1
|
Toma MM, Skorski T. Star wars against leukemia: attacking the clones. Leukemia 2024; 38:2293-2302. [PMID: 39223295 PMCID: PMC11519008 DOI: 10.1038/s41375-024-02369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Leukemia, although most likely starts as a monoclonal genetic/epigenetic anomaly, is a polyclonal disease at manifestation. This polyclonal nature results from ongoing evolutionary changes in the genome/epigenome of leukemia cells to promote their survival and proliferation advantages. We discuss here how genetic and/or epigenetic aberrations alter intracellular microenvironment in individual leukemia clones and how extracellular microenvironment selects the best fitted clones. This dynamic polyclonal composition of leukemia makes designing an effective therapy a challenging task especially because individual leukemia clones often display substantial differences in response to treatment. Here, we discuss novel therapeutic approach employing single cell multiomics to identify and eradicate all individual clones in a patient.
Collapse
Affiliation(s)
- Monika M Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Park K, Jeon MC, Lee D, Kim JI, Im SW. Genetic and Epigenetic Alterations in Aging and Rejuvenation of Human. Mol Cells 2024:100137. [PMID: 39433213 DOI: 10.1016/j.mocell.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
All the information essential for life is encoded within our genome and epigenome, which orchestrates diverse cellular states spatially and temporally. In particular, the epigenome interacts with internal and external stimuli, encoding and preserving cellular experiences, and it serves as the regulatory base of the transcriptome across diverse cell types. The emergence of single-cell transcriptomic and epigenomic data collection has revealed unique omics signatures in diverse tissues, highlighting cellular heterogeneity. Recent research has documented age-related epigenetic changes at the single-cell level, alongside the validation of cellular rejuvenation through partial reprogramming, which involves simultaneous epigenetic modifications. These dynamic shifts, primarily fueled by stem cell plasticity, have catalyzed significant interest and cross-disciplinary research endeavors. This review explores the genomic and epigenomic alterations with aging, elucidating their reciprocal interactions. Additionally, it seeks to discuss the evolving landscape of rejuvenation research, with a particular emphasis on dissecting stem cell behavior through the lens of single-cell analysis. Moreover, it proposes potential research methodologies for future studies.
Collapse
Affiliation(s)
- Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Min Chul Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Dakyung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Gangwon, Korea.
| |
Collapse
|
3
|
Huang G, Cai X, Li D. Significance of targeting DNMT3A mutations in AML. Ann Hematol 2024:10.1007/s00277-024-05885-8. [PMID: 39078434 DOI: 10.1007/s00277-024-05885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Acute myeloid leukemia (AML) is the most prevalent form of leukemia among adults, characterized by aggressive behavior and significant genetic diversity. Despite decades of reliance on conventional chemotherapy as the mainstay treatment, patients often struggle with achieving remission, experience rapid relapses, and have limited survival prospects. While intensified induction chemotherapy and allogeneic stem cell transplantation have enhanced patient outcomes, these benefits are largely confined to younger AML patients capable of tolerating intensive treatments. DNMT3A, a crucial enzyme responsible for establishing de novo DNA methylation, plays a pivotal role in maintaining the delicate balance between hematopoietic stem cell differentiation and self-renewal, thereby influencing gene expression programs through epigenetic regulation. DNMT3A mutations are the most frequently observed genetic abnormalities in AML, predominantly in older patients, occurring in approximately 20-30% of adult AML cases and over 30% of AML with a normal karyotype. Consequently, the molecular underpinnings and potential therapeutic targets of DNMT3A mutations in AML are currently being thoroughly investigated. This article provides a comprehensive summary and the latest insights into the structure and function of DNMT3A, examines the impact of DNMT3A mutations on the progression and prognosis of AML, and explores potential therapeutic approaches for AML patients harboring DNMT3A mutations.
Collapse
Affiliation(s)
- Guiqin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoya Cai
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Vekariya U, Minakhin L, Chandramouly G, Tyagi M, Kent T, Sullivan-Reed K, Atkins J, Ralph D, Nieborowska-Skorska M, Kukuyan AM, Tang HY, Pomerantz RT, Skorski T. PARG is essential for Polθ-mediated DNA end-joining by removing repressive poly-ADP-ribose marks. Nat Commun 2024; 15:5822. [PMID: 38987289 PMCID: PMC11236980 DOI: 10.1038/s41467-024-50158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Leonid Minakhin
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Mrityunjay Tyagi
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Tatiana Kent
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Douglas Ralph
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA.
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Tecik M, Adan A. Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors. Curr Treat Options Oncol 2024; 25:719-751. [PMID: 38696033 PMCID: PMC11222205 DOI: 10.1007/s11864-024-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 07/04/2024]
Abstract
OPINION STATEMENT The internal tandem duplication (ITD) mutation of the FMS-like receptor tyrosine kinase 3 (FLT3-ITD) is the most common mutation observed in approximately 30% of acute myeloid leukemia (AML) patients. It represents poor prognosis due to continuous activation of downstream growth-promoting signaling pathways such as STAT5 and PI3K/AKT. Hence, FLT3 is considered an attractive druggable target; selective small FLT3 inhibitors (FLT3Is), such as midostaurin and quizartinib, have been clinically approved. However, patients possess generally poor remission rates and acquired resistance when FLT3I used alone. Various factors in patients could cause these adverse effects including altered epigenetic regulation, causing mainly abnormal gene expression patterns. Epigenetic modifications are required for hematopoietic stem cell (HSC) self-renewal and differentiation; however, critical driver mutations have been identified in genes controlling DNA methylation (such as DNMT3A, TET2, IDH1/2). These regulators cause leukemia pathogenesis and affect disease diagnosis and prognosis when they co-occur with FLT3-ITD mutation. Therefore, understanding the role of different epigenetic alterations in FLT3-ITD AML pathogenesis and how they modulate FLT3I's activity is important to rationalize combinational treatment approaches including FLT3Is and modulators of methylation regulators or pathways. Data from ongoing pre-clinical and clinical studies will further precisely define the potential use of epigenetic therapy together with FLT3Is especially after characterized patients' mutational status in terms of FLT3 and DNA methlome regulators.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
6
|
Toma MM, Karami A, Nieborowska-Skorska M, Chirtala KN, Pepek M, Hadzijusufovic E, Stoklosa T, Valent P, Skorski T. Clonal medicine targeting DNA damage response eradicates leukemia. Leukemia 2024; 38:671-675. [PMID: 38228681 PMCID: PMC10912018 DOI: 10.1038/s41375-024-02138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Affiliation(s)
- Monika M Toma
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Adam Karami
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Kumaraswamy Naidu Chirtala
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Monika Pepek
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Institute for Hematology and Oncology and Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Department for Companion Animals & Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tomasz Stoklosa
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology and Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
7
|
Liu ZS, Sinha S, Bannister M, Song A, Arriaga-Gomez E, McKeeken AJ, Bonner EA, Hanson BK, Sarchi M, Takashima K, Zong D, Corral VM, Nguyen E, Yoo J, Chiraphapphaiboon W, Leibson C, McMahon MC, Rai S, Swisher EM, Sachs Z, Chatla S, Stirewalt DL, Deeg HJ, Skorski T, Papapetrou EP, Walter MJ, Graubert TA, Doulatov S, Lee SC, Nguyen HD. R-Loop Accumulation in Spliceosome Mutant Leukemias Confers Sensitivity to PARP1 Inhibition by Triggering Transcription-Replication Conflicts. Cancer Res 2024; 84:577-597. [PMID: 37967363 PMCID: PMC10922727 DOI: 10.1158/0008-5472.can-23-3239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
RNA splicing factor (SF) gene mutations are commonly observed in patients with myeloid malignancies. Here we showed that SRSF2- and U2AF1-mutant leukemias are preferentially sensitive to PARP inhibitors (PARPi), despite being proficient in homologous recombination repair. Instead, SF-mutant leukemias exhibited R-loop accumulation that elicited an R-loop-associated PARP1 response, rendering cells dependent on PARP1 activity for survival. Consequently, PARPi induced DNA damage and cell death in SF-mutant leukemias in an R-loop-dependent manner. PARPi further increased aberrant R-loop levels, causing higher transcription-replication collisions and triggering ATR activation in SF-mutant leukemias. Ultimately, PARPi-induced DNA damage and cell death in SF-mutant leukemias could be enhanced by ATR inhibition. Finally, the level of PARP1 activity at R-loops correlated with PARPi sensitivity, suggesting that R-loop-associated PARP1 activity could be predictive of PARPi sensitivity in patients harboring SF gene mutations. This study highlights the potential of targeting different R-loop response pathways caused by spliceosome gene mutations as a therapeutic strategy for treating cancer. SIGNIFICANCE Spliceosome-mutant leukemias accumulate R-loops and require PARP1 to resolve transcription-replication conflicts and genomic instability, providing rationale to repurpose FDA-approved PARP inhibitors for patients carrying spliceosome gene mutations.
Collapse
Affiliation(s)
- Zhiyan Silvia Liu
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- These authors contributed equally
| | - Sayantani Sinha
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- These authors contributed equally
| | - Maxwell Bannister
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Axia Song
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Erica Arriaga-Gomez
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alexander J. McKeeken
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth A. Bonner
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Benjamin K. Hanson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Martina Sarchi
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Molecular Medicine, University of Pavia, 27100 Pavia PV, Italy
| | - Kouhei Takashima
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Regenerative Medicine and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dawei Zong
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Victor M. Corral
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Evan Nguyen
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jennifer Yoo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Cassandra Leibson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Matthew C. McMahon
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sumit Rai
- Massachusetts General Hospital Cancer Center, Charlestown, MA
| | - Elizabeth M. Swisher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195
| | - Zohar Sachs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Derek L. Stirewalt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - H. Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Regenerative Medicine and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J. Walter
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - Sergei Doulatov
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Stanley C. Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Hai Dang Nguyen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Pan X, Chang Y, Ruan G, Zhou S, Jiang H, Jiang Q, Huang X, Zhao XS. TET2 mutations contribute to adverse prognosis in acute myeloid leukemia (AML): results from a comprehensive analysis of 502 AML cases and the Beat AML public database. Clin Exp Med 2024; 24:35. [PMID: 38349460 PMCID: PMC10864580 DOI: 10.1007/s10238-024-01297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024]
Abstract
Despite the high incidence of tet methylcytosine dioxygenase 2 (TET2) mutations in acute myeloid leukemia (AML), the prognostic implications of these mutations in three AML risk groups based on the 2022 ELN AML risk classification are still unclear. A total of 502 consecutive de novo AML patients who had next-generation sequencing data available between March 2011 and July 2021 at the Peking University Institute of Hematology were enrolled in this study. Univariate and multivariate Cox regression analyses were performed to explore the prognostic impact of TET2 mutations in the above cohort and the Beat AML cohort. Of the 502 total AML patients, 76 (15.1%) carried TET2 mutations. Multivariate analysis revealed TET2 mutations as independent risk factor for overall survival (OS) in both the total AML cohort (OR = 1.649, p = 0.009) and in the 2022 ELN intermediate-risk cohort (HR = 1.967, p = 0.05). Analysis of RNA-seq data from the Beat AML study revealed 1042 differentially expressed genes (DEGs) between the TET2-mutant and TET2 wild-type groups. The results of enrichment analysis indicated the DEGs to be notably enriched in categories related to the PI3K-Akt signaling pathway. Collectively, our findings indicate that mutations in TET2 are prognostically disadvantageous in AML patients. Assessment of TET2 mutational status contributes to the stratification of intermediate-risk AML patients. Multiple genes and pathways of potential therapeutic relevance may be differentially modulated by TET2 mutations in AML.
Collapse
Affiliation(s)
- Xin'an Pan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Guorui Ruan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Songhai Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100044, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China.
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China.
| |
Collapse
|
9
|
Liang X, Liu H, Hu H, Zhou J, Abedini A, Navarro AS, Klötzer KA, Susztak K. Genetic Studies Highlight the Role of TET2 and INO80 in DNA Damage Response and Kidney Disease Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578718. [PMID: 38370682 PMCID: PMC10871294 DOI: 10.1101/2024.02.02.578718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Genome-wide association studies (GWAS) have identified over 800 loci associated with kidney function, yet the specific genes, variants, and pathways involved remain elusive. By integrating kidney function GWAS, human kidney expression and methylation quantitative trait analyses, we identified Ten-Eleven Translocation (TET) DNA demethylase 2: TET2 as a novel kidney disease risk gene. Utilizing single-cell chromatin accessibility and CRISPR-based genome editing, we highlight GWAS variants that influence TET2 expression in kidney proximal tubule cells. Experiments using kidney-tubule-specific Tet2 knockout mice indicated its protective role in cisplatin-induced acute kidney injury, as well as chronic kidney disease and fibrosis, induced by unilateral ureteral obstruction or adenine diet. Single-cell gene profiling of kidneys from Tet2 knockout mice and TET2- knock-down tubule cells revealed the altered expression of DNA damage repair and chromosome segregation genes, notably including INO80 , another kidney function GWAS target gene itself. Remarkably both TET2- null and INO80- null cells exhibited an increased accumulation of micronuclei after injury, leading to the activation of cytosolic nucleotide sensor cGAS-STING. Genetic deletion of cGAS or STING in kidney tubules or pharmacological inhibition of STING protected TET2 null mice from disease development. In conclusion, our findings highlight TET2 and INO80 as key genes in the pathogenesis of kidney diseases, indicating the importance of DNA damage repair mechanisms.
Collapse
|
10
|
Zhou Q, Zhang J, Zhang J, Liang S, Cai D, Xiao H, Zhu Y, Xiang W, Rodrigues-Lima F, Chi J, Guidez F, Wang L. Vemurafenib induces senescence in acute myeloid leukemia and myelodysplastic syndrome by activating the HIPPO signaling pathway: implications for potential targeted therapy. Biol Direct 2024; 19:6. [PMID: 38178263 PMCID: PMC10768477 DOI: 10.1186/s13062-023-00451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The outcome of Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) remain dismal despite the development of treatment. Targeted therapy is gaining more and more attention in improving prognosis. METHODS Expression of BRAF was analyzed by RT-qPCR in AML and MDS patients. Cells viability treated by drugs was measured by CCK-8 assay. Network pharmacology and RNA-sequence were used to analyze the mechanism of drugs and verified in vitro and xenograft tumor model. RESULTS Here we showed that BRAF was overexpressed in AML and MDS patients, and correlated with poor prognosis. The BRAF inhibitor-Vemurafenib (VEM) could significantly induce senescence, proliferation inhibition and apoptosis in AML cells, which can be enhanced by Bortezomib (BOR). This inhibitory effect was also verified in CD34 + cells derived from AML patients. Mechanistically, we showed that VEM combined with BOR could turn on HIPPO signaling pathway, thereby inducing cellular senescence in AML cells and xenograft mouse. CONCLUSIONS Taken together, our findings demonstrate a significant upregulation of BRAF expression in AML and MDS patients, which is associated with unfavorable clinical outcomes. We also discovered that the BRAF inhibitor Vemurafenib induces cellular senescence through activation of the HIPPO signaling pathway. Analysis of BRAF expression holds promise as a prognostic indicator and potential therapeutic target for individuals with AML and MDS.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Jiamin Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Jingsong Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Simin Liang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Duo Cai
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Han Xiao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Wenqiong Xiang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Fernando Rodrigues-Lima
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS UMR 8251, Paris, France
| | - Jianxiang Chi
- Center for the Study of Hematological Malignancies, Karaiskakio Foundation, Nicosia, Cyprus
| | - Fabien Guidez
- UMR1231 Inserm/uB/AgroSup, Université de Bourgogne, 7 boulevard Jeanne d'Arc 21079 DIJON Cedex, DIJON, France
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China.
| |
Collapse
|
11
|
Chen CW, Zhang L, Dutta R, Niroula A, Miller PG, Gibson CJ, Bick AG, Reyes JM, Lee YT, Tovy A, Gu T, Waldvogel S, Chen YH, Venters BJ, Estève PO, Pradhan S, Keogh MC, Natarajan P, Takahashi K, Sperling AS, Goodell MA. SRCAP mutations drive clonal hematopoiesis through epigenetic and DNA repair dysregulation. Cell Stem Cell 2023; 30:1503-1519.e8. [PMID: 37863054 PMCID: PMC10841682 DOI: 10.1016/j.stem.2023.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/25/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
Somatic mutations accumulate in all cells with age and can confer a selective advantage, leading to clonal expansion over time. In hematopoietic cells, mutations in a subset of genes regulating DNA repair or epigenetics frequently lead to clonal hematopoiesis (CH). Here, we describe the context and mechanisms that lead to enrichment of hematopoietic stem cells (HSCs) with mutations in SRCAP, which encodes a chromatin remodeler that also influences DNA repair. We show that SRCAP mutations confer a selective advantage in human cells and in mice upon treatment with the anthracycline-class chemotherapeutic doxorubicin and bone marrow transplantation. Furthermore, Srcap mutations lead to a lymphoid-biased expansion, driven by loss of SRCAP-regulated H2A.Z deposition and increased DNA repair. Altogether, we demonstrate that SRCAP operates at the intersection of multiple pathways in stem and progenitor cells, offering a new perspective on the functional impact of genetic variants that promote stem cell competition in the hematopoietic system.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Linda Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Program in Translational Biology and Molecular Medicine, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Ravi Dutta
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter G Miller
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Center for Cancer Research and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Alexander G Bick
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jaime M Reyes
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Tang Lee
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ayala Tovy
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Tianpeng Gu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Waldvogel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Hung Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | - Pradeep Natarajan
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Adam S Sperling
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Margaret A Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Zhang M, Lang X, Chen X, Lv Y. Prospective Identification of Prognostic Hot-Spot Mutant Gene Signatures for Leukemia: A Computational Study Based on Integrative Analysis of TCGA and cBioPortal Data. Mol Biotechnol 2023; 65:1898-1912. [PMID: 36879146 DOI: 10.1007/s12033-023-00704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
The advantage of an increasing amount of bioinformatics data on leukemias intrigued us to explore the hot-spot mutation profiles and investigate the implications of those hot-spot mutations in patient survival. We retrieved somatic mutations and their distribution in protein domains through data analysis of The Cancer Genome Atlas and cBioPortal databases. After determining differentially expressed mutant genes related to leukemia, we further conducted principal component analysis and single-factor Cox regression analyses. Moreover, survival analysis was performed for the obtained candidate genes, followed by a multi-factor Cox proportional hazard model method for the impacts of the candidate genes on the survival and prognosis of patients with leukemia. At last, the signaling pathways involved in leukemia were investigated by gene set enrichment analysis. There were 223 somatic missense mutation hot-spots identified with pertinence to leukemia, which were distributed in 41 genes. Differential expression in leukemia was witnessed in 39 genes. We found a close correlation between seven genes and the prognosis of leukemia patients, among which, three genes could significantly influence the survival rate. In addition, among these three genes, CD74 and P2RY8 were highlighted due to close pertinence with survival conditions of leukemia patients. Finally, data suggested that B cell receptor, Hedgehog, and TGF-beta signaling pathways were enriched in low-hazard patients. In conclusion, these data underline the involvement of hot-spot mutations of CD74 and P2RY8 genes in survival status of leukemia patients, highlighting their as novel therapeutic targets or prognostic indicators for leukemia patients. Summary of Graphical Abstract: We identified 223 leukemia-associated somatic missense mutation hotspots concentrated in 41 different genes from 2297 leukemia patients in the TCGA database. Differential analysis of leukemic and normal samples from the TCGA and GTEx databases revealed that 39 of these 41 genes showed significant differential expression in leukemia. These 39 genes were subjected to PCA analysis, univariate Cox analysis, survival analysis, multivariate Cox regression analysis, GSEA pathway enrichment analysis, and then the association with leukemia survival prognosis and related pathways were investigated.
Collapse
Affiliation(s)
- Min Zhang
- Department of Hematology, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, No. 599, Jinshan West Road, Yongkang, Jinhua City, Zhejiang Province, 321300, People's Republic of China.
| | - Xianghua Lang
- Department of Hematology, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, No. 599, Jinshan West Road, Yongkang, Jinhua City, Zhejiang Province, 321300, People's Republic of China
| | - Xinyi Chen
- Department of Hematology, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, No. 599, Jinshan West Road, Yongkang, Jinhua City, Zhejiang Province, 321300, People's Republic of China
| | - Yuke Lv
- Department of Hematology, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, No. 599, Jinshan West Road, Yongkang, Jinhua City, Zhejiang Province, 321300, People's Republic of China
| |
Collapse
|
13
|
Bhatkar D, Ananda N, Lokhande KB, Khunteta K, Jain P, Hebale A, Sarode SC, Sharma NK. Organic Acids Derived from Saliva-amalgamated Betel Quid Filtrate Are Predicted as a Ten-eleven Translocation-2 Inhibitor. J Cancer Prev 2023; 28:115-130. [PMID: 37830116 PMCID: PMC10564634 DOI: 10.15430/jcp.2023.28.3.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 10/14/2023] Open
Abstract
There is a lack of evidence regarding the use of betel quid (BQ) and its potential contribution to oral cancer. Limited attention has been directed towards investigating the involvement of BQ-derived organic acids in the modulation of metabolic-epigenomic pathways associated with oral cancer initiation and progression. We employed novel protocol for preparing saliva-amalgamated BQ filtrate (SABFI) that mimics the oral cavity environment. SABFI and saliva control were further purified by an in-house developed vertical tube gel electrophoresis tool. The purified SABFI was then subjected to liquid chromatography-high resolution mass spectrometry analysis to identify the presence of organic acids. Profiling of SABFI showed a pool of prominent organic acids such as citric acid. malic acid, fumaric acid, 2-methylcitric acid, 2-hydroxyglutarate, cis-aconitic acid, succinic acid, 2-hydroxyglutaric acid lactone, tartaric acid and β-ketoglutaric acid. SABFI showed anti-proliferative and early apoptosis effects in oral cancer cells. Molecular docking and molecular dynamics simulations predicted that SABFI-derived organic acids as potential inhibitors of the epigenetic demethylase enzyme, Ten-Eleven Translocation-2 (TET2). By binding to the active site of α-ketoglutarate, a known substrate of TET2, these organic acids are likely to act as competitive inhibitors. This study reports a novel approach to study SABFI-derived organic acids that could mimic the chemical composition of BQ in the oral cavity. These SABFI-derived organic acids projected as inhibitors of TET2 and could be explored for their role oral cancer.
Collapse
Affiliation(s)
- Devyani Bhatkar
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Nistha Ananda
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kratika Khunteta
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Priyadarshini Jain
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Ameya Hebale
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
14
|
Zhao Z, Mak TK, Shi Y, Huang H, Huo M, Zhang C. The DNA damage repair-related lncRNAs signature predicts the prognosis and immunotherapy response in gastric cancer. Front Immunol 2023; 14:1117255. [PMID: 37457685 PMCID: PMC10339815 DOI: 10.3389/fimmu.2023.1117255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most prevalent cancers, and it has unsatisfactory overall treatment outcomes. DNA damage repair (DDR) is a complicated process for signal transduction that causes cancer. lncRNAs can influence the formation and incidence of cancers by influencing DDR-related mRNAs/miRNAs. A DDR-related lncRNA prognostic model is urgently needed to improve treatment strategies. Methods The data of GC samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. A total of 588 mRNAs involved in DDR were selected from MSigDB, 62 differentially expressed mRNAs from TCGA-STAD were obtained, and 137 lncRNAs were correlated with these mRNAs. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were used to develop a DDR-related lncRNA prognostic model. Based on the risk model, the differentially expressed gene signature A/B in the low-risk and high-risk groups of TCGA-STAD was identified for further validation. Results The prognosis model of 5 genes (AC145285.6, MAGI2-AS3, AL590705.3, AC007405.3, and LINC00106) was constructed and classified into two risk groups. We found that GC patients with a low-risk score had a better OS than those with a high-risk score. We found that the high-risk group tended to have higher TME scores. We also found that patients in the high-risk group had a higher proportion of resting CD4 T cells, monocytes, M2 macrophages, resting dendritic cells, and resting mast cells, whereas the low-risk subgroup had a greater abundance of activated CD4 T cells, follicular helper T cells, M0 macrophages, and M1 macrophages. We observed significant differences in the T-cell exclusion score, T-cell dysfunction, MSI, and TMB between the two risk groups. In addition, we found that patients treated with immunotherapy in the low-RS score group had a longer survival and a better prognosis than those in the high-RS score group. Conclusion The prognostic model has a significant role in the TME, clinicopathological characteristics, prognosis, MSI, and drug sensitivity. We also discovered that patients treated with immunotherapy in the low-RS score group had a better prognosis. This work provides a foundation for improving the prognosis and response to immunotherapy among patients with GC.
Collapse
Affiliation(s)
- Zidan Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tsz Kin Mak
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yuntao Shi
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huaping Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Mingyu Huo
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Vekariya U, Toma M, Nieborowska-Skorska M, Le BV, Caron MC, Kukuyan AM, Sullivan-Reed K, Podszywalow-Bartnicka P, Chitrala KN, Atkins J, Drzewiecka M, Feng W, Chan J, Chatla S, Golovine K, Jelinek J, Sliwinski T, Ghosh J, Matlawska-Wasowska K, Chandramouly G, Nejati R, Wasik M, Sykes SM, Piwocka K, Hadzijusufovic E, Valent P, Pomerantz RT, Morton G, Childers W, Zhao H, Paietta EM, Levine RL, Tallman MS, Fernandez HF, Litzow MR, Gupta GP, Masson JY, Skorski T. DNA polymerase θ protects leukemia cells from metabolically induced DNA damage. Blood 2023; 141:2372-2389. [PMID: 36580665 PMCID: PMC10273171 DOI: 10.1182/blood.2022018428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Monika Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Bac Viet Le
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Marie-Christine Caron
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Kumaraswamy N. Chitrala
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Malgorzata Drzewiecka
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joe Chan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Konstantin Golovine
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Mariusz Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Stephen M. Sykes
- Division of Hematology/Oncology, Department of Pediatrics, Washington University at St. Louis, St. Louis, MO
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Department for Companion Animals & Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Richard T. Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - George Morton
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Wayne Childers
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Elisabeth M. Paietta
- Department of Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY
| | - Ross L. Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S. Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hugo F. Fernandez
- Moffitt Malignant Hematology & Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL
| | - Mark R. Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Gaorav P. Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jean-Yves Masson
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
16
|
Li H, Chatla S, Liu X, Vekariya U, Kim D, Walt M, Lian Z, Morton G, Feng Z, Yang D, Liu H, Reed K, Childers W, Yu X, Madzo J, Chitrala KN, Skorski T, Huang J. Haploinsufficiency of ZNF251 causes DNA-PKcs-dependent resistance to PARP inhibitors in BRCA1-mutated cancer cells. RESEARCH SQUARE 2023:rs.3.rs-2688694. [PMID: 37066268 PMCID: PMC10104263 DOI: 10.21203/rs.3.rs-2688694/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors represent a promising new class of agents that have demonstrated efficacy in treating various cancers, particularly those that carry BRCA1/2 mutations. The cancer associated BRCA1/2 mutations disrupt DNA double strand break (DSB) repair by homologous recombination (HR). PARP inhibitors (PARPis) have been applied to trigger synthetic lethality in BRCA1/2-mutated cancer cells by promoting the accumulation of toxic DSBs. Unfortunately, resistance to PARPis is common and can occur through multiple mechanisms, including the restoration of HR and/or the stabilization of replication forks. To gain a better understanding of the mechanisms underlying PARPi resistance, we conducted an unbiased CRISPR-pooled genome-wide library screen to identify new genes whose deficiency confers resistance to the PARPi olaparib. Our study revealed that ZNF251, a transcription factor, is a novel gene whose haploinsufficiency confers PARPi resistance in multiple breast and ovarian cancer lines harboring BRCA1 mutations. Mechanistically, we discovered that ZNF251 haploinsufficiency leads to constitutive stimulation of DNA-PKcs-dependent non-homologous end joining (NHEJ) repair of DSBs and DNA-PKcs-mediated fork protection in BRCA1-mutated cancer cells (BRCA1mut + ZNF251KD). Moreover, we demonstrated that DNA-PKcs inhibitors can restore PARPi sensitivity in BRCA1mut + ZNF251KD cells ex vivo and in vivo. Our findings provide important insights into the mechanisms underlying PARPi resistance and highlight the unexpected role of DNA-PKcs in this phenomenon.
Collapse
Affiliation(s)
- Huan Li
- Coriell Institue for Medical Research
| | | | - Xiaolei Liu
- University of Pennsylavania School of Medecine
| | | | | | | | | | | | - Zijie Feng
- University of Pennsylavania School of Medecine
| | - Dan Yang
- Coriell Institue for Medical Research
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Brabson JP, Leesang T, Yap YS, Wang J, Lam MQ, Fang B, Dolgalev I, Barbieri DA, Strippoli V, Bañuelos CP, Mohammad S, Lyon P, Chaudhry S, Donich D, Swirski A, Roberts E, Diaz I, Karl D, Dos Santos HG, Shiekhattar R, Neel BG, Nimer SD, Verdun RE, Bilbao D, Figueroa ME, Cimmino L. Oxidized mC modulates synthetic lethality to PARP inhibitors for the treatment of leukemia. Cell Rep 2023; 42:112027. [PMID: 36848231 PMCID: PMC9989506 DOI: 10.1016/j.celrep.2023.112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
TET2 haploinsufficiency is a driving event in myeloid cancers and is associated with a worse prognosis in patients with acute myeloid leukemia (AML). Enhancing residual TET2 activity using vitamin C increases oxidized 5-methylcytosine (mC) formation and promotes active DNA demethylation via base excision repair (BER), which slows leukemia progression. We utilize genetic and compound library screening approaches to identify rational combination treatment strategies to improve use of vitamin C as an adjuvant therapy for AML. In addition to increasing the efficacy of several US Food and Drug Administration (FDA)-approved drugs, vitamin C treatment with poly-ADP-ribosyl polymerase inhibitors (PARPis) elicits a strong synergistic effect to block AML self-renewal in murine and human AML models. Vitamin-C-mediated TET activation combined with PARPis causes enrichment of chromatin-bound PARP1 at oxidized mCs and γH2AX accumulation during mid-S phase, leading to cell cycle stalling and differentiation. Given that most AML subtypes maintain residual TET2 expression, vitamin C could elicit broad efficacy as a PARPi therapeutic adjuvant.
Collapse
Affiliation(s)
- John P Brabson
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Tiffany Leesang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yoon Sing Yap
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jingjing Wang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Minh Q Lam
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Byron Fang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Igor Dolgalev
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniela A Barbieri
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Victoria Strippoli
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Carolina P Bañuelos
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sofia Mohammad
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Peter Lyon
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sana Chaudhry
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Dane Donich
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Anna Swirski
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Evan Roberts
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ivelisse Diaz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Daniel Karl
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Helena Gomes Dos Santos
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen D Nimer
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ramiro E Verdun
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Maria E Figueroa
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
18
|
Boila LD, Ghosh S, Bandyopadhyay SK, Jin L, Murison A, Zeng AGX, Shaikh W, Bhowmik S, Muddineni SSNA, Biswas M, Sinha S, Chatterjee SS, Mbong N, Gan OI, Bose A, Chakraborty S, Arruda A, Kennedy JA, Mitchell A, Lechman ER, Banerjee D, Milyavsky M, Minden MD, Dick JE, Sengupta A. KDM6 demethylases integrate DNA repair gene regulation and loss of KDM6A sensitizes human acute myeloid leukemia to PARP and BCL2 inhibition. Leukemia 2023; 37:751-764. [PMID: 36720973 DOI: 10.1038/s41375-023-01833-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous, aggressive malignancy with dismal prognosis and with limited availability of targeted therapies. Epigenetic deregulation contributes to AML pathogenesis. KDM6 proteins are histone-3-lysine-27-demethylases that play context-dependent roles in AML. We inform that KDM6-demethylase function critically regulates DNA-damage-repair-(DDR) gene expression in AML. Mechanistically, KDM6 expression is regulated by genotoxic stress, with deficiency of KDM6A-(UTX) and KDM6B-(JMJD3) impairing DDR transcriptional activation and compromising repair potential. Acquired KDM6A loss-of-function mutations are implicated in chemoresistance, although a significant percentage of relapsed-AML has upregulated KDM6A. Olaparib treatment reduced engraftment of KDM6A-mutant-AML-patient-derived xenografts, highlighting synthetic lethality using Poly-(ADP-ribose)-polymerase-(PARP)-inhibition. Crucially, a higher KDM6A expression is correlated with venetoclax tolerance. Loss of KDM6A increased mitochondrial activity, BCL2 expression, and sensitized AML cells to venetoclax. Additionally, BCL2A1 associates with venetoclax resistance, and KDM6A loss was accompanied with a downregulated BCL2A1. Corroborating these results, dual targeting of PARP and BCL2 was superior to PARP or BCL2 inhibitor monotherapy in inducing AML apoptosis, and primary AML cells carrying KDM6A-domain mutations were even more sensitive to the combination. Together, our study illustrates a mechanistic rationale in support of a novel combination therapy for AML based on subtype-heterogeneity, and establishes KDM6A as a molecular regulator for determining therapeutic efficacy.
Collapse
Affiliation(s)
- Liberalis Debraj Boila
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Subhadeep Ghosh
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Subham K Bandyopadhyay
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Liqing Jin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Wasim Shaikh
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Satyaki Bhowmik
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | | | - Mayukh Biswas
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Sayantani Sinha
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Shankha Subhra Chatterjee
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Anwesha Bose
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Sayan Chakraborty
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - James A Kennedy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, M5G 2C4, Canada.,Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Amanda Mitchell
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Debasis Banerjee
- Park Clinic, Gorky Terrace and Ramakrishna Mission Seva Pratisthan, Kolkata, 700017, West Bengal, India
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, M5G 2C4, Canada.,Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Amitava Sengupta
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India. .,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India. .,CSIR-IICB-Cancer Biology & Inflammatory Disorder Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
19
|
Epigenetic Insights on PARP-1 Activity in Cancer Therapy. Cancers (Basel) 2022; 15:cancers15010006. [PMID: 36612003 PMCID: PMC9817704 DOI: 10.3390/cancers15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
The regulation of chromatin state and histone protein eviction have been proven essential during transcription and DNA repair. Poly(ADP-ribose) (PAR) polymerase 1 (PARP-1) and poly(ADP-ribosyl)ation (PARylation) are crucial mediators of these processes by affecting DNA/histone epigenetic events. DNA methylation/hydroxymethylation patterns and histone modifications are established by mutual coordination between all epigenetic modifiers. This review will focus on histones and DNA/histone epigenetic machinery that are direct targets of PARP-1 activity by covalent and non-covalent PARylation. The effects of these modifications on the activity/recruitment of epigenetic enzymes at DNA damage sites or gene regulatory regions will be outlined. Furthermore, based on the achievements made to the present, we will discuss the potential application of epigenetic-based therapy as a novel strategy for boosting the success of PARP inhibitors, improving cell sensitivity or overcoming drug resistance.
Collapse
|
20
|
Pre-Existing and Acquired Resistance to PARP Inhibitor-Induced Synthetic Lethality. Cancers (Basel) 2022; 14:cancers14235795. [PMID: 36497275 PMCID: PMC9741207 DOI: 10.3390/cancers14235795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The advanced development of synthetic lethality has opened the doors for specific anti-cancer medications of personalized medicine and efficient therapies against cancers. One of the most popular approaches being investigated is targeting DNA repair pathways as the implementation of the PARP inhibitor (PARPi) into individual or combinational therapeutic schemes. Such treatment has been effectively employed against homologous recombination-defective solid tumors as well as hematopoietic malignancies. However, the resistance to PARPi has been observed in both preclinical research and clinical treatment. Therefore, elucidating the mechanisms responsible for the resistance to PARPi is pivotal for the further success of this intervention. Apart from mechanisms of acquired resistance, the bone marrow microenvironment provides a pre-existing mechanism to induce the inefficiency of PARPi in leukemic cells. Here, we describe the pre-existing and acquired mechanisms of the resistance to PARPi-induced synthetic lethality. We also discuss the potential rationales for developing effective therapies to prevent/repress the PARPi resistance in cancer cells.
Collapse
|
21
|
Mughal TI, Pemmaraju N, Bejar R, Gale RP, Bose P, Kiladjian JJ, Prchal J, Royston D, Pollyea D, Valent P, Brümmendorf TH, Skorski T, Patnaik M, Santini V, Fenaux P, Kucine N, Verstovsek S, Mesa R, Barbui T, Saglio G, Van Etten RA. Perspective: Pivotal translational hematology and therapeutic insights in chronic myeloid hematopoietic stem cell malignancies. Hematol Oncol 2022; 40:491-504. [PMID: 35368098 DOI: 10.1002/hon.2987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/10/2022]
Abstract
Despite much of the past 2 years being engulfed by the devastating consequences of the SAR-CoV-2 pandemic, significant progress, even breathtaking, occurred in the field of chronic myeloid malignancies. Some of this was show-cased at the 15th Post-American Society of Hematology (ASH) and the 25th John Goldman workshops on myeloproliferative neoplasms (MPN) held on 9th-10th December 2020 and 7th-10th October 2021, respectively. The inaugural Post-ASH MPN workshop was set out in 2006 by John Goldman (deceased) and Tariq Mughal to answer emerging translational hematology and therapeutics of patients with these malignancies. Rather than present a resume of the discussions, this perspective focuses on some of the pivotal translational hematology and therapeutic insights in these diseases.
Collapse
Affiliation(s)
- Tariq I Mughal
- Tufts University School of Medicine, Boston, Massachusetts, USA
- University of Buckingham, Buckingham, UK
| | - Naveen Pemmaraju
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Rafael Bejar
- University of California San Diego, La Jolla, California, USA
| | | | - Prithviraj Bose
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | | | - Josef Prchal
- Huntsman Cancer Center, Salt Lake City, Utah, USA
| | - Daniel Royston
- John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Daniel Pollyea
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter Valent
- Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Tomasz Skorski
- Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Valeria Santini
- Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Pierre Fenaux
- Hospital St Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Srdan Verstovsek
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Ruben Mesa
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, Texas, USA
| | - Tiziano Barbui
- Fondazione per la Ricerca Ospedale Maggiore di Bergamo, Bergamo, Italy
| | | | - Richard A Van Etten
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| |
Collapse
|
22
|
Alagpulinsa DA, Toribio MP, Alhallak I, Shmookler Reis RJ. Advances in understanding the molecular basis of clonal hematopoiesis. Trends Mol Med 2022; 28:360-377. [PMID: 35341686 DOI: 10.1016/j.molmed.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/28/2022]
Abstract
Hematopoietic stem cells (HSCs) are polyfunctional, regenerating all blood cells via hematopoiesis throughout life. Clonal hematopoiesis (CH) is said to occur when a substantial proportion of mature blood cells is derived from a single dominant HSC lineage, usually because these HSCs have somatic mutations that confer a fitness and expansion advantage. CH strongly associates with aging and enrichment in some diseases irrespective of age, emerging as an independent causal risk factor for hematologic malignancies, cardiovascular disease, adverse disease outcomes, and all-cause mortality. Defining the molecular mechanisms underlying CH will thus provide a framework to develop interventions for healthy aging and disease treatment. Here, we review the most recent advances in understanding the molecular basis of CH in health and disease.
Collapse
Affiliation(s)
- David A Alagpulinsa
- Vaccine & Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | - Mabel P Toribio
- Metabolism Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Iad Alhallak
- Metabolism Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare System and Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
23
|
Shabashvili DE, Feng Y, Kaur P, Venugopal K, Guryanova OA. Combination strategies to promote sensitivity to cytarabine-induced replication stress in acute myeloid leukemia with and without DNMT3A mutations. Exp Hematol 2022; 110:20-27. [DOI: 10.1016/j.exphem.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
|
24
|
Baer MR, Kogan AA, Bentzen SM, Mi T, Lapidus RG, Duong VH, Emadi A, Niyongere S, O'Connell CL, Youngblood BA, Baylin SB, Rassool FV. Phase I clinical trial of DNA methyltransferase inhibitor decitabine and PARP inhibitor talazoparib combination therapy in relapsed/refractory acute myeloid leukemia. Clin Cancer Res 2022; 28:1313-1322. [PMID: 35091444 DOI: 10.1158/1078-0432.ccr-21-3729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Acute myeloid leukemia (AML) patients unfit for, or resistant to, intensive chemotherapy are often treated with DNA methyltransferase inhibitors (DNMTis). Novel combinations may increase efficacy. In addition to demethylating CpG island gene promoter regions, DNMTis enhance poly (ADP-ribose) polymerase (PARP1) recruitment and tight binding to chromatin, preventing PARP-mediated DNA repair, downregulating homologous recombination (HR) DNA repair and sensitizing cells to PARP inhibitor (PARPi). We previously demonstrated DNMTi and PARPi combination efficacy in AML in vitro and in vivo Here we report a phase I clinical trial combining the DNMTi decitabine and the PARPi talazoparib in refractory/relapsed AML. EXPERIMENTAL DESIGN Decitabine and talazoparib doses were escalated using a 3 + 3 design. Pharmacodynamic studies were performed on Cycle 1 Days 1 (pre-treatment), 5 and 8 blood blasts. RESULTS Doses were escalated in seven cohorts [25 patients, including 22 previously treated with DNMTi(s)] to a recommended phase II dose combination of decitabine 20 mg/m2 intravenously daily for 5 or 10 days and talazoparib 1 mg orally daily for 28 days, in 28-day cycles. Grade 3-5 events included fever in 19 and lung infections in 15, attributed to AML. Responses included complete remission with incomplete count recovery in two patients (8%) hematologic improvement in three. Pharmacodynamic studies showed the expected DNA demethylation, increased PARP trapping in chromatin, increased gH2AX foci and decreased HR activity in responders. gH2AX foci increased significantly with increasing talazoparib doses combined with 20 mg/m2 decitabine. CONCLUSIONS Decitabine/talazoparib combination was well tolerated. Expected pharmacodynamic effects occurred, especially in responders.
Collapse
Affiliation(s)
- Maria R Baer
- Department of Medicine and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore
| | - Aksinija A Kogan
- Department of Radiation Oncology and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine
| | - Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital
| | - Rena G Lapidus
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine
| | - Vu H Duong
- Hematology, University of Maryland Medical Center
| | - Ashkan Emadi
- Medicine, Hematology and Oncology, University of Maryland, Baltimore
| | | | | | | | | | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine and the Greenebaum Comprehensive Cancer Center
| |
Collapse
|
25
|
Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. J Hematol Oncol 2022; 15:10. [PMID: 35065680 PMCID: PMC8783444 DOI: 10.1186/s13045-022-01228-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Poly(ADP‐ribose) polymerase (PARP) superfamily are involved in several biological processes and, in particular, in the DNA damage response (DDR). The most studied members, PARP1, PARP2 and PARP3, act as sensors of DNA damages, in order to activate different intracellular repair pathways, including single-strand repair, homologous recombination, conventional and alternative non-homologous end joining. This review recapitulates the functional role of PARPs in the DDR pathways, also in relationship with the cell cycle phases, which drives our knowledge of the mechanisms of action of PARP inhibitors (PARPi), encompassing inhibition of single-strand breaks and base excision repair, PARP trapping and sensitization to antileukemia immune responses. Several studies have demonstrated a preclinical activity of the current available PARPi, olaparib, rucaparib, niraparib, veliparib and talazoparib, as single agent and/or in combination with cytotoxic, hypomethylating or targeted drugs in acute leukemia, thus encouraging the development of clinical trials. We here summarize the most recent preclinical and clinical findings and discuss the synthetic lethal interactions of PARPi in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Despite the low frequency of genomic alterations of PARP and other DDR-related genes in acute leukemia, selective vulnerabilities have been reported in several disease subgroups, along with a “BRCAness phenotype.” AML carrying the RUNX1-RUNX1T1 or PML-RARA fusion genes or mutations in signaling genes (FLT3-ITD in combination with TET2 or TET2 and DNMT3A deficiency), cohesin complex members (STAG2), TP53 and BCOR as co-occurring lesions, IDH1/2 and ALL cases expressing the TCF3-HLF chimera or TET1 was highly sensitive to PARPi in preclinical studies. These data, along with the warning coming from the observation of cases of therapy-related myeloid malignancies among patients receiving PARPi for solid tumors treatment, indicate that PARPi represents a promising strategy in a personalized medicine setting. The characterization of the clonal and subclonal genetic background and of the DDR functionality is crucial to select acute leukemia patients that will likely benefit of PARPi-based therapeutic regimens.
Collapse
|
26
|
PARP Inhibitors and Myeloid Neoplasms: A Double-Edged Sword. Cancers (Basel) 2021; 13:cancers13246385. [PMID: 34945003 PMCID: PMC8699275 DOI: 10.3390/cancers13246385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Poly(ADP-ribose) polymerase (PARP) inhibitors, which are medications approved to treat various solid tumors, including breast, prostate, ovarian, and prostate cancers, are being examined in hematological malignancies. This review summarizes the potential role of PARP inhibitors in the treatment of myeloid diseases, particularly acute myeloid leukemia (AML). We review ongoing clinical studies investigating the safety and efficacy of PARP inhibitors in the treatment of AML, focusing on specific molecular and genetic AML subgroups that could be particularly sensitive to PARP inhibitor treatment. We also discuss reports describing an increased risk of treatment-related myeloid neoplasms in patients receiving PARP inhibitors for solid tumors. Abstract Despite recent discoveries and therapeutic advances in aggressive myeloid neoplasms, there remains a pressing need for improved therapies. For instance, in acute myeloid leukemia (AML), while most patients achieve a complete remission with conventional chemotherapy or the combination of a hypomethylating agent and venetoclax, de novo or acquired drug resistance often presents an insurmountable challenge, especially in older patients. Poly(ADP-ribose) polymerase (PARP) enzymes, PARP1 and PARP2, are involved in detecting DNA damage and repairing it through multiple pathways, including base excision repair, single-strand break repair, and double-strand break repair. In the context of AML, PARP inhibitors (PARPi) could potentially exploit the frequently dysfunctional DNA repair pathways that, similar to deficiencies in homologous recombination in BRCA-mutant disease, set the stage for cell killing. PARPi appear to be especially effective in AML with certain gene rearrangements and molecular characteristics (RUNX1-RUNX1T1 and PML-RARA fusions, FLT3- and IDH1-mutated). In addition, PARPi can enhance the efficacy of other agents, particularly alkylating agents, TOP1 poisons, and hypomethylating agents, that induce lesions ordinarily repaired via PARP1-dependent mechanisms. Conversely, emerging reports suggest that long-term treatment with PARPi for solid tumors is associated with an increased incidence of myelodysplastic syndrome (MDS) and AML. Here, we (i) review the pre-clinical and clinical data on the role of PARPi, specifically olaparib, talazoparib, and veliparib, in aggressive myeloid neoplasms and (ii) discuss the reported risk of MDS/AML with PARPi, especially as the indications for PARPi use expand to include patients with potentially curable cancer.
Collapse
|
27
|
Navitski A, Al-Rawi DH, Liu Y, Rubinstein MM, Friedman CF, Rampal RK, Mandelker DL, Cadoo K, O'Cearbhaill RE. Baseline risk of hematologic malignancy at initiation of frontline PARP inhibitor maintenance for BRCA1/2-associated ovarian cancer. Gynecol Oncol Rep 2021; 38:100873. [PMID: 34926756 PMCID: PMC8651772 DOI: 10.1016/j.gore.2021.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) are FDA approved as frontline maintenance for BRCA-associated advanced stage high-grade ovarian cancer (HGOC), having demonstrated an unprecedented improvement in relapse-free survival. Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are rare toxicities of PARPi. We describe three patients with germline BRCA-associated (gBRCA+) HGOC and alterations in AML driver genes. Although none evidenced overt hematologic malignancy, PARPi maintenance was cautiously considered given the potential risk of MDS/AML. A better understanding of the role of clonal hematopoiesis in the subsequent development of PARPi-associated MDS/AML will improve management of this patient population.
Collapse
Affiliation(s)
- Anastasia Navitski
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Duaa H. Al-Rawi
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying Liu
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria M. Rubinstein
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Claire F. Friedman
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Raajit K. Rampal
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana L. Mandelker
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karen Cadoo
- St James’s Hospital, Trinity College Dublin, Trinity St. James’s Cancer Institute, Dublin, Ireland
| | - Roisin E. O'Cearbhaill
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|