1
|
Dibra D, Gagea M, Qi Y, Chau GP, Su X, Lozano G. p53R245W Mutation Fuels Cancer Initiation and Metastases in NASH-driven Liver Tumorigenesis. CANCER RESEARCH COMMUNICATIONS 2023; 3:2640-2652. [PMID: 38047594 PMCID: PMC10761659 DOI: 10.1158/2767-9764.crc-23-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/19/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Obesity is a significant global health concern. Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis (NASH) are common risk factors for hepatocellular carcinoma (HCC) and are closely associated with metabolic comorbidities, including obesity and diabetes. The TP53 tumor suppressor is the most frequently mutated gene in liver cancers, with half of these alterations being missense mutations. These mutations produce highly abundant proteins in cancer cells which have both inhibitory effects on wildtype (WT) p53, and gain-of-function (GOF) activities that contribute to tumor progression. A Western diet increases p53 activity in the liver. To elucidate the functional consequences of Trp53 mutations in a NASH-driven liver tumorigenesis model, we generated somatic mouse models with Trp53 deletion or the missense hotspot mutant p53R245W only in hepatocytes and placed mice on a high-fat, choline-deficient diet. p53R245W in the presence of diet increased fatty liver, compensatory proliferation in the liver parenchyma, and enriched genes of tumor-promoting pathways such as KRAS signaling, MYC, and epithelial-mesenchymal transition when compared with controls in the premalignant liver. Moreover, p53R245W suppressed transcriptional activity of WT p53 in the liver in vivo under metabolic challenges, and shortened survival and doubling of HCC incidence as compared with control heterozygous mice. Complete loss of Trp53 also significantly accelerated liver tumor incidence and lowered time-to-tumor development compared with WT controls. p53R245W GOF properties increased carcinoma initiation, fueled mixed hepatocholangial carcinoma incidence, and tripled metastatic disease. Collectively, our in vivo studies indicate that p53R245W has stronger tumor promoting activities than Trp53 loss in the context of NASH. SIGNIFICANCE Using somatic NASH-driven mouse models with p53 deletion or mutant p53R245W only in hepatocytes, we discovered that p53R245W increased carcinoma initiation, fueled hepatocholangial carcinoma incidence, and tripled metastases.
Collapse
Affiliation(s)
- Denada Dibra
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mihai Gagea
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuan Qi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gilda P. Chau
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Li XY, Cui X, Xie CQ, Wu Y, Song T, He JD, Feng J, Cui QR, Bin JL, Li QY, Xiao C, Deng JH, Lu GD, Zhou J. Andrographolide causes p53-independent HCC cell death through p62 accumulation and impaired DNA damage repair. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155089. [PMID: 37738908 DOI: 10.1016/j.phymed.2023.155089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly lethal cancer characterized by dominant driver mutations, including p53. Consequently, there is an urgent need to search for novel therapeutic agents to treat HCC. Andrographolide (Andro), a clinically available anti-inflammatory phytochemical agent, has shown inhibitory effects against various types of cancer, including HCC. However, the underlying molecular mechanisms of its action remain poorly understood. PURPOSE This study aims to investigate the molecular mechanisms by which p53 and p62 collectively affect Andro-induced HCC cell death, using both in vitro and in vivo models. METHODS In vitro cellular experiments were conducted to examine the effects of Andro on cell viability and elucidate its mechanisms of action. In vivo xenograft experiments further validated the anti-cancer effects of Andro. RESULTS Andro induced dose- and time-dependent HCC cell death while sparing normal HL-7702 hepatocytes. Furthermore, Andro caused DNA damage through the generation of reactive oxygen species (ROS), a critical event leading to cell death. Notably, HCC cells expressing p53 exhibited greater resistance to Andro-induced cell death compared to p53-deficient cells, likely due to the ability of p53 to induce G2/M cell cycle arrest. Additionally, Andro-induced p62 aggregation led to the proteasomal degradation of RAD51 and 53BP1, two key proteins involved in DNA damage repair. Consequently, silencing or knocking out p62 facilitated DNA damage repair and protected HCC cells. Importantly, disruption of either p53 or p62 did not affect the expression of the other protein. These findings were further supported by the observation that xenograft tumors formed by p62-knockout HCC cells displayed increased resistance to Andro treatment. CONCLUSION This study elucidates the mechanistic basis of Andro-induced HCC cell death. It provides valuable insights for repurposing Andro for the treatment of HCC, regardless of the presence of functional p53.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China, 530021
| | - Xuan Cui
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China, 530021
| | - Chang-Quan Xie
- Department of Guangxi Medical University Cancer Hospital & Guangxi Cancer Institute, Nanning, Guangxi, China, 530021
| | - Yong Wu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China, 530021
| | - Tang Song
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China, 530021
| | - Jin-Di He
- Department of Guangxi Medical University Cancer Hospital & Guangxi Cancer Institute, Nanning, Guangxi, China, 530021
| | - Ji Feng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China, 530021
| | - Qian-Ru Cui
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China, 530021
| | - Jin-Lian Bin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China, 530021
| | - Qiu-Yun Li
- Department of Guangxi Medical University Cancer Hospital & Guangxi Cancer Institute, Nanning, Guangxi, China, 530021
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China, 100029
| | - Jing-Huan Deng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China, 530021
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China, 530021; Department of Toxicology, School of the Public Health, Fudan University, Shanghai, China, 200032; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, Guangxi, China, 530021.
| | - Jing Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China, 530021; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China, 530021.
| |
Collapse
|
3
|
Pant V, Sun C, Lozano G. Tissue specificity and spatio-temporal dynamics of the p53 transcriptional program. Cell Death Differ 2023; 30:897-905. [PMID: 36755072 PMCID: PMC10070629 DOI: 10.1038/s41418-023-01123-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 02/10/2023] Open
Abstract
Transcription factors regulate hundreds of genes and p53 is no exception. As a stress responsive protein, p53 transactivates an array of downstream targets which define its role in maintaining physiological functions of cells/tissues. Despite decades of studies, our understanding of the p53 in vivo transcriptional program is still incomplete. Here we discuss some of the physiological stressors that activate p53, the pathological and physiological implications of p53 activation and the molecular profiling of the p53 transcriptional program in maintaining tissue homeostasis. We argue that the p53 transcriptional program is spatiotemporally regulated in a tissue-specific manner and define a p53 target signature that faithfully depicts p53 activity. We further emphasize that additional in vivo studies are needed to refine the p53 transactivation profile to harness it for therapeutic purposes.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Genetics, 1515 Holcombe Blvd, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chang Sun
- Department of Genetics, 1515 Holcombe Blvd, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guillermina Lozano
- Department of Genetics, 1515 Holcombe Blvd, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Chiu FY, Kvadas RM, Mheidly Z, Shahbandi A, Jackson JG. Could senescence phenotypes strike the balance to promote tumor dormancy? Cancer Metastasis Rev 2023; 42:143-160. [PMID: 36735097 DOI: 10.1007/s10555-023-10089-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
After treatment and surgery, patient tumors can initially respond followed by a rapid relapse, or respond well and seemingly be cured, but then recur years or decades later. The state of surviving cancer cells during the long, undetected period is termed dormancy. By definition, the dormant tumor cells do not proliferate to create a mass that is detectable or symptomatic, but also never die. An intrinsic state and microenvironment that are inhospitable to the tumor would bias toward cell death and complete eradication, while conditions that favor the tumor would enable growth and relapse. In neither case would clinical dormancy be observed. Normal cells and tumor cells can enter a state of cellular senescence after stress such as that caused by cancer therapy. Senescence is characterized by a stable cell cycle arrest mediated by chromatin modifications that cause gene expression changes and a secretory phenotype involving many cytokines and chemokines. Senescent cell phenotypes have been shown to be both tumor promoting and tumor suppressive. The balance of these opposing forces presents an attractive model to explain tumor dormancy: phenotypes of stable arrest and immune suppression could promote survival, while reversible epigenetic programs combined with cytokines and growth factors that promote angiogenesis, survival, and proliferation could initiate the emergence from dormancy. In this review, we examine the phenotypes that have been characterized in different normal and cancer cells made senescent by various stresses and how these might explain the characteristics of tumor dormancy.
Collapse
Affiliation(s)
- Fang-Yen Chiu
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Raegan M Kvadas
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Zeinab Mheidly
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Zhang W, Yang C, Hu Y, Yi K, Xiao W, Xu X, Chen Z. Comprehensive analysis of the correlation of the pan-cancer gene HAUS5 with prognosis and immune infiltration in liver cancer. Sci Rep 2023; 13:2409. [PMID: 36765148 PMCID: PMC9918732 DOI: 10.1038/s41598-023-28653-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is one of the most common malignancies and places a heavy burden on patients worldwide. HAUS augmin-like complex subunit 5 (HAUS5) is involved in the occurrence and development of various cancers. However, the functional role and significance of HAUS5 in LIHC remain unclear. The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE) and Gene Expression Omnibus (GEO) databases were used to analyze the mRNA expression of HAUS5. The value of HAUS5 in predicting LIHC prognosis and the relationship between HAUS5 and clinicopathological features were assessed by the Kaplan-Meier plotter and UALCAN databases. Functional enrichment analyses and nomogram prediction model construction were performed with the R packages. The LinkedOmics database was searched to reveal co-expressed genes associated with HAUS5. The relationship between HAUS5 expression and immune infiltration was explored by searching the TISIDB database and single-sample gene set enrichment analysis (ssGSEA). The Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Human Protein Atlas (HPA) databases were used to evaluate HAUS5 protein expression. Finally, the effect of HAUS5 on the proliferation of hepatoma cells was verified by CCK-8, colony formation and EdU assays. HAUS5 is aberrantly expressed and associated with a poor prognosis in most tumors, including LIHC. The expression of HAUS5 is significantly correlated with clinicopathological indicators in patients with LIHC. Functional enrichment analysis showed that HAUS5 was closely related to DNA replication, cell cycle and p53 signaling pathway. HAUS5 may serve as an independent risk factor for LIHC prognosis. The nomogram based on HAUS5 had area under the curve (AUC) values of 0.74 and 0.77 for predicting the 3-year and 5-year overall survival (OS) of LIHC patients. Immune correlation analysis showed that HAUS5 was significantly associated with immune infiltration. Finally, the results of in vitro experiments showed that when HAUS5 was knocked down, the proliferation of hepatoma cells was significantly decreased. The pan-oncogene HAUS5 is a positive regulator of LIHC progression and is closely associated with a poor prognosis in LIHC. Moreover, HAUS5 is involved in immune infiltration in LIHC. HAUS5 may be a new prognostic marker and therapeutic target for LIHC patients.
Collapse
Affiliation(s)
- Wenbing Zhang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, No. 58 Changsheng South Road, Taicang, Suzhou, 215400, Jiangsu, People's Republic of China
| | - Chi Yang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, No. 58 Changsheng South Road, Taicang, Suzhou, 215400, Jiangsu, People's Republic of China
| | - Yan Hu
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, No. 58 Changsheng South Road, Taicang, Suzhou, 215400, Jiangsu, People's Republic of China
| | - Ke Yi
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, No. 58 Changsheng South Road, Taicang, Suzhou, 215400, Jiangsu, People's Republic of China
| | - Wangwen Xiao
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, No. 58 Changsheng South Road, Taicang, Suzhou, 215400, Jiangsu, People's Republic of China
| | - Xiaohui Xu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
- Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, No. 58 Changsheng South Road, Taicang, Suzhou, 215400, Jiangsu, People's Republic of China.
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, No. 58 Changsheng South Road, Taicang, Suzhou, 215400, Jiangsu, People's Republic of China.
| | - Zhihua Chen
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
- Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, No. 58 Changsheng South Road, Taicang, Suzhou, 215400, Jiangsu, People's Republic of China.
| |
Collapse
|