1
|
Fazio S, Bellavite P, Affuso F. Chronically Increased Levels of Circulating Insulin Secondary to Insulin Resistance: A Silent Killer. Biomedicines 2024; 12:2416. [PMID: 39457728 PMCID: PMC11505545 DOI: 10.3390/biomedicines12102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Despite all the progress made by science in the prevention and treatment of cardiovascular diseases and cancers, these are still the main reasons for hospitalizations and death in the Western world. Among the possible causes of this situation, disorders related to hyperinsulinemia and insulin resistance (Hyperin/IR) are still little-known topics. An analysis of the literature shows that this condition is a multiple risk factor for type 2 diabetes, cardiovascular diseases, cellular senescence and cancer, and neurodegenerative diseases. Hyperin/IR is progressively increasing worldwide, and its prevalence has now exceeded 50% of the general population and in overweight children. Asymptomatic or poorly symptomatic, it can last for many years before manifesting itself as diabetes, cardiovascular disease, neoplasm, cognitive deficit, or dementia, therefore leading to enormous social and healthcare costs. For these reasons, a screening plan for this pathology should be implemented for the purpose of identifying people with Hyperin/IR and promptly starting them on preventive treatment.
Collapse
Affiliation(s)
- Serafino Fazio
- School of Medicine, Federico II University, 80100 Naples, Italy
| | | | | |
Collapse
|
2
|
Chhabra Y, Fane ME, Pramod S, Hüser L, Zabransky DJ, Wang V, Dixit A, Zhao R, Kumah E, Brezka ML, Truskowski K, Nandi A, Marino-Bravante GE, Carey AE, Gour N, Maranto DA, Rocha MR, Harper EI, Ruiz J, Lipson EJ, Jaffee EM, Bibee K, Sunshine JC, Ji H, Weeraratna AT. Sex-dependent effects in the aged melanoma tumor microenvironment influence invasion and resistance to targeted therapy. Cell 2024; 187:6016-6034.e25. [PMID: 39243764 DOI: 10.1016/j.cell.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
There is documented sex disparity in cutaneous melanoma incidence and mortality, increasing disproportionately with age and in the male sex. However, the underlying mechanisms remain unclear. While biological sex differences and inherent immune response variability have been assessed in tumor cells, the role of the tumor-surrounding microenvironment, contextually in aging, has been overlooked. Here, we show that skin fibroblasts undergo age-mediated, sex-dependent changes in their proliferation, senescence, ROS levels, and stress response. We find that aged male fibroblasts selectively drive an invasive, therapy-resistant phenotype in melanoma cells and promote metastasis in aged male mice by increasing AXL expression. Intrinsic aging in male fibroblasts mediated by EZH2 decline increases BMP2 secretion, which in turn drives the slower-cycling, highly invasive, and therapy-resistant melanoma cell phenotype, characteristic of the aged male TME. Inhibition of BMP2 activity blocks the emergence of invasive phenotypes and sensitizes melanoma cells to BRAF/MEK inhibition.
Collapse
Affiliation(s)
- Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | - Mitchell E Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sneha Pramod
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Laura Hüser
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Daniel J Zabransky
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Vania Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Agrani Dixit
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ruzhang Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Edwin Kumah
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Megan L Brezka
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kevin Truskowski
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Asmita Nandi
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Naina Gour
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Devon A Maranto
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Murilo R Rocha
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Elizabeth I Harper
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Justin Ruiz
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Evan J Lipson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA; The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristin Bibee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joel C Sunshine
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Wu H, Sun C, Cao W, Teng Q, Ma X, Schiöth HB, Dong R, Zhang Q, Kong B. Blockade of the lncRNA-PART1-PHB2 axis confers resistance to PARP inhibitor and promotes cellular senescence in ovarian cancer. Cancer Lett 2024; 602:217192. [PMID: 39181433 DOI: 10.1016/j.canlet.2024.217192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
PARPi is currently the most important breakthrough in the treatment of ovarian cancer in decades, and it has been integrated into the initial maintenance therapy for ovarian cancer. However, the mechanism leading to PARPi resistance remains unelucidated. Our study aims to screen novel targets to better predict and reverse resistance to PARPi and explore the potential mechanism. Here, we conducted a comparative analysis of differentially expressed genes between platinum-sensitive and platinum-resistant groups within the TCGA ovarian cancer cohort. The analysis indicated that lncRNA PART1 was significantly highly expressed in platinum-sensitive patients compared to platinum-resistant individuals in TCGA-OV cohort and further validated in the GEO dataset and Qilu hospital cohort. Moreover, the upregulation of PART1 was positively correlated with a favorable prognosis in ovarian cancer. Furthermore, in vitro and in vivo experiments showed that inhibition of PART1 conferred resistance to both cisplatin and PARP inhibitor and promoted cellular senescence. Senescent cells are more resistant to chemotherapeutics. RNA antisense purification and RNA immunoprecipitation assays revealed an interaction between PART1 and PHB2, a crucial mitophagy receptor. Knockdown of PART1 could promote the degradation of PHB2, impairing mitophagy and leading to cellular senescence. Rescue assays indicated that overexpression of PHB2 remarkably diminished the resistance to PARPi and cellular senescence caused by PART1 knockdown. PDX models were utilized to further confirm the findings. Altogether, our study demonstrated that lncRNA PART1 has the potential to serve as a novel promising target to reverse resistance to PARPi and improve prognosis in ovarian cancer.
Collapse
Affiliation(s)
- Huan Wu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China
| | - Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China
| | - Wenyu Cao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China
| | - Qiuli Teng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China
| | - Xinyue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Ruifen Dong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China.
| |
Collapse
|
4
|
Chen M, Wu G, Lu Y, Sun S, Yu Z, Pan X, Chen W, Xu H, Qiu H, He W, Li X, Wang X, Luo Y, Du Y, Wu J, Wei K, Zhang W, Liu Z, He Z. A p21-ATD mouse model for monitoring and eliminating senescent cells and its application in liver regeneration post injury. Mol Ther 2024; 32:2992-3011. [PMID: 38582962 PMCID: PMC11403235 DOI: 10.1016/j.ymthe.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/10/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Cellular senescence associates with pathological aging and tissue dysfunctions. Studies utilizing mouse models for cell lineage tracings have emphasized the importance of senescence heterogeneity in different organs and cell types. Here, we constructed a p21- (Akaluc - tdTomato - Diphtheria Toxin Receptor [DTR]) (ATD) mouse model to specifically study the undefined mechanism for p21-expressing senescent cells in the aged and liver injury animals. The successful expressions of these genes enabled in vitro flow cytometric sorting, in vivo tracing, and elimination of p21-expressing senescent cells. During the natural aging process, p21-expressing cells were found in various tissues of p21-ATD mice. Eliminating p21-expressing cells in the aged p21-ATD mice recovered their multiple biological functions. p21-ATD/Fah-/- mice, bred from p21-ATD mice and fumarylacetoacetate hydrolase (Fah)-/- mice of liver injury, showed that the majority of their senescent hepatocytes were the phenotype of p21+ rather than p16+. Furthermore, eliminating the p21-expressing hepatocytes significantly promoted the engraftment of grafted hepatocytes and facilitated liver repopulation, resulting in significant recovery from liver injury. Our p21-ATD mouse model serves as an optimal model for studying the pattern and function of p21-expressing senescent cells under the physical and pathological conditions during aging.
Collapse
Affiliation(s)
- Miaomiao Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Guoxiu Wu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Yanli Lu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Shiwen Sun
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Zhao Yu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xin Pan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Wenjian Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Hongyu Xu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Hua Qiu
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P.R. China
| | - Weizhi He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xiuhua Li
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xicheng Wang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi Luo
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Yuan Du
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P.R. China
| | - Jialing Wu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Ke Wei
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zhiying He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China.
| |
Collapse
|
5
|
Wang D, Chen K, Wang Z, Wu H, Li Y. Research progress on interferon and cellular senescence. FASEB J 2024; 38:e70000. [PMID: 39157951 DOI: 10.1096/fj.202400808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the 12 major signs of aging were revealed in 2023, people's interpretation of aging will go further, which is of great significance for understanding the occurrence, development, and intervention in the aging process. As one of the 12 major signs of aging, cellular senescence refers to the process in which the proliferation and differentiation ability of cells decrease under stress stimulation or over time, often manifested as changes in cell morphology, cell cycle arrest, and decreased metabolic function. Interferon (IFN), as a secreted ligand for specific cell surface receptors, can trigger the transcription of interferon-stimulated genes (ISGs) and play an important role in cellular senescence. In addition, IFN serves as an important component of SASP, and the activation of the IFN signaling pathway has been shown to contribute to cell apoptosis and senescence. It is expected to delay cellular senescence by linking IFN with cellular senescence and studying the effects of IFN on cellular senescence and its mechanism. This article provides a review of the research on the relationship between IFN and cellular senescence by consulting relevant literature.
Collapse
Affiliation(s)
- Da Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, P.R. China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
6
|
Chen J, Ma J, Qi D, Wang Y, Sun X, Yang J, Sun W, Luan C, Shan Q, Liu W, Ma X. Inhibition of transglutaminase 2 inhibits ionizing radiation-induced cellular senescence in skin keratinocytes in vitro. IUBMB Life 2024. [PMID: 39139071 DOI: 10.1002/iub.2906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 08/15/2024]
Abstract
Senescent cells are typically characterized by a stable proliferation arrested in dividing cells accompanied with a senescence-associated secretory phenotype (SASP). Skin cellular senescence is the primary cause of skin aging, whereas the lack of identified skin senescence markers limits our understanding of the mechanisms involved in skin aging. Recent studies have revealed that intracellular calcium signaling has emerged as a key player in regulating cellular senescence and aging. However, the implication and roles of calcium signaling in skin keratinocyte senescence remain only partially understood. In this study, we developed a model for skin keratinocyte senescence using ionizing radiation (I/R) stimulation and found that the calcium-associated gene transglutaminase 2 (TGM2) was significantly induced compared with normal control. Interestingly, inhibition of TGM2 was found to delay skin keratinocyte senescence by suppressing I/R-promoted intracellular calcium signaling, accumulation of reactive oxygen species (ROS), DNA damage, as well as NF-κB-mediated SASP secretion. Taken together, our findings demonstrate that inhibition of TGM2 contributes to bypassing I/R-induced skin keratinocyte senescence and sheds light on novel strategies against skin stresses caused by I/R.
Collapse
Affiliation(s)
- Juping Chen
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jiang Ma
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Dandan Qi
- Department of Dermatology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Yuxuan Wang
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoming Sun
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jinghui Yang
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wentao Sun
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Changjiao Luan
- Department of Lung, The Third People's Hospital of Yangzhou, Yangzhou, China
| | - Qing Shan
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weili Liu
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xingjie Ma
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Robert M, Kennedy BK, Crasta KC. Therapy-induced senescence through the redox lens. Redox Biol 2024; 74:103228. [PMID: 38865902 PMCID: PMC11215421 DOI: 10.1016/j.redox.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Therapy-induced senescent tumor cells have emerged as significant drivers of tumor recurrence and disease relapse. Interestingly, reactive oxygen species (ROS) production and its associated redox signaling networks are intertwined with initiation and establishment of therapy-induced senescence. Therapy-induced senescent cells influence neighboring cells and the tumor microenvironment via their bioactive secretome known as the senescence-associated secretory phenotype (SASP). The intracellular effects of ROS are dose and context-dependent. Under normal physiological conditions, ROS is involved in various signalling pathways and cellular processes important for maintenance of cellular homeostasis, such as redox balance, stress response, inflammatory signalling, cell proliferation and cell death among others. However excess ROS accompanied by a pro-oxidant microenvironment can engender oxidative DNA damage, triggering cellular senescence. In this review, we discuss the role of ROS and the redox state dynamics in fine-tuning homeostatic processes that drive therapy-induced cell fate towards senescence establishment, as well as their influence in stimulating inflammatory signalling and SASP production. We also offer insights into interventional strategies, specifically senotherapeutics, that could potentially leverage on modulation of redox and antioxidant pathways. Lastly, we evaluate possible implications of redox rewiring during escape from therapy-induced senescence, an emerging area of research. We envision that examining therapy-induced senescence through the redox lens, integrated with time-resolved single-cell RNA sequencing combined with spatiotemporal multi-omics, could further enhance our understanding of its functional heterogeneity. This could aid identification of targetable signalling nodes to reduce disease relapse, as well as inform strategies for development of broad-spectrum senotherapeutics. Overall, our review aims to delineate redox-driven mechanisms which contribute to the biology of therapy-induced senescence and beyond, while highlighting implications for tumor initiation and recurrence.
Collapse
Affiliation(s)
- Matius Robert
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian K Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Karen C Crasta
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Muela-Zarzuela I, Suarez-Rivero JM, Gallardo-Orihuela A, Wang C, Izawa K, de Gregorio-Procopio M, Couillin I, Ryffel B, Kitaura J, Sanz A, von Zglinicki T, Mbalaviele G, Cordero MD. NLRP1 inflammasome promotes senescence and senescence-associated secretory phenotype. Inflamm Res 2024; 73:1253-1266. [PMID: 38907167 PMCID: PMC11281979 DOI: 10.1007/s00011-024-01892-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Senescence is a cellular aging-related process triggered by different stresses and characterized by the secretion of various inflammatory factors referred to as senescence-associated secretory phenotype (SASP), some of which are produced by the NLRP3 inflammasome. Here, we present evidence that the NLRP1 inflammasome is a DNA damage sensor and a key mediator of senescence. METHODS Senescence was induced in fibroblasts in vitro and in mice. Cellular senescence was assessed by Western blot analysis of several proteins, including p16, p21, p53, and SASP factors, released in the culture media or serum. Inflammasome components, including NLRP1, NLRP3 and GSDMD were knocked out or silenced using siRNAs. RESULTS In vitro and in vivo results suggest that the NLRP1 inflammasome promotes senescence by regulating the expression of p16, p21, p53, and SASP factors in a Gasdermin D (GSDMD)-dependent manner. Mechanistically, the NLRP1 inflammasome is activated in response to genomic damage detected by the cytosolic DNA sensor cGMP-AMP (cGAMP) synthase (cGAS). CONCLUSION Our findings show that NLRP1 is a cGAS-dependent DNA damage sensor during senescence and a mediator of SASP release through GSDMD. This study advances the knowledge on the biology of the NLRP1 inflammasome and highlights this pathway as a potential pharmcological target to modulate senescence.
Collapse
Affiliation(s)
- Inés Muela-Zarzuela
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Juan Miguel Suarez-Rivero
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Andrea Gallardo-Orihuela
- Instituto de Investigación E Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marta de Gregorio-Procopio
- Instituto de Investigación E Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Isabelle Couillin
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355, CNRS, University of Orleans, Orléans, France
- IDM, University of Cape Town, Cape Town, South Africa
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355, CNRS, University of Orleans, Orléans, France
- IDM, University of Cape Town, Cape Town, South Africa
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Alberto Sanz
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thomas von Zglinicki
- Ageing Research Laboratories, Newcastle University, Biosciences Institute, Newcastle, UK
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mario D Cordero
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013, Seville, Spain.
- Ageing Research Laboratories, Newcastle University, Biosciences Institute, Newcastle, UK.
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| |
Collapse
|
9
|
Pessoa J, Nóbrega-Pereira S, de Jesus BB. Senescent cell-derived vaccines: a new concept towards an immune response against cancer and aging? Aging (Albany NY) 2024; 16:10657-10665. [PMID: 38942604 PMCID: PMC11236300 DOI: 10.18632/aging.205975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/13/2024] [Indexed: 06/30/2024]
Abstract
Two recent seminal works have untangled the intricate role of tumor-associated senescent cells in cancer progression, or regression, by guiding our immune system against cancer cells. The characterization of these unique, yet diverse cell populations, should be considered, particularly when contemplating the use of senolytics, which are drugs that selectively eliminate senescent cells, in a cancer framework. Here, we will describe the current knowledge in this field. In particular, we will discuss how the presence of senescent cells in tumors could be used as a therapeutic target in immunogenic cancers and how we may hypothetically design an adaptive anti-aging vaccine.
Collapse
Affiliation(s)
- João Pessoa
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sandrina Nóbrega-Pereira
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
10
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00738-8. [PMID: 38831121 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
11
|
Zonari A, Brace LE, Harder NHO, Harker C, Oliveira CR, Boroni M, Carvalho JL. Double-blind, vehicle-controlled clinical investigation of peptide OS-01 for skin rejuvenation. J Cosmet Dermatol 2024; 23:2135-2144. [PMID: 38400612 DOI: 10.1111/jocd.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Senescent cells contribute to age-related tissue deterioration, including the skin, which plays important roles in overall health and social interactions. This study aimed to assess the effects of the senotherapeutic peptide, OS-01 (a.k.a. Pep 14), on skin. METHODS A 12-week split-face, double-blinded, vehicle-controlled study involving 22 participants was conducted. The OS-01-containing formulation was applied to one side of the face, while the other side received an identical control formulation lacking the peptide. Skin characteristics were assessed using instrumental measurements, expert clinical grading, and subjective questionnaires. RESULTS Results showed that the OS-01 formulation significantly improved one aspect of skin barrier function, as evidenced by reduced trans-epidermal water loss compared to both baseline and vehicle control. Expert grading and Antera 3D image analysis revealed a reduction in wrinkle appearance and indentation in the periorbital area, and improved skin texture and radiance on both sides of the face, with the OS-01-containing formulation demonstrating superior results. Participants also perceived improvements in skin hydration, smoothness, radiance, and overall appearance. CONCLUSION The findings suggest that the OS-01 formulation promotes skin health by strengthening the skin barrier, protecting against dehydration, reducing the appearance of wrinkles, and improving skin texture and radiance. These effects are likely attributed to the senotherapeutic properties of OS-01 in reducing cellular senescence and its associated detrimental effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Juliana L Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, Brazil
- Laboratory of Interdisciplinary Biosciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
12
|
Meng Y, Zhang J, Liu Y, Zhu Y, Lv H, Xia F, Guo Q, Shi Q, Qiu C, Wang J. The biomedical application of inorganic metal nanoparticles in aging and aging-associated diseases. J Adv Res 2024:S2090-1232(24)00213-3. [PMID: 38821357 DOI: 10.1016/j.jare.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Aging and aging-associated diseases (AAD), including neurodegenerative disease, cancer, cardiovascular diseases, and diabetes, are inevitable process. With the gradual improvement of life style, life expectancy is gradually extended. However, the extended lifespan has not reduced the incidence of disease, and most elderly people are in ill-health state in their later years. Hence, understanding aging and AAD are significant for reducing the burden of the elderly. Inorganic metal nanoparticles (IMNPs) predominantly include gold, silver, iron, zinc, titanium, thallium, platinum, cerium, copper NPs, which has been widely used to prevent and treat aging and AAD due to their superior properties (essential metal ions for human body, easily synthesis and modification, magnetism). Therefore, a systematic review of common morphological alternations of senescent cells, altered genes and signal pathways in aging and AAD, and biomedical applications of IMNPs in aging and AAD is crucial for the further research and development of IMNPs in aging and AAD. This review focus on the existing research on cellular senescence, aging and AAD, as well as the applications of IMNPs in aging and AAD in the past decade. This review aims to provide cutting-edge knowledge involved with aging and AAD, the application of IMNPs in aging and AAD to promote the biomedical application of IMNPs in aging and AAD.
Collapse
Affiliation(s)
- Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haining Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qianli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jigang Wang
- Department of Urology, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
13
|
Numa K, Patel SK, Zhang ZA, Burton JB, Matsumoto A, Hughes JWB, Sotozono C, Schilling B, Desprez PY, Campisi J, Kitazawa K. Senescent characteristics of human corneal endothelial cells upon ultraviolet-A exposure. Aging (Albany NY) 2024; 16:6673-6693. [PMID: 38683123 PMCID: PMC11087119 DOI: 10.18632/aging.205761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE The objective of this study was to investigate the senescent phenotypes of human corneal endothelial cells (hCEnCs) upon treatment with ultraviolet (UV)-A. METHODS We assessed cell morphology, senescence-associated β-galactosidase (SA-β-gal) activity, cell proliferation and expression of senescence markers (p16 and p21) in hCEnCs exposed to UV-A radiation, and senescent hCEnCs induced by ionizing radiation (IR) were used as positive controls. We performed RNA sequencing and proteomics analyses to compare gene and protein expression profiles between UV-A- and IR-induced senescent hCEnCs, and we also compared the results to non-senescent hCEnCs. RESULTS Cells exposed to 5 J/cm2 of UV-A or to IR exhibited typical senescent phenotypes, including enlargement, increased SA-β-gal activity, decreased cell proliferation and elevated expression of p16 and p21. RNA-Seq analysis revealed that 83.9% of the genes significantly upregulated and 82.6% of the genes significantly downregulated in UV-A-induced senescent hCEnCs overlapped with the genes regulated in IR-induced senescent hCEnCs. Proteomics also revealed that 93.8% of the proteins significantly upregulated in UV-A-induced senescent hCEnCs overlapped with those induced by IR. In proteomics analyses, senescent hCEnCs induced by UV-A exhibited elevated expression levels of several factors part of the senescence-associated secretory phenotype. CONCLUSIONS In this study, where senescence was induced by UV-A, a more physiological stress for hCEnCs compared to IR, we determined that UV-A modulated the expression of many genes and proteins typically altered upon IR treatment, a more conventional method of senescence induction, even though UV-A also modulated specific pathways unrelated to IR.
Collapse
Affiliation(s)
- Kohsaku Numa
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto 6020841, Japan
| | - Sandip Kumar Patel
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | | | | | - Akifumi Matsumoto
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto 6020841, Japan
| | | | - Chie Sotozono
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto 6020841, Japan
| | | | - Pierre-Yves Desprez
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- California Pacific Medical Center, Research Institute, San Francisco, CA 94107, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto 6020841, Japan
| |
Collapse
|
14
|
Mijajlović V, Miler M, Ilić R, Rašić D, Dunđerović D, Raičević S, Soldatović I, De Luka S, Manojlović-Gačić E. Oncogene-induced senescence in meningiomas-an immunohistochemical study. J Neurooncol 2024; 166:143-153. [PMID: 38117375 DOI: 10.1007/s11060-023-04532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE Meningiomas are tumours originating from meningothelial cells, the majority belonging to grade 1 according to the World Health Organization classification of the tumours of the Central Nervous System. Factors contributing to the progression to the higher grades (grades 2 and 3) have not been elucidated yet. Senescence has been proposed as a potential mechanism constraining the malignant transformation of tumours. Senescence-associated beta-galactosidase (SA-β-GAL) and inhibitors of cyclin-dependent kinases p16 and p21 have been suggested as senescence markers. METHODS We analysed 318 meningiomas of total 343 (178 grade 1, 133 grade 2 and 7 grade 3). Tissue microarrays were constructed and stained immunohistochemically, using antibodies for SA-β-GAL, p16 and p21. RESULTS The positive correlation of the tumour grade with the expression of p16 (p = 0.016) and SA-β-GAL (p = 0.002) was observed. The expression of p16 and SA-β-GAL was significantly higher in meningiomas grade 2 compared to meningiomas grade 1 (p = 0.006 and p = 0.004, respectively). SA-β-GAL positivity positively correlated with p16 and p21 in the whole cohort. In grade 2 meningiomas, a positive correlation was only between SA-β-GAL and p16. Correlations of senescence markers in meningiomas grade 2 were not present. CONCLUSION Our findings suggest the senescence activation in meningiomas grade 2 as a potential mechanism for the restraining of tumour growth and give hope for applying of promising senolytic therapy.
Collapse
Affiliation(s)
- Vladimir Mijajlović
- Department for Pathology, Pathohistology and Medical Cytology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Rosanda Ilić
- Clinic for Neurosurgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Dejan Rašić
- Clinic for Ophthalmology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Duško Dunđerović
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Savo Raičević
- Department for Pathology, Pathohistology and Medical Cytology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ivan Soldatović
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Silvio De Luka
- Institute for Pathophysiology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
15
|
Marcozzi S, Bigossi G, Giuliani ME, Giacconi R, Piacenza F, Cardelli M, Brunetti D, Segala A, Valerio A, Nisoli E, Lattanzio F, Provinciali M, Malavolta M. Cellular senescence and frailty: a comprehensive insight into the causal links. GeroScience 2023; 45:3267-3305. [PMID: 37792158 PMCID: PMC10643740 DOI: 10.1007/s11357-023-00960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
Senescent cells may have a prominent role in driving inflammation and frailty. The impact of cellular senescence on frailty varies depending on the assessment tool used, as it is influenced by the criteria or items predominantly affected by senescent cells and the varying weights assigned to these items across different health domains. To address this challenge, we undertook a thorough review of all available studies involving gain- or loss-of-function experiments as well as interventions targeting senescent cells, focusing our attention on those studies that examined outcomes based on the individual frailty phenotype criteria or specific items used to calculate two humans (35 and 70 items) and one mouse (31 items) frailty indexes. Based on the calculation of a simple "evidence score," we found that the burden of senescent cells related to musculoskeletal and cerebral health has the strongest causal link to frailty. We deem that insight into these mechanisms may not only contribute to clarifying the role of cellular senescence in frailty but could additionally provide multiple therapeutic opportunities to help the future development of a desirable personalized therapy in these extremely heterogeneous patients.
Collapse
Affiliation(s)
- Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
- Scientific Direction, IRCCS INRCA, 60124, Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129, Milan, Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research On Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli, 32, 20129, Milan, Italy
| | | | - Mauro Provinciali
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy.
| |
Collapse
|
16
|
Götzinger F, Hohl M, Lauder L, Millenaar D, Kunz M, Meyer MR, Ukena C, Lerche CM, Philipsen PA, Reichrath J, Böhm M, Mahfoud F. A randomized, placebo-controlled, trial to assess the photosensitizing, phototoxic and carcinogenic potential of hydrochlorothiazide in healthy volunteers. J Hypertens 2023; 41:1853-1862. [PMID: 37702559 DOI: 10.1097/hjh.0000000000003558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND AND AIMS Pharmacovigilance reports, associating hydrochlorothiazide (HCT) with skin cancer, resulted in a significant decrease of HCT prescriptions for hypertension and heart failure. Whether HCT exhibits phototoxic properties thereby causing skin cancer remains unknown. This study aimed to examine the photosensitizing, phototoxic and carcinogenic potential of HCT in a randomized, placebo-controlled, double-blind trial in vivo and also in vitro . METHODS The trial assigned 30 healthy, normotensive adult volunteers in a 2:1 ratio to either HCT 25 mg/day or placebo for 15 days. Photosensitivity of the skin with and without the effect of HCT treatment were assessed. Following whole-body ultraviolet A (UVA) and B (UVB, 311 nm) irradiation, phototoxic and carcinogenic reactions by measuring urinary excretion of pyrimidine dimers were evaluated. For the in-vitro studies, human keratinocytes (HaCaT) were incubated with HCT, irradiated with UVB, and analysed for markers of inflammation, apoptosis and carcinogenesis. RESULTS Skin photosensitivity following exposure to UVA and UVB remained unchanged from baseline to 15-day follow-up in both groups (UVA change HCT 0.0 J/cm 2 vs. placebo 0.0 J/cm 2 ; P = 0.99; UVB change HCT 0.0 J/cm 2 vs. placebo -0.2 J/cm 2 ; P = 0.06). Pyrimidine dimers were not detected in either group. In vitro , combination of HCT and UVB irradiation did not induce the expression of oxidative stress marker proteins, inflammatory proteins, apoptotic proteins or activation of oncoproteins. CONCLUSION HCT did not increase photosensitivity for UVA or UVB in healthy volunteers compared with placebo, and was not associated with phototoxic or carcinogenic reactions. In vitro , HCT was also not associated with phototoxicity or carcinogenesis (NCT04654312).
Collapse
Affiliation(s)
- Felix Götzinger
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Mathias Hohl
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Lucas Lauder
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Dominic Millenaar
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Michael Kunz
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Christian Ukena
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Catharina M Lerche
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Peter A Philipsen
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg
| | - Jörg Reichrath
- Department of Adult and Pediatric Dermatology, Venereology, Allergology, Saarland University Hospital, Homburg, Germany
| | - Michael Böhm
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Felix Mahfoud
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| |
Collapse
|
17
|
Kitazawa K, Numa K, Patel SK, King CD, Matsumoto A, Sotozono C, Desprez PY, Schilling B, Campisi J. Cellular senescence exacerbates features of aging in the eyes. AGING BIOLOGY 2023; 1:20230014. [PMID: 39239324 PMCID: PMC11375756 DOI: 10.59368/agingbio.20230014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Aging is a process often associated with various age-related diseases. Senescence is one of the hallmarks of aging, and senescent cells acquire a complex, often pro-inflammatory, secretory phenotype termed the senescence-associated secretory phenotype (SASP). Here we show that ocular surface cells from human cornea become senescent upon X-irradiation, characterized by increased SA-β-gal activity, decreased cell proliferation, increased expression of p16, and disruption of epithelial barrier. Comprehensive transcriptomic and proteomic analysis revealed that human senescent ocular cells acquire a SASP that disrupts epithelial barrier function. During aging in mice, senescent ocular cells accumulate, resulting in decreased epithelial barrier and chronic inflammation. Lacrimal gland excision, which leads to symptoms of dry eye (DE), resulted in corneal opacity associated with severe angiogenesis only in aged mice but not in young mice, and early senolytic treatment protected old DE mice from corneal opacity. In conclusion, senescent cells alter the ocular microenvironment through their SASP and eliminating these cells could represent a potential approach to alleviate symptoms associated with aged ocular surface.
Collapse
Affiliation(s)
- Koji Kitazawa
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, 6020841, Japan
| | - Kohsaku Numa
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, 6020841, Japan
| | - Sandip Kumar Patel
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Christina D King
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Akifumi Matsumoto
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, 6020841, Japan
| | - Chie Sotozono
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, 6020841, Japan
| | - Pierre-Yves Desprez
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| |
Collapse
|
18
|
Maharati A, Moghbeli M. Long non-coding RNAs as the critical regulators of PI3K/AKT, TGF-β, and MAPK signaling pathways during breast tumor progression. J Transl Med 2023; 21:556. [PMID: 37596669 PMCID: PMC10439650 DOI: 10.1186/s12967-023-04434-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
Breast cancer (BC) as one of the most common causes of human deaths among women, is always considered one of the global health challenges. Despite various advances in diagnostic and therapeutic methods, a significant percentage of BC patients have a poor prognosis due to the lack of therapeutic response. Therefore, investigating the molecular mechanisms involved in BC progression can improve the therapeutic and diagnostic strategies in these patients. Cytokine and growth factor-dependent signaling pathways play a key role during BC progression. In addition to cytokines and growth factors, long non-coding RNAs (lncRNAs) have also important roles in regulation of such signaling pathways. Therefore, in the present review we discussed the role of lncRNAs in regulation of PI3K/AKT, MAPK, and TGF-β signaling pathways in breast tumor cells. It has been shown that lncRNAs mainly have an oncogenic role through the promotion of these signaling pathways in BC. This review can be an effective step in introducing the lncRNAs inhibition as a probable therapeutic strategy to reduce tumor growth by suppression of PI3K/AKT, MAPK, and TGF-β signaling pathways in BC patients. In addition, considering the oncogenic role and increased levels of lncRNAs expressions in majority of the breast tumors, lncRNAs can be also considered as the reliable diagnostic markers in BC patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Steinberg T, Dieterle MP, Ramminger I, Klein C, Brossette J, Husari A, Tomakidi P. On the Value of In Vitro Cell Systems for Mechanobiology from the Perspective of Yes-Associated Protein/Transcriptional Co-Activator with a PDZ-Binding Motif and Focal Adhesion Kinase and Their Involvement in Wound Healing, Cancer, Aging, and Senescence. Int J Mol Sci 2023; 24:12677. [PMID: 37628858 PMCID: PMC10454169 DOI: 10.3390/ijms241612677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mechanobiology comprises how cells perceive different mechanical stimuli and integrate them into a process called mechanotransduction; therefore, the related mechanosignaling cascades are generally important for biomedical research. The ongoing discovery of key molecules and the subsequent elucidation of their roles in mechanobiology are fundamental to understanding cell responses and tissue conditions, such as homeostasis, aging, senescence, wound healing, and cancer. Regarding the available literature on these topics, it becomes abundantly clear that in vitro cell systems from different species and tissues have been and are extremely valuable tools for enabling the discovery and functional elucidation of key mechanobiological players. Therefore, this review aims to discuss the significant contributions of in vitro cell systems to the identification and characterization of three such key players using the selected examples of yes-associated protein (YAP), its paralog transcriptional co-activator with a PDZ-binding motif (TAZ), and focal adhesion kinase (FAK) and their involvement in wound healing, cancer, aging, and senescence. In addition, the reader is given suggestions as to which future prospects emerge from the in vitro studies discussed herein and which research questions still remain open.
Collapse
Affiliation(s)
- Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Charlotte Klein
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Julie Brossette
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| |
Collapse
|
20
|
Sun MY, Li W, Chen W. Chimeric antigen receptor T cell and regulatory T cell therapy in non-oncology diseases: A narrative review of studies from 2017 to 2023. Hum Vaccin Immunother 2023; 19:2251839. [PMID: 37814513 PMCID: PMC10566417 DOI: 10.1080/21645515.2023.2251839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/10/2023] [Indexed: 10/11/2023] Open
Abstract
Recently, the remarkable success of chimeric antigen receptor T cell (CAR-T) therapy in treating certain tumors has led to numerous studies exploring its potential application to treat non-oncology diseases. This review discusses the progress and evolution of CAR-T cell therapies for treating non-oncology diseases over the past 5 years. Additionally, we summarize the advantages and disadvantages of CAR-T cell therapy in treating non-oncological diseases and identify any difficulties that should be overcome. After conducting an in-depth analysis of the most recent studies on CAR-T technology, we discuss the key elements of CAR-T therapy, such as developing an effective CAR design for non-oncological diseases, controlling the rate and duration of response, and implementing safety measures to reduce toxicity. These studies provide new insights into different delivery strategies, the discovery of new target molecules, and improvements in the safety of CAR-T therapy for non-oncological diseases.
Collapse
Affiliation(s)
- Ming-Yao Sun
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
- Department of Clinical Nutrition, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Wei Chen
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
21
|
Shen J, Gao H, Li B, Huang Y, Shi Y. The integration of machine learning and multi-omics analysis provides a powerful approach to screen aging-related genes and predict prognosis and immunotherapy efficacy in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:6848-6864. [PMID: 37517087 PMCID: PMC10415564 DOI: 10.18632/aging.204876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant tumor with high incidence and mortality rates. Aging-related genes are closely related to the occurrence and development of cancer. Therefore, it is of great significance to evaluate the prognosis of HCC patients by constructing a model based on aging-related genes. METHOD Non-negative matrix factorization (NMF) clustering analysis was used to cluster the samples. The correlation between the risk score and immune cells, immune checkpoints, and Mismatch Repair (MMR) was evaluated through Spearman correlation test. Real Time Quantitative PCR (RT-qPCR) and immunohistochemistry were used to validate the expression levels of key genes in tissue and cells for the constructed model. RESULT By performing NMF clustering, we were able to effectively group the liver cancer samples into two distinct clusters. Considering the potential correlation between aging-related genes and the prognosis of liver cancer patients, we used aging-related genes to construct a prognostic model. Spearman correlation analysis showed that the model risk score was closely related to MMR and immune checkpoint expression. Drug sensitivity analysis also provided guidance for the clinical use of chemotherapy drugs. RT-qPCR showed that TFDP1, NDRG1, and FXR1 were expressed at higher levels in different liver cancer cell lines compared to normal liver cells. CONCLUSION In summary, we have developed an aging-related model to predict the prognosis of hepatocellular carcinoma and guide clinical drug treatment for different patients.
Collapse
Affiliation(s)
- Jiahui Shen
- Department of Pharmacy, Huzhou Maternity and Child Health Care Hospital, Huzhou, China
| | - Han Gao
- Department of Stomatology, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Bowen Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yinfang Shi
- Department of Stomatology, First Affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
22
|
Zhou L, Ruscetti M. Senescent macrophages: A new "old" player in lung cancer development. Cancer Cell 2023; 41:1201-1203. [PMID: 37267952 PMCID: PMC10512185 DOI: 10.1016/j.ccell.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
Senescent cells accumulate following oncogene induction, but their role in transformation remains unclear. Prieto et al. and Haston et al. found that senescent cells in premalignant lung lesions are mainly macrophages that promote lung tumorigenesis, and removing them through senolytic approaches can prevent malignant progression.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
23
|
Storozynsky QT, Han X, Komant S, Agopsowicz KC, Potts KG, Gamper AM, Godbout R, Evans DH, Hitt MM. Radiation-Induced Cellular Senescence Reduces Susceptibility of Glioblastoma Cells to Oncolytic Vaccinia Virus. Cancers (Basel) 2023; 15:3341. [PMID: 37444452 DOI: 10.3390/cancers15133341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma (GBM) is a malignant brain cancer refractory to the current standard of care, prompting an extensive search for novel strategies to improve outcomes. One approach under investigation is oncolytic virus (OV) therapy in combination with radiotherapy. In addition to the direct cytocidal effects of radiotherapy, radiation induces cellular senescence in GBM cells. Senescent cells cease proliferation but remain viable and are implicated in promoting tumor progression. The interaction of viruses with senescent cells is nuanced; some viruses exploit the senescent state to their benefit, while others are hampered, indicating senescence-associated antiviral activity. It is unknown how radiation-induced cellular senescence may impact the oncolytic properties of OVs based on the vaccinia virus (VACV) that are used in combination with radiotherapy. To better understand this, we induced cellular senescence by treating GBM cells with radiation, and then evaluated the growth kinetics, infectivity, and cytotoxicity of an oncolytic VACV, ∆F4LΔJ2R, as well as wild-type VACV in irradiated senescence-enriched and non-irradiated human GBM cell lines. Our results show that both viruses display attenuated oncolytic activities in irradiated senescence-enriched GBM cell populations compared to non-irradiated controls. These findings indicate that radiation-induced cellular senescence is associated with antiviral activity and highlight important considerations for the combination of VACV-based oncolytic therapies with senescence-inducing agents such as radiotherapy.
Collapse
Affiliation(s)
- Quinn T Storozynsky
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xuefei Han
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Shae Komant
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kate C Agopsowicz
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Kyle G Potts
- Alberta Children's Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Cellular Therapy and Immune Oncology (ACTION) Initiative, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Armin M Gamper
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB T6G 2R3, Canada
- Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| | - David H Evans
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mary M Hitt
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
24
|
Dańczak‐Pazdrowska A, Gornowicz‐Porowska J, Polańska A, Krajka‐Kuźniak V, Stawny M, Gostyńska A, Rubiś B, Nourredine S, Ashiqueali S, Schneider A, Tchkonia T, Wyles SP, Kirkland JL, Masternak MM. Cellular senescence in skin-related research: Targeted signaling pathways and naturally occurring therapeutic agents. Aging Cell 2023; 22:e13845. [PMID: 37042069 PMCID: PMC10265178 DOI: 10.1111/acel.13845] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Despite the growing interest by researchers into cellular senescence, a hallmark of cellular aging, its role in human skin remains equivocal. The skin is the largest and most accessible human organ, reacting to the external and internal environment. Hence, it is an organ of choice to investigate cellular senescence and to target root-cause aging processes using senolytic and senomorphic agents, including naturally occurring plant-based derivatives. This review presents different aspects of skin cellular senescence, from physiology to pathology and signaling pathways. Cellular senescence can have both beneficial and detrimental effects on the skin, indicating that both prosenescent and antisenescent therapies may be desirable, based on the context. Knowledge of molecular mechanisms involved in skin cellular senescence may provide meaningful insights for developing effective therapeutics for senescence-related skin disorders, such as wound healing and cosmetic skin aging changes.
Collapse
Affiliation(s)
| | - Justyna Gornowicz‐Porowska
- Department and Division of Practical Cosmetology and Skin Diseases ProphylaxisPoznan University of Medical SciencesPoznanPoland
| | - Adriana Polańska
- Department of Dermatology and VenereologyPoznan University of Medical SciencesPoznanPoland
| | | | - Maciej Stawny
- Department of Pharmaceutical ChemistryPoznan University of Medical SciencesPoznanPoland
| | - Aleksandra Gostyńska
- Department of Pharmaceutical ChemistryPoznan University of Medical SciencesPoznanPoland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular DiagnosticsPoznan University of Medical SciencesPoznanPoland
| | - Sarah Nourredine
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central FloridaOrlandoFloridaUSA
| | - Sarah Ashiqueali
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central FloridaOrlandoFloridaUSA
| | | | - Tamara Tchkonia
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | | | - James L. Kirkland
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Michal M. Masternak
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central FloridaOrlandoFloridaUSA
- Department of Head and Neck SurgeryPoznan University of Medical SciencesPoznanPoland
| |
Collapse
|
25
|
De Gregorio C, Catalán E, Garrido G, Morandé P, Bennett JC, Muñoz C, Cofré G, Huang YL, Cuadra B, Murgas P, Calvo M, Altermatt F, Yubero MJ, Palisson F, South AP, Ezquer M, Fuentes I. Maintenance of chronicity signatures in fibroblasts isolated from recessive dystrophic epidermolysis bullosa chronic wound dressings under culture conditions. Biol Res 2023; 56:23. [PMID: 37161592 PMCID: PMC10170710 DOI: 10.1186/s40659-023-00437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a rare inherited skin disease caused by variants in the COL7A1 gene, coding for type VII collagen (C7), an important component of anchoring fibrils in the basement membrane of the epidermis. RDEB patients suffer from skin fragility starting with blister formation and evolving into chronic wounds, inflammation and skin fibrosis, with a high risk of developing aggressive skin carcinomas. Restricted therapeutic options are limited by the lack of in vitro models of defective wound healing in RDEB patients. RESULTS In order to explore a more efficient, non-invasive in vitro model for RDEB studies, we obtained patient fibroblasts derived from discarded dressings) and examined their phenotypic features compared with fibroblasts derived from non-injured skin of RDEB and healthy-donor skin biopsies. Our results demonstrate that fibroblasts derived from RDEB chronic wounds (RDEB-CW) displayed characteristics of senescent cells, increased myofibroblast differentiation, and augmented levels of TGF-β1 signaling components compared to fibroblasts derived from RDEB acute wounds and unaffected RDEB skin as well as skin from healthy-donors. Furthermore, RDEB-CW fibroblasts exhibited an increased pattern of inflammatory cytokine secretion (IL-1β and IL-6) when compared with RDEB and control fibroblasts. Interestingly, these aberrant patterns were found specifically in RDEB-CW fibroblasts independent of the culturing method, since fibroblasts obtained from dressing of acute wounds displayed a phenotype more similar to fibroblasts obtained from RDEB normal skin biopsies. CONCLUSIONS Our results show that in vitro cultured RDEB-CW fibroblasts maintain distinctive cellular and molecular characteristics resembling the inflammatory and fibrotic microenvironment observed in RDEB patients' chronic wounds. This work describes a novel, non-invasive and painless strategy to obtain human fibroblasts chronically subjected to an inflammatory and fibrotic environment, supporting their use as an accessible model for in vitro studies of RDEB wound healing pathogenesis. As such, this approach is well suited to testing new therapeutic strategies under controlled laboratory conditions.
Collapse
Affiliation(s)
- Cristian De Gregorio
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile
| | - Evelyng Catalán
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Gabriel Garrido
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Pilar Morandé
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | | | - Catalina Muñoz
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Glenda Cofré
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile
| | - Bárbara Cuadra
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile
| | - Paola Murgas
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Margarita Calvo
- Facultad de Ciencias Biológicas y División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Núcleo milenio para el estudio del dolor MINUSPAIN, Santiago, Chile
| | - Fernando Altermatt
- División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Joao Yubero
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
- Pediatrics and Pediatric Infectious Diseases of Clínica Alemana, Facultad de Medicina Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Francis Palisson
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
- Servicio de Dermatología, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Andrew P South
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, USA
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile.
| | - Ignacia Fuentes
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile.
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile.
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
26
|
Samakkarnthai P, Saul D, Zhang L, Aversa Z, Doolittle ML, Sfeir JG, Kaur J, Atkinson EJ, Edwards JR, Russell GG, Pignolo RJ, Kirkland JL, Tchkonia T, Niedernhofer LJ, Monroe DG, Lebrasseur NK, Farr JN, Robbins PD, Khosla S. In vitro and in vivo effects of zoledronic acid on senescence and senescence-associated secretory phenotype markers. Aging (Albany NY) 2023; 15:3331-3355. [PMID: 37154858 PMCID: PMC10449299 DOI: 10.18632/aging.204701] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
In addition to reducing fracture risk, zoledronic acid has been found in some studies to decrease mortality in humans and extend lifespan and healthspan in animals. Because senescent cells accumulate with aging and contribute to multiple co-morbidities, the non-skeletal actions of zoledronic acid could be due to senolytic (killing of senescent cells) or senomorphic (inhibition of the secretion of the senescence-associated secretory phenotype [SASP]) actions. To test this, we first performed in vitro senescence assays using human lung fibroblasts and DNA repair-deficient mouse embryonic fibroblasts, which demonstrated that zoledronic acid killed senescent cells with minimal effects on non-senescent cells. Next, in aged mice treated with zoledronic acid or vehicle for 8 weeks, zoledronic acid significantly reduced circulating SASP factors, including CCL7, IL-1β, TNFRSF1A, and TGFβ1 and improved grip strength. Analysis of publicly available RNAseq data from CD115+ (CSF1R/c-fms+) pre-osteoclastic cells isolated from mice treated with zoledronic acid demonstrated a significant downregulation of senescence/SASP genes (SenMayo). To establish that these cells are potential senolytic/senomorphic targets of zoledronic acid, we used single cell proteomic analysis (cytometry by time of flight [CyTOF]) and demonstrated that zoledronic acid significantly reduced the number of pre-osteoclastic (CD115+/CD3e-/Ly6G-/CD45R-) cells and decreased protein levels of p16, p21, and SASP markers in these cells without affecting other immune cell populations. Collectively, our findings demonstrate that zoledronic acid has senolytic effects in vitro and modulates senescence/SASP biomarkers in vivo. These data point to the need for additional studies testing zoledronic acid and/or other bisphosphonate derivatives for senotherapeutic efficacy.
Collapse
Affiliation(s)
- Parinya Samakkarnthai
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Phramongkutklao Hospital and College of Medicine, Bangkok 10400, Thailand
| | - Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Tübingen 72076, Germany
| | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zaira Aversa
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Madison L. Doolittle
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Jad G. Sfeir
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Japneet Kaur
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | | | - James R. Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
| | - Graham G. Russell
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, S10 2RX, UK
| | - Robert J. Pignolo
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David G. Monroe
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Nathan K. Lebrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Joshua N. Farr
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Liang X, Lin X, Lin Z, Lin W, Peng Z, Wei S. Genes associated with cellular senescence favor melanoma prognosis by stimulating immune responses in tumor microenvironment. Comput Biol Med 2023; 158:106850. [PMID: 37031510 DOI: 10.1016/j.compbiomed.2023.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/25/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE Skin cutaneous melanoma (SKCM), a malignant tumor from melanocytes, is the fifth most prevalent tumor. Immune checkpoint inhibitor (ICI) immunotherapy improves prognosis of SKCM, but immune response varies for different populations. Cellular senescence in the tumor microenvironment (TME) promotes antitumor immunity, mediated by dendritic cells (DC) and CD8+ T cells. Therefore, we sought to explore the role of cellular senescence in the TME of SKCM through bioinformatics and machine learning. METHODS First, we obtained 93 cellular senescence-prognosis genes (CSPGs) by univariate survival analysis. Thereafter, 23 optimal CSPGs were obtained by least absolute shrinkage and selection operator (lasso) analysis. Based on the riskscore obtained by lasso analysis and clinical information from multivariate cox, we obtained the nomogram of SKCM, which was validated in the validation cohort. Based on the riskscore, the patients were split into low- and high-risk groups. Functional differences between the two groups were analyzed using Metascape and GSEA, and immune infiltration differences were achieved by multiple algorithms. We obtained a risk prediction nomogram for the validated SKCM based on the lasso model by univariate and multivariate cox regression analysis. RESULTS In the low-risk group, immune responses were in an active state. NK, CD8+ T, DC, macrophages, and neutrophils were significantly upregulated, and ICI-relevant genes were notably upregulated. With the differentially expressed genes (DEGs) and optimal CSPGs, we obtained the hub genes: NOX4, NTN4, PROX1, and TRPM8. The hub genes were mainly expressed by cancer-associated fibroblasts (CAFs) and endothelial cells by single cell analysis, which were mainly associated with angiogenesis. CONCLUSION Genes associated with cellular senescence favor SKCM prognosis by stimulating immune responses in TME. Patients with high expression of cellular senescence associated genes in the TME might have better benefit from ICI immunotherapy. Cellular senescence functions as a pro-tumor agent in mesenchymal cells and needs further study.
Collapse
Affiliation(s)
- Xiaofeng Liang
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaobing Lin
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zien Lin
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Weiyi Lin
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhishen Peng
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Shanshan Wei
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Oesterreich S, Aird KM. Senescence and Immunotherapy: Redundant Immunomodulatory Pathways Promote Resistance. Cancer Immunol Res 2023; 11:401-404. [PMID: 36826438 PMCID: PMC11221415 DOI: 10.1158/2326-6066.cir-23-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/25/2023]
Abstract
Senescent cancer cells alter their microenvironment through secretion of pro-inflammatory cytokines and chemokines called the senescence-associated secretory phenotype (SASP) and upregulation of immunoinhibitory proteins such as CD80 and programmed death-ligand 1. The senescence field is just beginning to explore the role of these changes on antitumor immunity and response to immunotherapy. In this Perspective, we highlight a new study that aimed to determine how senescent breast cancer cells are shielded from immunosurveillance via upregulation of redundant immunoinhibitory proteins in two distinct senescent populations. We also discuss recent articles regarding how the SASP alters the tumor immune microenvironment and response to immunotherapy. As many therapies used to treat cancers induce senescence, future work will need to better refine the composition of the SASP and heterogeneity of senescence in the tumor microenvironment to more completely understand how the immune compartment is regulated by senescent tumors.
Collapse
Affiliation(s)
- Steffi Oesterreich
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Katherine M. Aird
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Muela-Zarzuela I, Suarez-Rivero JM, Gallardo-Orihuela A, Wang C, Izawa K, de Gregorio-Procopio M, Couillin I, Ryffel B, Kitaura J, Sanz A, von Zglinicki T, Mbalaviele G, Cordero MD. NLRP1 inflammasome modulates senescence and senescence-associated secretory phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527254. [PMID: 36798300 PMCID: PMC9934543 DOI: 10.1101/2023.02.06.527254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Senescence is a cellular aging-related process triggered by different stresses and characterized by the secretion of various inflammatory factors referred to as the senescence-associated secretory phenotype (SASP). Here, we present evidence that the inflammasome sensor, NLRP1, is a key mediator of senescence induced by irradiation both in vitro and in vivo. The NLRP1 inflammasome promotes senescence by regulating the expression of p16, p21, p53, and SASP in Gasdermin D (GSDMD)-dependent manner as these responses are reduced in conditions of NLRP1 insufficiency or GSDMD inhibition. Mechanistically, the NLRP1 inflammasome is activated downstream of the cytosolic DNA sensor cGMP-AMP (cGAMP) synthase (cGAS) in response to genomic damage. These findings provide a rationale for inhibiting the NLRP1 inflammasome-GSDMD axis to treat senescence-driven disorders.
Collapse
|
30
|
Ye M, Huang X, Wu Q, Liu F. Senescent Stromal Cells in the Tumor Microenvironment: Victims or Accomplices? Cancers (Basel) 2023; 15:cancers15071927. [PMID: 37046588 PMCID: PMC10093305 DOI: 10.3390/cancers15071927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Cellular senescence is a unique cellular state. Senescent cells enter a non-proliferative phase, and the cell cycle is arrested. However, senescence is essentially an active cellular phenotype, with senescent cells affecting themselves and neighboring cells via autocrine and paracrine patterns. A growing body of research suggests that the dysregulation of senescent stromal cells in the microenvironment is tightly associated with the development of a variety of complex cancers. The role of senescent stromal cells in impacting the cancer cell and tumor microenvironment has also attracted the attention of researchers. In this review, we summarize the generation of senescent stromal cells in the tumor microenvironment and their specific biological functions. By concluding the signaling pathways and regulatory mechanisms by which senescent stromal cells promote tumor progression, distant metastasis, immune infiltration, and therapy resistance, this paper suggests that senescent stromal cells may serve as potential targets for drug therapy, thus providing new clues for future related research.
Collapse
Affiliation(s)
- Minghan Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| | - Xinyi Huang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
| | - Qianju Wu
- Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361008, China
- Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| |
Collapse
|
31
|
Samakkarnthai P, Saul D, Zhang L, Aversa Z, Doolittle ML, Sfeir JG, Kaur J, Atkinson EJ, Edwards JR, Russell RGG, Pignolo RJ, Kirkland JL, Tchkonia T, Niedernhofer LJ, Monroe DG, LeBrasseur NK, Farr JN, Robbins PD, Khosla S. In vitro and in vivo effects of zoledronate on senescence and senescence-associated secretory phenotype markers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529777. [PMID: 36865244 PMCID: PMC9980119 DOI: 10.1101/2023.02.23.529777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
In addition to reducing fracture risk, zoledronate has been found in some studies to decrease mortality in humans and extend lifespan and healthspan in animals. Because senescent cells accumulate with aging and contribute to multiple co-morbidities, the non-skeletal actions of zoledronate could be due to senolytic (killing of senescent cells) or senomorphic (inhibition of the secretion of the senescence-associated secretory phenotype [SASP]) actions. To test this, we first performed in vitro senescence assays using human lung fibroblasts and DNA repair-deficient mouse embryonic fibroblasts, which demonstrated that zoledronate killed senescent cells with minimal effects on non-senescent cells. Next, in aged mice treated with zoledronate or vehicle for 8 weeks, zoledronate significantly reduced circulating SASP factors, including CCL7, IL-1β, TNFRSF1A, and TGFβ1 and improved grip strength. Analysis of publicly available RNAseq data from CD115+ (CSF1R/c-fms+) pre-osteoclastic cells isolated from mice treated with zoledronate demonstrated a significant downregulation of senescence/SASP genes (SenMayo). To establish that these cells are potential senolytic/senomorphic targets of zoledronate, we used single cell proteomic analysis (cytometry by time of flight [CyTOF]) and demonstrated that zoledronate significantly reduced the number of pre-osteoclastic (CD115+/CD3e-/Ly6G-/CD45R-) cells and decreased protein levels of p16, p21, and SASP markers in these cells without affecting other immune cell populations. Collectively, our findings demonstrate that zoledronate has senolytic effects in vitro and modulates senescence/SASP biomarkers in vivo . These data point to the need for additional studies testing zoledronate and/or other bisphosphonate derivatives for senotherapeutic efficacy.
Collapse
|
32
|
Jaber S, Warnier M, Leers C, Vernier M, Goehrig D, Médard JJ, Vindrieux D, Ziegler DV, Bernard D. Targeting chemoresistant senescent pancreatic cancer cells improves conventional treatment efficacy. MOLECULAR BIOMEDICINE 2023; 4:4. [PMID: 36739330 PMCID: PMC9899302 DOI: 10.1186/s43556-023-00116-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/15/2023] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the deadliest cancers owing to its late diagnosis and of the strong resistance to available treatments. Despite a better understanding of the disease in the last two decades, no significant improvement in patient care has been made. Senescent cells are characterized by a stable proliferation arrest and some resistance to cell death. Increasing evidence suggests that multiple lines of antitumor therapy can induce a senescent-like phenotype in cancer cells, which may participate in treatment resistance. In this study, we describe that gemcitabine, a clinically-used drug against pancreatic cancer, induces a senescent-like phenotype in highly chemoresistant pancreatic cancer cells in vitro and in xenografted tumors in vivo. The use of ABT-263, a well-described senolytic compound targeting Bcl2 anti-apoptotic proteins, killed pancreatic gemcitabine-treated senescent-like cancer cells in vitro. In vivo, the combination of gemcitabine and ABT-263 decreased tumor growth, whereas their individual administration had no effect. Together these data highlight the possibility of improving the efficacy of conventional chemotherapies against pancreatic cancer by eliminating senescent-like cancer cells through senolytic intervention. Further studies testing different senolytics or their combination with available treatments will be necessary to optimize preclinical data in mouse models before transferring these findings to clinical trials.
Collapse
Affiliation(s)
- Sara Jaber
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Marine Warnier
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Christopher Leers
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Mathieu Vernier
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Delphine Goehrig
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Jean-Jacques Médard
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - David Vindrieux
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Dorian V. Ziegler
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,grid.9851.50000 0001 2165 4204Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - David Bernard
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| |
Collapse
|
33
|
Liu Q, Bao H, Zhang S, Song T, Li C, Sun G, Sun X, Fu T, Wang Y, Liang P. Identification of a cellular senescence-related-lncRNA (SRlncRNA) signature to predict the overall survival of glioma patients and the tumor immune microenvironment. Front Genet 2023; 14:1096792. [PMID: 36911393 PMCID: PMC9998504 DOI: 10.3389/fgene.2023.1096792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Gliomas are brain tumors that arise from glial cells, and they are the most common primary intracranial tumors with a poor prognosis. Cellular senescence plays a critical role in cancer, especially in glioma. In this study, we constructed a senescence-related lncRNA (SRlncRNA) signature to assess the prognosis of glioma. Methods: The Cancer Genome Atlas was used to collect SRlncRNA transcriptome profiles and clinical data about glioma. Patients were randomized to training, testing, and whole cohorts. LASSO and Cox regression analyses were employed to construct the SRlncRNA signature, and Kaplan-Meier (K-M) analysis was performed to determine each cohort's survival. Receiver operating characteristic (ROC) curves were applied to verify the accuracy of this signature. Gene set enrichment analysis was used to visualize functional enrichment (GSEA). The CIBERSORT algorithm, ESTIMATE and TIMER databases were utilized to evaluate the differences in the infiltration of 22 types of immune cells and their association with the signature. RT-qPCR and IHC were used to identify the consistency of the signature in tumor tissue. Results: An SRlncRNA signature consisting of six long non-coding RNAs (lncRNAs) was constructed, and patients were divided into high-risk and low-risk groups by the median of their riskscore. The KM analysis showed that the high-risk group had worse overall survival, and the ROC curve confirmed that the riskscore had more accurate predictive power. A multivariate Cox analysis and its scatter plot with clinical characteristics confirmed the riskscore as an independent risk factor for overall survival. GSEA showed that the GO and KEGG pathways were mainly enriched in the immune response to tumor cells, p53 signaling pathway, mTOR signaling pathway, and Wnt signaling pathway. Further validation also yielded significant differences in the risk signature in terms of immune cell infiltration, which may be closely related to prognostic differences, and qRT-PCR and IHC confirmed the consistency of the expression differences in the major lncRNAs with those in the prediction model. Conclusion Our findings indicated that the SRlncRNA signature might be used as a predictive biomarker and that there is a link between it and immune infiltration. This discovery is consistent with the present categorization system and may open new avenues for research and personalized therapy.
Collapse
Affiliation(s)
- Qing Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Sibin Zhang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjun Song
- Department of Medicine II, University Hospital LMU Munich, Munich, Germany
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guiyin Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoyang Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Fu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yujie Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
34
|
Gabai Y, Assouline B, Ben-Porath I. Senescent stromal cells: roles in the tumor microenvironment. Trends Cancer 2023; 9:28-41. [PMID: 36208990 DOI: 10.1016/j.trecan.2022.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022]
Abstract
Cellular senescence forms a barrier to tumorigenesis, by inducing cell cycle arrest in damaged and mutated cells. However, once formed, senescent cells often emit paracrine signals that can either promote or suppress tumorigenesis. There is evidence that, in addition to cancer cells, subsets of tumor stromal cells, including fibroblasts, endothelial cells, and immune cells, undergo senescence. Such senescent stromal cells can influence cancer development and progression and represent potential targets for therapy. However, understanding of their characteristics and roles is limited and few studies have dissected their functions in vivo. Here, we discuss current knowledge and pertinent questions regarding the presence of senescent stromal cells in cancers, the triggers that elicit their formation, and their potential roles within the tumor microenvironment.
Collapse
Affiliation(s)
- Yael Gabai
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Assouline
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
35
|
Spielvogel CP, Stoiber S, Papp L, Krajnc D, Grahovac M, Gurnhofer E, Trachtova K, Bystry V, Leisser A, Jank B, Schnoell J, Kadletz L, Heiduschka G, Beyer T, Hacker M, Kenner L, Haug AR. Radiogenomic markers enable risk stratification and inference of mutational pathway states in head and neck cancer. Eur J Nucl Med Mol Imaging 2023; 50:546-558. [PMID: 36161512 PMCID: PMC9816299 DOI: 10.1007/s00259-022-05973-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/15/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Head and neck squamous cell carcinomas (HNSCCs) are a molecularly, histologically, and clinically heterogeneous set of tumors originating from the mucosal epithelium of the oral cavity, pharynx, and larynx. This heterogeneous nature of HNSCC is one of the main contributing factors to the lack of prognostic markers for personalized treatment. The aim of this study was to develop and identify multi-omics markers capable of improved risk stratification in this highly heterogeneous patient population. METHODS In this retrospective study, we approached this issue by establishing radiogenomics markers to identify high-risk individuals in a cohort of 127 HNSCC patients. Hybrid in vivo imaging and whole-exome sequencing were employed to identify quantitative imaging markers as well as genetic markers on pathway-level prognostic in HNSCC. We investigated the deductibility of the prognostic genetic markers using anatomical and metabolic imaging using positron emission tomography combined with computed tomography. Moreover, we used statistical and machine learning modeling to investigate whether a multi-omics approach can be used to derive prognostic markers for HNSCC. RESULTS Radiogenomic analysis revealed a significant influence of genetic pathway alterations on imaging markers. A highly prognostic radiogenomic marker based on cellular senescence was identified. Furthermore, the radiogenomic biomarkers designed in this study vastly outperformed the prognostic value of markers derived from genetics and imaging alone. CONCLUSION Using the identified markers, a clinically meaningful stratification of patients is possible, guiding the identification of high-risk patients and potentially aiding in the development of effective targeted therapies.
Collapse
Affiliation(s)
- Clemens P Spielvogel
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Stoiber
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Laszlo Papp
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Denis Krajnc
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Marko Grahovac
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Gurnhofer
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Karolina Trachtova
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Centre for Molecular Medicine, Central European Institute of Technology, Brno, Czech Republic
| | - Vojtech Bystry
- Centre for Molecular Medicine, Central European Institute of Technology, Brno, Czech Republic
| | - Asha Leisser
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Bernhard Jank
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Schnoell
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Lorenz Kadletz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Beyer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria.
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.
| | - Alexander R Haug
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Saleh T, Khasawneh AI, Himsawi N, Abu-Raideh J, Ejeilat V, Elshazly AM, Gewirtz DA. Senolytic Therapy: A Potential Approach for the Elimination of Oncogene-Induced Senescent HPV-Positive Cells. Int J Mol Sci 2022; 23:15512. [PMID: 36555154 PMCID: PMC9778669 DOI: 10.3390/ijms232415512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Senescence represents a unique cellular stress response characterized by a stable growth arrest, macromolecular alterations, and wide spectrum changes in gene expression. Classically, senescence is the end-product of progressive telomeric attrition resulting from the repetitive division of somatic cells. In addition, senescent cells accumulate in premalignant lesions, in part, as a product of oncogene hyperactivation, reflecting one element of the tumor suppressive function of senescence. Oncogenic processes that induce senescence include overexpression/hyperactivation of H-Ras, B-Raf, and cyclin E as well as inactivation of PTEN. Oncogenic viruses, such as Human Papilloma Virus (HPV), have also been shown to induce senescence. High-risk strains of HPV drive the immortalization, and hence transformation, of cervical epithelial cells via several mechanisms, but primarily via deregulation of the cell cycle, and possibly, by facilitating escape from senescence. Despite the wide and successful utilization of HPV vaccines in reducing the incidence of cervical cancer, this measure is not effective in preventing cancer development in individuals already positive for HPV. Accordingly, in this commentary, we focus on the potential contribution of oncogene and HPV-induced senescence (OIS) in cervical cancer. We further consider the potential utility of senolytic agents for the elimination of HPV-harboring senescent cells as a strategy for reducing HPV-driven transformation and the risk of cervical cancer development.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Ashraf I. Khasawneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Jumana Abu-Raideh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Vera Ejeilat
- Department of Anatomy and Histology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
37
|
Li L, Zhang M, Zhao C, Cheng Y, Liu C, Shi M. Circadian clock gene Clock-Bmal1 regulates cellular senescence in Chronic obstructive pulmonary disease. BMC Pulm Med 2022; 22:435. [PMID: 36419003 PMCID: PMC9682805 DOI: 10.1186/s12890-022-02237-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disease. COPD is associated with accelerated lung aging. Circadian clock is believed to play important roles in COPD. Although the circadian molecular clock regulates cellular senescence, there is no information available regarding the impact of COPD. The aim of this study is to investigate the role of the circadian clock protein BMAL1 and CLOCK in cellular senescence in order to understand the cellular mechanisms of accelerated aging of COPD. Bmal1 and Clock levels were assessed in the plasma samples of non-smokers, smokers, and patients with COPD. The regulation of ciracadian clock expression and cell senescence by cigarette smoke extract (CSE) was studied in vitro, and small interfering RNA (siRNA) and overexpression of Bmal1 or Clock were employed to investigate the role of circadian clock on cell senescence. Herein, patients with COPD showed lower Bmal1 and Clock expression in the plasma. Interestingly, CSE exposure contributed to the increased cell senescence, decreased Clock and Bmal1 in human bronchial epithelial cells (Beas-2B cells). We found that knockdown of Clock or Bmal1 lead to upregulation of cell senescence in Beas-2B cells, while overexpression of Clock or Bmal1 inhibited cell senescence in Beas-2B cells, which is through the MAPK pathways. Therefore, our findings indicated that Bmal1 or Clock deficiency may be a significant factor to increase cellular senescence of the lung to develop COPD.
Collapse
Affiliation(s)
- Lingling Li
- grid.452666.50000 0004 1762 8363Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China ,grid.452929.10000 0004 8513 0241Department of Pulmonary and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Min Zhang
- grid.443626.10000 0004 1798 4069Department of Emergency, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Chunyang Zhao
- grid.452929.10000 0004 8513 0241Department of Pulmonary and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Yusheng Cheng
- grid.452929.10000 0004 8513 0241Department of Pulmonary and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Chuanmei Liu
- grid.452929.10000 0004 8513 0241Department of Pulmonary and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Minhua Shi
- grid.452666.50000 0004 1762 8363Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
38
|
Chibaya L, Snyder J, Ruscetti M. Senescence and the tumor-immune landscape: Implications for cancer immunotherapy. Semin Cancer Biol 2022; 86:827-845. [PMID: 35143990 PMCID: PMC9357237 DOI: 10.1016/j.semcancer.2022.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
Cancer therapies, including conventional chemotherapy, radiation, and molecularly targeted agents, can lead to tumor eradication through a variety of mechanisms. In addition to their effects on tumor cell growth and survival, these regimens can also influence the surrounding tumor-immune microenvironment in ways that ultimately impact therapy responses. A unique biological outcome of cancer therapy is induction of cellular senescence. Senescence is a damage-induced stress program that leads to both the durable arrest of tumor cells and remodeling the tumor-immune microenvironment through activation of a collection pleiotropic cytokines, chemokines, growth factors, and proteinases known as the senescence-associated secretory phenotype (SASP). Depending on the cancer context and the mechanism of action of the therapy, the SASP produced following therapy-induced senescence (TIS) can promote anti-tumor immunity that enhances therapeutic efficacy, or alternatively chronic inflammation that leads to therapy failure and tumor relapse. Thus, a deeper understanding of the mechanisms regulating the SASP and components necessary for robust anti-tumor immune surveillance in different cancer and therapy contexts are key to harnessing senescence for tumor control. Here we draw a roadmap to modulate TIS and its immune-stimulating features for cancer immunotherapy.
Collapse
Affiliation(s)
- Loretah Chibaya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jarin Snyder
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
39
|
Thompson EL, Pitcher LE, Niedernhofer LJ, Robbins PD. Targeting Cellular Senescence with Senotherapeutics: Development of New Approaches for Skin Care. Plast Reconstr Surg 2022; 150:12S-19S. [PMID: 36170431 PMCID: PMC9529240 DOI: 10.1097/prs.0000000000009668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SUMMARY Aging of the skin is evidenced by increased wrinkles, age spots, dryness, and thinning with decreased elasticity. Extrinsic and intrinsic factors including UV, pollution, and inflammation lead to an increase in senescent cells (SnCs) in skin with age that contribute to these observed pathological changes. Cellular senescence is induced by multiple types of damage and stress and is characterized by the irreversible exit from the cell cycle with upregulation of cell cycle-dependent kinase inhibitors p16INK4a and p21CIP1. Most SnCs also developed an inflammatory senescence-associated secretory phenotype (SASP) that drives further pathology through paracrine effects on neighboring cells and endocrine effects on cells at a distance. Recently, compounds able to kill senescent cells specifically, termed senolytics, or suppress the SASP, termed senomorphics, have been developed that have the potential to improve skin aging as well as systemic aging in general. Here, we provide a summary of the evidence for a key role in cellular senescence in driving skin aging. In addition, the evidence for the potential application of senotherapeutics for skin treatments is presented. Overall, topical, and possibly oral senotherapeutic treatments have tremendous potential to eventually become a standard of care for skin aging and related skin disorders.
Collapse
Affiliation(s)
- Elizabeth L Thompson
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| | - Louise E Pitcher
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| | - Laura J Niedernhofer
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| | - Paul D Robbins
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| |
Collapse
|
40
|
Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18:611-627. [PMID: 35922662 PMCID: PMC9362342 DOI: 10.1038/s41581-022-00601-z] [Citation(s) in RCA: 335] [Impact Index Per Article: 167.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a ubiquitous process with roles in tissue remodelling, including wound repair and embryogenesis. However, prolonged senescence can be maladaptive, leading to cancer development and age-related diseases. Cellular senescence involves cell-cycle arrest and the release of inflammatory cytokines with autocrine, paracrine and endocrine activities. Senescent cells also exhibit morphological alterations, including flattened cell bodies, vacuolization and granularity in the cytoplasm and abnormal organelles. Several biomarkers of cellular senescence have been identified, including SA-βgal, p16 and p21; however, few markers have high sensitivity and specificity. In addition to driving ageing, senescence of immune and parenchymal cells contributes to the development of a variety of diseases and metabolic disorders. In the kidney, senescence might have beneficial roles during development and recovery from injury, but can also contribute to the progression of acute kidney injury and chronic kidney disease. Therapies that target senescence, including senolytic and senomorphic drugs, stem cell therapies and other interventions, have been shown to extend lifespan and reduce tissue injury in various animal models. Early clinical trials confirm that senotherapeutic approaches could be beneficial in human disease. However, larger clinical trials are needed to translate these approaches to patient care.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
41
|
Piskorz WM, Cechowska-Pasko M. Senescence of Tumor Cells in Anticancer Therapy—Beneficial and Detrimental Effects. Int J Mol Sci 2022; 23:ijms231911082. [PMID: 36232388 PMCID: PMC9570404 DOI: 10.3390/ijms231911082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence process results in stable cell cycle arrest, which prevents cell proliferation. It can be induced by a variety of stimuli including metabolic stress, DNA damage, telomeres shortening, and oncogenes activation. Senescence is generally considered as a process of tumor suppression, both by preventing cancer cells proliferation and inhibiting cancer progression. It can also be a key effector mechanism for many types of anticancer therapies such as chemotherapy and radiotherapy, both directly and through bioactive molecules released by senescent cells that can stimulate an immune response. Senescence is characterized by a senescence-associated secretory phenotype (SASP) that can have both beneficial and detrimental impact on cancer progression. Despite the negatives, attempts are still being made to use senescence to fight cancer, especially when it comes to senolytics. There is a possibility that a combination of prosenescence therapy—which targets tumor cells and causes their senescence—with senotherapy—which targets senescent cells, can be promising in cancer treatment. This review provides information on cellular senescence, its connection with carcinogenesis and therapeutic possibilities linked to this process.
Collapse
|
42
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
43
|
Palazzo A, Hernandez-Vargas H, Goehrig D, Médard JJ, Vindrieux D, Flaman JM, Bernard D. Transformed cells after senescence give rise to more severe tumor phenotypes than transformed non-senescent cells. Cancer Lett 2022; 546:215850. [DOI: 10.1016/j.canlet.2022.215850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022]
|
44
|
Zhao Q, Hu W, Xu J, Zeng S, Xi X, Chen J, Wu X, Hu S, Zhong T. Comprehensive Pan-Cancer Analysis of Senescence With Cancer Prognosis and Immunotherapy. Front Mol Biosci 2022; 9:919274. [PMID: 35911954 PMCID: PMC9334796 DOI: 10.3389/fmolb.2022.919274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Senescence is a double-edged sword in tumorigenesis and affects the immunotherapy response through the modulation of the host’s immune system. However, there is currently a lack of comprehensive analysis of the senescence-related genes (SRGs) in human cancers, and the predictive role of senescence in cancer immunotherapy response has not been explored. The multi-omics approaches were performed in this article to conduct a systematic pan-cancer genomic analysis of SRGs in cancer. In addition, we calculated the generic senescence score (SS) to quantify the senescence levels in cancers and explored the correlations of SS with cancer prognosis, biological processes, and tumor microenvironment (TME). The gene signatures were deregulated in multiple cancers and indicated a context-dependent correlation with prognosis, tumor-immune evasion, and response to therapy across various tumor types. Further analysis disclosed that SS was positively associated with the infiltration levels of immune suppressive cells, including induced Tregs (iTregs), central memory Ts (Tcms), and natural Tregs (nTregs), and negatively associated with immune killer cells, including natural killers (NKs) and mucosal-associated invariant Ts (MAITs). Moreover, the SS was significantly correlated with tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), immune-related genes, and immune checkpoints and had a predictive value of immunotherapy response. Thus, the expression of SRGs was involved in resistance to several anticancer drugs. Our work illustrates the characterization of senescence across various malignancies and highlights the potential of senescence as a biomarker of the response to immunotherapy.
Collapse
Affiliation(s)
- Qinfei Zhao
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weiquan Hu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Jing Xu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaoying Zeng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xuxiang Xi
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jing Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiangsheng Wu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Suping Hu
- Department of Emergency, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
45
|
Wang H, Cui Y, Gong H, Xu J, Huang S, Tang A. Suppression of AGTR1 Induces Cellular Senescence in Hepatocellular Carcinoma Through Inactivating ERK Signaling. Front Bioeng Biotechnol 2022; 10:929979. [PMID: 35910032 PMCID: PMC9326343 DOI: 10.3389/fbioe.2022.929979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Cellular senescence is an effective barrier against tumorigenesis. Hence, it is of significance to characterize key features of cellular senescence and the induction of senescence in hepatocellular carcinoma (HCC) cells via pharmacological interventions. Our study determined the biological roles as well as mechanisms of angiotensin II type I receptor (AGTR1) on cellular senescence in HCC.Methods: Lentivirus vector-mediated overexpression or knockdown of AGTR1 was conducted in HCC cells, respectively. A volume of 8 μM sorafenib was used to induce cellular senescence, and ERK was activated by 30 ng/ml ERK agonist EGF. Proliferation was evaluated via clone formation assay. HCC cell senescence was examined by flow cytometry for cell cycle, senescence-associated β-galactosidase (SA-β-gal) staining, and senescence-associated heterochromatin foci (SAHF) analysis. AGTR1, p53, p21, extracellular signal-regulated kinase (ERK), and p-ERK expression were assessed through Western blot or immunofluorescence.Results: AGTR1-knockout HCC cells displayed the attenuated proliferative capacity, G2-M phase arrest, increased expression of p53 and p21, and elevated percentages of SA-β-gal- and SAHF-positive cells. In sorafenib-exposed HCC cells, overexpressed AGTR1 enhanced the proliferative capacity and alleviated G2-M phase arrest as well as decreased p53 and p21 expression and the proportions of SA-β-gal- and SAHF-positive cells. Moreover, AGTR1 knockdown attenuated the activity of p-ERK in HCC cells, and ERK agonist ameliorated AGTR1 knockdown-induced cellular senescence.Conclusion: This study demonstrates that suppression of AGTR1 induces cellular senescence in HCC through inactivating ERK signaling. The significant synergistic effect of AGTR1 suppression and sorafenib might represent a potential combination therapy for HCC.
Collapse
Affiliation(s)
- Houhong Wang
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Yayun Cui
- Department of Cancer Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, (Anhui Provincial Cancer Hospital), University of Science and Technology of China, Hefei, China
| | - Huihui Gong
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Jianguo Xu
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Shuqin Huang
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Amao Tang
- Department of Gastroenterology, The Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Amao Tang,
| |
Collapse
|
46
|
Shafqat S, Arana Chicas E, Shafqat A, Hashmi SK. The Achilles' heel of cancer survivors: fundamentals of accelerated cellular senescence. J Clin Invest 2022; 132:e158452. [PMID: 35775492 PMCID: PMC9246373 DOI: 10.1172/jci158452] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent improvements in cancer treatment have increased the lifespan of pediatric and adult cancer survivors. However, cancer treatments accelerate aging in survivors, which manifests clinically as the premature onset of chronic diseases, such as endocrinopathies, osteoporosis, cardiac dysfunction, subsequent cancers, and geriatric syndromes of frailty, among others. Therefore, cancer treatment-induced early aging accounts for significant morbidity, mortality, and health expenditures among cancer survivors. One major mechanism driving this accelerated aging is cellular senescence; cancer treatments induce cellular senescence in tumor cells and in normal, nontumor tissue, thereby helping mediate the onset of several chronic diseases. Studies on clinical monitoring and therapeutic targeting of cellular senescence have made considerable progress in recent years. Large-scale clinical trials are currently evaluating senotherapeutic drugs, which inhibit or eliminate senescent cells to ameliorate cancer treatment-related aging. In this article, we survey the recent literature on phenotypes and mechanisms of aging in cancer survivors and provide an up-to-date review of the major preclinical and translational evidence on cellular senescence as a mechanism of accelerated aging in cancer survivors, as well as insight into the potential of senotherapeutic drugs. However, only with time will the clinical effect of senotherapies on cancer survivors be visible.
Collapse
Affiliation(s)
| | - Evelyn Arana Chicas
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Shahrukh K. Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Clinical Affairs, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Medicine, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| |
Collapse
|
47
|
Wagner KD, Wagner N. The Senescence Markers p16INK4A, p14ARF/p19ARF, and p21 in Organ Development and Homeostasis. Cells 2022; 11:cells11121966. [PMID: 35741095 PMCID: PMC9221567 DOI: 10.3390/cells11121966] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that senescent cells accumulate with aging. They are characterized by replicative arrest and the release of a myriad of factors commonly called the senescence-associated secretory phenotype. Despite the replicative cell cycle arrest, these cells are metabolically active and functional. The release of SASP factors is mostly thought to cause tissue dysfunction and to induce senescence in surrounding cells. As major markers for aging and senescence, p16INK4, p14ARF/p19ARF, and p21 are established. Importantly, senescence is also implicated in development, cancer, and tissue homeostasis. While many markers of senescence have been identified, none are able to unambiguously identify all senescent cells. However, increased levels of the cyclin-dependent kinase inhibitors p16INK4A and p21 are often used to identify cells with senescence-associated phenotypes. We review here the knowledge of senescence, p16INK4A, p14ARF/p19ARF, and p21 in embryonic and postnatal development and potential functions in pathophysiology and homeostasis. The establishment of senolytic therapies with the ultimate goal to improve healthy aging requires care and detailed knowledge about the involvement of senescence and senescence-associated proteins in developmental processes and homeostatic mechanism. The review contributes to these topics, summarizes open questions, and provides some directions for future research.
Collapse
|
48
|
Role of Peritoneal Mesothelial Cells in the Progression of Peritoneal Metastases. Cancers (Basel) 2022; 14:cancers14122856. [PMID: 35740521 PMCID: PMC9221366 DOI: 10.3390/cancers14122856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Peritoneal metastatic cancer comprises a heterogeneous group of primary tumors that originate in the peritoneal cavity or metastasize into the peritoneal cavity from a different origin. Metastasis is a characteristic of end-stage disease, often indicative of a poor prognosis with limited treatment options. Peritoneal mesothelial cells (PMCs) are a thin layer of cells present on the surface of the peritoneum. They display differentiated characteristics in embryonic development and adults, representing the first cell layer encountering peritoneal tumors to affect their progression. PMCs have been traditionally considered a barrier to the intraperitoneal implantation and metastasis of tumors; however, recent studies indicate that PMCs can either inhibit or actively promote tumor progression through distinct mechanisms. This article presents a review of the role of PMCs in the progression of peritoneum implanted tumors, offering new ideas for therapeutic targets and related research.
Collapse
|
49
|
Quadri M, Marconi A, Sandhu SK, Kiss A, Efimova T, Palazzo E. Investigating Cutaneous Squamous Cell Carcinoma in vitro and in vivo: Novel 3D Tools and Animal Models. Front Med (Lausanne) 2022; 9:875517. [PMID: 35646967 PMCID: PMC9131878 DOI: 10.3389/fmed.2022.875517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 12/07/2022] Open
Abstract
Cutaneous Squamous Cell Carcinoma (cSCC) represents the second most common type of skin cancer, which incidence is continuously increasing worldwide. Given its high frequency, cSCC represents a major public health problem. Therefore, to provide the best patients’ care, it is necessary having a detailed understanding of the molecular processes underlying cSCC development, progression, and invasion. Extensive efforts have been made in developing new models allowing to study the molecular pathogenesis of solid tumors, including cSCC tumors. Traditionally, in vitro studies were performed with cells grown in a two-dimensional context, which, however, does not represent the complexity of tumor in vivo. In the recent years, new in vitro models have been developed aiming to mimic the three-dimensionality (3D) of the tumor, allowing the evaluation of tumor cell-cell and tumor-microenvironment interaction in an in vivo-like setting. These models include spheroids, organotypic cultures, skin reconstructs and organoids. Although 3D models demonstrate high potential to enhance the overall knowledge in cancer research, they lack systemic components which may be solved only by using animal models. Zebrafish is emerging as an alternative xenotransplant model in cancer research, offering a high-throughput approach for drug screening and real-time in vivo imaging to study cell invasion. Moreover, several categories of mouse models were developed for pre-clinical purpose, including xeno- and syngeneic transplantation models, autochthonous models of chemically or UV-induced skin squamous carcinogenesis, and genetically engineered mouse models (GEMMs) of cSCC. These models have been instrumental in examining the molecular mechanisms of cSCC and drug response in an in vivo setting. The present review proposes an overview of in vitro, particularly 3D, and in vivo models and their application in cutaneous SCC research.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Marconi
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Simran K Sandhu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Alexi Kiss
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Tatiana Efimova
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Elisabetta Palazzo
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
50
|
Karen-Ng LP, Ahmad US, Gomes L, Hunter KD, Wan H, Hagi-Pavli E, Parkinson EK. Extracellular Prostaglandins E1 and E2 and Inflammatory Cytokines Are Regulated by the Senescence Program in Potentially Premalignant Oral Keratinocytes. Cancers (Basel) 2022; 14:cancers14112636. [PMID: 35681614 PMCID: PMC9179502 DOI: 10.3390/cancers14112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The early treatment of oral cancer is a high priority, as improvements in this area could lead to greater cure rates and reduced disability due to extensive surgery. Oral cancer is very difficult to detect in over 70% of cases as it develops unseen until quite advanced, sometimes rapidly. It has become apparent that there are at least two types of epithelial cells (keratinocytes) found in oral tissue on the road to cancer (premalignant). One type secretes molecules called prostaglandins but the other does not and the former may stimulate the latter to progress to malignancy, either by stimulating their proliferation or encouraging the influx of blood vessels to feed them. Additionally, we have identified regulators of prostaglandin secretion in premalignant oral cells that could be targeted in future therapies, such as inducers of cellular senescence, drugs which kill senescent cells (senolytics), steroid metabolism, cyclo-oxygenase 2 (COX2) and p38 mitogen-activated protein kinase. Abstract Potentially pre-malignant oral lesions (PPOLs) are composed of keratinocytes that are either mortal (MPPOL) or immortal (IPPOL) in vitro. We report here that MPPOL, but not generally IPPOL, keratinocytes upregulate various extracellular tumor-promoting cytokines (interleukins 6 and 8) and prostaglandins E1 (ePGE1) and E2 (ePGE2) relative to normal oral keratinocytes (NOKs). ePGE upregulation in MPPOL was independent of PGE receptor status and was associated with some but not all markers of cellular senescence. Nevertheless, ePGE upregulation was dependent on the senescence program, cyclo-oxygenase 2 (COX2) and p38 mitogen-activated protein kinase and was partially regulated by hydrocortisone. Following senescence in the absence of p16INK4A, ePGEs accumulated in parallel with a subset of tumor promoting cytokine and metalloproteinase (MMP) transcripts, all of which were ablated by ectopic telomerase. Surprisingly, ataxia telangiectasia mutated (ATM) function was not required for ePGE upregulation and was increased in expression in IPPOL keratinocytes in line with its recently reported role in telomerase function. Only ePGE1 was dependent on p53 function, suggesting that ePGEs 1 and 2 are regulated differently in oral keratinocytes. We show here that ePGE2 stimulates IPPOL keratinocyte proliferation in vitro. Therefore, we propose that MPPOL keratinocytes promote the progression of IPPOL to oral SCC in a pre-cancerous field by supplying PGEs, interleukins and MMPs in a paracrine manner. Our results suggest that the therapeutic targeting of COX-2 might be enhanced by strategies that target keratinocyte senescence.
Collapse
Affiliation(s)
- Lee Peng Karen-Ng
- Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (U.S.A.); (L.G.); (H.W.); (E.H.-P.)
- Oral Cancer Research & Coordinating Center (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Usama Sharif Ahmad
- Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (U.S.A.); (L.G.); (H.W.); (E.H.-P.)
| | - Luis Gomes
- Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (U.S.A.); (L.G.); (H.W.); (E.H.-P.)
| | - Keith David Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- Liverpool Head and Neck Centre, Molecular and Clinical Medicine, University of Liverpool, Liverpool L1 8JX, UK
| | - Hong Wan
- Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (U.S.A.); (L.G.); (H.W.); (E.H.-P.)
| | - Eleni Hagi-Pavli
- Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (U.S.A.); (L.G.); (H.W.); (E.H.-P.)
| | - Eric Kenneth Parkinson
- Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (U.S.A.); (L.G.); (H.W.); (E.H.-P.)
- Correspondence: ; Tel.: +44-(0)-2078827185 or +44-(0)-7854046536
| |
Collapse
|