axis may act as a potential therapeutic target via the Wnt/β-catenin signaling pathway of ccRCC.
Collapse
Affiliation(s)
- Xiandong Song
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Junlong Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Chiyuan Piao
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Zhenhua Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
15
|
Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022; 833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada avenue 2501, Monterrey, Nuevo Leon 64849, México.
| |
Collapse
|
16
|
Tuo Z, Zhang Y, Wang X, Dai S, Liu K, Xia D, Wang J, Bi L. RUNX1 is a promising prognostic biomarker and related to immune infiltrates of cancer-associated fibroblasts in human cancers. BMC Cancer 2022; 22:523. [PMID: 35534796 PMCID: PMC9088136 DOI: 10.1186/s12885-022-09632-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background Runt-related transcription factor 1 (RUNX1) is a vital regulator of mammalian expression. Despite multiple pieces of evidence indicating that dysregulation of RUNX1 is a common phenomenon in human cancers, there is no evidence from pan-cancer analysis. Methods We comprehensively investigated the effect of RUNX1 expression on tumor prognosis across human malignancies by analyzing multiple cancer-related databases, including Gent2, Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), the Human Protein Atlas (HPA), UALCAN, PrognoScan, cBioPortal, STRING, and Metascape. Results Bioinformatics data indicated that RUNX1 was overexpressed in most of these human malignancies and was significantly associated with the prognosis of patients with cancer. Immunohistochemical results showed that most cancer tissues were moderately positive for granular cytoplasm, and RUNX1 was expressed at a medium level in four types of tumors, including cervical cancer, colorectal cancer, glioma, and renal cancer. RUNX1 expression was positively correlated with infiltrating levels of cancer-associated fibroblasts (CAFs) in 33 different cancers. Moreover, RUNX1 expression may influence patient prognosis by activating oncogenic signaling pathways in human cancers. Conclusion Our findings suggest that RUNX1 expression correlates with patient outcomes and immune infiltrate levels of CAFs in multiple tumors. Additionally, the increased level of RUNX1 was linked to the activation of oncogenic signaling pathways in human cancers, suggesting a potential role of RUNX1 among cancer therapeutic targets. These findings suggest that RUNX1 can function as a potential prognostic biomarker and reflect the levels of immune infiltrates of CAFs in human cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09632-y.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuxin Dai
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dian Xia
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinyou Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
17
|
Lin TC. RUNX1 and cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188715. [DOI: 10.1016/j.bbcan.2022.188715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
18
|
Wang X, Hu J, Fang Y, Fu Y, Liu B, Zhang C, Feng S, Lu X. Multi-Omics Profiling to Assess Signaling Changes upon VHL Restoration and Identify Putative VHL Substrates in Clear Cell Renal Cell Carcinoma Cell Lines. Cells 2022; 11:cells11030472. [PMID: 35159281 PMCID: PMC8833913 DOI: 10.3390/cells11030472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
The inactivation of von Hippel–Lindau (VHL) is critical for clear cell renal cell carcinoma (ccRCC) and VHL syndrome. VHL loss leads to the stabilization of hypoxia-inducible factor α (HIFα) and other substrate proteins, which, together, drive various tumor-promoting pathways. There is inadequate molecular characterization of VHL restoration in VHL-defective ccRCC cells. The identities of HIF-independent VHL substrates remain elusive. We reinstalled VHL expression in 786-O and performed transcriptome, proteome and ubiquitome profiling to assess the molecular impact. The transcriptome and proteome analysis revealed that VHL restoration caused the downregulation of hypoxia signaling, glycolysis, E2F targets, and mTORC1 signaling, and the upregulation of fatty acid metabolism. Proteome and ubiquitome co-analysis, together with the ccRCC CPTAC data, enlisted 57 proteins that were ubiquitinated and downregulated by VHL restoration and upregulated in human ccRCC. Among them, we confirmed the reduction of TGFBI (ubiquitinated at K676) and NFKB2 (ubiquitinated at K72 and K741) by VHL re-expression in 786-O. Immunoprecipitation assay showed the physical interaction between VHL and NFKB2. K72 of NFKB2 affected NFKB2 stability in a VHL-dependent manner. Taken together, our study generates a comprehensive molecular catalog of a VHL-restored 786-O model and provides a list of putative VHL-dependent ubiquitination substrates, including TGFBI and NFKB2, for future investigation.
Collapse
Affiliation(s)
- Xuechun Wang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (X.W.); (Y.F.)
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jin Hu
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou 310024, China;
| | - Yihao Fang
- Department of the Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Yanbin Fu
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (X.W.); (Y.F.)
| | - Bing Liu
- Department of Urology, Eastern Hepatobiliary Surgery Hospital, Shanghai 201805, China;
| | - Chao Zhang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (X.W.); (Y.F.)
- Correspondence: (C.Z.); (S.F.); (X.L.)
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou 310024, China;
- Correspondence: (C.Z.); (S.F.); (X.L.)
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Correspondence: (C.Z.); (S.F.); (X.L.)
| |
Collapse
|
19
|
Chen X, Lin J, Chen M, Chen Q, Cai Z, Tang A. Identification of adhesion-associated extracellular matrix component thrombospondin 3 as a prognostic signature for clear cell renal cell carcinoma. Investig Clin Urol 2022; 63:107-117. [PMID: 34983129 PMCID: PMC8756151 DOI: 10.4111/icu.20210273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Clear cell renal cell carcinoma (ccRCC) is a highly aggressive disease, and approximately 30% of patients are diagnosed at the metastatic stage. Even with targeted therapies, the prognosis of advanced ccRCC is poor. The aim of this study was to investigate clinical prognosis signatures by analyzing the ccRCC datasets in The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the function of thrombospondin 3 (THBS3) in ccRCC. MATERIALS AND METHODS We analyzed the ccRCC datasets in TCGA and CPTAC to search for extracellular matrix (ECM)-related and adhesion-associated genes, and conducted overall survival, Cox, and receiver operating characteristic analyses. We also performed CCK8, colony formation, and transwell assays to compared the proliferation and migration ability of THBS3 knockout cells with those of cells without THBS3 knockout. RESULTS Comprehensive bioinformatics analysis revealed that THBS3 is a novel candidate oncogene that is overexpressed in ccRCC tumor tissue and that its elevated expression indicates poor prognosis. Our study also showed that knockdown of THBS3 inhibits proliferation, colony formation, and migration of ccRCC cells. CONCLUSIONS In summary, our data have revealed that THBS3 is upregulated in cancer tissues and could be used as a novel prognostic marker for ccRCC. Our findings thus offer theoretical support with bioinformatics analyses to the study of ECM and adhesion proteins in ccRCC, which may provide a new perspective for the clinical management of ccRCC.
Collapse
Affiliation(s)
- Xiangling Chen
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China
- Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiatian Lin
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | - Min Chen
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiaoling Chen
- Department of Biology, NO. 6 Middle School of Changsha, Changsha, China
| | - Zhiming Cai
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China
| | - Aifa Tang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China
- Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China.
| |
Collapse
|
20
|
Li Q, Lai Q, He C, Zhang H, Pan X, Li H, Yan Q, Fang Y, Liu S, Li A. RUNX1 regulates the proliferation and chemoresistance of colorectal cancer through the Hedgehog signaling pathway. J Cancer 2021; 12:6363-6371. [PMID: 34659526 PMCID: PMC8489138 DOI: 10.7150/jca.51338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/17/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Chemoresistance is one of the main causes of recurrence in colorectal cancer (CRC) patients and leads to a poor prognosis. To characterize RUNX1 expression in colorectal cancer (CRC) and elucidate its mechanistic involvement in the tumor biology of this disease. Methods: The expression of RUNX1 in CRC and normal tissues was detected by bioinformatics analysis. Cell proliferation was measured by CCK-8 and clonogenic assays. In vivo tumor progression was assessed with a xenograft mouse model. Cell drug sensitivity tests and flow cytometry were performed to analyze CRC cell chemoresistance. RUNX1, key molecules of the Hedgehog signaling pathway, and ABCG2 were detected by qRT-PCR and Western blotting. Results: RUNX1 expression is upregulated in CRC tissues. RUNX1 enhanced CRC cell resistance to 5-fluorouracil (5-FU), promoted proliferation, and inhibited 5-FU-induced apoptosis. Mechanistically, RUNX1 can activate the Hedgehog signaling pathway and promote the expression of ABCG2 in CRC cells. Conclusions: Our study demonstrated that RUNX1 promotes CRC proliferation and chemoresistance by activating the Hedgehog signaling pathway and ABCG2 expression.
Collapse
Affiliation(s)
- Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haonan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingzhu Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Haolin Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qun Yan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Expression patterns and prognostic value of RUNX genes in kidney cancer. Sci Rep 2021; 11:14934. [PMID: 34294773 PMCID: PMC8298387 DOI: 10.1038/s41598-021-94294-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Kidney cancer is the third most common malignancy of the urinary system, of which, kidney renal clear cell carcinoma (KIRC) accounts for the vast majority. Runt-related transcription factors (RUNX) are involved in multiple cellular functions. However, the diverse expression patterns and prognostic values of RUNX genes in kidney cancer remained to be elucidated. In our study, we mined the DNA methylation, transcriptional and survival data of RUNX genes in patients with different kinds of kidney cancer through Oncomine, Gene Expression Profiling Interactive Analysis, UALCAN, Kaplan–Meier Plotter, cBioPortal and LinkedOmics. We found that RUNX1 and RUNX3 were upregulated in KIRC tissues compared with those in normal tissues. The survival analysis results indicated a high transcription level of RUNX1 was associated with poor overall survival (OS) in KIRC patients. Furthermore, KIRC tumor tissues had significantly lower levels of RUNX1 promoter methylation than that in paracancerous tissues, with decreased DNA methylation of RUNX1 notably associated with poor OS in KIRC. In conclusion, our results revealed that RUNX1 may be a potential therapeutic target for treating KIRC, and RUNX1 promoter methylation level shows promise as a novel diagnostic and prognostic biomarker, which laid a foundation for further study.
Collapse
|
22
|
Hass MR, Brissette D, Parameswaran S, Pujato M, Donmez O, Kottyan LC, Weirauch MT, Kopan R. Runx1 shapes the chromatin landscape via a cascade of direct and indirect targets. PLoS Genet 2021; 17:e1009574. [PMID: 34111109 PMCID: PMC8219162 DOI: 10.1371/journal.pgen.1009574] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/22/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Runt-related transcription factor 1 (Runx1) can act as both an activator and a repressor. Here we show that CRISPR-mediated deletion of Runx1 in mouse metanephric mesenchyme-derived mK4 cells results in large-scale genome-wide changes to chromatin accessibility and gene expression. Open chromatin regions near down-regulated loci enriched for Runx sites in mK4 cells lose chromatin accessibility in Runx1 knockout cells, despite remaining Runx2-bound. Unexpectedly, regions near upregulated genes are depleted of Runx sites and are instead enriched for Zeb transcription factor binding sites. Re-expressing Zeb2 in Runx1 knockout cells restores suppression, and CRISPR mediated deletion of Zeb1 and Zeb2 phenocopies the gained expression and chromatin accessibility changes seen in Runx1KO due in part to subsequent activation of factors like Grhl2. These data confirm that Runx1 activity is uniquely needed to maintain open chromatin at many loci, and demonstrate that Zeb proteins are required and sufficient to maintain Runx1-dependent genome-scale repression. Runt-related transcription factor (Runx) 1 & 2 impact development and disease by activating or repressing transcription. In this manuscript we used genome editing tools to remove Runx1, and as expected, observed widespread changes in chromatin accessibility. Newly closed areas contained Runx1 binding sites and were enriched near genes whose expression depended on Runx1. Interestingly, this occurred despite continued binding of Runx2 to the same regions of DNA, which suggests that Runx2 is insufficient to maintain open chromatin and expression of Runx1 target genes in this cellular context. By contrast, newly opened chromatin regions, many near genes that were upregulated in Runx1 knockout cells, did not enrich for Runx1 binding sites. Instead, these regions were enriched for sites for the repressor Zeb proteins. We found that the loss of Zeb 1 & 2 expression, direct transcriptional targets of Runx1, resulted in the opening of chromatin and upregulation of genes residing near the newly open sites in Runx1 knockout cells. The same sites were also open and nearby genes expressed in edited Zeb1 and Zeb2 knockout cells. Among them were transcription factors, such as the Grhl2 gene, which in turn bind to and upregulate their target genes. Thus, the loss of a single transcription factor initiates a cascade of direct and indirect ramifications with likely negative effects on development and health.
Collapse
Affiliation(s)
- Matthew R. Hass
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Daniel Brissette
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sreeja Parameswaran
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Mario Pujato
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Omer Donmez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Leah C. Kottyan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Matthew T. Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (MTW); (RK)
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (MTW); (RK)
| |
Collapse
|
23
|
Xue J, Zhu S, Qi F, Zhu K, Cao P, Yang J, Wang Z. RUNX1/miR-582-5p Pathway Regulates the Tumor Progression in Clear Cell Renal Cell Carcinoma by Targeting COL5A1. Front Oncol 2021; 11:610992. [PMID: 33937021 PMCID: PMC8079757 DOI: 10.3389/fonc.2021.610992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Recent evidences indicated that miRNAs played core role in the progression of clear cell renal cell carcinoma (ccRCC). However, its molecular mechanism in ccRCC is still remained unclear. The study was designed to identify the role and regulatory mechanism of miR-582-5p in ccRCC. In this study, the low expression level of miR-582-5p were detected by qRT-PCR in ccRCC patient tumor samples and ccRCC cell lines, respectively. The expression level of miR-582-5p was associated with tumor stage and metastasis. In vivo and in vitro experiments found miR-582-5p inhibit tumor growth via suppressing COL5A1 expression. Additionally, RUNX1 was identified as the negative regulator of miR-582-5p through database prediction and chromatin immunoprecipitation. Finally, the negative relation of RUNX1 and miR-582-5p was verified through rescue experiment both in vitro and in vivo. In summary, miR-582-5p, which was regulated by RUNX1, inhibited tumor growth and invasion by targeting COL5A1, indicating that miR-582-5p may act as a biomarker and that the RUNX1/miR-582-5p/COL5A1 axis could be a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Jianxin Xue
- Department of Urology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shenhao Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urology, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Zhu
- Department of Urology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pu Cao
- Department of Urology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Mao X, Wang C, Xu Z, He Y, Hou Y, Li B. A Novel Standardized Method of Renal Biopsy in Mice. KIDNEY DISEASES 2021; 7:306-314. [PMID: 34395545 DOI: 10.1159/000513354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/26/2020] [Indexed: 01/15/2023]
Abstract
Introduction In animal models, it can be difficult to confirm therapeutic effects due to technical inconsistencies and other reasons. Although renal biopsy is widely used in clinical diagnosis, it is rarely used in animal experimental models, especially in mice, because the problems of surgery-induced renal injury and bleeding have not been solved. Methods We developed an easy-to-use method of renal biopsy in mice and evaluated whether 3 consecutive renal biopsies can be performed in the same kidney in a standardized manner. This method was verified using 2 mouse models, a healthy mouse model and a unilateral ureteral obstruction (UUO) mouse model, and evaluated based on renal function and histological changes. Results There were no perioperative complications in any of the model mice. There was no significant difference in serum Cr, 24-h urine protein, or kidney/body weight ratio between the biopsy and control groups. Each biopsy sample contained sufficient renal tissue. The damage to the operated tissue was limited to the tissue near the biopsy site. Compared with renal tissues in the corresponding control group, the renal tissues obtained from the 3 biopsies (healthy model days 0, 4, and 7 and UUO model days 3, 7, and 10) and the remnant renal tissues after the biopsy showed no significant difference in the glomerular sclerosis index, degree of renal tubular damage, inflammatory response and renal fibrosis in these 2 models. Conclusions Our new standardized method of renal biopsy in mice is a safe and cost-saving approach that allows repeated renal biopsies and ensures minimal trauma and sufficient sample size to quality in experimental disease models.
Collapse
Affiliation(s)
- Xinyue Mao
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Wang
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhihui Xu
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yixin He
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanpei Hou
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Li
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
25
|
Mukhopadhyay S, Bhutia SK. Trends in CRISPR-Cas9 technology application in cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:175-192. [PMID: 33685596 DOI: 10.1016/bs.pmbts.2020.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The evolution of the CRISPR-Cas9 technology in cancer research has tremendous potential to shape the future of oncology. Although this gene-editing tool's pre-clinical progress is into its nascent stage, there are many unanswered questions regarding health benefits and therapy precision using CRISPR. The application of CRISPR is highly specific, economically sustainable, and is a high throughput technique, but on the other hand, its application involves measured risk of countering the toxic immune response of Cas protein, off-target effects, limitation of delivering the edited cells back into cancer patients. The current chapter highlights the possibilities and perils of the present-day CRISPR engineering in cancer that should highlight CRISPR translation to therapy.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Department of Radiation Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Medical School, New York, NY, United States.
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|