1
|
Cermakova K, Hodges HC. Pharmacologic Blockade of a Pioneer Transcription Factor. Cancer Res 2024; 84:4124-4125. [PMID: 39476188 PMCID: PMC11866459 DOI: 10.1158/0008-5472.can-24-3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
Cancers frequently co-opt lineage-specific transcription factors (TF) utilized in normal development to sustain proliferation. However, the effects of these TFs on tumor development depend considerably on where in the genome they bind. A new article by Taylor and colleagues expands on previously developed diamidine compounds that obstruct the DNA binding sites of the pioneer TF PU.1 (SPI1) in acute myeloid leukemia. Immobilization and sequencing of genomic DNA targeted by these compounds revealed that these inhibitors alter the genomic binding patterns of PU.1. The authors report that their strategy constrains the genomic binding preferences of PU.1, leading to redistribution of PU.1 to promoters and other gene-proximal regions with elevated guanine/cytosine content. In this study, we discuss recent developments for targeting PU.1 in hematologic malignancies. We also explore the shared functional roles of PU.1 and SWI/SNF ATP-dependent chromatin remodeling complexes, which not only work together to sustain the enhancer landscape needed for tumor cell proliferation but also play key roles in nontumor settings.
Collapse
Affiliation(s)
- Katerina Cermakova
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas
- Center for Precision Environmental Health and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - H Courtney Hodges
- Center for Precision Environmental Health and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
| |
Collapse
|
2
|
Priam P, Krasteva V, Rousseau P, Polsinelli A, Côté L, Desanlis I, Farah A, Lavallée VP, Kmita M, Lessard JA. Smarcd1 subunit of SWI/SNF chromatin-remodeling complexes collaborates with E2a to promote murine lymphoid specification. Dev Cell 2024; 59:3124-3140.e8. [PMID: 39232562 DOI: 10.1016/j.devcel.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/02/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Lymphocyte development from murine hematopoietic stem cells (HSCs) entails a loss of self-renewal capacity and a progressive restriction of developmental potential. Previous research from our laboratory suggests that specialized assemblies of ATP-dependent SWI/SNF chromatin-remodeling complexes play lineage-specific roles during murine hematopoiesis. Here, we demonstrate that the Smarcd1 subunit is essential for specification of lymphoid cell fate from multipotent progenitors. Acute deletion of Smarcd1 in murine adult hematopoiesis leads to lymphopenia, characterized by a near-complete absence of early lymphoid progenitors and mature B and T cells, while the myeloid and erythroid lineages remain unaffected. Mechanistically, we demonstrate that Smarcd1 is essential for the coordinated activation of a lymphoid gene signature in murine multipotent progenitors. This is achieved by interacting with the E2a transcription factor at proximal promoters and by regulating the activity of distal enhancers. Globally, these findings identify Smarcd1 as an essential chromatin remodeler that governs lymphoid cell fate.
Collapse
Affiliation(s)
- Pierre Priam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Veneta Krasteva
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Philippe Rousseau
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Alexandre Polsinelli
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Laurence Côté
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ines Desanlis
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Azer Farah
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | | | - Marie Kmita
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Julie A Lessard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
3
|
Rogers JM, Mimoso CA, Martin BJE, Martin AP, Aster JC, Adelman K, Blacklow SC. Notch induces transcription by stimulating release of paused RNA polymerase II. Genes Dev 2024; 38:965-978. [PMID: 39414356 DOI: 10.1101/gad.352108.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Notch proteins undergo ligand-induced proteolysis to release a nuclear effector that influences a wide range of cellular processes by regulating transcription. Despite years of study, however, how Notch induces the transcription of its target genes remains unclear. Here, we comprehensively examine the response to human Notch1 across a time course of activation using high-resolution genomic assays of chromatin accessibility and nascent RNA production. Our data reveal that Notch induces target gene transcription primarily by releasing paused RNA polymerase II (RNAPII). Moreover, in contrast to prevailing models suggesting that Notch acts by promoting chromatin accessibility, we found that open chromatin was established at Notch-responsive regulatory elements prior to Notch signal induction through SWI/SNF-mediated remodeling. Together, these studies show that the nuclear response to Notch signaling is dictated by the pre-existing chromatin state and RNAPII distribution at the time of signal activation.
Collapse
Affiliation(s)
- Julia M Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benjamin J E Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alexandre P Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA
- Ludwig Center at Harvard, Boston, Massachusetts 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
- Ludwig Center at Harvard, Boston, Massachusetts 02115, USA
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts 02142, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
4
|
Abu Sailik F, Emerald BS, Ansari SA. Opening and changing: mammalian SWI/SNF complexes in organ development and carcinogenesis. Open Biol 2024; 14:240039. [PMID: 39471843 PMCID: PMC11521604 DOI: 10.1098/rsob.240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) subfamily are evolutionarily conserved, ATP-dependent chromatin-remodelling complexes that alter nucleosome position and regulate a spectrum of nuclear processes, including gene expression, DNA replication, DNA damage repair, genome stability and tumour suppression. These complexes, through their ATP-dependent chromatin remodelling, contribute to the dynamic regulation of genetic information and the maintenance of cellular processes essential for normal cellular function and overall genomic integrity. Mutations in SWI/SNF subunits are detected in 25% of human malignancies, indicating that efficient functioning of this complex is required to prevent tumourigenesis in diverse tissues. During development, SWI/SNF subunits help establish and maintain gene expression patterns essential for proper cellular identity and function, including maintenance of lineage-specific enhancers. Moreover, specific molecular signatures associated with SWI/SNF mutations, including disruption of SWI/SNF activity at enhancers, evasion of G0 cell cycle arrest, induction of cellular plasticity through pro-oncogene activation and Polycomb group (PcG) complex antagonism, are linked to the initiation and progression of carcinogenesis. Here, we review the molecular insights into the aetiology of human malignancies driven by disruption of the SWI/SNF complex and correlate these mechanisms to their developmental functions. Finally, we discuss the therapeutic potential of targeting SWI/SNF subunits in cancer.
Collapse
Affiliation(s)
- Fadia Abu Sailik
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
5
|
Chen M, Suwannaphoom K, Sanaiha Y, Luo Y, Benharash P, Fishbein MC, Sevag Packard RR. Electrochemical impedance spectroscopy unmasks high-risk atherosclerotic features in human coronary artery disease. FASEB J 2024; 38:e70069. [PMID: 39315853 PMCID: PMC11728480 DOI: 10.1096/fj.202401200r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Coronary plaque rupture remains the prominent mechanism of myocardial infarction. Accurate identification of rupture-prone plaque may improve clinical management. This study assessed the discriminatory performance of electrochemical impedance spectroscopy (EIS) in human cardiac explants to detect high-risk atherosclerotic features that portend rupture risk. In this single-center, prospective study, n = 26 cardiac explants were collected for EIS interrogation of the three major coronary arteries. Vessels in which advancement of the EIS catheter without iatrogenic plaque disruption was rendered impossible were not assessed. N = 61 vessels underwent EIS measurement and histological analyses. Plaques were dichotomized according to previously established high rupture-risk parameter thresholds. Diagnostic performance was determined via receiver operating characteristic areas-under-the-curve (AUC). Necrotic cores were identified in n = 19 vessels (median area 1.53 mm2) with a median fibrous cap thickness of 62 μm. Impedance was significantly greater in plaques with necrotic core area ≥1.75 mm2 versus <1.75 mm2 (19.8 ± 4.4 kΩ vs. 7.2 ± 1.0 kΩ, p = .019), fibrous cap thickness ≤65 μm versus >65 μm (19.1 ± 3.5 kΩ vs. 6.5 ± 0.9 kΩ, p = .004), and ≥20 macrophages per 0.3 mm-diameter high-power field (HPF) versus <20 macrophages per HPF (19.8 ± 4.1 kΩ vs. 10.2 ± 0.9 kΩ, p = .002). Impedance identified necrotic core area ≥1.75 mm2, fibrous cap thickness ≤65 μm, and ≥20 macrophages per HPF with AUCs of 0.889 (95% CI: 0.716-1.000) (p = .013), 0.852 (0.646-1.000) (p = .025), and 0.835 (0.577-1.000) (p = .028), respectively. Further, phase delay discriminated severe stenosis (≥70%) with an AUC of 0.767 (0.573-0.962) (p = .035). EIS discriminates high-risk atherosclerotic features that portend plaque rupture in human coronary artery disease and may serve as a complementary modality for angiography-guided atherosclerosis evaluation.
Collapse
Affiliation(s)
- Michael Chen
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Krit Suwannaphoom
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yas Sanaiha
- Cardiovascular Outcomes Research Laboratories, University of California, Los Angeles, CA, USA
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at University of California-Las Angeles, CA, USA
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Peyman Benharash
- Cardiovascular Outcomes Research Laboratories, University of California, Los Angeles, CA, USA
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at University of California-Las Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - René R. Sevag Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
- West Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Malone HA, Roberts CWM. Chromatin remodellers as therapeutic targets. Nat Rev Drug Discov 2024; 23:661-681. [PMID: 39014081 PMCID: PMC11534152 DOI: 10.1038/s41573-024-00978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 07/18/2024]
Abstract
Large-scale cancer genome sequencing studies have revealed that chromatin regulators are frequently mutated in cancer. In particular, more than 20% of cancers harbour mutations in genes that encode subunits of SWI/SNF (BAF) chromatin remodelling complexes. Additional links of SWI/SNF complexes to disease have emerged with the findings that some oncogenes drive transformation by co-opting SWI/SNF function and that germline mutations in select SWI/SNF subunits are the basis of several neurodevelopmental disorders. Other chromatin remodellers, including members of the ISWI, CHD and INO80/SWR complexes, have also been linked to cancer and developmental disorders. Consequently, therapeutic manipulation of SWI/SNF and other remodelling complexes has become of great interest, and drugs that target SWI/SNF subunits have entered clinical trials. Genome-wide perturbation screens in cancer cell lines with SWI/SNF mutations have identified additional synthetic lethal targets and led to further compounds in clinical trials, including one that has progressed to FDA approval. Here, we review the progress in understanding the structure and function of SWI/SNF and other chromatin remodelling complexes, mechanisms by which SWI/SNF mutations cause cancer and neurological diseases, vulnerabilities that arise because of these mutations and efforts to target SWI/SNF complexes and synthetic lethal targets for therapeutic benefit.
Collapse
Affiliation(s)
- Hayden A Malone
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Wu J, Fan C, Kabir AU, Krchma K, Kim M, Kwon Y, Xing X, Wang T, Choi K. Baf155 controls hematopoietic differentiation and regeneration through chromatin priming. Cell Rep 2024; 43:114558. [PMID: 39088321 PMCID: PMC11465209 DOI: 10.1016/j.celrep.2024.114558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/06/2024] [Accepted: 07/14/2024] [Indexed: 08/03/2024] Open
Abstract
Chromatin priming promotes cell-type-specific gene expression, lineage differentiation, and development. The mechanism of chromatin priming has not been fully understood. Here, we report that mouse hematopoietic stem and progenitor cells (HSPCs) lacking the Baf155 subunit of the BAF (BRG1/BRM-associated factor) chromatin remodeling complex produce a significantly reduced number of mature blood cells, leading to a failure of hematopoietic regeneration upon transplantation and 5-fluorouracil (5-FU) injury. Baf155-deficient HSPCs generate particularly fewer neutrophils, B cells, and CD8+ T cells at homeostasis, supporting a more immune-suppressive tumor microenvironment and enhanced tumor growth. Single-nucleus multiomics analysis reveals that Baf155-deficient HSPCs fail to establish accessible chromatin in selected regions that are enriched for putative enhancers and binding motifs of hematopoietic lineage transcription factors. Our study provides a fundamental mechanistic understanding of the role of Baf155 in hematopoietic lineage chromatin priming and the functional consequences of Baf155 deficiency in regeneration and tumor immunity.
Collapse
Affiliation(s)
- Jun Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Changxu Fan
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashraf Ul Kabir
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karen Krchma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Minseo Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoojung Kwon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
McRae HM, Hargreaves DC. Transcription factor dependencies identify BAF-dependent cancers. Cancer Cell 2024; 42:1326-1328. [PMID: 39029465 DOI: 10.1016/j.ccell.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
In Cancer Cell, Bolomsky et al., Duplaquet et al., and He et al. identify cancers that are dependent on the BAF chromatin remodeling complex, specifically IRF4-driven multiple myeloma and POU2F3-subtype small cell lung cancer, highlighting potential therapeutic applications for BAF complex inhibitors/degraders.
Collapse
Affiliation(s)
- Helen M McRae
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
He T, Xiao L, Qiao Y, Klingbeil O, Young E, Wu XS, Mannan R, Mahapatra S, Redin E, Cho H, Bao Y, Kandarpa M, Ching-Yi Tien J, Wang X, Eyunni S, Zheng Y, Kim N, Zheng H, Hou S, Su F, Miner SJ, Mehra R, Cao X, Abbineni C, Samajdar S, Ramachandra M, Dhanasekaran SM, Talpaz M, Parolia A, Rudin CM, Vakoc CR, Chinnaiyan AM. Targeting the mSWI/SNF complex in POU2F-POU2AF transcription factor-driven malignancies. Cancer Cell 2024; 42:1336-1351.e9. [PMID: 39029462 DOI: 10.1016/j.ccell.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/19/2024] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Abstract
The POU2F3-POU2AF2/3 transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we identify a specific dependence of the POU2F3 molecular subtype of SCLC (SCLC-P) on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. Treatment of SCLC-P cells with a proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases evicts POU2F3 and its coactivators from chromatin and attenuates downstream signaling. B cell malignancies which are dependent on the POU2F1/2 cofactor, POU2AF1, are also sensitive to mSWI/SNF ATPase degraders, with treatment leading to chromatin eviction of POU2AF1 and IRF4 and decreased IRF4 signaling in multiple myeloma cells. An orally bioavailable mSWI/SNF ATPase degrader significantly inhibits tumor growth in preclinical models of SCLC-P and multiple myeloma without signs of toxicity. This study suggests that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.
Collapse
Affiliation(s)
- Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hanbyul Cho
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malathi Kandarpa
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - NamHoon Kim
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heng Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siyu Hou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie J Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | - Saravana M Dhanasekaran
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Moshe Talpaz
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine Graduate School of Medicine Sciences, New York, NY 10065, USA
| | | | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Maxwell MB, Hom-Tedla MS, Yi J, Li S, Rivera SA, Yu J, Burns MJ, McRae HM, Stevenson BT, Coakley KE, Ho J, Gastelum KB, Bell JC, Jones AC, Eskander RN, Dykhuizen EC, Shadel GS, Kaech SM, Hargreaves DC. ARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity. Cell 2024; 187:3390-3408.e19. [PMID: 38754421 PMCID: PMC11193641 DOI: 10.1016/j.cell.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/26/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.
Collapse
Affiliation(s)
- Matthew B Maxwell
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92092, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Marianne S Hom-Tedla
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Gynecologic Oncology, University of California, San Diego, San Diego, CA, USA
| | - Jawoon Yi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shitian Li
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92092, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Samuel A Rivera
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92092, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, Salk Institute of Biological Studies, La Jolla, CA 92037, USA
| | - Mannix J Burns
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Helen M McRae
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Braden T Stevenson
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Katherine E Coakley
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Gynecologic Oncology, University of California, San Diego, San Diego, CA, USA
| | - Josephine Ho
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Joshua C Bell
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexander C Jones
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ramez N Eskander
- Center for Personalized Cancer Therapy and Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Gerald S Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Liu W, Kurkewich JL, Stoddart A, Khan S, Anandan D, Gaubil AN, Wolfgeher DJ, Jueng L, Kron SJ, McNerney ME. CUX1 regulates human hematopoietic stem cell chromatin accessibility via the BAF complex. Cell Rep 2024; 43:114227. [PMID: 38735044 PMCID: PMC11163479 DOI: 10.1016/j.celrep.2024.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/16/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
CUX1 is a homeodomain-containing transcription factor that is essential for the development and differentiation of multiple tissues. CUX1 is recurrently mutated or deleted in cancer, particularly in myeloid malignancies. However, the mechanism by which CUX1 regulates gene expression and differentiation remains poorly understood, creating a barrier to understanding the tumor-suppressive functions of CUX1. Here, we demonstrate that CUX1 directs the BAF chromatin remodeling complex to DNA to increase chromatin accessibility in hematopoietic cells. CUX1 preferentially regulates lineage-specific enhancers, and CUX1 target genes are predictive of cell fate in vivo. These data indicate that CUX1 regulates hematopoietic lineage commitment and homeostasis via pioneer factor activity, and CUX1 deficiency disrupts these processes in stem and progenitor cells, facilitating transformation.
Collapse
Affiliation(s)
- Weihan Liu
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | - Angela Stoddart
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Saira Khan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Dhivyaa Anandan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Alexandre N Gaubil
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Lia Jueng
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen J Kron
- The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Megan E McNerney
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
12
|
He T, Xiao L, Qiao Y, Klingbeil O, Young E, Wu XS, Mannan R, Mahapatra S, Eyunni S, Ching-Yi Tien J, Wang X, Zheng Y, Kim N, Zheng H, Hou S, Su F, Miner SJ, Mehra R, Cao X, Abbineni C, Samajdar S, Ramachandra M, Parolia A, Vakoc CR, Chinnaiyan AM. Targeting the mSWI/SNF Complex in POU2F-POU2AF Transcription Factor-Driven Malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576669. [PMID: 38328238 PMCID: PMC10849552 DOI: 10.1101/2024.01.22.576669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The POU2F3-POU2AF2/3 (OCA-T1/2) transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we found that the POU2F3 molecular subtype of SCLC (SCLC-P) exhibits an exquisite dependence on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. SCLC-P cell lines were sensitive to nanomolar levels of a mSWI/SNF ATPase proteolysis targeting chimera (PROTAC) degrader when compared to other molecular subtypes of SCLC. POU2F3 and its cofactors were found to interact with components of the mSWI/SNF complex. The POU2F3 transcription factor complex was evicted from chromatin upon mSWI/SNF ATPase degradation, leading to attenuation of downstream oncogenic signaling in SCLC-P cells. A novel, orally bioavailable mSWI/SNF ATPase PROTAC degrader, AU-24118, demonstrated preferential efficacy in the SCLC-P relative to the SCLC-A subtype and significantly decreased tumor growth in preclinical models. AU-24118 did not alter normal tuft cell numbers in lung or colon, nor did it exhibit toxicity in mice. B cell malignancies which displayed a dependency on the POU2F1/2 cofactor, POU2AF1 (OCA-B), were also remarkably sensitive to mSWI/SNF ATPase degradation. Mechanistically, mSWI/SNF ATPase degrader treatment in multiple myeloma cells compacted chromatin, dislodged POU2AF1 and IRF4, and decreased IRF4 signaling. In a POU2AF1-dependent, disseminated murine model of multiple myeloma, AU-24118 enhanced survival compared to pomalidomide, an approved treatment for multiple myeloma. Taken together, our studies suggest that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.
Collapse
Affiliation(s)
- Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- These authors contributed equally
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoli S. Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - NamHoon Kim
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Heng Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Siyu Hou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
- Lead contact
| |
Collapse
|
13
|
Fiskus W, Piel J, Collins M, Hentemann M, Cuglievan B, Mill CP, Birdwell CE, Das K, Davis JA, Hou H, Jain A, Malovannaya A, Kadia TM, Daver N, Sasaki K, Takahashi K, Hammond D, Reville PK, Wang J, Loghavi S, Sen R, Ruan X, Su X, Flores LB, DiNardo CD, Bhalla KN. BRG1/BRM inhibitor targets AML stem cells and exerts superior preclinical efficacy combined with BET or menin inhibitor. Blood 2024; 143:2059-2072. [PMID: 38437498 PMCID: PMC11830987 DOI: 10.1182/blood.2023022832] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
ABSTRACT BRG1 (SMARCA4) and BRM (SMARCA2) are the mutually exclusive core ATPases of the chromatin remodeling BAF (BRG1/BRM-associated factor) complexes. They enable transcription factors/cofactors to access enhancers/promoter and modulate gene expressions responsible for cell growth and differentiation of acute myeloid leukemia (AML) stem/progenitor cells. In AML with MLL1 rearrangement (MLL1r) or mutant NPM1 (mtNPM1), although menin inhibitor (MI) treatment induces clinical remissions, most patients either fail to respond or relapse, some harboring menin mutations. FHD-286 is an orally bioavailable, selective inhibitor of BRG1/BRM under clinical development in AML. Present studies show that FHD-286 induces differentiation and lethality in AML cells with MLL1r or mtNPM1, concomitantly causing perturbed chromatin accessibility and repression of c-Myc, PU.1, and CDK4/6. Cotreatment with FHD-286 and decitabine, BET inhibitor (BETi) or MI, or venetoclax synergistically induced in vitro lethality in AML cells with MLL1r or mtNPM1. In models of xenografts derived from patients with AML with MLL1r or mtNPM1, FHD-286 treatment reduced AML burden, improved survival, and attenuated AML-initiating potential of stem-progenitor cells. Compared with each drug, cotreatment with FHD-286 and BETi, MI, decitabine, or venetoclax significantly reduced AML burden and improved survival, without inducing significant toxicity. These findings highlight the FHD-286-based combinations as a promising therapy for AML with MLL1r or mtNPM1.
Collapse
Affiliation(s)
- Warren Fiskus
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | - Kaberi Das
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John A. Davis
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hanxi Hou
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Tapan M. Kadia
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naval Daver
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Koji Sasaki
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | - Jian Wang
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sanam Loghavi
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Xinjia Ruan
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xiaoping Su
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Kapil N. Bhalla
- The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
Mogavero MP, Ferri R, Ferini-Strambi L. A mouse model of MEIS1-associated restless legs syndrome: insights and challenges. Sleep 2024; 47:zsad326. [PMID: 38150482 PMCID: PMC11082464 DOI: 10.1093/sleep/zsad326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 12/29/2023] Open
Affiliation(s)
- Maria P Mogavero
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Raffaele Ferri
- Sleep Research Centre and Clinical Neurophysiology Research Unit, Oasi Research Institute - IRCCS, Troina, Italy
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
He T, Cheng C, Qiao Y, Cho H, Young E, Mannan R, Mahapatra S, Miner SJ, Zheng Y, Kim N, Zeng VZ, Wisniewski JP, Hou S, Jackson B, Cao X, Su F, Wang R, Chang Y, Kuila B, Mukherjee S, Dukare S, Aithal KB, D.S. S, Abbineni C, Vaishampayan U, Lyssiotis CA, Parolia A, Xiao L, Chinnaiyan AM. Development of an orally bioavailable mSWI/SNF ATPase degrader and acquired mechanisms of resistance in prostate cancer. Proc Natl Acad Sci U S A 2024; 121:e2322563121. [PMID: 38557192 PMCID: PMC11009648 DOI: 10.1073/pnas.2322563121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.
Collapse
Affiliation(s)
- Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan410008, China
| | - Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI48109
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI48109
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
| | - Hanbyul Cho
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - NamHoon Kim
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Victoria Z. Zeng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Jasmine P. Wisniewski
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Siyu Hou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI48109
| | - Bailey Jackson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- HHMI, University of Michigan, Ann Arbor, MI48109
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Yu Chang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Bilash Kuila
- Aurigene Oncology Limited, Bangalore, Karnataka560100, India
| | | | - Sandeep Dukare
- Aurigene Oncology Limited, Bangalore, Karnataka560100, India
| | - Kiran B. Aithal
- Aurigene Oncology Limited, Bangalore, Karnataka560100, India
| | - Samiulla D.S.
- Aurigene Oncology Limited, Bangalore, Karnataka560100, India
| | | | - Ulka Vaishampayan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Medical Oncology, University of Michigan, Ann Arbor, MI48109
| | - Costas A. Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Urology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
16
|
Barisic D, Chin CR, Meydan C, Teater M, Tsialta I, Mlynarczyk C, Chadburn A, Wang X, Sarkozy M, Xia M, Carson SE, Raggiri S, Debek S, Pelzer B, Durmaz C, Deng Q, Lakra P, Rivas M, Steidl C, Scott DW, Weng AP, Mason CE, Green MR, Melnick A. ARID1A orchestrates SWI/SNF-mediated sequential binding of transcription factors with ARID1A loss driving pre-memory B cell fate and lymphomagenesis. Cancer Cell 2024; 42:583-604.e11. [PMID: 38458187 PMCID: PMC11407687 DOI: 10.1016/j.ccell.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/20/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
ARID1A, a subunit of the canonical BAF nucleosome remodeling complex, is commonly mutated in lymphomas. We show that ARID1A orchestrates B cell fate during the germinal center (GC) response, facilitating cooperative and sequential binding of PU.1 and NF-kB at crucial genes for cytokine and CD40 signaling. The absence of ARID1A tilts GC cell fate toward immature IgM+CD80-PD-L2- memory B cells, known for their potential to re-enter new GCs. When combined with BCL2 oncogene, ARID1A haploinsufficiency hastens the progression of aggressive follicular lymphomas (FLs) in mice. Patients with FL with ARID1A-inactivating mutations preferentially display an immature memory B cell-like state with increased transformation risk to aggressive disease. These observations offer mechanistic understanding into the emergence of both indolent and aggressive ARID1A-mutant lymphomas through the formation of immature memory-like clonal precursors. Lastly, we demonstrate that ARID1A mutation induces synthetic lethality to SMARCA2/4 inhibition, paving the way for potential precision therapy for high-risk patients.
Collapse
Affiliation(s)
- Darko Barisic
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher R Chin
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matt Teater
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ioanna Tsialta
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Coraline Mlynarczyk
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xuehai Wang
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Margot Sarkozy
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Min Xia
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sandra E Carson
- Department of Biochemistry, Cell and Molecular Biology, Weill Cornell Medicine, New York, NY, USA
| | - Santo Raggiri
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sonia Debek
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Benedikt Pelzer
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ceyda Durmaz
- Graduate Program of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Qing Deng
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priya Lakra
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Rivas
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Sylvester Comprehensive Cancer Center, University of Miami, FL, USA
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, British Columbia, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, British Columbia, Vancouver, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael R Green
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ari Melnick
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
17
|
He T, Cheng C, Qiao Y, Cho H, Young E, Mannan R, Mahapatra S, Miner SJ, Zheng Y, Kim N, Zeng VZ, Wisniewski JP, Hou S, Jackson B, Cao X, Su F, Wang R, Chang Y, Kuila B, Mukherjee S, Dukare S, Aithal KB, D.S. S, Abbineni C, Lyssiotis CA, Parolia A, Xiao L, Chinnaiyan AM. Development of an orally bioavailable mSWI/SNF ATPase degrader and acquired mechanisms of resistance in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582768. [PMID: 38464081 PMCID: PMC10925251 DOI: 10.1101/2024.02.29.582768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Mammalian switch/sucrose non-fermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, a first-in-class, orally bioavailable proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 (BRD4) and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.
Collapse
Affiliation(s)
- Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- These authors contributed equally
| | - Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Hanbyul Cho
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - NamHoon Kim
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Victoria Z. Zeng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jasmine P. Wisniewski
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Siyu Hou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Bailey Jackson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yu Chang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | - Costas A. Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Aoki K, Hyuga M, Tarumoto Y, Nishibuchi G, Ueda A, Ochi Y, Sugino S, Mikami T, Kobushi H, Kato I, Akahane K, Inukai T, Takaori-Kondo A, Takita J, Ogawa S, Yusa K. Canonical BAF complex regulates the oncogenic program in human T-cell acute lymphoblastic leukemia. Blood 2024; 143:604-618. [PMID: 37922452 DOI: 10.1182/blood.2023020857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2023] Open
Abstract
ABSTRACT Acute leukemia cells require bone marrow microenvironments, known as niches, which provide leukemic cells with niche factors that are essential for leukemic cell survival and/or proliferation. However, it remains unclear how the dynamics of the leukemic cell-niche interaction are regulated. Using a genome-wide CRISPR screen, we discovered that canonical BRG1/BRM-associated factor (cBAF), a variant of the switch/sucrose nonfermenting chromatin remodeling complex, regulates the migratory response of human T-cell acute lymphoblastic leukemia (T-ALL) cells to a niche factor CXCL12. Mechanistically, cBAF maintains chromatin accessibility and allows RUNX1 to bind to CXCR4 enhancer regions. cBAF inhibition evicts RUNX1 from the genome, resulting in CXCR4 downregulation and impaired migration activity. In addition, cBAF maintains chromatin accessibility preferentially at RUNX1 binding sites, ensuring RUNX1 binding at these sites, and is required for expression of RUNX1-regulated genes, such as CDK6; therefore, cBAF inhibition negatively impacts cell proliferation and profoundly induces apoptosis. This anticancer effect was also confirmed using T-ALL xenograft models, suggesting cBAF as a promising therapeutic target. Thus, we provide novel evidence that cBAF regulates the RUNX1-driven leukemic program and governs migration activity toward CXCL12 and cell-autonomous growth in human T-ALL.
Collapse
Affiliation(s)
- Kazunari Aoki
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mizuki Hyuga
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Tarumoto
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Gohei Nishibuchi
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Atsushi Ueda
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Seiichi Sugino
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takashi Mikami
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirokazu Kobushi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Amara CS, Kami Reddy KR, Yuntao Y, Chan YS, Piyarathna DWB, Dobrolecki LE, Shih DJH, Shi Z, Xu J, Huang S, Ellis MJ, Apolo AB, Ballester LY, Gao J, Hansel DE, Lotan Y, Hodges HC, Lerner SP, Creighton CJ, Sreekumar A, Zheng WJ, Msaouel P, Kavuri SM, Putluri N. The IL6/JAK/STAT3 signaling axis is a therapeutic vulnerability in SMARCB1-deficient bladder cancer. Nat Commun 2024; 15:1373. [PMID: 38355560 PMCID: PMC10867091 DOI: 10.1038/s41467-024-45132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
SMARCB1 loss has long been observed in many solid tumors. However, there is a need to elucidate targetable pathways driving growth and metastasis in SMARCB1-deficient tumors. Here, we demonstrate that SMARCB1 deficiency, defined as genomic SMARCB1 copy number loss associated with reduced mRNA, drives disease progression in patients with bladder cancer by engaging STAT3. SMARCB1 loss increases the chromatin accessibility of the STAT3 locus in vitro. Orthotopically implanted SMARCB1 knockout (KO) cell lines exhibit increased tumor growth and metastasis. SMARCB1-deficient tumors show an increased IL6/JAK/STAT3 signaling axis in in vivo models and patients. Furthermore, a pSTAT3 selective inhibitor, TTI-101, reduces tumor growth in SMARCB1 KO orthotopic cell line-derived xenografts and a SMARCB1-deficient patient derived xenograft model. We have identified a gene signature generated from SMARCB1 KO tumors that predicts SMARCB1 deficiency in patients. Overall, these findings support the clinical evaluation of STAT3 inhibitors for the treatment of SMARCB1-deficient bladder cancer.
Collapse
Affiliation(s)
- Chandra Sekhar Amara
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Karthik Reddy Kami Reddy
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yang Yuntao
- Mcwilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yuen San Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Lacey Elizabeth Dobrolecki
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David J H Shih
- Mcwilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhongcheng Shi
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jun Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Education, Innovation and Technology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrea B Apolo
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leomar Y Ballester
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Donna E Hansel
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - H Courtney Hodges
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Seth P Lerner
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - W Jim Zheng
- Mcwilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Shyam M Kavuri
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Barral A, Zaret KS. Pioneer factors: roles and their regulation in development. Trends Genet 2024; 40:134-148. [PMID: 37940484 PMCID: PMC10873006 DOI: 10.1016/j.tig.2023.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Pioneer factors are a subclass of transcription factors that can bind and initiate opening of silent chromatin regions. Pioneer factors subsequently regulate lineage-specific genes and enhancers and, thus, activate the zygotic genome after fertilization, guide cell fate transitions during development, and promote various forms of human cancers. As such, pioneer factors are useful in directed cell reprogramming. In this review, we define the structural and functional characteristics of pioneer factors, how they bind and initiate opening of closed chromatin regions, and the consequences for chromatin dynamics and gene expression during cell differentiation. We also discuss emerging mechanisms that modulate pioneer factors during development.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Klein DC, Lardo SM, Hainer SJ. The ncBAF Complex Regulates Transcription in AML Through H3K27ac Sensing by BRD9. CANCER RESEARCH COMMUNICATIONS 2024; 4:237-252. [PMID: 38126767 PMCID: PMC10831031 DOI: 10.1158/2767-9764.crc-23-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The non-canonical BAF complex (ncBAF) subunit BRD9 is essential for acute myeloid leukemia (AML) cell viability but has an unclear role in leukemogenesis. Because BRD9 is required for ncBAF complex assembly through its DUF3512 domain, precise bromodomain inhibition is necessary to parse the role of BRD9 as a transcriptional regulator from that of a scaffolding protein. To understand the role of BRD9 bromodomain function in regulating AML, we selected a panel of five AML cell lines with distinct driver mutations, disease classifications, and genomic aberrations and subjected these cells to short-term BRD9 bromodomain inhibition. We examined the bromodomain-dependent growth of these cell lines, identifying a dependency in AML cell lines but not HEK293T cells. To define a mechanism through which BRD9 maintains AML cell survival, we examined nascent transcription, chromatin accessibility, and ncBAF complex binding genome-wide after bromodomain inhibition. We identified extensive regulation of transcription by BRD9 bromodomain activity, including repression of myeloid maturation factors and tumor suppressor genes, while standard AML chemotherapy targets were repressed by inhibition of the BRD9 bromodomain. BRD9 bromodomain activity maintained accessible chromatin at both gene promoters and gene-distal putative enhancer regions, in a manner that qualitatively correlated with enrichment of BRD9 binding. Furthermore, we identified reduced chromatin accessibility at GATA, ETS, and AP-1 motifs and increased chromatin accessibility at SNAIL-, HIC-, and TP53-recognized motifs after BRD9 inhibition. These data suggest a role for BRD9 in regulating AML cell differentiation through modulation of accessibility at hematopoietic transcription factor binding sites. SIGNIFICANCE The bromodomain-containing protein BRD9 is essential for AML cell viability, but it is unclear whether this requirement is due to the protein's role as an epigenetic reader. We inhibited this activity and identified altered gene-distal chromatin regulation and transcription consistent with a more mature myeloid cell state.
Collapse
Affiliation(s)
- David C. Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Santana M. Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Cermakova K, Tao L, Dejmek M, Sala M, Montierth MD, Chan YS, Patel I, Chambers C, Loeza Cabrera M, Hoffman D, Parchem RJ, Wang W, Nencka R, Barbieri E, Hodges HC. Reactivation of the G1 enhancer landscape underlies core circuitry addiction to SWI/SNF. Nucleic Acids Res 2024; 52:4-21. [PMID: 37993417 PMCID: PMC10783513 DOI: 10.1093/nar/gkad1081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/29/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023] Open
Abstract
Several cancer core regulatory circuitries (CRCs) depend on the sustained generation of DNA accessibility by SWI/SNF chromatin remodelers. However, the window when SWI/SNF is acutely essential in these settings has not been identified. Here we used neuroblastoma (NB) cells to model and dissect the relationship between cell-cycle progression and SWI/SNF ATPase activity. We find that SWI/SNF inactivation impairs coordinated occupancy of non-pioneer CRC members at enhancers within 1 hour, rapidly breaking their autoregulation. By precisely timing inhibitor treatment following synchronization, we show that SWI/SNF is dispensable for survival in S and G2/M, but becomes acutely essential only during G1 phase. We furthermore developed a new approach to analyze the oscillating patterns of genome-wide DNA accessibility across the cell cycle, which revealed that SWI/SNF-dependent CRC binding sites are enriched at enhancers with peak accessibility during G1 phase, where they activate genes involved in cell-cycle progression. SWI/SNF inhibition strongly impairs G1-S transition and potentiates the ability of retinoids used clinically to induce cell-cycle exit. Similar cell-cycle effects in diverse SWI/SNF-addicted settings highlight G1-S transition as a common cause of SWI/SNF dependency. Our results illustrate that deeper knowledge of the temporal patterns of enhancer-related dependencies may aid the rational targeting of addicted cancers.
Collapse
Affiliation(s)
- Katerina Cermakova
- Department of Molecular and Cellular Biology, and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Ling Tao
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Sala
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Matthew D Montierth
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Yuen San Chan
- Department of Molecular and Cellular Biology, and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Ivanshi Patel
- Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Courtney Chambers
- Department of Molecular and Cellular Biology, and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Translational Biology and Molecular Medicine Graduate Program, Houston, TX, USA
| | - Mario Loeza Cabrera
- Department of Molecular and Cellular Biology, and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Dane Hoffman
- Department of Molecular and Cellular Biology, and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Ronald J Parchem
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eveline Barbieri
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - H Courtney Hodges
- Department of Molecular and Cellular Biology, and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
23
|
Radzisheuskaya A, Peña‐Rømer I, Lorenzini E, Koche R, Zhan Y, Shliaha PV, Cooper AJ, Fan Z, Shlyueva D, Johansen JV, Hendrickson RC, Helin K. An alternative NURF complex sustains acute myeloid leukemia by regulating the accessibility of insulator regions. EMBO J 2023; 42:e114221. [PMID: 37987160 PMCID: PMC10711654 DOI: 10.15252/embj.2023114221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Efficient treatment of acute myeloid leukemia (AML) patients remains a challenge despite recent therapeutic advances. Here, using a CRISPRi screen targeting chromatin factors, we identified the nucleosome-remodeling factor (NURF) subunit BPTF as an essential regulator of AML cell survival. We demonstrate that BPTF forms an alternative NURF chromatin remodeling complex with SMARCA5 and BAP18, which regulates the accessibility of a large set of insulator regions in leukemic cells. This ensures efficient CTCF binding and boundary formation between topologically associated domains that is essential for maintaining the leukemic transcriptional programs. We also demonstrate that the well-studied PHD2-BROMO chromatin reader domains of BPTF, while contributing to complex recruitment to chromatin, are dispensable for leukemic cell growth. Taken together, our results uncover how the alternative NURF complex contributes to leukemia and provide a rationale for its targeting in AML.
Collapse
Affiliation(s)
- Aliaksandra Radzisheuskaya
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Isabel Peña‐Rømer
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Eugenia Lorenzini
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Richard Koche
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Yingqian Zhan
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Pavel V Shliaha
- Microchemistry & Proteomics CoreMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | - Zheng Fan
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Daria Shlyueva
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Jens V Johansen
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
| | - Ronald C Hendrickson
- Microchemistry & Proteomics CoreMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Kristian Helin
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| |
Collapse
|
24
|
Martin BJE, Ablondi EF, Goglia C, Mimoso CA, Espinel-Cabrera PR, Adelman K. Global identification of SWI/SNF targets reveals compensation by EP400. Cell 2023; 186:5290-5307.e26. [PMID: 37922899 PMCID: PMC11307202 DOI: 10.1016/j.cell.2023.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Mammalian SWI/SNF chromatin remodeling complexes move and evict nucleosomes at gene promoters and enhancers to modulate DNA access. Although SWI/SNF subunits are commonly mutated in disease, therapeutic options are limited by our inability to predict SWI/SNF gene targets and conflicting studies on functional significance. Here, we leverage a fast-acting inhibitor of SWI/SNF remodeling to elucidate direct targets and effects of SWI/SNF. Blocking SWI/SNF activity causes a rapid and global loss of chromatin accessibility and transcription. Whereas repression persists at most enhancers, we uncover a compensatory role for the EP400/TIP60 remodeler, which reestablishes accessibility at most promoters during prolonged loss of SWI/SNF. Indeed, we observe synthetic lethality between EP400 and SWI/SNF in cancer cell lines and human cancer patient data. Our data define a set of molecular genomic features that accurately predict gene sensitivity to SWI/SNF inhibition in diverse cancer cell lines, thereby improving the therapeutic potential of SWI/SNF inhibitors.
Collapse
Affiliation(s)
- Benjamin J E Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Eileen F Ablondi
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christine Goglia
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Piero R Espinel-Cabrera
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
25
|
Kaonis S, Smith JL, Katiyar N, Merrill M, Hyelkma T, Namciu S, Le Q, Babaeva E, Ishida T, Morris SM, Girard E, Furuyama S, Ries R, Bernstein I, Meshinchi S, Henikoff S, Meers M, Hadland B, Sarthy JF. Chromatin Profiling of CBFA2T3-GLIS2 AMLs Identifies Key Transcription Factor Dependencies and BRG1 Inhibition as a Novel Therapeutic Strategy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555598. [PMID: 37693371 PMCID: PMC10491196 DOI: 10.1101/2023.08.30.555598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Oncogenic fusions involving transcription factors are present in the majority of pediatric leukemias; however, the context-specific mechanisms they employ to drive cancer remain poorly understood. CBFA2T3-GLIS2 (C/G) fusions occur in treatment-refractory acute myeloid leukemias and are restricted to young children. To understand how the C/G fusion drives oncogenesis we applied CUT&RUN chromatin profiling to an umbilical cord blood/endothelial cell (EC) co-culture model of C/G AML that recapitulates the biology of this malignancy. We find C/G fusion binding is mediated by its zinc finger domains. Integration of fusion binding sites in C/G- transduced cells with Polycomb Repressive Complex 2 (PRC2) sites in control cord blood cells identifies MYCN, ZFPM1, ZBTB16 and LMO2 as direct C/G targets. Transcriptomic analysis of a large pediatric AML cohort shows that these genes are upregulated in C/G patient samples. Single cell RNA-sequencing of umbilical cord blood identifies a population of megakaryocyte precursors that already express many of these genes despite lacking the fusion. By integrating CUT&RUN data with CRISPR dependency screens we identify BRG1/SMARCA4 as a vulnerability in C/G AML. BRG1 profiling in C/G patient-derived cell lines shows that the CBFA2T3 locus is a binding site, and treatment with clinically-available BRG1 inhibitors reduces fusion levels and downstream C/G targets including N-MYC, resulting in C/G leukemia cell death and extending survival in a murine xenograft model.
Collapse
|
26
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|