1
|
Mitome T, Wakui H, Azushima K, Uehara T, Jikuya R, Ohtake S, Noguchi G, Kawaura S, Iribe Y, Aomori K, Tatenuma T, Ito H, Kawahara T, Komeya M, Ito Y, Muraoka K, Furuya M, Kato I, Fujii S, Nagahama K, Nishiyama A, Tamura T, Kimura Y, Kawagoe T, Mizuki N, Huang G, Uemura H, Yao M, Makiyama K, Tamura K, Hasumi H. SETD2 regulates SLC family transporter-mediated sodium and glucose reabsorptions in renal tubule. Biochem Biophys Res Commun 2024; 734:150730. [PMID: 39366177 DOI: 10.1016/j.bbrc.2024.150730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
A regulatory mechanism for SLC family transporters, critical transporters for sodium and glucose reabsorptions in renal tubule, is incompletely understood. Here, we report an important regulation of SLC family transporter by SETD2, a chromatin remodeling gene whose alterations have been found in a subset of kidney cancers. Kidney-specific inactivation of Setd2 resulted in hypovolemia with excessive urine excretion in mouse and interestingly, RNA-sequencing analysis of Setd2-deficient murine kidney exhibited decreased expressions of SLC family transporters, critical transporters for sodium and glucose reabsorptions in renal tubule. Importantly, inactivation of Setd2 in murine kidney displayed attenuated dapagliflozin-induced diuresis and glucose excretion, further supporting that SETD2 might regulate SLCfamily transporter-mediated sodium and glucose reabsorptions in renal tubule. These data uncover an important regulation of SLC family transporter by SETD2, which may illuminate a crosstalk between metabolism and epigenome in renal tubule.
Collapse
Affiliation(s)
- Taku Mitome
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Tatsuki Uehara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Ryosuke Jikuya
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Shinji Ohtake
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Go Noguchi
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Sachi Kawaura
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Yasuhiro Iribe
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Kota Aomori
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Tomoyuki Tatenuma
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Hiroki Ito
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Takashi Kawahara
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Mitsuru Komeya
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Yusuke Ito
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Kentaro Muraoka
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Mitsuko Furuya
- Eurofins Genetic Lab Co., Ltd., Hokkaido, 060-0009, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Kiyotaka Nagahama
- Department of Pathology, Graduate School of Medical Sciences, Kyorin University, Tokyo, 181-8611, Japan
| | - Akira Nishiyama
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan; Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Tatsukata Kawagoe
- Department of Ophthalmology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hiroji Uemura
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Masahiro Yao
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Kazuhide Makiyama
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Hisashi Hasumi
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan.
| |
Collapse
|
2
|
Chen S, Liu D, Chen B, Li Z, Chang B, Xu C, Li N, Feng C, Hu X, Wang W, Zhang Y, Xie Y, Huang Q, Wang Y, Nimer SD, Chen S, Chen Z, Wang L, Sun X. Catalytic activity of Setd2 is essential for embryonic development in mice: establishment of a mouse model harboring patient-derived Setd2 mutation. Front Med 2024; 18:831-849. [PMID: 39115793 DOI: 10.1007/s11684-024-1095-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/08/2024] [Indexed: 11/01/2024]
Abstract
SETD2 is the only enzyme responsible for transcription-coupled histone H3 lysine 36 trimethylation (H3K36me3). Mutations in SETD2 cause human diseases including cancer and developmental defects. In mice, Setd2 is essential for embryonic vascular remodeling. Given that many epigenetic modifiers have recently been found to possess noncatalytic functions, it is unknown whether the major function(s) of Setd2 is dependent on its catalytic activity or not. Here, we established a site-specific knockin mouse model harboring a cancer patient-derived catalytically dead Setd2 (Setd2-CD). We found that the essentiality of Setd2 in mouse development is dependent on its methyltransferase activity, as the Setd2CD/CD and Setd2-/- mice showed similar embryonic lethal phenotypes and largely comparable gene expression patterns. However, compared with Setd2-/-, the Setd2CD/CD mice showed less severe defects in allantois development, and single-cell RNA-seq analysis revealed differentially regulated allantois-specific 5' Hoxa cluster genes in these two models. Collectively, this study clarifies the importance of Setd2 catalytic activity in mouse development and provides a new model for comparative study of previously unrecognized Setd2 functions.
Collapse
Affiliation(s)
- Shubei Chen
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Dianjia Liu
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Bingyi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zijuan Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Binhe Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chunhui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ningzhe Li
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Changzhou Feng
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
- Department of Clinical Laboratory, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222000, China
| | - Xibo Hu
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Weiying Wang
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuanliang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qiuhua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yingcai Wang
- Sylvester Comprehensive Cancer Center and Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center and Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaojian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
3
|
Niu N, Shen X, Wang Z, Chen Y, Weng Y, Yu F, Tang Y, Lu P, Liu M, Wang L, Sun Y, Yang M, Shen B, Jin J, Lu Z, Jiang K, Shi Y, Xue J. Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer. Cancer Cell 2024; 42:869-884.e9. [PMID: 38579725 DOI: 10.1016/j.ccell.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) involves a significant accumulation of cancer-associated fibroblasts (CAFs) as part of the host response to tumor cells. The origins and functions of transcriptionally diverse CAF populations in PDAC remain poorly understood. Tumor cell-intrinsic genetic mutations and epigenetic dysregulation may reshape the TME; however, their impacts on CAF heterogeneity remain elusive. SETD2, a histone H3K36 trimethyl-transferase, functions as a tumor suppressor. Through single-cell RNA sequencing, we identify a lipid-laden CAF subpopulation marked by ABCA8a in Setd2-deficient pancreatic tumors. Our findings reveal that tumor-intrinsic SETD2 loss unleashes BMP2 signaling via ectopic gain of H3K27Ac, leading to CAFs differentiation toward lipid-rich phenotype. Lipid-laden CAFs then enhance tumor progression by providing lipids for mitochondrial oxidative phosphorylation via ABCA8a transporter. Together, our study links CAF heterogeneity to epigenetic dysregulation in tumor cells, highlighting a previously unappreciated metabolic interaction between CAFs and pancreatic tumor cells.
Collapse
Affiliation(s)
- Ningning Niu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuqing Shen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yueyue Chen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawen Weng
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feier Yu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiabin Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Yufeng Shi
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Drake AM, Paynter JA, Yim A, Tempo JA, Manning TG, Brennan J, Qin KR. Prevalence of Renal Neoplasia in Autosomal Dominant Polycystic Kidney Disease: Systematic Review and Meta-Analysis. Nephron Clin Pract 2024; 148:457-467. [PMID: 38301614 PMCID: PMC11216357 DOI: 10.1159/000536245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited condition; however, its relationship with renal cell carcinoma (RCC) remains unclear. This paper aims to establish the prevalence of RCC and its subtypes amongst ADPKD patients. METHODS A database search was conducted to retrieve studies reporting RCC occurrence within ADPKD patients until July 2023. Key outcomes included number and subtype of RCC cases, and number of RCCs presenting incidentally. A random-effects meta-analysis was performed. RESULTS Our search yielded 569 articles, 16 met the inclusion criteria. Nephrectomy specimens from 1,147 ADPKD patients were identified. Of studies reporting per-kidney results (n = 13), 73 RCCs were detected amongst 1,493 kidneys, equating to a per-kidney prevalence of 4.3% (95% CI, 3.1-5.7, I2 = 15.7%). 75 ADPKD patients were found to have RCC (75/1,147), resulting in a per-person prevalence of 5.7% (95% CI, 3.7-7.9, I2 = 40.3%) (n = 16). As 7 patients had bilateral disease, 82 RCCs were detected in total. Of these, 39 were clear cell RCC, 35 were papillary and 8 were other. As such, papillary RCCs made up 41.1% (95% CI, 25.9-56.9, I2 = 18.1%) of detected cancers. The majority of RCCs were detected incidentally (72.5% [95% CI, 43.7-95.1, I2 = 66.9%]). CONCLUSION ADPKD appears to be associated with the papillary RCC subtype. The clinical implications of these findings are unclear, however, may become apparent as outcomes and life expectancy amongst APDKD patients improve.
Collapse
Affiliation(s)
- Anna M. Drake
- School of Rural Health, Monash University, Bendigo, VIC, Australia
| | - Jessica A. Paynter
- School of Rural Health, Monash University, Bendigo, VIC, Australia
- Department of Urology, Bendigo Health, Bendigo, VICAustralia
| | - Arthur Yim
- Department of Urology, Austin Health, Melbourne, VIC, Australia
| | - Jake A. Tempo
- Department of Urology, Austin Health, Melbourne, VIC, Australia
| | - Todd G. Manning
- School of Rural Health, Monash University, Bendigo, VIC, Australia
| | - Janelle Brennan
- School of Rural Health, Monash University, Bendigo, VIC, Australia
- Department of Urology, Bendigo Health, Bendigo, VICAustralia
| | - Kirby R. Qin
- School of Rural Health, Monash University, Bendigo, VIC, Australia
- Department of Urology, Bendigo Health, Bendigo, VICAustralia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Akhouri V, Majumder S, Gaikwad AB. Targeting DNA methylation in diabetic kidney disease: A new perspective. Life Sci 2023; 335:122256. [PMID: 37949210 DOI: 10.1016/j.lfs.2023.122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Diabetic kidney disease (DKD) is a leading diabetic complication causing significant mortality among people around the globe. People with poor glycemic control accompanied by hyperinsulinemia, dyslipidemia, hypertension, and obesity develop diabetic complications. These diabetic patients develop epigenetic changes and suffer from diabetic kidney complications even after subsequent glucose control, the phenomenon that is recognized as metabolic memory. DNA methylation is an essential epigenetic modification that contributes to the development and progression of several diabetic complications, including DKD. The aberrant DNA methylation pattern at CpGs sites within several genes, such as mTOR, RPTOR, IRS2, GRK5, SLC27A3, LCAT, and SLC1A5, associated with the accompanying risk factors exacerbate the DKD progression. Although drugs such as azacytidine and decitabine have been approved to target DNA methylation for diseases such as hematological malignancies, none have been approved for the treatment of DKD. More importantly, no DNA hypomethylation-targeting drugs have been approved for any disease conditions. Understanding the alteration in DNA methylation and its association with the disease risk factors is essential to target DKD effectively. This review has discussed the abnormal DNA methylation pattern and the kidney tissue-specific expression of critical genes involved in DKD onset and progression. Moreover, we also discuss the new possible therapeutic approach that can be exploited for treating DNA methylation aberrancy in a site-specific manner against DKD.
Collapse
Affiliation(s)
- Vivek Akhouri
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
6
|
Feng W, Ma C, Rao H, Zhang W, Liu C, Xu Y, Aji R, Wang Z, Xu J, Gao WQ, Li L. Setd2 deficiency promotes gastric tumorigenesis through inhibiting the SIRT1/FOXO pathway. Cancer Lett 2023; 579:216470. [PMID: 37914019 DOI: 10.1016/j.canlet.2023.216470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Gastric cancer (GC) is the fifth most common cancer and the second leading cause of cancer death globally. SETD2 is a histone methyltransferase catalyzing tri-methylation of H3K36 (H3K36me3) and has been shown to participate in diverse biological processes and human tumors. However, the mechanism of SETD2 in GC remains unclear. Here, we reported that Setd2 deficiency predicts poor prognosis of gastric cancer. SETD2 loss facilitated H. felis/MNU and c-Myc-induced gastric tumorigenesis, respectively. The mouse model of stomach-specific Setd2 depletion together with c-MYC overexpression (AMS) developed high-grade epithelial defects, intestinal metaplasia and dysplasia at only 10-12 weeks of age. Mechanistically, Setd2 depletion resulted in impaired epigenetic regulation of Sirt1, thus inhibiting the SIRT1/FOXO pathway. Moreover, the agonists of FOXO signaling or overexpression of SIRT1 significantly rescued the enhanced cell proliferation and migration caused by Setd2 deficiency in SGC7901 cells. Together, our findings highlight an epigenetic mechanism by which SETD2 regulates gastric tumorigenesis through SIRT1/FOXO pathway. It may also pave the way for the development of targeted, patient-tailored therapies for GC patients with Setd2 deficiency.
Collapse
Affiliation(s)
- Wenxin Feng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxiao Ma
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hanyu Rao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Rebiguli Aji
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyi Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Rao H, Liu C, Wang A, Ma C, Xu Y, Ye T, Su W, Zhou P, Gao WQ, Li L, Ding X. SETD2 deficiency accelerates sphingomyelin accumulation and promotes the development of renal cancer. Nat Commun 2023; 14:7572. [PMID: 37989747 PMCID: PMC10663509 DOI: 10.1038/s41467-023-43378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Patients with polycystic kidney disease (PKD) encounter a high risk of clear cell renal cell carcinoma (ccRCC), a malignant tumor with dysregulated lipid metabolism. SET domain-containing 2 (SETD2) has been identified as an important tumor suppressor and an immunosuppressor in ccRCC. However, the role of SETD2 in ccRCC generation in PKD remains largely unexplored. Herein, we perform metabolomics, lipidomics, transcriptomics and proteomics within SETD2 loss induced PKD-ccRCC transition mouse model. Our analyses show that SETD2 loss causes extensive metabolic reprogramming events that eventually results in enhanced sphingomyelin biosynthesis and tumorigenesis. Clinical ccRCC patient specimens further confirm the abnormal metabolic reprogramming and sphingomyelin accumulation. Tumor symptom caused by Setd2 knockout is relieved by myriocin, a selective inhibitor of serine-palmitoyl-transferase and sphingomyelin biosynthesis. Our results reveal that SETD2 deficiency promotes large-scale metabolic reprogramming and sphingomyelin biosynthesis during PKD-ccRCC transition. This study introduces high-quality multi-omics resources and uncovers a regulatory mechanism of SETD2 on lipid metabolism during tumorigenesis.
Collapse
Affiliation(s)
- Hanyu Rao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxiao Ma
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Tianbao Ye
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqiong Su
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Peijun Zhou
- Division of Kidney Transplant, Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Li
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Li Z, Chen C, Yong H, Jiang L, Wang P, Meng S, Chu S, Li Z, Guo Q, Zheng J, Bai J, Li H. PRMT2 promotes RCC tumorigenesis and metastasis via enhancing WNT5A transcriptional expression. Cell Death Dis 2023; 14:322. [PMID: 37173306 PMCID: PMC10182089 DOI: 10.1038/s41419-023-05837-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Protein arginine methyltransferase 2 (PRMT2) is involved in several biological processes via histone methylation and transcriptional regulation. Although PRMT2 has been reported to affect breast cancer and glioblastoma progression, its role in renal cell cancer (RCC) remains unclear. Here, we found that PRMT2 was upregulated in primary RCC and RCC cell lines. We demonstrated that PRMT2 overexpression promoted RCC cell proliferation and motility both in vitro and in vivo. Moreover, we revealed that PRMT2-mediated H3R8 asymmetric dimethylation (H3R8me2a) was enriched in the WNT5A promoter region and enhanced WNT5A transcriptional expression, leading to activation of Wnt signaling and malignant progression of RCC. Finally, we confirmed that high PRMT2 and WNT5A expression was strongly correlated with poor clinicopathological characteristics and poor overall survival in RCC patient tissues. Our findings indicate that PRMT2 and WNT5A may be promising predictive diagnostic biomarkers for RCC metastasis. Our study also suggests that PRMT2 is a novel therapeutic target in patients with RCC.
Collapse
Affiliation(s)
- Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chaozhen Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongmei Yong
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian, Jiangsu, China
| | - Lei Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pengfei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sen Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingxiang Guo
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Hailong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
9
|
Wu Y, Liu F, Wan R, Jiao B. A novel SETD2 variant causing global development delay without overgrowth in a Chinese 3-year-old boy. Front Genet 2023; 14:1153284. [PMID: 37025455 PMCID: PMC10072282 DOI: 10.3389/fgene.2023.1153284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Luscan-Lumish syndrome is characterized by macrocephaly, postnatal overgrowth, intellectual disability (ID), developmental delay (DD), which is caused by heterozygous SETD2 (SET domain containing 2) mutations. The incidence of Luscan-Lumish syndrome is unclear. The study was conducted to provide a novel pathogenic SETD2 variant causing atypical Luscan-Lumish syndrome and review all the published SETD2 mutations and corresponding symptoms, comprehensively understanding the phenotypes and genotypes of SETD2 mutations. Methods: Peripheral blood samples of the proband and his parents were collected for next-generation sequencing including whole-exome sequencing (WES), copy number variation (CNV) detection and mitochondrial DNA sequencing. Identified variant was verified by Sanger sequencing. Conservative analysis and structural analysis were performed to investigate the effect of mutation. Public databases such as PubMed, Clinvar and Human Gene Mutation Database (HGMD) were used to collect all cases with SETD2 mutations. Results: A novel pathogenic SETD2 variant (c.5835_c.5836insAGAA, p. A1946Rfs*2) was identified in a Chinese 3-year-old boy, who had speech and motor delay without overgrowth. Conservative analysis and structural analysis showed that the novel pathogenic variant would loss the conserved domains in the C-terminal region and result in loss of function of SETD2 protein. Frameshift mutations and non-sense mutations account for 68.5% of the total 51 SETD2 point mutations, suggesting that Luscan-Lumish syndrome is likely due to loss of function of SETD2. But we failed to find an association between genotype and phenotype of SETD2 mutations. Conclusion: Our findings expand the genotype-phenotype knowledge of SETD2-associated neurological disorder and provide new evidence for further genetic counselling.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Reproduction and Genetics, Bethune International Peace Hospital, Shijiazhuang, China
| | - Fang Liu
- Department of Pediatrics, Bethune International Peace Hospital, Shijiazhuang, China
| | - Ruihua Wan
- Department of Pediatrics, Bethune International Peace Hospital, Shijiazhuang, China
| | - Baoquan Jiao
- Department of Reproduction and Genetics, Bethune International Peace Hospital, Shijiazhuang, China
| |
Collapse
|
10
|
Niu N, Shen X, Zhang L, Chen Y, Lu P, Yang W, Liu M, Shi J, Xu D, Tang Y, Yang X, Weng Y, Zhao X, Wu L, Sun Y, Xue J. Tumor Cell-Intrinsic SETD2 Deficiency Reprograms Neutrophils to Foster Immune Escape in Pancreatic Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202937. [PMID: 36453584 PMCID: PMC9839845 DOI: 10.1002/advs.202202937] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Indexed: 06/07/2023]
Abstract
Genetic and epigenetic alterations play central roles in shaping the immunosuppressive tumor microenvironment (TME) to evade immune surveillance. The previous study shows that SETD2-H3K36me3 loss promotes KRAS-induced pancreatic tumorigenesis. However, little is known about its role in remodeling the TME and immune evasion. Here, it is shown that SETD2 deficiency can reprogram neutrophils to an immunosuppressive phenotype, thereby promoting immune escape during pancreatic tumor progression. By comprehensive profiling of the intratumoral immune cells, neutrophils are identified as the subset with the most significant changes upon Setd2 loss. Setd2-deficient pancreatic tumor cells directly enhance neutrophil recruitment and reprogramming, thereby inhibiting the cytotoxicity of CD8+ T cells to foster tumor progression. Mechanistically, it is revealed that Setd2-H3K36me3 loss leads to ectopic gain of H3K27me3 to downregulate Cxadr expression, which boosts the PI3K-AKT pathway and excessive expression of CXCL1 and GM-CSF, thereby promoting neutrophil recruitment and reprogramming toward an immunosuppressive phenotype. The study provides mechanistic insights into how tumor cell-intrinsic Setd2 deficiency strengthens the immune escape during pancreatic tumorigenesis, which may offer potential therapeutic implications for pancreatic cancer patients with SETD2 deficiency.
Collapse
Affiliation(s)
- Ningning Niu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Xuqing Shen
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yueyue Chen
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Wenjuan Yang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Mingzhu Liu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Dapeng Xu
- Department of Biliary‐Pancreatic SurgeryRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yingying Tang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Xiaotong Yang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yawen Weng
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Xinxin Zhao
- Department of RadiologyRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Lian‐Ming Wu
- Department of RadiologyRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yongwei Sun
- Department of Biliary‐Pancreatic SurgeryRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| |
Collapse
|
11
|
Yu M, Qian K, Wang G, Xiao Y, Zhu Y, Ju L. Histone methyltransferase SETD2: An epigenetic driver in clear cell renal cell carcinoma. Front Oncol 2023; 13:1114461. [PMID: 37025591 PMCID: PMC10070805 DOI: 10.3389/fonc.2023.1114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
SET domain-containing 2 (SETD2) is a lysine methyltransferase that catalyzes histone H3 lysine36 trimethylation (H3K36me3) and has been revealed to play important roles in the regulation of transcriptional elongation, RNA splicing, and DNA damage repair. SETD2 mutations have been documented in several cancers, including clear cell renal cell carcinoma (ccRCC). SETD2 deficiency is associated with cancer occurrence and progression by regulating autophagy flux, general metabolic activity, and replication fork speed. Therefore, SETD2 is considered a potential epigenetic therapeutic target and is the subject of ongoing research on cancer-related diagnosis and treatment. This review presents an overview of the molecular functions of SETD2 in H3K36me3 regulation and its relationship with ccRCC, providing a theoretical basis for subsequent antitumor therapy based on SETD2 or H3K36me3 targets.
Collapse
Affiliation(s)
- Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuan Zhu
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| |
Collapse
|
12
|
Reiter FP, Rau M, Kunzmann V, Kickuth R, Klein I, Neumann O, Stenzinger A, Schirmacher P, Geier A. Profound tumor response to combined CTLA-4 and PD-1 inhibition in systemic fourth line therapy observed in a patient with hepatocellular carcinoma harboring SETD2 and LRP1B mutations. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:71-75. [PMID: 36379463 DOI: 10.1055/a-1952-1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immunotherapy has become the standard of care in advanced HCC but is only approved in first- or second-line treatment. We report a patient with HCC refractory to several lines of tyrosine kinase inhibitors, who was treated with Ipilimumab and Nivolumab (Ipi/Nivo) as the fourth line. The tumor responded profoundly to Ipi/Nivo. Established biomarker-predicting responses to immunotherapy, such as a high PD-L1 staining, a high combined-positive score, microsatellite instability or a high tumor mutational burden, were not detected. Potential negative predictive markers for response to immunotherapy such as CTNNB1 and TERT were present. This constellation puts the spotlight on two mutations observed here in the SET domain-containing 2 (SETD2) and low-density lipoprotein receptor-related protein 1b (LRP1B) genes, which may explain the outstanding response. Our case demonstrates that immunotherapy can be efficient in a late-line scenario, resulting in long-term survival. Further studies should prospectively evaluate the value of SETD2 and LRP1B alterations as predictors for the success of immunotherapy in HCC.
Collapse
Affiliation(s)
- Florian P Reiter
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany.,Partner site - German Alliance for Liver Cancer (GALC)
| | - Monika Rau
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Volker Kunzmann
- Division of Oncology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Ralph Kickuth
- Department of Diagnostic & Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Ingo Klein
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Partner site - German Alliance for Liver Cancer (GALC)
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Partner site - German Alliance for Liver Cancer (GALC)
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Partner site - German Alliance for Liver Cancer (GALC)
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany.,Partner site - German Alliance for Liver Cancer (GALC)
| |
Collapse
|
13
|
Sharda A, Humphrey TC. The role of histone H3K36me3 writers, readers and erasers in maintaining genome stability. DNA Repair (Amst) 2022; 119:103407. [PMID: 36155242 DOI: 10.1016/j.dnarep.2022.103407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Histone Post-Translational Modifications (PTMs) play fundamental roles in mediating DNA-related processes such as transcription, replication and repair. The histone mark H3K36me3 and its associated methyltransferase SETD2 (Set2 in yeast) are archetypical in this regard, performing critical roles in each of these DNA transactions. Here, we present an overview of H3K36me3 regulation and the roles of its writers, readers and erasers in maintaining genome stability through facilitating DNA double-strand break (DSB) repair, checkpoint signalling and replication stress responses. Further, we consider how loss of SETD2 and H3K36me3, frequently observed in a number of different cancer types, can be specifically targeted in the clinic through exploiting loss of particular genome stability functions.
Collapse
Affiliation(s)
- Asmita Sharda
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Timothy C Humphrey
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
14
|
Xiao C, Fan T, Tian H, Zheng Y, Zhou Z, Li S, Li C, He J. H3K36 trimethylation-mediated biological functions in cancer. Clin Epigenetics 2021; 13:199. [PMID: 34715919 PMCID: PMC8555273 DOI: 10.1186/s13148-021-01187-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Histone modification is an important form of epigenetic regulation. Thereinto, histone methylation is a critical determination of chromatin states, participating in multiple cellular processes. As a conserved histone methylation mark, histone 3 lysine 36 trimethylation (H3K36me3) can mediate multiple transcriptional-related events, such as the regulation of transcriptional activity, transcription elongation, pre-mRNA alternative splicing, and RNA m6A methylation. Additionally, H3K36me3 also contributes to DNA damage repair. Given the crucial function of H3K36me3 in genome regulation, the roles of H3K36me3 and its sole methyltransferase SETD2 in pathogenesis, especially malignancies, have been emphasized in many studies, and it is conceivable that disruption of histone methylation regulatory network composed of "writer", "eraser", "reader", and the mutation of H3K36me3 codes have the capacity of powerfully modulating cancer initiation and development. Here we review H3K36me3-mediated biological processes and summarize the latest findings regarding its role in cancers. We highlight the significance of epigenetic combination therapies in cancers.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuofeng Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|