1
|
Brea-Iglesias J, Gallardo-Gómez M, Oitabén A, Lázaro-Quintela ME, León L, Alves JM, Pino-González M, Juaneda-Magdalena L, García-Benito C, Abdulkader I, Muinelo L, Paramio JM, Martínez-Fernández M. Genomics guiding personalized first-line immunotherapy response in lung and bladder tumors. J Transl Med 2025; 23:404. [PMID: 40188131 PMCID: PMC11972471 DOI: 10.1186/s12967-025-06323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/27/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment, particularly in advanced non-small cell lung cancer (NSCLC) and muscle-invasive bladder cancer (MIBC). However, identifying reliable predictive biomarkers for ICI response remains a significant challenge. In this study, we analyzed real-world cohorts of advanced NSCLC and MIBC patients treated with ICI as first-line therapy. METHODS Tumor samples underwent Whole Genome Sequencing (WGS) to identify specific somatic variants and assess tumor mutational burden (TMB). Additionally, mutational signature extraction and pathway enrichment analyses were performed to uncover the underlying mechanisms of ICI response. We also characterized HLA-I haplotypes and investigated LINE-1 retrotransposition. RESULTS Distinct mutation patterns were identified in patients who responded to treatment, suggesting potential biomarkers for predicting ICI effectiveness. In NSCLC, tumor mutational burden (TMB) did not differ significantly between responders and non-responders, while in MIBC, higher TMB was linked to better responses. Specific mutational signatures and HLA haplotypes were associated with ICI response in both cancers. Pathway analysis showed that NSCLC responders had active inflammatory and immune pathways, while pathways enriched in non-responders related to FGFR3 and neural crest differentiation, associated to resistance mechanisms. In MIBC, responders had alterations in DNA repair, leading to more neoantigens and a stronger ICI response. Importantly, for the first time, we found that LINE-1 activation was positively linked to ICI response, especially in MIBC. CONCLUSION These findings reveal promising biomarkers and mechanistic insights, offering a new perspective on predicting ICI response and opening up exciting possibilities for more personalized immunotherapy strategies in NSCLC and MIBC.
Collapse
Affiliation(s)
- Jenifer Brea-Iglesias
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
- Mobile Genomes Lab, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Avda, Barcelona 31, 15706, Santiago de Compostela, Spain
| | - María Gallardo-Gómez
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
| | - Ana Oitabén
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
- Mobile Genomes Lab, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Avda, Barcelona 31, 15706, Santiago de Compostela, Spain
| | - Martin E Lázaro-Quintela
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
| | - Luis León
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Joao M Alves
- CINBIO, Universidade de Vigo, Vigo, Spain
- Cancer Genomics Research group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
| | - Manuel Pino-González
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
| | - Laura Juaneda-Magdalena
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
| | - Carme García-Benito
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
- Digestive Oncology Research Group of Ourense (GIODO), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Oncology Department, Complexo Hospitalario Universitario de Ourense, Calle Ramon Puga Noguerol, 54, 32005, Ourense, Spain
| | - Ihab Abdulkader
- Pathological Anatomy Department, University Clinical Hospital and Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Laura Muinelo
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Jesús M Paramio
- Molecular and Translational Oncology Division, CIEMAT (Ed 70A), Ave Complutense 40, 28040, Madrid, Spain
- Cell and Molecular Oncology Group Inst Inv Biomed Univ Hosp "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mónica Martínez-Fernández
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain.
| |
Collapse
|
2
|
Akkız H, Şimşek H, Balcı D, Ülger Y, Onan E, Akçaer N, Delik A. Inflammation and cancer: molecular mechanisms and clinical consequences. Front Oncol 2025; 15:1564572. [PMID: 40165901 PMCID: PMC11955699 DOI: 10.3389/fonc.2025.1564572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Inflammation, a hallmark of cancer, has been associated with tumor progression, transition into malignant phenotype and efficacy of anticancer treatments in cancer. It affects all stages of cancer, from the initiation of carcinogenesis to metastasis. Chronic inflammation induces immunosup-pression, providing an environment conducive to carcinogenesis, whereas acute inflammation induces an antitumor immune response, leading to tumor suppression. Solid tumors have an inflammatory tumor microenvironment (TME) containing cancer cells, immune cells, stromal cells, and soluble molecules, which plays a key role in tumor progression and therapy response. Both cancer cells and stromal cells in the TME are highly plastic and constantly change their phenotypic and functional properties. Cancer-associated inflammation, the majority of which consists of innate immune cells, plays an important role in cancer cell plasticity, cancer progression and the development of anticancer drug resistance. Today, with the combined used of advanced technologies, such as single-cell RNA sequencing and spatial molecular imaging analysis, the pathways linking chronic inflammation to cancer have been largely elucidated. In this review article, we highlighted the molecular and cellular mechanisms involved in cancer-associated inflammation and its effects on cancer progression and treatment response. We also comprehensively review the mechanisms linking chronic inflammation to cancer in the setting of GI cancers.
Collapse
Affiliation(s)
- Hikmet Akkız
- Department of Gastroenterology, Medical Faculty, Bahçeşehir University, İstanbul, Türkiye
| | - Halis Şimşek
- Department of Gastroenterology, Medical Faculty, Hacettepe University, Ankara, Türkiye
| | - Deniz Balcı
- Department of Gastroenterology, Medical Faculty, Bahçeşehir University, İstanbul, Türkiye
| | - Yakup Ülger
- Department of Gastroenterology, Medical Faculty, Cukurova University, Adana, Türkiye
| | - Engin Onan
- Department of Nephrology, Medical Faculty, Baskent University, Adana, Türkiye
| | - Nevin Akçaer
- Department of Gastroenterology, Medical Faculty, Health Sciences University, Adana, Türkiye
| | - Anıl Delik
- Department of Gastroenterology, Medical Faculty, Cukurova University, Adana, Türkiye
- Department of Biology, Science and Literature Faculty, Cukurova University, Adana, Türkiye
| |
Collapse
|
3
|
Yang G, Tian L, Wang Y. Hyperprogressive disease induced by PD-1 inhibitor monotherapy in lung adenocarcinoma with HER2 exon 20 insertion: report of two cases and review of literature. Discov Oncol 2025; 16:12. [PMID: 39760792 PMCID: PMC11703795 DOI: 10.1007/s12672-025-01749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
Monotherapy with anti-programmed cell death protein 1 (PD-1) monoclonal antibody has been approved for the treatment of advanced non-small cell lung cancer with positive programmed cell death-ligand 1 (PD-L1) expression and oncogene wild type, which revealed survival benefit compared with chemotherapy. Nevertheless, certain patients develop rapid progression on anti-PD-1 inhibitor monotherapy. This novel pattern is called hyperprogressive disease (HPD), and the underlying mechanism and molecular characteristics still leaves not clear. Here, we reported two heavily pretreated advanced lung adenocarcinoma cases with HER2 exon 20 insertion who presented HPD after two cycles of anti-PD-1 inhibitor sintilimab monotherapy, and they both carried co-alterations in the PI3K/AKT/mTOR and cell cycle signaling pathway. We speculated that HER2 exon 20 insertion might be viewed as a potential biomarker to avoid single-agent immunotherapy in certain patients with driver mutations, or timely guide proper treatment strategies.
Collapse
Affiliation(s)
- Guangjian Yang
- Department of Respiratory Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Linyan Tian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.
| |
Collapse
|
4
|
Loeffler E, Ancel J, Dalstein V, Deslée G, Polette M, Nawrocki-Raby B. HER2 Alterations in Non-Small Cell Lung Cancer: Biologico-Clinical Consequences and Interest in Therapeutic Strategies. Life (Basel) 2023; 14:64. [PMID: 38255679 PMCID: PMC10820545 DOI: 10.3390/life14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Lung cancer stands as the first cause of death by cancer in the world. Despite the improvement in patients' outcomes in the past decades through the development of personalized medicine approaches, a substantial portion of patients remains ineligible for targeted therapies due to the lack of a "druggable" molecular target. HER2, a receptor tyrosine kinase member of the EGFR/ErbB family, is known to show oncogenic properties. In this review, we focus on the different HER2 dysregulation mechanisms that have been observed in non-small cell lung cancer (NSCLC): gene mutation, gene amplification, protein overexpression and protein hyper-phosphorylation, the latter suggesting that HER2 dysregulation can occur independently of any molecular aberration. These HER2 alterations inevitably have consequences on tumor biology. Here, we discuss how they are not only involved in abnormal proliferation and survival of cancer cells but also potentially in increased angiogenic properties, mesenchymal features and tumor immune escape. Finally, we review the impact of these HER2 alterations in various therapeutic approaches. While standard chemotherapy and groundbreaking immunotherapy seem rather ineffective for HER2-altered NSCLCs, the development of HER2-targeted therapies such as tyrosine kinase inhibitors, anti-HER2 antibodies and especially antibody-drug conjugates could provide new hopes for patients.
Collapse
Affiliation(s)
- Emma Loeffler
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
| | - Julien Ancel
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Hôpital Maison-Blanche, Service de Pneumologie, 51092 Reims, France
| | - Véronique Dalstein
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Pôle de Biologie Territoriale, Service de Pathologie, 51092 Reims, France
| | - Gaëtan Deslée
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Hôpital Maison-Blanche, Service de Pneumologie, 51092 Reims, France
| | - Myriam Polette
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Pôle de Biologie Territoriale, Service de Pathologie, 51092 Reims, France
| | - Béatrice Nawrocki-Raby
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
| |
Collapse
|
5
|
Goulielmaki M, Stokidis S, Anagnostou T, Voutsas IF, Gritzapis AD, Baxevanis CN, Fortis SP. Frequencies of an Immunogenic HER-2/ neu Epitope of CD8+ T Lymphocytes Predict Favorable Clinical Outcomes in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24065954. [PMID: 36983028 PMCID: PMC10058793 DOI: 10.3390/ijms24065954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
HER-2/neu is the human epidermal growth factor receptor 2, which is associated with the progression of prostate cancer (PCa). HER-2/neu-specific T cell immunity has been shown to predict immunologic and clinical responses in PCa patients treated with HER-2/neu peptide vaccines. However, its prognostic role in PCa patients receiving conventional treatment is unknown, and this was addressed in this study. The densities of CD8+ T cells specific for the HER-2/neu(780-788) peptide in the peripheral blood of PCa patients under standard treatments were correlated with TGF-β/IL-8 levels and clinical outcomes. We demonstrated that PCa patients with high frequencies of HER-2/neu(780-788)-specific CD8+ T lymphocytes had better progression-free survival (PFS) as compared with PCa patients with low frequencies. Increased frequencies of HER-2/neu(780-788)-specific CD8+ T lymphocytes were also associated with lower levels of TGF-β and IL-8. Our data provide the first evidence of the predictive role of HER-2/neu-specific T cell immunity in PCa.
Collapse
Affiliation(s)
- Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Savvas Stokidis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | | | - Ioannis F Voutsas
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Angelos D Gritzapis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| |
Collapse
|
6
|
van Weverwijk A, de Visser KE. Mechanisms driving the immunoregulatory function of cancer cells. Nat Rev Cancer 2023; 23:193-215. [PMID: 36717668 DOI: 10.1038/s41568-022-00544-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/31/2023]
Abstract
Tumours display an astonishing variation in the spatial distribution, composition and activation state of immune cells, which impacts their progression and response to immunotherapy. Shedding light on the mechanisms that govern the diversity and function of immune cells in the tumour microenvironment will pave the way for the development of more tailored immunomodulatory strategies for the benefit of patients with cancer. Cancer cells, by virtue of their paracrine and juxtacrine communication mechanisms, are key contributors to intertumour heterogeneity in immune contextures. In this Review, we discuss how cancer cell-intrinsic features, including (epi)genetic aberrations, signalling pathway deregulation and altered metabolism, play a key role in orchestrating the composition and functional state of the immune landscape, and influence the therapeutic benefit of immunomodulatory strategies. Moreover, we highlight how targeting cancer cell-intrinsic parameters or their downstream immunoregulatory pathways is a viable strategy to manipulate the tumour immune milieu in favour of antitumour immunity.
Collapse
Affiliation(s)
- Antoinette van Weverwijk
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Karin E de Visser
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands.
| |
Collapse
|
7
|
Matherne MG, Phillips ES, Embrey SJ, Burke CM, Machado HL. Emerging functions of C/EBPβ in breast cancer. Front Oncol 2023; 13:1111522. [PMID: 36761942 PMCID: PMC9905667 DOI: 10.3389/fonc.2023.1111522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Breast tumorigenesis relies on complex interactions between tumor cells and their surrounding microenvironment, orchestrated by tightly regulated transcriptional networks. C/EBPβ is a key transcription factor that regulates the proliferation and differentiation of multiple cell types and modulates a variety of biological processes such as tissue homeostasis and the immune response. In addition, C/EBPβ has well-established roles in mammary gland development, is overexpressed in breast cancer, and has tumor-promoting functions. In this review, we discuss context-specific roles of C/EBPβ during breast tumorigenesis, isoform-specific gene regulation, and regulation of the tumor immune response. We present challenges in C/EBPβ biology and discuss the importance of C/EBPβ isoform-specific gene regulation in devising new therapeutic strategies.
Collapse
Affiliation(s)
- Megan G. Matherne
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Emily S. Phillips
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Samuel J. Embrey
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Caitlin M. Burke
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Heather L. Machado
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States,Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA, United States,*Correspondence: Heather L. Machado,
| |
Collapse
|
8
|
Jin Y, Qiu X, He Z, Wang J, Sa R, Chen L. ERBB2 as a prognostic biomarker correlates with immune infiltrates in papillary thyroid cancer. Front Genet 2022; 13:966365. [PMID: 36437939 PMCID: PMC9682178 DOI: 10.3389/fgene.2022.966365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Epidermal growth factor receptor 2 (ERBB2) is commonly over-expressed in advanced or metastatic tissues of papillary thyroid cancer (PTC) with poor prognosis, while it remains unknown whether ERBB2 plays a role in the progression of PTC. Thus, we analyzed the data derived from online repositories, including TCGA, KEGG, GO, GeneMANIA, and STRING, to explore the relationship between ERBB2 expression and prognosis, tumor phenotypes of interest, and immune infiltrates in PTC. Compared to normal thyroid tissue, ERBB2 was up-regulated in PTC samples (p < 0.001); In comparison with the group with low expression of ERBB2, the group with high expression of ERBB2 had poorer progression-free interval in stage III/IV patients (p = 0.008) and patients aged >45 years (p = 0.019). The up-regulated ERBB2 was associated with iodine metabolism dysfunction, proliferation, metastasis, angiogenesis, and drug resistance. The expression of ERBB2 negatively correlated with enrichment scores of B cells (r = −0.176, p < 0.001), CD8+ T cells (r = −0.160, p < 0.001), cytotoxic cells (r = −0.219, p < 0.001), NK CD56dim cells (r = −0.218, p < 0.001), plasmacytoid dendritic cells (r = −0.267, p < 0.001), T cells (r = −0.164, p < 0.001), T follicular helper cells (r = −0.111, p = 0.012), gamma delta T cells (r = −0.105, p = 0.017), and regulatory T cells (r = −0.125, p = 0.005). In conclusion, ERBB2 may serve as a prognostic biomarker and an immunotherapeutic target in PTC, deserving further exploration.
Collapse
|
9
|
Zhang Q, Xiu B, Zhang L, Chen M, Chi W, Li L, Guo R, Xue J, Yang B, Huang X, Shao ZM, Huang S, Chi Y, Wu J. Immunosuppressive lncRNA LINC00624 promotes tumor progression and therapy resistance through ADAR1 stabilization. J Immunother Cancer 2022; 10:jitc-2022-004666. [PMID: 36252997 PMCID: PMC9577936 DOI: 10.1136/jitc-2022-004666] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Despite the success of HER2-targeted therapy in achieving prolonged survival in approximately 50% of treated individuals, treatment resistance is still an important challenge for HER2+ breast cancer (BC) patients. The influence of both adaptive and innate immune responses on the therapeutic outcomes of HER2+BC patients has been extensively demonstrated. METHODS Long non-coding RNAs expressed in non-pathological complete response (pCR) HER2 positive BC were screened and validated by RNA-seq. Survival analysis were made by Kaplan-Meier method. Cell death assay and proliferation assay were performed to confirm the phenotype of LINC00624. RT-qPCR and western blot were used to assay the IFN response. Xenograft mouse model were used for in vivo confirmation of anti-neu treatment resistance. RNA pull-down and immunoblot were used to confirm the interaction of ADAR1 and LINC00624. ADAR1 recombinant protein were purified from baculovirus expression system. B16-OVA cells were used to study antigen presentation both in vitro and in vivo. Flow cytometry was used to determine the tumor infiltrated immune cells of xenograft model. Antisense oligonucleotides (ASOs) were used for in vivo treatment. RESULTS In this study, we found that LINC00624 blocked the antitumor effect of HER2- targeted therapy both in vitro and in vivo by inhibiting type I interferon (IFN) pathway activation. The double-stranded RNA-like structure of LINC00624 can bind and be edited by the adenosine (A) to inosine (I) RNA-editing enzyme adenosine deaminase RNA specific 1 (ADAR1), and this editing has been shown to release the growth inhibition and attenuate the innate immune response caused by the IFN response. Notably, LINC00624 promoted the stabilization of ADAR1 by inhibiting its ubiquitination-induced degradation triggered by β-TrCP. In contrast, LINC00624 inhibited major histocompatibility complex (MHC) class I antigen presentation and limited CD8+T cell infiltration in the cancer microenvironment, resulting in immune checkpoint blockade inhibition and anti-HER2 treatment resistance mediated through ADAR1. CONCLUSIONS In summary, these results suggest that LINC00624 is a cancer immunosuppressive lncRNA and targeting LINC00624 through ASOs in tumors expressing high levels of LINC00624 has great therapeutic potential in future clinical applications.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bingqiu Xiu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liyi Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiru Chi
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lun Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rong Guo
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jingyan Xue
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Benlong Yang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoyan Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yayun Chi
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Collaborative Innovation Center for Cancer Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Seliger B, Massa C. Modulation of Lymphocyte Functions in the Microenvironment by Tumor Oncogenic Pathways. Front Immunol 2022; 13:883639. [PMID: 35663987 PMCID: PMC9160824 DOI: 10.3389/fimmu.2022.883639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023] Open
Abstract
Despite the broad application of different immunotherapeutic strategies for the treatment of solid as well as hematopoietic cancers, the efficacy of these therapies is still limited, with only a minority of patients having a long-term benefit resulting in an improved survival rate. In order to increase the response rates of patients to the currently available immunotherapies, a better understanding of the molecular mechanisms underlying the intrinsic and/or extrinsic resistance to treatment is required. There exist increasing evidences that activation of different oncogenic pathways as well as inactivation of tumor suppressor genes (TSG) in tumor cells inhibit the immune cell recognition and influegnce the composition of the tumor microenvironment (TME), thus leading to an impaired anti-tumoral immune response. A deeper understanding of the link between the tumor milieu and genomic alterations of TSGs and oncogenes is indispensable for the optimization of immunotherapies and to predict the patients’ response to these treatments. This review summarizes the role of different cancer-related, oncogene- and TSG-controlled pathways in the context of anti-tumoral immunity and response to different immunotherapies.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
11
|
Subbarayan K, Massa C, Leisz S, Steven A, Bethmann D, Biehl K, Wickenhauser C, Seliger B. Biglycan as a potential regulator of tumorgenicity and immunogenicity in K-RAS-transformed cells. Oncoimmunology 2022; 11:2069214. [PMID: 35529675 PMCID: PMC9067524 DOI: 10.1080/2162402x.2022.2069214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix component biglycan (BGN) plays an essential role in various physiological and pathophysiological processes. A deficient BGN expression associated with reduced immunogenicity was found in HER-2/neu-overexpressing cells. To determine whether BGN is suppressed by oncogene-driven regulatory networks, the expression and function of BGN was analyzed in murine and human BGNlow/BGNhigh K-RASG12V-transformed model systems as well as in different patients' datasets of colorectal carcinoma (CRC) lesions. K-RAS-mutated CRC tissues expressed low BGN mRNA and protein levels when compared to normal colon epithelial cells, which was associated with a reduced patients' survival. Transfection of BGN in murine and human BGNlow K-RAS-expressing cells resulted in a reduced growth and migration of BGNhigh vs BGNlow K-RAS cells. In addition, increased MHC class I surface antigens as a consequence of an enhanced antigen processing machinery component expression was found upon restoration of BGN, which was confirmed by RNA-sequencing of BGNlow vs. BGNhigh K-RAS models. Furthermore, a reduced tumor formation of BGNhigh versus BGNlow K-RAS-transformed fibroblasts associated with an enhanced MHC class I expression and an increased frequency of tumor-infiltrating lymphocytes in tumor lesions was found. Our data provide for the first time an inverse link between BGN and K-RAS expression in murine and human K-RAS-overexpressing models and CRC lesions associated with altered growth properties, reduced immunogenicity and worse patients' outcome. Therefore, reversion of BGN might be a novel therapeutic option for K-RAS-associated malignancies.
Collapse
Affiliation(s)
- Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Daniel Bethmann
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
12
|
Maggs L, Sadagopan A, Moghaddam AS, Ferrone S. HLA class I antigen processing machinery defects in antitumor immunity and immunotherapy. Trends Cancer 2021; 7:1089-1101. [PMID: 34489208 PMCID: PMC8651070 DOI: 10.1016/j.trecan.2021.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen (HLA) class I antigen-processing machinery (APM) plays a crucial role in the synthesis and expression of HLA class I tumor antigen-derived peptide complexes; the latter mediate the recognition and elimination of malignant cells by cognate T cells. Defects in HLA class I APM component expression and/or function are frequently found in cancer cells, providing them with an immune escape mechanism that has relevance in the clinical course of the disease and in the response to T-cell-based immunotherapy. The majority of HLA class I APM defects (>75%) are caused by epigenetic mechanisms or dysregulated signaling and therefore can be corrected by strategies that counteract the underlying mechanisms. Their application in oncology is likely to improve responses to T-cell-based immunotherapies, including checkpoint inhibition.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Sanjari Moghaddam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Hazini A, Fisher K, Seymour L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J Immunother Cancer 2021; 9:e002899. [PMID: 34353849 PMCID: PMC8344275 DOI: 10.1136/jitc-2021-002899] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
It is now well accepted that many tumors undergo a process of clonal selection which means that tumor antigens arising at various stages of tumor progression are likely to be represented in just a subset of tumor cells. This process is thought to be driven by constant immunosurveillance which applies selective pressure by eliminating tumor cells expressing antigens that are recognized by T cells. It is becoming increasingly clear that the same selective pressure may also select for tumor cells that evade immune detection by acquiring deficiencies in their human leucocyte antigen (HLA) presentation pathways, allowing important tumor antigens to persist within cells undetected by the immune system. Deficiencies in antigen presentation pathway can arise by a variety of mechanisms, including genetic and epigenetic changes, and functional antigen presentation is a hard phenomenon to assess using our standard analytical techniques. Nevertheless, it is likely to have profound clinical significance and could well define whether an individual patient will respond to a particular type of therapy or not. In this review we consider the mechanisms by which HLA function may be lost in clinical disease, we assess the implications for current immunotherapy approaches using checkpoint inhibitors and examine the prognostic impact of HLA loss demonstrated in clinical trials so far. Finally, we propose strategies that might be explored for possible patient stratification.
Collapse
Affiliation(s)
- Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Kerry Fisher
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Len Seymour
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
14
|
Jongsma MLM, Neefjes J, Spaapen RM. Playing hide and seek: Tumor cells in control of MHC class I antigen presentation. Mol Immunol 2021; 136:36-44. [PMID: 34082257 DOI: 10.1016/j.molimm.2021.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
MHC class I (MHC-I) molecules present a blueprint of the intracellular proteome to T cells allowing them to control infection or malignant transformation. As a response, pathogens and tumor cells often downmodulate MHC-I mediated antigen presentation to escape from immune surveillance. Although the fundamental rules of antigen presentation are known in detail, the players in this system are not saturated and new modules of regulation have recently been uncovered. Here, we update the understanding of antigen presentation by MHC-I molecules and how this can be exploited by tumors to prevent exposure of the intracellular proteome. This knowledge can provide new ways to improve immune responses against tumors and pathogens.
Collapse
Affiliation(s)
- M L M Jongsma
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - J Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - R M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Dusenbery AC, Maniaci JL, Hillerson ND, Dill EA, Bullock TN, Mills AM. MHC Class I Loss in Triple-negative Breast Cancer: A Potential Barrier to PD-1/PD-L1 Checkpoint Inhibitors. Am J Surg Pathol 2021; 45:701-707. [PMID: 33739790 DOI: 10.1097/pas.0000000000001653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Suppression of the immune system is intimately linked to the development and progression of malignancy, and immune modulating treatment options have shown promise in a variety of tumor types, including some triple-negative breast cancers (TNBC). The most dramatic therapeutic success has been seen with immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and its ligand, PD-L1. Difficulty remains, however, in appropriate patient selection for treatment, as many PD-L1-positive cancers fail to show durable responses to PD-1/PD-L1 inhibition. Checkpoint inhibitor targeting of the adaptive immune response relies on the presence of major histocompatibility complex (MHC) class I molecules on the tumor cell surface for tumor antigen presentation. MHC class I loss has been previously described in breast cancer and represents a putative mechanism of immunotherapeutic resistance in this tumor type. One hundred seventeen invasive primary breast carcinomas with a range of histologic subtypes were evaluated on tissue microarrays containing formalin-fixed paraffin-embedded tissue. Loss of MHC class I expression was common among breast cancers, with greater than half of cases demonstrating either subclonal or diffuse loss. Fifty-nine percent of TNBC demonstrated loss of MHC class I, including 46% of those meeting the Food and Drug Administration-approved threshold of 1% for tumor-associated immune cell PD-L1 expression. MHC class I loss was particularly common in the apocrine subtype of TNBC (78%). MHC class I's employment as a predictive biomarker should be considered, as its loss may represent a barrier to successful enhancement of the antitumor adaptive immune response by PD-1/PD-L1 inhibition.
Collapse
Affiliation(s)
| | | | | | - Erik A Dill
- University of Virginia Department of Pathology
| | | | | |
Collapse
|
16
|
Kumagai S, Koyama S, Nishikawa H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer 2021; 21:181-197. [PMID: 33462501 DOI: 10.1038/s41568-020-00322-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/30/2023]
Abstract
Aberrant signalling of ERBB family members plays an important role in tumorigenesis and in the escape from antitumour immunity in multiple malignancies. Molecular-targeted agents against these signalling pathways exhibit robust clinical efficacy, but patients inevitably experience acquired resistance to these molecular-targeted therapies. Although cancer immunotherapies, including immune checkpoint inhibitors (ICIs), have shown durable antitumour response in a subset of the treated patients in multiple cancer types, clinical efficacy is limited in cancers harbouring activating gene alterations of ERBB family members. In particular, ICI treatment of patients with non-small cell lung cancers with epidermal growth factor receptor (EGFR) alterations and breast cancers with HER2 alterations failed to show clinical benefits, suggesting that EGFR and HER2 signalling may have an essential role in inhibiting antitumour immune responses. Here, we discuss the mechanisms by which the signalling of ERBB family members affects not only autonomous cancer hallmarks, such as uncontrolled cell proliferation, but also antitumour immune responses in the tumour microenvironment and the potential application of immune-genome precision medicine into immunotherapy and molecular-targeted therapy focusing on the signalling of ERBB family members.
Collapse
Affiliation(s)
- Shogo Kumagai
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
| |
Collapse
|
17
|
A Functional Screening Strategy for Engineering Chimeric Antigen Receptors with Reduced On-Target, Off-Tumor Activation. Mol Ther 2020; 28:2564-2576. [PMID: 32827460 PMCID: PMC7704745 DOI: 10.1016/j.ymthe.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/27/2020] [Accepted: 08/05/2020] [Indexed: 01/15/2023] Open
Abstract
In recent years, chimeric antigen receptor (CAR) T cell cancer immunotherapies have advanced substantially in the clinic. However, challenges related to safety persist; one major concern occurs when CARs trigger a response to antigen present on healthy cells (on-target, off-tumor response). A strategy to ameliorate this relies on the complex relationship between receptor affinity and signaling, such that one can engineer a CAR that is only activated by tumor cells expressing high antigen levels. Here, we developed a CAR T cell display platform with stable genomic expression and rapid functional screening based on interleukin-2 signaling. Starting with a CAR with high affinity toward its target antigen, we combined CRISPR-Cas9 genome editing and deep mutational scanning to generate a library of antigen-binding domain variants. This library was subjected to multiple rounds of selection based on either antigen binding or cell signaling. Deep sequencing of the resulting libraries and a comparative analysis revealed the enrichment and depletion of specific variants from which we selected CARs that were selectively activated by tumor cells based on antigen expression levels. Our platform demonstrates how directed evolution based on functional screening and deep sequencing-guided selection can be combined to enhance the selectivity and safety of CARs.
Collapse
|
18
|
MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12071760. [PMID: 32630675 PMCID: PMC7409324 DOI: 10.3390/cancers12071760] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, major advances have been made in cancer immunotherapy. This has led to significant improvement in prognosis of cancer patients, especially in the hematological setting. Nonetheless, translation of these successes to solid tumors was found difficult. One major mechanism through which solid tumors can avoid anti-tumor immunity is the downregulation of major histocompatibility complex class I (MHC-I), which causes reduced recognition by- and cytotoxicity of CD8+ T-cells. Downregulation of MHC-I has been described in 40-90% of human tumors, often correlating with worse prognosis. Epigenetic and (post-)transcriptional dysregulations relevant in the stabilization of NFkB, IRFs, and NLRC5 are often responsible for MHC-I downregulation in cancer. The intrinsic reversible nature of these dysregulations provides an opportunity to restore MHC-I expression and facilitate adaptive anti-tumor immunity. In this review, we provide an overview of the mechanisms underlying reversible MHC-I downregulation and describe potential strategies to counteract this reduction in MHC-I antigen presentation in cancer.
Collapse
|
19
|
Atlihan-Gundogdu E, Ilem-Ozdemir D, Ekinci M, Ozgenc E, Demir ES, Sánchez-Dengra B, González-Alvárez I. Recent developments in cancer therapy and diagnosis. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00473-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Cinausero M, Laprovitera N, De Maglio G, Gerratana L, Riefolo M, Macerelli M, Fiorentino M, Porcellini E, Buoro V, Gelsomino F, Squadrilli A, Fasola G, Negrini M, Tiseo M, Ferracin M, Ardizzoni A. KRAS and ERBB-family genetic alterations affect response to PD-1 inhibitors in metastatic nonsquamous NSCLC. Ther Adv Med Oncol 2019; 11:1758835919885540. [PMID: 31798692 PMCID: PMC6859675 DOI: 10.1177/1758835919885540] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background Programmed cell death 1 (PD-1) and PD-ligand 1 (PD-L1) inhibitors represent novel therapeutic options for advanced non-small cell lung cancer (NSCLC). However, approximately 50% of patients do not benefit from therapy and experience rapid disease progression. PD-L1 expression is the only approved biomarker of benefit to anti-PD-1/PD-L1 therapy. However, its weakness has been evidenced in many studies. More recently, tumor mutational burden (TMB) has proved to be a suitable biomarker, but its calculation is difficult to obtain for all patients. Methods We tested specific NSCLC genetic alterations as potential immunotherapy biomarkers. Tumor DNA was obtained from advanced NSCLC patients treated with anti-PD-1 monoclonal antibody nivolumab (n = 44) or pembrolizumab (n = 3). The mutational status of 22 genes was assessed by targeted next-generation sequencing and the association with survival was tested in uni- and multivariate models. The association between gene mutations and clinical benefit was also investigated. Results The most frequently mutated genes were TP53 (49%), KRAS (43%), ERBB2 (13%), SMAD4 (13%), DDR2 (13%), STK11 (9%), ERBB4 (6%), EGFR (6%), BRAF (6%), and MET (6%). We confirmed that KRAS mut patients have a better response to PD-1 inhibitors, showing a longer progression-free survival (PFS) and overall survival (OS) than KRAS wt patients. In addition, we observed that patients with ERBB-family mutations, including EGFR, ERBB2, and ERBB4 all failed to respond to PD-1 antibodies, independently of KRAS status. Conclusions This study suggests that the analysis of KRAS and ERBB-family gene mutational status is valuable when assessing the clinical practice for the selection of NSCLC patients to treat with PD-1 inhibitors.
Collapse
Affiliation(s)
- Marika Cinausero
- Department of Medicine (DAME), University of Udine, Udine, Friuli-Venezia Giulia, Italy
| | - Noemi Laprovitera
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giovanna De Maglio
- Department of Pathology, University Hospital of Udine, Udine, Friuli-Venezia Giulia, Italy
| | - Lorenzo Gerratana
- Department of Medicine (DAME), University of Udine, Udine, Friuli-Venezia Giulia, Italy
| | - Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marianna Macerelli
- Department of Oncology, University Hospital of Udine, Udine, Friuli-Venezia Giulia, Italy
| | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Vanessa Buoro
- Department of Medicine (DAME), University of Udine, Udine, Friuli-Venezia Giulia, Italy
| | - Francesco Gelsomino
- Division of Oncology, S. Orsola-Malpighi Hospital, Bologna, Emilia-Romagna, Italy
| | - Anna Squadrilli
- Department of Medicine and Surgery, University of Parma and Medical Oncology Unit, University Hospital of Parma, Parma, Emilia-Romagna, Italy
| | - Gianpiero Fasola
- Department of Oncology, University Hospital of Udine, Udine, Friuli-Venezia Giulia, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Emilia-Romagna, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma and Medical Oncology Unit, University Hospital of Parma, Parma, Emilia-Romagna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via S. Giacomo, 14, Bologna, 20126, Italy
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Emilia-Romagna, Italy
| |
Collapse
|
21
|
Chandrasekaran S, Sasaki M, Scharer CD, Kissick HT, Patterson DG, Magliocca KR, Seykora JT, Sapkota B, Gutman DA, Cooper LA, Lesinski GB, Waller EK, Thomas SN, Kotenko SV, Boss JM, Moreno CS, Swerlick RA, Pollack BP. Phosphoinositide 3-Kinase Signaling Can Modulate MHC Class I and II Expression. Mol Cancer Res 2019; 17:2395-2409. [PMID: 31548239 DOI: 10.1158/1541-7786.mcr-19-0545] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/06/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Abstract
Molecular events activating the PI3K pathway are frequently detected in human tumors and the activation of PI3K signaling alters numerous cellular processes including tumor cell proliferation, survival, and motility. More recent studies have highlighted the impact of PI3K signaling on the cellular response to interferons and other immunologic processes relevant to antitumor immunity. Given the ability of IFNγ to regulate antigen processing and presentation and the pivotal role of MHC class I (MHCI) and II (MHCII) expression in T-cell-mediated antitumor immunity, we sought to determine the impact of PI3K signaling on MHCI and MHCII induction by IFNγ. We found that the induction of cell surface MHCI and MHCII molecules by IFNγ is enhanced by the clinical grade PI3K inhibitors dactolisib and pictilisib. We also found that PI3K inhibition increases STAT1 protein levels following IFNγ treatment and increases accessibility at genomic STAT1-binding motifs. Conversely, we found that pharmacologic activation of PI3K signaling can repress the induction of MHCI and MHCII molecules by IFNγ, and likewise, the loss of PTEN attenuates the induction of MHCI, MHCII, and STAT1 by IFNγ. Consistent with these in vitro studies, we found that within human head and neck squamous cell carcinomas, intratumoral regions with high phospho-AKT IHC staining had reduced MHCI IHC staining. IMPLICATIONS: Collectively, these findings demonstrate that MHC expression can be modulated by PI3K signaling and suggest that activation of PI3K signaling may promote immune escape via effects on antigen presentation.
Collapse
Affiliation(s)
- Sanjay Chandrasekaran
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Maiko Sasaki
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Haydn T Kissick
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Urology Emory University School of Medicine, Atlanta, Georgia
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Kelly R Magliocca
- Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - John T Seykora
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bishu Sapkota
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - David A Gutman
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Lee A Cooper
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia.,Department of Biomedical Engineering, Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| | - Susan N Thomas
- Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Biomedical Engineering, Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Sergei V Kotenko
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| | - Carlos S Moreno
- Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Robert A Swerlick
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Brian P Pollack
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia. .,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
22
|
Abstract
Introduction: Advanced cancers that did not respond to chemotherapy were once a death sentence, but now there are newer therapies utilizing the patient's own immune system to fight cancer that are proving effective in chemotherapy-refractory malignancies. However, this success against cancer cells may be accompanied by immune-related adverse events that can affect the kidneys. Areas covered: Using Medline and Scopus, we compiled all publications through February 2019 that pertained to immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor T-cells (CAR T-cells). The focus of this review is the discussion of these new cancer therapies, with attention to the reported kidney-related adverse effects.. Expert opinion: Autoimmunity is repressed by molecular pathways that inhibit T-cell activation against selected antigens. These self-protective mechanisms have been appropriated by tumor cells as a means of evading immune detection and destruction. New immunotherapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy incite an aggressive immune response directed against tumor cells. This unrestrained activation of the immune system may result in kidney injury via multiple mechanisms.
Collapse
Affiliation(s)
- Krishna Sury
- a Section of Nephrology, Department of Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Mark A Perazella
- a Section of Nephrology, Department of Medicine , Yale University School of Medicine , New Haven , CT , USA.,b Section of Nephrology , Veterans Affairs Medical Center , West Haven , CT , USA
| |
Collapse
|
23
|
Minato E, Aoshima K, Kobayashi A, Ohnishi N, Sasaki N, Kimura T. Exogenous Expression of Equine MHC Class I Molecules in Mice Increases Susceptibility to Equine Herpesvirus 1 Pulmonary Infection. Vet Pathol 2019; 56:703-710. [PMID: 30866742 DOI: 10.1177/0300985819834616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Equine herpesvirus 1 (EHV-1) uses equine major histocompatibility complex class I (MHC class I) as an entry receptor. Exogenous expression of equine MHC class I genes in murine cell lines confers susceptibility to EHV-1 infection. To examine the in vivo role of equine MHC class I as an entry receptor for EHV-1, we generated transgenic (Tg) mice expressing equine MHC class I under the control of the CAG promoter. Equine MHC class I protein was expressed in the liver, spleen, lung, and brain of Tg mice, which was confirmed by Western blot. However, equine MHC class I antigen was only detected in bronchiolar epithelium and not in other tissues, using the immunofluorescence method employed in this study. Both Tg and wild-type (WT) mice developed pneumonia 3 days after intranasal infection with EHV-1. The bronchiolar epithelial cells of Tg mice showed more severe necrosis, compared with those in WT mice. In addition, the number of virus antigen-positive cells in the lungs was higher in Tg mice than in WT mice. These results suggest that exogenous expression of equine MHC class I renders mice more susceptible to EHV-1 infection.
Collapse
Affiliation(s)
- Erina Minato
- 1 Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keisuke Aoshima
- 1 Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsushi Kobayashi
- 1 Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naomi Ohnishi
- 2 Project for Personalized Cancer medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Nobuya Sasaki
- 3 Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Takashi Kimura
- 1 Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
24
|
HLA class I alterations in breast carcinoma are associated with a high frequency of the loss of heterozygosity at chromosomes 6 and 15. Immunogenetics 2018; 70:647-659. [PMID: 30145665 DOI: 10.1007/s00251-018-1074-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022]
Abstract
HLA class I (HLA-I) molecules play a crucial role in the presentation of tumor antigenic peptides to CD8+ T cells. Tumor HLA-I loss provides a route of immune escape from T cell-mediated killing. We analyzed HLA-I expression in 98 cryopreserved breast cancer tissues using a broad panel of anti-HLA-I antibodies. Genomic HLA-I typing was performed using DNA obtained from autologous normal breast tissue. Analysis of the loss of heterozygosity (LOH) in the HLA-I region of chromosome 6 (LOH-6) and in the β2-microglobulin (B2M) region of chromosome 15 (LOH-15) was done by microsatellite amplification of DNA isolated from microdissected tumor areas. B2M gene sequencing was done using this DNA form HLA-I-negative tumors. Immunohistological analysis revealed various types of HLA-I alterations in 79 tumors (81%), including total HLA-I loss in 53 cases (54%) and partial loss in 16 samples (14%). In 19 cases (19%), HLA-I expression was positive. Using microsatellite analysis, we detected LOH in 36 cases out of 92 evaluated (39%), including 15 samples with only LOH-6, 14 with LOH-15, and seven tumors with LOH-6 and LOH-15 at the same time. Remarkably, we detected LOH-6 in eight tumors with positive HLA-I immunolabeling. We did not find any B2M mutations in HLA-I-negative breast tumors. In conclusion, LOH at chromosomes 6 and 15 has a high incidence in breast cancer and occurs in tumors with different HLA-I immunophenotypes. This common molecular mechanism of HLA-I alterations may reduce the ability of cytotoxic T lymphocytes to kill tumor cells and negatively influence the clinical success of cancer immunotherapy.
Collapse
|
25
|
Kabacaoglu D, Ciecielski KJ, Ruess DA, Algül H. Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options. Front Immunol 2018; 9:1878. [PMID: 30158932 PMCID: PMC6104627 DOI: 10.3389/fimmu.2018.01878] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), as the most frequent form of pancreatic malignancy, still is associated with a dismal prognosis. Due to its late detection, most patients are ineligible for surgery, and chemotherapeutic options are limited. Tumor heterogeneity and a characteristic structure with crosstalk between the cancer/malignant cells and an abundant tumor microenvironment (TME) make PDAC a very challenging puzzle to solve. Thus far, targeted therapies have failed to substantially improve the overall survival of PDAC patients. Immune checkpoint inhibition, as an emerging therapeutic option in cancer treatment, shows promising results in different solid tumor types and hematological malignancies. However, PDAC does not respond well to immune checkpoint inhibitors anti-programmed cell death protein 1 (PD-1) or anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) alone or in combination. PDAC with its immune-privileged nature, starting from the early pre-neoplastic state, appears to escape from the antitumor immune response unlike other neoplastic entities. Different mechanisms how cancer cells achieve immune-privileged status have been hypothesized. Among them are decreased antigenicity and impaired immunogenicity via both cancer cell-intrinsic mechanisms and an augmented immunosuppressive TME. Here, we seek to shed light on the recent advances in both bench and bedside investigation of immunotherapeutic options for PDAC. Furthermore, we aim to compile recent data about how PDAC adopts immune escape mechanisms, and how these mechanisms might be exploited therapeutically in combination with immune checkpoint inhibitors, such as PD-1 or CTLA-4 antibodies.
Collapse
Affiliation(s)
| | | | | | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
26
|
Steven A, Seliger B. The Role of Immune Escape and Immune Cell Infiltration in Breast Cancer. Breast Care (Basel) 2018; 13:16-21. [PMID: 29950962 DOI: 10.1159/000486585] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
While detailed analysis of aberrant cancer cell signaling pathways and changes in cancer cell DNA has dominated the field of breast cancer biology for years, there now exists increasing evidence that the tumor microenvironment (TME) including tumor-infiltrating immune cells support the growth and development of breast cancer and further facilitate invasion and metastasis formation as well as sensitivity to drug therapy. Furthermore, breast cancer cells have developed different strategies to escape surveillance from the adaptive and innate immune system. These include loss of expression of immunostimulatory molecules, gain of expression of immunoinhibitory molecules such as PD-L1 and HLA-G, and altered expression of components involved in apoptosis. Furthermore, the composition of the TME plays a key role in breast cancer development and treatment response. In this review we will focus on i) the different immune evasion mechanisms used by breast cancer cells, ii) the role of immune cell infiltration in this disease, and (iii) implication for breast cancer-based immunotherapies.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
27
|
Subbarayan K, Leisz S, Wickenhauser C, Bethmann D, Massa C, Steven A, Seliger B. Biglycan-mediated upregulation of MHC class I expression in HER-2/neu-transformed cells. Oncoimmunology 2018; 7:e1373233. [PMID: 29632715 DOI: 10.1080/2162402x.2017.1373233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 01/16/2023] Open
Abstract
The extracellular matrix protein biglycan (BGN) has oncogenic or tumor suppressive potential depending on the cellular origin. HER-2/neu overexpression in murine fibroblasts and human model systems is inversely correlated with BGN expression. Upon its restoration BGNhigh HER-2/neu+ fibroblasts were less tumorigenic in immune competent mice when compared to BGNlow/neg HER-2/neu+ cells, which was associated with enhanced immune cell responses and higher frequencies of immune effector cells in tumors and peripheral blood. The increased immunogenicity of BGNhigh HER-2/neu+ fibroblasts appears to be due to upregulated MHC class I surface antigens and reduced expression levels of transforming growth factor (TGF)-β isoforms and the TGF-β receptor 1 suggesting a link between BGN, TGF-β pathway and HER-2/neu-mediated downregulation of MHC class I antigens. Treatment of BGNlow/neg HER-2/neu+ cells with recombinant BGN or an inhibitor of TGF-β enhanced MHC class I surface antigens in BGNlow/neg HER-2/neu-overexpressing murine fibroblasts, which was mediated by a transcriptional upregulation of major MHC class I antigen processing components. Furthermore, BGN expression in HER-2/neu+ cells was accompanied by an increased expression of the proteoglycan decorin (DCN). Since recombinant DCN also elevated MHC class I surface expression in BGNlow/neg HER-2/neu+ cells, both proteoglycans might act synergistically. This was in accordance with in silico analyses of mRNA data obtained from The Cancer Genome Atlas (TCGA) dataset available for breast cancer (BC) patients. Thus, our data provide for the first time evidence that proteoglycan signatures are modulated by HER-2/neu and linked to MHC class I-mediated immune escape associated with an altered TGF-β pathway.
Collapse
Affiliation(s)
- Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Daniel Bethmann
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| |
Collapse
|
28
|
Kersh AE, Ng S, Chang YM, Sasaki M, Thomas SN, Kissick HT, Lesinski GB, Kudchadkar RR, Waller EK, Pollack BP. Targeted Therapies: Immunologic Effects and Potential Applications Outside of Cancer. J Clin Pharmacol 2018; 58:7-24. [PMID: 29136276 PMCID: PMC5972536 DOI: 10.1002/jcph.1028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Two pharmacologic approaches that are currently at the forefront of treating advanced cancer are those that center on disrupting critical growth/survival signaling pathways within tumor cells (commonly referred to as "targeted therapies") and those that center on enhancing the capacity of a patient's immune system to mount an antitumor response (immunotherapy). Maximizing responses to both of these approaches requires an understanding of the oncogenic events present in a given patient's tumor and the nature of the tumor-immune microenvironment. Although these 2 modalities were developed and initially used independently, combination regimens are now being tested in clinical trials, underscoring the need to understand how targeted therapies influence immunologic events. Translational studies and preclinical models have demonstrated that targeted therapies can influence immune cell trafficking, the production of and response to chemokines and cytokines, antigen presentation, and other processes relevant to antitumor immunity and immune homeostasis. Moreover, because these and other effects of targeted therapies occur in nonmalignant cells, targeted therapies are being evaluated for use in applications outside of oncology.
Collapse
Affiliation(s)
- Anna E. Kersh
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Spencer Ng
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Min Chang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA
| | | | - Susan N. Thomas
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haydn T. Kissick
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gregory B. Lesinski
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ragini R. Kudchadkar
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Edmund K. Waller
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Brian P. Pollack
- Atlanta VA Medical Center, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
- Emory University Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
29
|
Oncogenic pathways as the basis of primary immune ignorance. Emerg Top Life Sci 2017; 1:421-428. [PMID: 33525798 DOI: 10.1042/etls20170081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 11/17/2022]
Abstract
The success of immune checkpoint inhibitor therapies (ICTs) to bring about durable clinical responses in a subset of patients with different cancer histologies is transforming cancer care. However, many patients do not benefit from single-agent ICT, including patients with melanoma and non-small cell lung cancer, which are often considered to be immunogenic tumor types. In addition, several other common solid tumors, such as breast, colon, and prostate cancers, have reported very low response rates. A growing body of evidence suggests that the majority of tumors may be categorized as being primary immune-ignorant tumors, hence precluding response to single-agent ICTs. The molecular mechanisms that govern the immune-ignorant phenotype are under intense investigation. This review focuses on how oncogenic pathways can promote the development of a primary immune-ignorant tumor.
Collapse
|
30
|
Muntasell A, Cabo M, Servitja S, Tusquets I, Martínez-García M, Rovira A, Rojo F, Albanell J, López-Botet M. Interplay between Natural Killer Cells and Anti-HER2 Antibodies: Perspectives for Breast Cancer Immunotherapy. Front Immunol 2017; 8:1544. [PMID: 29181007 PMCID: PMC5694168 DOI: 10.3389/fimmu.2017.01544] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/30/2017] [Indexed: 01/16/2023] Open
Abstract
Overexpression of the human epidermal growth factor receptor 2 (HER2) defines a subgroup of breast tumors with aggressive behavior. The addition of HER2-targeted antibodies (i.e., trastuzumab, pertuzumab) to chemotherapy significantly improves relapse-free and overall survival in patients with early-stage and advanced disease. Nonetheless, considerable proportions of patients develop resistance to treatment, highlighting the need for additional and co-adjuvant therapeutic strategies. HER2-specific antibodies can trigger natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity and indirectly enhance the development of tumor-specific T cell immunity; both mechanisms contributing to their antitumor efficacy in preclinical models. Antibody-dependent NK cell activation results in the release of cytotoxic granules as well as the secretion of pro-inflammatory cytokines (i.e., IFNγ and TNFα) and chemokines. Hence, NK cell tumor suppressive functions include direct cytolytic killing of tumor cells as well as the regulation of subsequent antitumor adaptive immunity. Albeit tumors with gene expression signatures associated to the presence of cytotoxic lymphocyte infiltrates benefit from trastuzumab-based treatment, NK cell-related biomarkers of response/resistance to HER2-specific therapeutic antibodies in breast cancer patients remain elusive. Several variables, including (i) the configuration of the patient NK cell repertoire; (ii) tumor molecular features (i.e., estrogen receptor expression); (iii) concomitant therapeutic regimens (i.e., chemotherapeutic agents, tyrosine kinase inhibitors); and (iv) evasion mechanisms developed by progressive breast tumors, have been shown to quantitatively and qualitatively influence antibody-triggered NK cell responses. In this review, we discuss possible interventions for restoring/enhancing the therapeutic activity of HER2 therapeutic antibodies by harnessing NK cell antitumor potential through combinatorial approaches, including immune checkpoint blocking/stimulatory antibodies, cytokines and toll-like receptor agonists.
Collapse
Affiliation(s)
- Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Sonia Servitja
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Ignasi Tusquets
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - María Martínez-García
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Ana Rovira
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | | | - Joan Albanell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain.,Univ. Pompeu Fabra, Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Univ. Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
31
|
Steven A, Leisz S, Wickenhauser C, Schulz K, Mougiakakos D, Kiessling R, Denkert C, Seliger B. Linking CREB function with altered metabolism in murine fibroblast-based model cell lines. Oncotarget 2017; 8:97439-97463. [PMID: 29228623 PMCID: PMC5722575 DOI: 10.18632/oncotarget.22135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/26/2017] [Indexed: 01/31/2023] Open
Abstract
The cAMP-responsive element binding protein CREB is frequently overexpressed and activated in tumors of distinct histology, leading to enhanced proliferation, migration, invasion and angiogenesis as well as reduced apoptosis. The de-regulated expression of CREB might be linked with transcriptional as well as post-transcriptional regulation mechanisms. We show here that altered CREB expression levels and function are associated with changes in the cellular metabolism. Using comparative proteome-based analysis an altered expression pattern of proteins involved in the cellular metabolism in particular in glycolysis was found upon CREB down-regulation in HER-2/neu-transfected cell lines. This was associated with diminished expression levels of the glucose transporter 1, reduced glucose uptake and reduced glycolytic activity in HER-2/neu-transfected cells with down-regulated CREB when compared to HER-2/neu+ cells. Furthermore, hypoxia-induced CREB activity resulted in changes of the metabolism in HER-2/neu transfected cells. Low pH values in the supernatant of HER-2/neu transformants were restored by CREB down-regulation, but further decreased by hypoxia. The altered intracellular pH values were associated with a distinct expression of lactate dehydrogenase, and its substrate lactate. Moreover, enhanced phosphorylation of CREB on residue Ser133 was accompanied by a down-regulation of pERK and an up-regulation of pAKT. CREB promotes the detoxification of ROS by catalase, therefore protecting the mitochondrial activity under oxidative stress. These data suggest that there might exists a link between CREB function and the altered metabolism in HER-2/neu-transformed cells. Thus, targeting these altered metabolic pathways might represent an attractive therapeutic approach at least for the treatment of patients with HER-2/neu overexpressing tumors.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kristin Schulz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
32
|
Emens LA, Ascierto PA, Darcy PK, Demaria S, Eggermont AMM, Redmond WL, Seliger B, Marincola FM. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer 2017. [PMID: 28623775 DOI: 10.1016/j.ejca.2017.01.035] [Citation(s) in RCA: 393] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer immunotherapy is now established as a powerful way to treat cancer. The recent clinical success of immune checkpoint blockade (antagonists of CTLA-4, PD-1 and PD-L1) highlights both the universal power of treating the immune system across tumour types and the unique features of cancer immunotherapy. Immune-related adverse events, atypical clinical response patterns, durable responses, and clear overall survival benefit distinguish cancer immunotherapy from cytotoxic cancer therapy. Combination immunotherapies that transform non-responders to responders are under rapid development. Current challenges facing the field include incorporating immunotherapy into adjuvant and neoadjuvant cancer therapy, refining dose, schedule and duration of treatment and developing novel surrogate endpoints that accurately capture overall survival benefit early in treatment. As the field rapidly evolves, we must prioritise the development of biomarkers to guide the use of immunotherapies in the most appropriate patients. Immunotherapy is already transforming cancer from a death sentence to a chronic disease for some patients. By making smart, evidence-based decisions in developing next generation immunotherapies, cancer should become an imminently treatable, curable and even preventable disease.
Collapse
Affiliation(s)
- Leisha A Emens
- Johns Hopkins University School of Medicine, Department of Oncology, Graduate Program in Pathobiology, Baltimore, MD 21287, USA.
| | - Paolo A Ascierto
- Istituto Nazionale Tumori Fondazione G. Pascale, Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, Napoli, Italy
| | - Phillip K Darcy
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, Australia
| | - Sandra Demaria
- Weill Cornell Medical College, Department of Radiation Oncology, New York, NY 10065, USA
| | - Alexander M M Eggermont
- Cancer Institute Gustave-Roussy, 114 Rue Edouard Vaillant, Villejuif/Paris-Sud 94800, France
| | - William L Redmond
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR 97213, USA
| | - Barbara Seliger
- Martin Luther University, Institute for Medical Immunology, Magdeburger Str. 2, 06112 Halle, Germany
| | | |
Collapse
|
33
|
Concha-Benavente F, Ferris RL. Oncogenic growth factor signaling mediating tumor escape from cellular immunity. Curr Opin Immunol 2017; 45:52-59. [PMID: 28208102 DOI: 10.1016/j.coi.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/05/2017] [Accepted: 01/19/2017] [Indexed: 01/05/2023]
Abstract
Unrestrained growth factor signals can promote carcinogenesis, as well as other hallmarks of cancer such as immune evasion. Our understanding of the function and complex regulation of HER family of receptors has led to the development of targeted therapeutic agents that suppress tumor growth. However, these receptors also mediate escape from recognition by the host immune system. We discuss how HER family of oncogenic receptors downregulate tumor antigen presentation and upregulate suppressive membrane-bound or soluble secreted inhibitory molecules that ultimately lead to impaired cellular immunity mediated by cytotoxic T lymphocyte (CTL) recognition. Implementing this knowledge into new therapeutic strategies to enhance tumor immunogenicity may restore effector cell mediated immune clearance of tumors and clinical efficacy of tumor-targeted immunotherapy against HER receptor overexpression.
Collapse
Affiliation(s)
- Fernando Concha-Benavente
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Ladoire S, Derangère V, Arnould L, Thibaudin M, Coudert B, Lorgis V, Desmoulins I, Chaix M, Fumoleau P, Ghiringhelli F. [The anti-tumor immune response in breast cancer: Update and therapeutic perspectives]. Ann Pathol 2017; 37:133-141. [PMID: 28159406 DOI: 10.1016/j.annpat.2016.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/18/2022]
Abstract
The role of the immune response in breast cancer is now well recognized and increasingly taken in account. The goal of this article is, in the first part, to underline its prognostic impact and to precise the immunosurvelliance, immunoselection and the immunosubversion concepts involved in the control and evasion of breast carcinoma. In the second part, therapeutic strategies for the restauration of anti-tumor immunity are developed. Vaccination strategies and checkpoints inhibitors blockade strategies are discussed as well as the immunogenic death linked to the conventional treatments of breast cancer.
Collapse
Affiliation(s)
- Sylvain Ladoire
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France; UFR des sciences de santé, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France.
| | - Valentin Derangère
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France; Département de pathologie et de biologie des tumeurs, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Laurent Arnould
- Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France; Département de pathologie et de biologie des tumeurs, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Marion Thibaudin
- UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France
| | - Bruno Coudert
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Veronique Lorgis
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Isabelle Desmoulins
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France
| | - Marie Chaix
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France; UFR des sciences de santé, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France
| | - Pierre Fumoleau
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; UFR des sciences de santé, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France
| | - François Ghiringhelli
- Département d'oncologie médicale, centre Georges-François-Leclerc, 21000 Dijon, France; Plateforme de transfert en biologie cancérologique, centre Georges-François-Leclerc, 21000 Dijon, France; UMR Inserm U866, faculté de médecine de Dijon, 21000 Dijon, France; UFR des sciences de santé, 21000 Dijon, France; Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
35
|
Voutsas IF, Anastasopoulou EA, Tzonis P, Papamichail M, Perez SA, Baxevanis CN. Unraveling the role of preexisting immunity in prostate cancer patients vaccinated with a HER-2/neu hybrid peptide. J Immunother Cancer 2016; 4:75. [PMID: 27891225 PMCID: PMC5109671 DOI: 10.1186/s40425-016-0183-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/27/2016] [Indexed: 01/09/2023] Open
Abstract
Background Cancer vaccines aim at eliciting not only an immune response against specific tumor antigens, but also at enhancing a preexisting immunity against the tumor. In this context, we recently reported on the levels of preexisting immunity in prostate cancer patients vaccinated with the HER-2 hybrid peptide (AE37), during a phase I clinical trial. The purpose of the current study was to correlate between preexisting immunity to the native HER-2 peptide, AE36, and expression of HLA-A2 and -A24 molecules with the clinical outcome. Additionally, we investigated the ability of the AE37 vaccine to induce an antitumor immune response against other tumor associated antigens, not integrated in the vaccine formulation, with respect to the clinical response. Methods We analyzed prostate cancer patients who were vaccinated with the AE37 vaccine [Ii-Key-HER-2/neu(776–790) hybrid peptide vaccine (AE37), which is a MHC class II long peptide vaccine encompassing MHC class I epitopes, during a phase I clinical trial. Preexisting immunity to the native HER-2/neu(776–790) (AE36) peptide was assessed by IFNγ response or dermal reaction at the inoculation site. Antigen specificity against other tumor antigens was defined using multimer analysis. Progression free survival (PFS) was considered as the patients’ clinical outcome. Two-tailed Wilcoxon signed rank test at 95 % confidence interval was used for statistical evaluation at different time points and Kaplan–Meier curves with log-rank (Mantel-Cox) test were used for the evaluation of PFS. Results Preexisting immunity to AE36, irrespectively of HLA expression, was correlated with longer PFS. Specific CD8+ T cell immunity against E75 and PSA146–151 (HLA-A2 restricted), as well as, PSA153–161 (HLA-A24 restricted) was detected at relatively high frequencies which were further enhanced during vaccinations. Specific immunity against PSA153–161 correlated with longer PFS in HLA-A24+ patients. However, HLA-A2+ patients with high preexisting or vaccine-induced immunity to E75, showed a trend for shorter PFS. Conclusions Our data cast doubt on whether preexisting immunity or epitope spreading specific for HLA-class I-restricted peptides can actually predict a favorable clinical outcome. They also impose that preexisting immunity to long vaccine peptides, encompassing both HLA class II and I epitopes should be considered as an important prerequisite for the improvement of future immunotherapeutic protocols. Protocol ID Code: Generex-06-07 National Organization for Medicines (EOF) ID Code: IS-107-01-06 NEC Study Code: EED107/1/06 EudraCT Number: 2006-003299-37 Date of registration: 07/06/2006 Date of enrolment of the first participant to the trial: Nov 1st, 2007 Electronic supplementary material The online version of this article (doi:10.1186/s40425-016-0183-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ioannis F Voutsas
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | | | - Panagiotis Tzonis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | | |
Collapse
|
36
|
de Charette M, Marabelle A, Houot R. Turning tumour cells into antigen presenting cells: The next step to improve cancer immunotherapy? Eur J Cancer 2016; 68:134-147. [PMID: 27755997 DOI: 10.1016/j.ejca.2016.09.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022]
Abstract
Downregulation/loss of the antigen presentation is a major immune escape mechanism in cancer. It allows tumour cells to become 'invisible' and avoid immune attack by antitumour T cells. In tumour harbouring properties of professional antigen presenting cells (i.e. tumour B cells in lymphoma), downregulation/loss of the antigen presentation may also prevent direct priming of naïve T cells by tumour cells. Here, we review treatments that may induce/restore antigen presentation by the tumour cells. These treatments may increase the generation of antitumour T cells and/or their capacity to recognise and eliminate tumour cells. By forcing tumour cells to present their antigens, these treatments may sensitise patients to T cell-based immunotherapies, including checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Aurélien Marabelle
- Gustave Roussy, Université Paris-Saclay, Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, F-94805, France; INSERM U1015, Villejuif, F-94805, France
| | - Roch Houot
- CHU Rennes, Service Hématologie Clinique, F-35033, Rennes, France; INSERM, U917, F-35043, Rennes, France.
| |
Collapse
|
37
|
Kersh AE, Sasaki M, Cooper LA, Kissick HT, Pollack BP. Understanding the Impact of ErbB Activating Events and Signal Transduction on Antigen Processing and Presentation: MHC Expression as a Model. Front Pharmacol 2016; 7:327. [PMID: 27729860 PMCID: PMC5052536 DOI: 10.3389/fphar.2016.00327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/27/2022] Open
Abstract
Advances in molecular pathology have changed the landscape of oncology. The ability to interrogate tissue samples for oncogene amplification, driver mutations, and other molecular alterations provides clinicians with an enormous level of detail about their patient's cancer. In some cases, this information informs treatment decisions, especially those related to targeted anti-cancer therapies. However, in terms of immune-based therapies, it is less clear how to use such information. Likewise, despite studies demonstrating the pivotal role of neoantigens in predicting responsiveness to immune checkpoint blockade, it is not known if the expression of neoantigens impacts the response to targeted therapies despite a growing recognition of their diverse effects on immunity. To realize the promise of 'personalized medicine', it will be important to develop a more integrated understanding of the relationships between oncogenic events and processes governing anti-tumor immunity. One area of investigation to explore such relationships centers on defining how ErbB/HER activation and signal transduction influences antigen processing and presentation.
Collapse
Affiliation(s)
- Anna E Kersh
- Medical Scientist Training Program, Emory University School of Medicine Atlanta, GA, USA
| | | | - Lee A Cooper
- Department of Biomedical Informatics, Emory University School of MedicineAtlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of TechnologyAtlanta, GA, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine Atlanta, GA, USA
| | - Brian P Pollack
- Atlanta VA Medical CenterDecatur, GA, USA; Department of Dermatology, Emory University School of MedicineAtlanta, GA, USA
| |
Collapse
|
38
|
Bedognetti D, Hendrickx W, Ceccarelli M, Miller LD, Seliger B. Disentangling the relationship between tumor genetic programs and immune responsiveness. Curr Opin Immunol 2016; 39:150-8. [PMID: 26967649 DOI: 10.1016/j.coi.2016.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/13/2022]
Abstract
Correlative studies in humans have demonstrated that an active immune microenvironment characterized by the presence of a T-helper 1 immune response typifies a tumor phenotype associated with better outcome and increased responsiveness to immune manipulation. This phenotype also signifies the counter activation of immune-regulatory mechanisms. Variables modulating the development of an effective anti-tumor immune response are increasingly scrutinized as potential therapeutic targets. Genetic alterations of cancer cells that functionally influence intratumoral immune response include mutational load, specific mutations of genes involved in oncogenic pathways and copy number aberrations involving chemokine and cytokine genes. Inhibiting oncogenic pathways that prevent the development of the immune-favorable cancer phenotype may complement modern immunotherapeutic approaches.
Collapse
Affiliation(s)
- Davide Bedognetti
- Tumor Biology, Immunology and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar.
| | - Wouter Hendrickx
- Tumor Biology, Immunology and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Michele Ceccarelli
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
39
|
Chaganty BKR, Lu Y, Qiu S, Somanchi SS, Lee DA, Fan Z. Trastuzumab upregulates expression of HLA-ABC and T cell costimulatory molecules through engagement of natural killer cells and stimulation of IFNγ secretion. Oncoimmunology 2015; 5:e1100790. [PMID: 27141382 DOI: 10.1080/2162402x.2015.1100790] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022] Open
Abstract
It is increasingly recognized that trastuzumab, an antibody approved for treating human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer, exerts some of its antitumor effects through enhanced T cell responses. Full activation of CD8+ T cells requires both expression of major histocompatibility complex class I molecules (HLA-ABC) and expression of the T cell costimulatory molecule CD80 or CD86; however, the impact of trastuzumab treatment on the expression of HLA-ABC and CD80 and CD86 has not been investigated in HER2-overexpressing breast cancer cells. In this study, we found that, while there is no direct correlation between the expression of HER2 and HLA-ABC in breast cancer, knockdown of HER2 or inhibition of HER2 kinase by lapatinib downregulated HLA-ABC expression. Trastuzumab had no meaningful effects on HLA-ABC expression in HER2-overexpressing breast cancer cells in monoculture; however, treatment of such cells with trastuzumab in co-culture with human peripheral blood mononuclear cells (PBMC) significantly upregulated not only HLA-ABC expression but also CD86 expression. We showed that this upregulation was mediated by interferon gamma (IFNγ) secreted from the natural killer (NK) cells in PBMC as a result of engagement of NK cells by trastuzumab. We further confirmed this effect of trastuzumab in vivo using a mouse mammary tumor model transduced to overexpress human HER2. Together, our data provide evidence that trastuzumab upregulates expression of HLA-ABC and T cell costimulatory molecules in HER2-overexpressing breast cancer cells in the presence of PBMC, which supports the view that T-cell-mediated immune responses are involved in trastuzumab-mediated antitumor effects.
Collapse
Affiliation(s)
- Bharat K R Chaganty
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Yang Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Songbo Qiu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Srinivas S Somanchi
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Dean A Lee
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| |
Collapse
|
40
|
Srivastava RM, Trivedi S, Concha-Benavente F, Hyun-Bae J, Wang L, Seethala RR, Branstetter BF, Ferrone S, Ferris RL. STAT1-Induced HLA Class I Upregulation Enhances Immunogenicity and Clinical Response to Anti-EGFR mAb Cetuximab Therapy in HNC Patients. Cancer Immunol Res 2015; 3:936-45. [PMID: 25972070 DOI: 10.1158/2326-6066.cir-15-0053] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/20/2015] [Indexed: 12/14/2022]
Abstract
The goal of this study was to characterize the molecular mechanisms underlying cetuximab-mediated upregulation of HLA class I antigen-processing machinery components in head and neck cancer (HNC) cells and to determine the clinical significance of these changes in cetuximab-treated HNC patients. Flow cytometry, signaling studies, and chromatin immunoprecipitation (ChIP) assays were performed using HNC cells treated with cetuximab alone or with Fcγ receptor (FcγR)-bearing lymphocytes to establish the mechanism of EGFR-dependent regulation of HLA APM expression. A prospective phase II clinical trial of neoadjuvant cetuximab was used to correlate HLA class I expression with clinical response in HNC patients. EGFR blockade triggered STAT1 activation and HLA upregulation, in a src homology-containing protein (SHP)-2-dependent fashion, more prominently in HLA-B/C than in HLA-A alleles. EGFR signaling blockade also enhanced IFNγ receptor 1 (IFNAR) expression, augmenting induction of HLA class I and TAP1/2 expression by IFNγ, which was abrogated in STAT1(-/-) cells. Cetuximab enhanced HNC cell recognition by EGFR853-861-specific CTLs, and notably enhanced surface presentation of a non-EGFR peptide (MAGE-3271-279). HLA class I upregulation was significantly associated with clinical response in cetuximab-treated HNC patients. EGFR induces HLA downregulation through SHP-2/STAT1 suppression. Reversal of HLA class I downregulation was more prominent in clinical responders to cetuximab therapy, supporting an important role for adaptive immunity in cetuximab antitumor activity. Abrogating EGFR-induced immune escape mechanisms and restoring STAT1 signaling to reverse HLA downregulation using cetuximab should be combined with strategies to enhance adaptive cellular immunity.
Collapse
Affiliation(s)
| | - Sumita Trivedi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jie Hyun-Bae
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lin Wang
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Raja R Seethala
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania. Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
41
|
Datta J, Xu S, Rosemblit C, Smith JB, Cintolo JA, Powell DJ, Czerniecki BJ. CD4(+) T-Helper Type 1 Cytokines and Trastuzumab Facilitate CD8(+) T-cell Targeting of HER2/neu-Expressing Cancers. Cancer Immunol Res 2015; 3:455-63. [PMID: 25791067 PMCID: PMC4556111 DOI: 10.1158/2326-6066.cir-14-0208] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
Abstract
Vaccination strategies incorporating the immunodominant HLA-A2-restricted HER2/neu-derived peptide 369-377 (HER2369-377) are increasingly utilized in HER2/neu-expressing cancer patients. The failure of postvaccination HER2369-377-specific CD8(+) T cells to recognize HLA-A2(pos)HER2/neu-expressing cells in vitro, however, has been attributed to impaired MHC class I/HLA-A2 presentation observed in HER2/neu-overexpressing tumors. We reconcile this controversy by demonstrating that HER2369-377 is directly recognized by high functional-avidity HER2369-377-specific CD8(+) T cells-either genetically modified to express a novel HER2369-377 TCR or sensitized using HER2369-377-pulsed type 1-polarized dendritic cells (DC1)-on class I-abundant HER2(low), but not class I-deficient HER2(high), cancer cells. Importantly, a critical cooperation between CD4(+) T-helper type-1 (Th1) cytokines IFNγ/TNFα and HER2/neu-targeted antibody trastuzumab is necessary to restore class I expression in HER2(high) cancers, thereby facilitating recognition and lysis of these cells by HER2369-377-specific CD8(+) T cells. Concomitant induction of PD-L1 on HER2/neu-expressing cells by IFNγ/TNF and trastuzumab, however, has minimal impact on DC1-sensitized HER2369-377-CD8(+) T-cell-mediated cytotoxicity. Although activation of EGFR and HER3 signaling significantly abrogates IFNγ/TNFα and trastuzumab-induced class I restoration, EGFR/HER3 receptor blockade rescues class I expression and ensuing HER2369-377-CD8(+) cytotoxicity of HER2/neu-expressing cells. Thus, combinations of CD4(+) Th1 immune interventions and multivalent targeting of HER family members may be required for optimal anti-HER2/neu CD8(+) T-cell-directed immunotherapy.
Collapse
Affiliation(s)
- Jashodeep Datta
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shuwen Xu
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Cinthia Rosemblit
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jenessa B Smith
- Department of Pathology and Laboratory Medicine; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jessica A Cintolo
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Brian J Czerniecki
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Rena Rowen Breast Center, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
42
|
Talukder AK, Ravishankar S, Sasmal K, Gandham S, Prabhukumar J, Achutharao PH, Barh D, Blasi F. XomAnnotate: Analysis of Heterogeneous and Complex Exome- A Step towards Translational Medicine. PLoS One 2015; 10:e0123569. [PMID: 25905921 PMCID: PMC4408095 DOI: 10.1371/journal.pone.0123569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
In translational cancer medicine, implicated pathways and the relevant master genes are of focus. Exome's specificity, processing-time, and cost advantage makes it a compelling tool for this purpose. However, analysis of exome lacks reliable combinatory analysis tools and techniques. In this paper we present XomAnnotate – a meta- and functional-analysis software for exome. We compared UnifiedGenotyper, Freebayes, Delly, and Lumpy algorithms that were designed for whole-genome and combined their strengths in XomAnnotate for exome data through meta-analysis to identify comprehensive mutation profile (SNPs/SNVs, short inserts/deletes, and SVs) of patients. The mutation profile is annotated followed by functional analysis through pathway enrichment and network analysis to identify most critical genes and pathways implicated in the disease genesis. The efficacy of the software is verified through MDS and clustering and tested with available 11 familial non-BRCA1/BRCA2 breast cancer exome data. The results showed that the most significantly affected pathways across all samples are cell communication and antigen processing and presentation. ESCO1, HYAL1, RAF1 and PRKCA emerged as the key genes. Network analysis further showed the purine and propanotate metabolism pathways along with RAF1 and PRKCA genes to be master regulators in these patients. Therefore, XomAnnotate is able to use exome data to identify entire mutation landscape, pathways, and the master genes accurately with wide concordance from earlier microarray and whole-genome studies -- making it a suitable biomedical software for using exome in next-generation translational medicine.
Collapse
Affiliation(s)
- Asoke K. Talukder
- InterpretOmics India Pvt Ltd, #329, 7 Main, HAL 2 Stage, Indiranagar, Bangalore, 560 008, Karnataka, India
- * E-mail:
| | - Shashidhar Ravishankar
- InterpretOmics India Pvt Ltd, #329, 7 Main, HAL 2 Stage, Indiranagar, Bangalore, 560 008, Karnataka, India
| | - Krittika Sasmal
- InterpretOmics India Pvt Ltd, #329, 7 Main, HAL 2 Stage, Indiranagar, Bangalore, 560 008, Karnataka, India
| | - Santhosh Gandham
- InterpretOmics India Pvt Ltd, #329, 7 Main, HAL 2 Stage, Indiranagar, Bangalore, 560 008, Karnataka, India
| | - Jyothsna Prabhukumar
- InterpretOmics India Pvt Ltd, #329, 7 Main, HAL 2 Stage, Indiranagar, Bangalore, 560 008, Karnataka, India
| | - Prahalad H. Achutharao
- InterpretOmics India Pvt Ltd, #329, 7 Main, HAL 2 Stage, Indiranagar, Bangalore, 560 008, Karnataka, India
| | - Debmalya Barh
- InterpretOmics India Pvt Ltd, #329, 7 Main, HAL 2 Stage, Indiranagar, Bangalore, 560 008, Karnataka, India
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, 721172, India
| | - Francesco Blasi
- Laboratory of Transcriptional Regulation in Development and Cancer, IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Milano, Italy
| |
Collapse
|
43
|
Klinke DJ. Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling. Mol Cell Oncol 2015; 3:e1029061. [PMID: 27308541 DOI: 10.1080/23723556.2015.1029061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/24/2022]
Abstract
In the past decade, cumulative clinical experiences with molecular targeted therapies and immunotherapies for cancer have promoted a shift in our conceptual understanding of cancer. This view shifted from viewing solid tumors as a homogeneous mass of malignant cells to viewing tumors as heterogeneous structures that are dynamically shaped by intercellular interactions among the variety of stromal, immune, and malignant cells present within the tumor microenvironment. As in any dynamic system, identifying how cells communicate to maintain homeostasis and how this communication is altered during oncogenesis are key hurdles for developing therapies to restore normal tissue homeostasis. Here, I discuss tissues as dynamic systems, using the mammary gland as an example, and the evolutionary concepts applied to oncogenesis. Drawing from these concepts, I present 2 competing hypotheses for how intercellular communication might be altered during oncogenesis. As an initial test of these competing hypotheses, a recent secretome comparison between normal human mammary and HER2+ breast cancer cell lines suggested that the particular proteins secreted by the malignant cells reflect a convergent evolutionary path associated with oncogenesis in a specific anatomical niche, despite arising in different individuals. Overall, this study illustrates the emerging power of secretome proteomics to probe, in an unbiased way, how intercellular communication changes during oncogenesis.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center; West Virginia University, Morgantown, WV USA; Department of Microbiology, Immunology, & Cell Biology; West Virginia University, Morgantown, WV USA
| |
Collapse
|
44
|
Helland T, Gjerde J, Dankel S, Fenne IS, Skartveit L, Drangevåg A, Bozickovic O, Flågeng MH, Søiland H, Mellgren G, Lien EA. The active tamoxifen metabolite endoxifen (4OHNDtam) strongly down-regulates cytokeratin 6 (CK6) in MCF-7 breast cancer cells. PLoS One 2015; 10:e0122339. [PMID: 25867603 PMCID: PMC4395096 DOI: 10.1371/journal.pone.0122339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction Tamoxifen is an anti-estrogen drug used in treatment of Estrogen Receptor (ER) positive breast cancer. Effects and side effects of tamoxifen is the sum of tamoxifen and all its metabolites. 4-Hydroxytamoxifen (4OHtam) and 4-hydroxy-N-demethyltamoxifen (4OHNDtam, endoxifen) both have ER affinity exceeding that of the parent drug tamoxifen. 4OHNDtam is considered the main active metabolite of tamoxifen. Ndesmethyltamoxifen (NDtam) is the major tamoxifen metabolite. It has low affinity to the ER and is not believed to influence tumor growth. However, NDtam might mediate adverse effects of tamoxifen treatment. In this study we investigated the gene regulatory effects of the three metabolites of tamoxifen in MCF-7 breast cancer cells. Material and Methods Using concentrations that mimic the clinical situation we examined effects of 4OHtam, 4OHNDtam and NDtam on global gene expression in 17β-estradiol (E2) treated MCF-7 cells. Transcriptomic responses were assessed by correspondence analysis, differential expression, gene ontology analysis and quantitative real time PCR (Q-rt-PCR). E2 deprivation and knockdown of Steroid Receptor Coactivator-3 (SRC-3)/Amplified in Breast Cancer 1 (AIB1) mRNA in MCF-7 cells were performed to further characterize specific effects on gene expression. Results 4OHNDtam and 4OHtam caused major changes in gene expression compared to treatment with E2 alone, with a stronger effect of 4OHNDtam. NDtam had nearly no effect on the global gene expression profile. Treatment of MCF-7 cells with 4OHNDtam led to a strong down-regulation of the CytoKeratin 6 isoforms (KRT6A, KRT6B and KRT6C). The CytoKeratin 6 mRNAs were also down-regulated in MCF-7 cells after E2 deprivation and after SRC-3/AIB1 knockdown. Conclusion Using concentrations that mimic the clinical situation we report global gene expression changes that were most pronounced with 4OHNDtam and minimal with NDtam. Genes encoding CytoKeratin 6, were highly down-regulated by 4OHNDtam, as well as after E2 deprivation and knockdown of SRC-3/AIB1, indicating an estrogen receptor-dependent regulation.
Collapse
Affiliation(s)
- Thomas Helland
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Jennifer Gjerde
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon Dankel
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingvild S. Fenne
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Linn Skartveit
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Andreas Drangevåg
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olivera Bozickovic
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marianne Hauglid Flågeng
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ernst A. Lien
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
45
|
Xilonix, a novel true human antibody targeting the inflammatory cytokine interleukin-1 alpha, in non-small cell lung cancer. Invest New Drugs 2015; 33:621-31. [PMID: 25822109 DOI: 10.1007/s10637-015-0226-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/04/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Advanced non-small cell lung cancer (NSCLC) patients were treated as part of a Phase I dose escalation and expansion study evaluating a true human monoclonal antibody targeting IL-1α (Xilonix), which is intended to modulate the malignant phenotype-inhibiting tumor growth, spread and offering relief of symptoms. METHODS Sixteen NSCLC patients were included. Patients failed a median of 4 chemotherapy regimens, including 10/16 failing anti-EGFR therapy. Disease progression was evaluated using a multi-modal approach: tumor response, patient reported outcomes (EORTC-QLQC30), and lean body mass (LBM). Patients received infusions every 2 or 3 weeks until progression, and were followed 24 months to assess survival. RESULTS There were no infusion reactions, dose-limiting toxicities, or deaths due to therapy. Albeit not statistically significant, there was a trend in IL-6 (-2.6 ± 18.5 (0.1 [-2.8-2.4]), platelet counts (-11 ± 54 (-4[-36.0-1.0]), CRP (-3.3 ± 30.2 (0.4 [-10.7-1.8]) and LBM (1.0 ± 2.5 (0.4 [-0.5-2.6]). Self-reported outcomes revealed reductions in pain, fatigue and improvement in appetite. Median survival was 7.6 (IQR 4.4-11.5) months, stratification based on prior anti-EGFR therapy revealed a median survival of 9.4 months (IQR 7.6-12.5) for those pretreated (N = 10) versus a survival of 4.8 months (IQR 4.3-5.7) for those without (N = 6, logrank p = 0.187). CONCLUSION Xilonix was well tolerated, with gains in LBM and improvement in symptoms suggesting a clinically important response. Although not statistically significant, the survival outcomes observed for patients with and without prior anti-EGFR therapy raises intriguing questions about the potential synergy of IL-1α blockade and anti-EGFR therapy. Further study for this agent in NSCLC is warranted.
Collapse
|
46
|
Inoue M, Mimura K, Izawa S, Shiraishi K, Inoue A, Shiba S, Watanabe M, Maruyama T, Kawaguchi Y, Inoue S, Kawasaki T, Choudhury A, Katoh R, Fujii H, Kiessling R, Kono K. Expression of MHC Class I on breast cancer cells correlates inversely with HER2 expression. Oncoimmunology 2014; 1:1104-1110. [PMID: 23170258 PMCID: PMC3494624 DOI: 10.4161/onci.21056] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
HER2 is a promising target for immunotherapeutic interventions with T cell-based approaches since it is amplified and overexpressed in 20–30% of breast cancers. However, several previous studies including ours showed that HER2-overexpressing tumors may escape cytotoxic T lymphocyte-mediated lysis by downregulating MHC Class I and components of the antigen-processing machinery. The aims of the present study were to analyze the relationship between HER2 and MHC Class I expression and to elucidate the mechanisms underlying MHC Class I downregulation in breast cancer. We explored expression of HER2, MHC Class I, PTEN, Ki67, estrogen and progesterone expression in 70 breast cancer patients by immunohistochemistry (IHC) and analyzed their correlation. We also explored the components of the signal transduction pathway that are involved in the regulation of MHC Class I expression using small-interfering RNAs targeting HER2 as well as an inhibitor of HER2 signaling. HER2 expression in breast cancers correlated inversely with MHC Class I expression analyzed by IHC. HER2 depletion by small-interfering RNAs resulted in MHC Class I upregulation. Moreover, MHC Class I expression on breast cancer cell lines was upregulated by PD98059, an inhibitor of mitogen-associated protein kinases, in a dose-dependent manner. Thus, agents that target the MAPK signaling pathway may increase MHC Class I expression in breast cancer cells.
Collapse
Affiliation(s)
- Masayuki Inoue
- First Department of Surgery; University of Yamanashi; Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kiessling R, Okita R, Mougiakakos D, Mao Y, Sarhan D, Wennerberg E, Seliger B, Lundqvist A, Mimura K, Kono K. Opposing consequences of signaling through EGF family members: Escape from CTLs could be a bait for NK cells. Oncoimmunology 2014; 1:1200-1201. [PMID: 23170279 PMCID: PMC3494645 DOI: 10.4161/onci.20685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oncogenes have been traditionally viewed as molecular drivers for tumor growth and survival. Recent evidence indicates that oncogenes may facilitate the escape of malignant cells from immune recognition and elimination. In this article, we discuss the implications of the overexpression of epidermal growth factor receptor (EGFR) family members on immune escape of tumors and immunotherapy.
Collapse
Affiliation(s)
- Rolf Kiessling
- Department of Oncology and Pathology; Immune and Gene Therapy Laboratory; Cancer Center Karolinska; Karolinska Institutet; Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
For decades the primary available cancer therapies were relatively nonspecific cytotoxic agents which, while effective in some patients, were limited by narrow therapeutic indices, extensive toxicity and development of resistance, likely due to tumor heterogeneity. Although these chemotherapies remain common tools of conventional treatment, the approval of a growing number of tumor antigen (TA)-specific monoclonal antibodies (mAbs) by the US Food and Drug Administration has driven a shift in the paradigm of cancer therapy. For a subset of patients with lymphoma, colorectal, head and neck, and breast cancers, the inclusion of rituximab (anti-CD20), cetuximab (anti-human epidermal growth factor 1), and trastuzumab (anti-human epidermal growth factor 2) has resulted in overall improved clinical response rates and survival advantages. The mechanisms that contribute to these effects are limited not only to inhibition of signaling pathways but also include cell-mediated cytotoxicity by innate immune cells and priming of effector cells of adoptive immunity triggered by the TA-specific mAb. However, as the use of these therapeutic mAbs has become more widespread, it has been observed that there is significant variability of response in patients treated with these agents. Thus, the factors that mediate this variability in clinical responses must be elucidated to optimize the use of TA-specific mAbs.
Collapse
Affiliation(s)
- Sumita Trivedi
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hyun-Bae Jie
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA; Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA.
| |
Collapse
|
49
|
Klinke DJ, Kulkarni YM, Wu Y, Byrne-Hoffman C. Inferring alterations in cell-to-cell communication in HER2+ breast cancer using secretome profiling of three cell models. Biotechnol Bioeng 2014; 111:1853-63. [PMID: 24752654 DOI: 10.1002/bit.25238] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/01/2014] [Accepted: 03/10/2014] [Indexed: 01/14/2023]
Abstract
Challenges in demonstrating durable clinical responses to molecular-targeted therapies have sparked a re-emergence in viewing cancer as an evolutionary process. In somatic evolution, cellular variants are introduced through a random process of somatic mutation and are selected for improved fitness through a competition for survival. In contrast to Darwinian evolution, cellular variants that are retained may directly alter the fitness competition. If cell-to-cell communication is important for selection, the biochemical cues secreted by malignant cells that emerge should be altered to bias this fitness competition. To test this hypothesis, we compared the proteins secreted in vitro by two human HER2+ breast cancer cell lines (BT474 and SKBR3) relative to a normal human mammary epithelial cell line (184A1) using a proteomics workflow that leveraged two-dimensional gel electrophoresis (2DE) and MALDI-TOF mass spectrometry. Supported by the 2DE secretome maps and identified proteins, the two breast cancer cell lines exhibited secretome profiles that were similar to each other and, yet, were distinct from the 184A1 secretome. Using protein-protein interaction and pathway inference tools for functional annotation, the results suggest that all three cell lines secrete exosomes, as confirmed by scanning electron microscopy. Interestingly, the HER2+ breast cancer cell line exosomes are enriched in proteins involved in antigen-processing and presentation and glycolytic metabolism. These pathways are associated with two of the emerging hallmarks of cancer: evasion of tumor immunosurveillance and deregulating cellular energetics.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, P.O. Box 6102, Morgantown, West Virginia; Department of Microbiology, Immunology, & Cell Biology, West Virginia University, Morgantown, West Virginia.
| | | | | | | |
Collapse
|
50
|
Induction of Wnt-inducible signaling protein-1 correlates with invasive breast cancer oncogenesis and reduced type 1 cell-mediated cytotoxic immunity: a retrospective study. PLoS Comput Biol 2014; 10:e1003409. [PMID: 24426833 PMCID: PMC3890420 DOI: 10.1371/journal.pcbi.1003409] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/06/2013] [Indexed: 02/06/2023] Open
Abstract
Innate and type 1 cell-mediated cytotoxic immunity function as important extracellular control mechanisms that maintain cellular homeostasis. Interleukin-12 (IL12) is an important cytokine that links innate immunity with type 1 cell-mediated cytotoxic immunity. We recently observed in vitro that tumor-derived Wnt-inducible signaling protein-1 (WISP1) exerts paracrine action to suppress IL12 signaling. The objective of this retrospective study was three fold: 1) to determine whether a gene signature associated with type 1 cell-mediated cytotoxic immunity was correlated with overall survival, 2) to determine whether WISP1 expression is increased in invasive breast cancer, and 3) to determine whether a gene signature consistent with inhibition of IL12 signaling correlates with WISP1 expression. Clinical information and mRNA expression for genes associated with anti-tumor immunity were obtained from the invasive breast cancer arm of the Cancer Genome Atlas study. Patient cohorts were identified using hierarchical clustering. The immune signatures associated with the patient cohorts were interpreted using model-based inference of immune polarization. Reverse phase protein array, tissue microarray, and quantitative flow cytometry in breast cancer cell lines were used to validate observed differences in gene expression. We found that type 1 cell-mediated cytotoxic immunity was correlated with increased survival in patients with invasive breast cancer, especially in patients with invasive triple negative breast cancer. Oncogenic transformation in invasive breast cancer was associated with an increase in WISP1. The gene expression signature in invasive breast cancer was consistent with WISP1 as a paracrine inhibitor of type 1 cell-mediated immunity through inhibiting IL12 signaling and promoting type 2 immunity. Moreover, model-based inference helped identify appropriate immune signatures that can be used as design constraints in genetically engineering better pre-clinical models of breast cancer. Effective anti-tumor immunity is proportional to the number and to the cytotoxic activity of immune cells that enter the tumor microenvironment. Recent advances in cancer immunotherapy stem from increasing the number of tumor-infiltrating immune cells by inhibiting immune checkpoints or adoptive T cell therapy. Here, we used computational methods to identify potential mechanisms present within the tumor microenvironment that limit the efficacy of anti-tumor immunity. Specifically, we found that oncogenic transformation is associated with the induction of tumor-derived biochemical cues, namely Wnt-inducible signaling protein-1, that locally suppress anti-tumor immunity. Moreover, we used model-based inference to demonstrate that a gene signature consistent with effective type 1 cell-mediated cytotoxic immunity is a predictor of overall survival independent of molecular pathology. Interestingly, patients with triple negative breast cancer were more enriched in the cohort associated with type 1 cell-mediated immunity. As this immune gene signature is not present in current genetically engineered mouse models of breast cancer, the results help identify design constraints for engineering better pre-clinical models of breast cancer. Demonstrating efficacy in pre-clinical animal models is a pre-requisite for bringing improved cancer immunotherapies into the clinic.
Collapse
|