1
|
Chen XQ, Yang Q, Chen WM, Chen ZW, Guo GH, Zhang X, Sun XM, Shen T, Xiao FH, Li YF. Dual Role of Lysosome in Cancer Development and Progression. FRONT BIOSCI-LANDMRK 2024; 29:393. [PMID: 39614447 DOI: 10.31083/j.fbl2911393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 12/01/2024]
Abstract
Lysosomes are essential intracellular catabolic organelles that contain digestive enzymes involved in the degradation and recycle of damaged proteins, organelles, etc. Thus, they play an important role in various biological processes, including autophagy regulation, ion homeostasis, cell death, cell senescence. A myriad of studies has shown that the dysfunction of lysosome is implicated in human aging and various age-related diseases, including cancer. However, what is noteworthy is that the modulation of lysosome-based signaling and degradation has both the cancer-suppressive and cancer-promotive functions in diverse cancers depending on stage, biology, or tumor microenvironment. This dual role limits their application as targets in cancer therapy. In this review, we provide an overview of lysosome and autophagy-lysosomal pathway and outline their critical roles in many cellular processes, including cell death. We highlight the different functions of autophagy-lysosomal pathway in cancer development and progression, underscoring its potential as a target for effective cancer therapies.
Collapse
Affiliation(s)
- Xiao-Qiong Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Quan Yang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Wei-Min Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Zi-Wei Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Guang-Hui Guo
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xuan Zhang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xiao-Ming Sun
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Tao Shen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650000 Kunming, Yunnan, China
| | - Yun-Feng Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| |
Collapse
|
2
|
Niharika, Garg M. Understanding the autophagic functions in cancer stem cell maintenance and therapy resistance. Expert Rev Mol Med 2024; 26:e23. [PMID: 39375840 PMCID: PMC11488345 DOI: 10.1017/erm.2024.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 06/25/2024] [Indexed: 10/09/2024]
Abstract
Complex tumour ecosystem comprising tumour cells and its associated tumour microenvironment (TME) constantly influence the tumoural behaviour and ultimately impact therapy failure, disease progression, recurrence and poor overall survival of patients. Crosstalk between tumour cells and TME amplifies the complexity by creating metabolic changes such as hypoxic environment and nutrient fluctuations. These changes in TME initiate stem cell-like programmes in cancer cells, contribute to tumoural heterogeneity and increase tumour robustness. Recent studies demonstrate the multifaceted role of autophagy in promoting fibroblast production, stemness, cancer cell survival during longer periods of dormancy, eventual growth of metastatic disease and disease resistance. Recent ongoing studies examine autophagy/mitophagy as a powerful survival strategy in response to environmental stress including nutrient deprivation, hypoxia and environmental stress in TME. It prevents irreversible senescence, promotes dormant stem-like state, induces epithelial-mesenchymal transition and increases migratory and invasive potential of tumour cells. The present review discusses various theories and mechanisms behind the autophagy-dependent induction of cancer stem cell (CSC) phenotype. Given the role of autophagic functions in CSC aggressiveness and therapeutic resistance, various mechanisms and studies based on suppressing cellular plasticity by blocking autophagy as a powerful therapeutic strategy to kill tumour cells are discussed.
Collapse
Affiliation(s)
- Niharika
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
3
|
Xi X, Chen S, Zhao X, Zhou Z, Zhu S, Ren X, Wang X, Wu J, Mu S, Li X, Shan E, Cui Y. TUBB4A Inhibits Glioma Development by Regulating ROS-PINK1/Parkin-Mitophagy Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04459-z. [PMID: 39230869 DOI: 10.1007/s12035-024-04459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Glioma is a refractory malignant tumor with a powerful capacity for invasiveness and a poor prognosis. This study aims to investigate the role and mechanism of tubulin beta class IVA (TUBB4A) in glioma progression. The differential expression of TUBB4A in humans was obtained from databases and analyzed. Glioma cells U251-MG and U87-MG were intervened by pcDNA3.1(+) and TUBB4A overexpression plasmid. MTT, CCK8, LDH, wound healing, transwell, and western blotting were used to explore whether TUBB4A participates in the development of glioma. Reactive oxygen species (ROS) were detected by the DCFH-DA probe. Mitochondrial membrane potential (MMP) was examined by JC-1. It was found that TUBB4A expression level correlated with tumor grade, IDH1 status, 1p/19q status, and poor survival in glioma patients. In addition, TUBB4A overexpression inhibited the proliferation, migration, and invasion of U251-MG and U87-MG, while increasing the degree of apoptosis. Notably, TUBB4A overexpression promotes ROS generation and MMP depolarization, and induces mitophagy through the PINK1/Parkin pathway. Interestingly, mitochondria-targeted ROS scavenger reversed the effect of TUBB4A overexpression on PINK1/Parkin expression and mitophagy, whereas mitophagy inhibitor did not affect ROS production. And the effect of TUBB4A overexpression on mitophagy and glioma progression was consistent with that of PINK1/Parkin agonist. In conclusion, TUBB4A is a molecular marker for predicting the prognosis of glioma patients and an effective target for inhibiting glioma progression by regulating ROS-PINK1/Parkin-mitophagy pathway.
Collapse
Affiliation(s)
- Xueru Xi
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Suqin Chen
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Xiaoli Zhao
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Zimu Zhou
- The Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shanjie Zhu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Xurui Ren
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Xiaomei Wang
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jing Wu
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Shuai Mu
- Department of Oncology, Senior Department of Oncology, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xianwen Li
- School of Nursing, Nanjing Medical University, Nanjing, China.
| | - Enfang Shan
- School of Nursing, Nanjing Medical University, Nanjing, China.
| | - Yan Cui
- School of Nursing, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Kundu M, Das S, Dey A, Mandal M. Dual perspective on autophagy in glioma: Detangling the dichotomous mechanisms of signaling pathways for therapeutic insights. Biochim Biophys Acta Rev Cancer 2024; 1879:189168. [PMID: 39121913 DOI: 10.1016/j.bbcan.2024.189168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Autophagy is a normal physiological process that aids the recycling of cellular nutrients, assisting the cells to cope with stressed conditions. However, autophagy's effect on cancer, including glioma, is uncertain and involves complicated molecular mechanisms. Several contradictory reports indicate that autophagy may promote or suppress glioma growth and progression. Autophagy inhibitors potentiate the efficacy of chemotherapy or radiation therapy in glioma. Numerous compounds stimulate autophagy to cause glioma cell death. Autophagy is also involved in the therapeutic resistance of glioma. This review article aims to detangle the complicated molecular mechanism of autophagy to provide a better perception of the two-sided role of autophagy in glioma and its therapeutic implications. The protein and epigenetic modulators of the cytoprotective and cytotoxic role of autophagy are described in this article. Moreover, several signaling pathways are associated with autophagy and its effects on glioma. We have reviewed the molecular pathways and highlighted the signaling axis involved in cytoprotective and cytotoxic autophagy. Additionally, this article discusses the role of autophagy in therapeutic resistance, including glioma stem cell maintenance and tumor microenvironment regulation. It also summarizes several investigations on the anti-glioma effects of autophagy modulators to understand the associated mechanisms and provide insights regarding its therapeutic implications.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, India; Department of Pharmaceutical Technology, Brainware University, Barasat, India.
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Department of Allied Health Sciences, Brainware University, Barasat, India
| | - Ankita Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
5
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
6
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
7
|
Shi Z, Yang S, Shen C, Shao J, Zhou F, Liu H, Zhou G. LAMP2A regulates cisplatin resistance in colorectal cancer through mediating autophagy. J Cancer Res Clin Oncol 2024; 150:242. [PMID: 38717639 PMCID: PMC11078844 DOI: 10.1007/s00432-024-05775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Drug resistance is an important constraint on clinical outcomes in advanced cancers. LAMP2A is a limiting protein in molecular chaperone-mediated autophagy. This study was aimed to explore LAMP2A function in cisplatin (cis-diamminedichloroplatinum, DDP) resistance colorectal cancer (CRC) to seek new ideas for CRC clinical treatment. METHODS In this study, LAMP2A expression was analyzed by molecular experimental techniques,such as qRT-PCR and western blot. Then, LAMP2A in cells was interfered by cell transfection experiments. Subsequently, the function of LAMP2A on proliferation, migration, invasion, DDP sensitivity, and autophagy of CRC/DDP cells were further investigated by a series of experiments, such as CCK-8, transwell, and western blot. RESULTS We revealed that LAMP2A was clearly augmented in DDP-resistant CRC and was related to poor patient prognosis. Functionally, LAMP2A insertion remarkably CRC/DDP proliferation, migration, invasion ability and DDP resistance by strengthen autophagy. In contrast, LAMP2A knockdown limited the proliferation, migration, and invasion while heightened cellular sensitivity to DDP by restraining autophagy in CRC/DDP cells. Furthermore, LAMP2A silencing was able to curb tumor formation and enhance sensitivity to DDP in vivo. CONCLUSION In summary, LAMP2A boosted malignant progression and DDP resistance in CRC/DDP cells through mediating autophagy. Clarifying LAMP2A function in DDP resistance is promising to seek cancer therapies biomarkers targeting LAMP2A activity.
Collapse
Affiliation(s)
- Zhiliang Shi
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Shuting Yang
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Chenglong Shen
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Jiazhe Shao
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Fang Zhou
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Haichen Liu
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China.
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
8
|
Valdor R, Martinez-Vicente M. The Role of Chaperone-Mediated Autophagy in Tissue Homeostasis and Disease Pathogenesis. Biomedicines 2024; 12:257. [PMID: 38397859 PMCID: PMC10887052 DOI: 10.3390/biomedicines12020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Chaperone-mediated autophagy (CMA) is a selective proteolytic pathway in the lysosomes. Proteins are recognized one by one through the detection of a KFERQ motif or, at least, a KFERQ-like motif, by a heat shock cognate protein 70 (Hsc70), a molecular chaperone. CMA substrates are recognized and delivered to a lysosomal CMA receptor, lysosome-associated membrane protein 2A (LAMP-2A), the only limiting component of this pathway, and transported to the lysosomal lumen with the help of another resident chaperone HSp90. Since approximately 75% of proteins are reported to have canonical, phosphorylation-generated, or acetylation-generated KFERQ motifs, CMA maintains intracellular protein homeostasis and regulates specific functions in the cells in different tissues. CMA also regulates physiologic functions in different organs, and is then implicated in disease pathogenesis related to aging, cancer, and the central nervous and immune systems. In this minireview, we have summarized the most important findings on the role of CMA in tissue homeostasis and disease pathogenesis, updating the recent advances for this Special Issue.
Collapse
Affiliation(s)
- Rut Valdor
- Immunology-Cell Therapy and Hematopoietic Transplant Group, Department of Biochemistry and Molecular Biology B, University of Murcia (UMU), 30100 Murcia, Spain
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia-Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Marta Martinez-Vicente
- Autophagy and Lysosomal Dysfunction Lab, Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute—CIBERNED, 08035 Barcelona, Spain
| |
Collapse
|
9
|
Liu Q, Guo Z, Li G, Zhang Y, Liu X, Li B, Wang J, Li X. Cancer stem cells and their niche in cancer progression and therapy. Cancer Cell Int 2023; 23:305. [PMID: 38041196 PMCID: PMC10693166 DOI: 10.1186/s12935-023-03130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
High recurrence and metastasis rates and poor prognoses are the major challenges of current cancer therapy. Mounting evidence suggests that cancer stem cells (CSCs) play an important role in cancer development, chemoradiotherapy resistance, recurrence, and metastasis. Therefore, targeted CSC therapy has become a new strategy for solving the problems of cancer metastasis and recurrence. Since the properties of CSCs are regulated by the specific tumour microenvironment, the so-called CSC niche, which targets crosstalk between CSCs and their niches, is vital in our pursuit of new therapeutic opportunities to prevent cancer from recurring. In this review, we aim to highlight the factors within the CSC niche that have important roles in regulating CSC properties, including the extracellular matrix (ECM), stromal cells (e.g., associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and mesenchymal stem cells (MSCs)), and physiological changes (e.g., inflammation, hypoxia, and angiogenesis). We also discuss recent progress regarding therapies targeting CSCs and their niche to elucidate developments of more effective therapeutic strategies to eliminate cancer.
Collapse
Affiliation(s)
- Qiuping Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Zongliang Guo
- Department of General Surgery, Shanxi Province Cancer Hospital, Affiliated of Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Guoyin Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Yunxia Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Bing Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Jinping Wang
- Department of Ultrasound, Shanxi Province People's Hospital, Taiyuan, 030012, Shanxi, China.
| | - Xiaoyan Li
- Department of blood transfusion, Shanxi Provincial People's Hospital, Taiyuan, 030032, Shanxi, China.
- Department of central laboratory, Shanxi Provincial People's Hospital, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
10
|
Qiao L, Hu J, Qiu X, Wang C, Peng J, Zhang C, Zhang M, Lu H, Chen W. LAMP2A, LAMP2B and LAMP2C: similar structures, divergent roles. Autophagy 2023; 19:2837-2852. [PMID: 37469132 PMCID: PMC10549195 DOI: 10.1080/15548627.2023.2235196] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
LAMP2 (lysosomal associated membrane protein 2) is one of the major protein components of the lysosomal membrane. There currently exist three LAMP2 isoforms, LAMP2A, LAMP2B and LAMP2C, and they vary in distribution and function. LAMP2A serves as a receptor and channel for transporting cytosolic proteins in a process called chaperone-mediated autophagy (CMA). LAMP2B is required for autophagosome-lysosome fusion in cardiomyocytes and is one of the components of exosome membranes. LAMP2C is primarily implicated in a novel type of autophagy in which nucleic acids are taken up into lysosomes for degradation. In this review, the current evidence for the function of each LAMP2 isoform in various pathophysiological processes and human diseases, as well as their possible mechanisms, are comprehensively summarized. We discuss the evolutionary patterns of the three isoforms in vertebrates and provide technical guidance on investigating these isoforms. We are also concerned with the newly arising questions in this particular research area that remain unanswered. Advances in the functions of the three LAMP2 isoforms will uncover new links between lysosomal dysfunction, autophagy and human diseases.Abbreviation: ACSL4: acyl-CoA synthetase long-chain family member 4; AD: Alzheimer disease; Ag: antigens; APP: amyloid beta precursor protein; ATG14: autophagy related 14; AVSF: autophagic vacuoles with unique sarcolemmal features; BBC3/PUMA: BCL2 binding component 3; CCD: C-terminal coiled coil domain; CMA: chaperone-mediated autophagy; CVDs: cardiovascular diseases; DDIT4/REDD1: DNA damage inducible transcript 4; ECs: endothelial cells; ER: endoplasmic reticulum; ESCs: embryonic stem cells; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GBA/β-glucocerebrosidase: glucosylceramidase beta; GSCs: glioblastoma stem cells; HCC: hepatocellular carcinoma; HD: Huntington disease; HSCs: hematopoietic stem cells; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; IL3: interleukin 3; IR: ischemia-reperfusion; LAMP2: lysosomal associated membrane protein 2; LDs: lipid droplets; LRRK2: leucine rich repeat kinase 2; MA: macroautophagy; MHC: major histocompatibility complex; MST1: macrophage stimulating 1; NAFLD: nonalcoholic fatty liver disease; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NLRP3: NLR family pyrin domain containing 3; PARK7: Parkinsonism associated deglycase; PD: Parkinson disease; PEA15/PED: proliferation and apoptosis adaptor protein 15; PKM/PKM2: pyruvate kinase M1/2; RA: rheumatoid arthritis; RARA: retinoic acid receptor alpha; RCAN1: regulator of calcineurin 1; RCC: renal cell carcinoma; RDA: RNautophagy and DNautophagy; RNAi: RNA interference; RND3: Rho Family GTPase 3; SG-NOS3/eNOS: deleterious glutathionylated NOS3; SLE: systemic lupus erythematosus; TAMs: tumor-associated macrophages; TME: tumor microenvironment; UCHL1: ubiquitin C-terminal hydrolase L1; VAMP8: vesicle associated membrane protein 8.
Collapse
Affiliation(s)
- Lei Qiao
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiayi Hu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaohan Qiu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chunlin Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jieqiong Peng
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huixia Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenqiang Chen
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Fu J, Liang H, Yuan P, Wei Z, Zhong P. Brain pericyte biology: from physiopathological mechanisms to potential therapeutic applications in ischemic stroke. Front Cell Neurosci 2023; 17:1267785. [PMID: 37780206 PMCID: PMC10536258 DOI: 10.3389/fncel.2023.1267785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Pericytes play an indispensable role in various organs and biological processes, such as promoting angiogenesis, regulating microvascular blood flow, and participating in immune responses. Therefore, in this review, we will first introduce the discovery and development of pericytes, identification methods and functional characteristics, then focus on brain pericytes, on the one hand, to summarize the functions of brain pericytes under physiological conditions, mainly discussing from the aspects of stem cell characteristics, contractile characteristics and paracrine characteristics; on the other hand, to summarize the role of brain pericytes under pathological conditions, mainly taking ischemic stroke as an example. Finally, we will discuss and analyze the application and development of pericytes as therapeutic targets, providing the research basis and direction for future microvascular diseases, especially ischemic stroke treatment.
Collapse
Affiliation(s)
- Jiaqi Fu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| | - Huazheng Liang
- Monash Suzhou Research Institute, Suzhou, Jiangsu, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenyu Wei
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| | - Ping Zhong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| |
Collapse
|
12
|
Liu J, Wang L, He H, Liu Y, Jiang Y, Yang J. The Complex Role of Chaperone-Mediated Autophagy in Cancer Diseases. Biomedicines 2023; 11:2050. [PMID: 37509689 PMCID: PMC10377530 DOI: 10.3390/biomedicines11072050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is a process that rapidly degrades proteins labeled with KFERQ-like motifs within cells via lysosomes to terminate their cellular functioning. Meanwhile, CMA plays an essential role in various biological processes correlated with cell proliferation and apoptosis. Previous studies have shown that CMA was initially found to be procancer in cancer cells, while some theories suggest that it may have an inhibitory effect on the progression of cancer in untransformed cells. Therefore, the complex relationship between CMA and cancer has aroused great interest in the application of CMA activity regulation in cancer therapy. Here, we describe the basic information related to CMA and introduce the physiological functions of CMA, the dual role of CMA in different cancer contexts, and its related research progress. Further study on the mechanism of CMA in tumor development may provide novel insights for tumor therapy targeting CMA. This review aims to summarize and discuss the complex mechanisms of CMA in cancer and related potential strategies for cancer therapy.
Collapse
Affiliation(s)
- Jing Liu
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Lijuan Wang
- Department of Anesthesiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Hua He
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Yueying Liu
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Yiqun Jiang
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| |
Collapse
|
13
|
Li D, Peng X, He G, Liu J, Li X, Lin W, Fang J, Li X, Yang S, Yang L, Li H. Crosstalk between autophagy and CSCs: molecular mechanisms and translational implications. Cell Death Dis 2023; 14:409. [PMID: 37422448 PMCID: PMC10329683 DOI: 10.1038/s41419-023-05929-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Cancer stem cells(CSCs) play a key role in regulating tumorigenesis, progression, as well as recurrence, and possess typical metabolic characteristics. Autophagy is a catabolic process that can aid cells to survive under stressful conditions such as nutrient deficiency and hypoxia. Although the role of autophagy in cancer cells has been extensively studied, CSCs possess unique stemness, and their potential relationship with autophagy has not been fully analyzed. This study summarizes the possible role of autophagy in the renewal, proliferation, differentiation, survival, metastasis, invasion, and treatment resistance of CSCs. It has been found that autophagy can contribute to the maintenance of CSC stemness, facilitate the tumor cells adapt to changes in the microenvironment, and promote tumor survival, whereas in some other cases autophagy acts as an important process involved in the deprivation of CSC stemness thus leading to tumor death. Mitophagy, which has emerged as another popular research area in recent years, has a great scope when explored together with stem cells. In this study, we have aimed to elaborate on the mechanism of action of autophagy in regulating the functions of CSCs to provide deeper insights for future cancer treatment.
Collapse
Affiliation(s)
- Dai Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xian Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Weikai Lin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
14
|
Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffrè G, Lentini M, Silvestris N, Di Pietro M, Fadda G, Tuccari G, Ieni A. Autophagic-Related Proteins in Brain Gliomas: Role, Mechanisms, and Targeting Agents. Cancers (Basel) 2023; 15:cancers15092622. [PMID: 37174088 PMCID: PMC10177137 DOI: 10.3390/cancers15092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The present review focuses on the phenomenon of autophagy, a catabolic cellular process, which allows for the recycling of damaged organelles, macromolecules, and misfolded proteins. The different steps able to activate autophagy start with the formation of the autophagosome, mainly controlled by the action of several autophagy-related proteins. It is remarkable that autophagy may exert a double role as a tumour promoter and a tumour suppressor. Herein, we analyse the molecular mechanisms as well as the regulatory pathways of autophagy, mainly addressing their involvement in human astrocytic neoplasms. Moreover, the relationships between autophagy, the tumour immune microenvironment, and glioma stem cells are discussed. Finally, an excursus concerning autophagy-targeting agents is included in the present review in order to obtain additional information for the better treatment and management of therapy-resistant patients.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Translational Molecular Medicine and Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maria Lentini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Martina Di Pietro
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| |
Collapse
|
15
|
Laribee RN, Boucher AB, Madireddy S, Pfeffer LM. The STAT3-Regulated Autophagy Pathway in Glioblastoma. Pharmaceuticals (Basel) 2023; 16:671. [PMID: 37242454 PMCID: PMC10223172 DOI: 10.3390/ph16050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain malignancy in adults with a dismal prognosis. Despite advances in genomic analysis and surgical technique and the development of targeted therapeutics, most treatment options are ineffective and mainly palliative. Autophagy is a form of cellular self-digestion with the goal of recycling intracellular components to maintain cell metabolism. Here, we describe some recent findings that suggest GBM tumors are more sensitive to the excessive overactivation of autophagy leading to autophagy-dependent cell death. GBM cancer stem cells (GSCs) are a subset of the GBM tumor population that play critical roles in tumor formation and progression, metastasis, and relapse, and they are inherently resistant to most therapeutic strategies. Evidence suggests that GSCs are able to adapt to a tumor microenvironment of hypoxia, acidosis, and lack of nutrients. These findings have suggested that autophagy may promote and maintain the stem-like state of GSCs as well as their resistance to cancer treatment. However, autophagy is a double-edged sword and may have anti-tumor properties under certain conditions. The role of the STAT3 transcription factor in autophagy is also described. These findings provide the basis for future research aimed at targeting the autophagy-dependent pathway to overcome the inherent therapeutic resistance of GBM in general and to specifically target the highly therapy-resistant GSC population through autophagy regulation.
Collapse
Affiliation(s)
- Ronald Nicholas Laribee
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Andrew B. Boucher
- Department of Neurosurgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Saivikram Madireddy
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
16
|
Patel K, Arias E. A selective type of autophagy to maintain glioma stem cell activity. Stem Cell Investig 2023; 10:1. [PMID: 36742282 PMCID: PMC9892014 DOI: 10.21037/sci-2022-047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Khushbu Patel
- Department of Pathology, Einstein Institute for Aging Research, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Esperanza Arias
- Department of Medicine, Department of Pathology, Montefiore Einstein Cancer Center, Einstein Institute for Aging Research, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
17
|
Auzmendi-Iriarte J, Matheu A. Intrinsic role of chaperone-mediated autophagy in cancer stem cell maintenance. Autophagy 2022; 18:3035-3036. [PMID: 35468038 PMCID: PMC9673963 DOI: 10.1080/15548627.2022.2069450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) is a selective type of autophagy specialized in the individual degradation of targeted proteins. Its impact in any cancer stem cell (CSC) subtype remained elusive. In a recent study, we characterized the expression of LAMP2A and CMA activity in glioblastoma revealing its enrichment in a glioma stem cell (GSC) subpopulation. LAMP2A downregulation diminishes proliferation and self-renewal and induces apoptosis in GSCs in vitro, whereas it delays tumor progression in vivo. The underlying molecular signature of CMA comprises several proteomic and transcriptomic pathways with special relevance to mitochondrial function, the interferon pathway and extracellular matrix interactions. Remarkably, these activities are translated into the clinical scenario, as glioblastoma (GBM) samples show increased expression of LAMP2 compared to healthy tissue, with this expression being positively associated with malignancy grade, TMZ resistance and lower patient survival. These results reveal a novel function of CMA as an intrinsic regulator of GSC tumorigenic properties and highlight its relevance in GBM progression.
Collapse
Affiliation(s)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain,CONTACT Ander Matheu Biodonostia Institute, Paseo Dr. Beguiristain s/n, San SebastianE-20014, Spain
| |
Collapse
|
18
|
Chaperone-Mediated Autophagy in Pericytes: A Key Target for the Development of New Treatments against Glioblastoma Progression. Int J Mol Sci 2022; 23:ijms23168886. [PMID: 36012149 PMCID: PMC9408771 DOI: 10.3390/ijms23168886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma (GB) cells physically interact with peritumoral pericytes (PCs) present in the brain microvasculature. These interactions facilitate tumor cells to aberrantly increase and benefit from chaperone-mediated autophagy (CMA) in the PC. GB-induced CMA leads to major changes in PC immunomodulatory phenotypes, which, in turn, support cancer progression. In this review, we focus on the consequences of the GB-induced up-regulation of CMA activity in PCs and evaluate how manipulation of this process could offer new strategies to fight glioblastoma, increasing the availability of treatments for this cancer that escapes conventional therapies. We finally discuss the use of modified PCs unable to increase CMA in response to GB as a cell therapy alternative to minimize undesired off-target effects associated with a generalized CMA inhibition.
Collapse
|