1
|
Seyler T, Mazumder S, Ahamed R, Zhu W, Blount BC, Apelberg BJ, Wang L. Tobacco Smoke Is a Major Source of Aromatic Amine Exposure in U.S. Adults: 2013-2014 National Health and Nutrition Examination Survey (NHANES). Cancer Epidemiol Biomarkers Prev 2023; 32:OF1-OF9. [PMID: 37195136 PMCID: PMC10654254 DOI: 10.1158/1055-9965.epi-23-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Cigarette smoking increases the risk of cancer, cardiovascular diseases, and premature death. Aromatic amines (AA) are found in cigarette smoke and are well-established human bladder carcinogens. METHODS We measured and compared total urinary levels of 1-aminonaphthalene (1AMN), 2-aminonaphthalene (2AMN), and 4-aminobiphenyl (4ABP) in adults who smoked cigarettes exclusively and in adult nonusers of tobacco products from a nationally representative sample of non-institutionalized U.S. population in the 2013-2014 National Health and Nutrition Examination Survey. RESULTS Sample-weighted geometric mean concentrations of AAs in adults who smoked cigarettes exclusively compared with adult nonusers were 30 times higher for 1AMN and 4 to 6 times higher for 2AMN and 4ABP. We evaluated the association of tobacco-smoke exposure with urinary AAs using sample-weighted multiple linear regression models to control for age, sex, race/ethnicity, diet, and urinary creatinine. Secondhand smoke exposure status was categorized using serum cotinine (SCOT) among adult nonusers (SCOT ≤ 10 ng/mL). The exposure for adults who smoked cigarettes exclusively (SCOT > 10 ng/mL) was categorized on the basis of the average number of self-reported cigarettes smoked per day (CPD) in the five days prior to urine collection. The regression models show AAs concentration increased with increasing CPD (P < 0.001). Dietary-intake variables derived from the 24-hours recall questionnaire were not consistently significant predictors of urinary AAs. CONCLUSIONS This is the first characterized total urinary AA concentrations of the U.S. adult non-institutionalized population. Our analyses show that smoking status is a major contributor to AA exposures. IMPACT These data provide a crucial baseline for exposure to three AAs in U.S. non-institutionalized adults.
Collapse
Affiliation(s)
- Tiffany Seyler
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Shrila Mazumder
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Rayaj Ahamed
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Wanzhe Zhu
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Benjamin J Apelberg
- Center of Tobacco Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Lanqing Wang
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
2
|
Peluso M, Munnia A, Russo V, Galli A, Pala V, van der Schouw YT, Schulze MB, Weiderpass E, Tumino R, Saieva C, Exezarreta Pilar A, Aune D, Heath AK, Aglago E, Agudo A, Panico S, Petersen KEN, Tjønneland A, Cirera L, Rodriguez-Barranco M, Katzke V, Kaaks R, Ricceri F, Milani L, Vineis P, Sacerdote C. Cruciferous Vegetable Intake and Bulky DNA Damage within Non-Smokers and Former Smokers in the Gen-Air Study (EPIC Cohort). Nutrients 2022; 14:2477. [PMID: 35745207 PMCID: PMC9231287 DOI: 10.3390/nu14122477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Epidemiologic studies have indicated that cruciferous vegetables can influence the cancer risk; therefore, we examined with a cross-sectional approach the correlation between the frequent consumption of the total cruciferous vegetables and the formation of bulky DNA damage, a biomarker of carcinogen exposure and cancer risk, in the Gen-Air study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. DNA damage measurements were performed in the peripheral blood of 696 of those apparently healthy without cancer controls, including 379 never-smokers and 317 former smokers from seven European countries by the 32P-postlabeling assay. In the Gen-Air controls, the median intake of cruciferous vegetables was 6.16 (IQR 1.16−13.66) g/day, ranging from 0.37 (IQR 0−6.00) g/day in Spain to 11.34 (IQR 6.02−16.07) g/day in the UK. Based on this information, participants were grouped into: (a) high consumers (>20 g/day), (b) medium consumers (3−20 g/day) and (c) low consumers (<3.0 g/day). Overall, low cruciferous vegetable intake was correlated with a greater frequency of bulky DNA lesions, including benzo(a)pyrene, lactone and quinone-adducts and bulky oxidative lesions, in the adjusted models. Conversely, a high versus low intake of cruciferous vegetables was associated with a reduction in DNA damage (up to a 23% change, p = 0.032); this was particularly evident in former smokers (up to a 40% change, p = 0.008). The Generalized Linear Regression models indicated an overall Mean Ratio between the high and the low consumers of 0.78 (95% confidence interval, 0.64−0.97). The current study suggests that a higher intake of cruciferous vegetables is associated with a lower level of bulky DNA adducts and supports the potential for cancer prevention strategies through dietary habit changes aimed at increasing the consumption of cruciferous vegetables.
Collapse
Affiliation(s)
- Marco Peluso
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy; (A.M.); (V.R.)
| | - Armelle Munnia
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy; (A.M.); (V.R.)
| | - Valentina Russo
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy; (A.M.); (V.R.)
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy;
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy;
| | - Yvonne T. van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands;
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE ONLUS, 97100 Ragusa, Italy;
| | - Calogero Saieva
- Cancer Risk Factors and Life-Style Epidemiology Unit, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy;
| | - Amiano Exezarreta Pilar
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 20014 San Sebastian, Spain;
- Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, 20014 San Sebastián, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK; (D.A.); (A.K.H.); (E.A.)
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK; (D.A.); (A.K.H.); (E.A.)
| | - Elom Aglago
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK; (D.A.); (A.K.H.); (E.A.)
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, 08908 L’Hospitalet de Llobregat, Spain;
- Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L’Hospitalet de Llobregat, Spain
| | - Salvatore Panico
- Department of Clinical Medicine and Surgery, Federico II University, 80138 Naples, Italy;
| | | | - Anne Tjønneland
- Danish Cancer Society Research Center, Diet, Cancer and Health, DK-2100 Copenhagen, Denmark; (K.E.N.P.); (A.T.)
- Department of Public Health, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lluís Cirera
- Department of Epidemiology, Regional Health Council-IMIB–Arrixaca, 30120 Murcia, Spain;
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28028 Madrid, Spain;
- Department of Social and Health Sciences, Murcia University, 30100 Murcia, Spain
| | - Miguel Rodriguez-Barranco
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28028 Madrid, Spain;
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (V.K.); (R.K.)
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (V.K.); (R.K.)
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (F.R.); (L.M.)
- Unit of Cancer Epidemiology, Città Della Salute e Della Scienza University-Hospital and Center for Cancer Prevention (CPO), 10126 Turin, Italy;
| | - Lorenzo Milani
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (F.R.); (L.M.)
| | - Paolo Vineis
- MRC Centre for Environment and Health School of Public Health, Imperial College LondonSt Mary’s Campus, Norfolk Place, London W2 1PG, UK;
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città Della Salute e Della Scienza University-Hospital and Center for Cancer Prevention (CPO), 10126 Turin, Italy;
| |
Collapse
|
3
|
Myers SR, Ali Y. Determination of Tobacco Specific Hemoglobin Adducts in Smoking Mothers and New Born Babies by Mass Spectrometry. Biomark Insights 2017. [DOI: 10.1177/117727190700200027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biological markers for assessment of exposure to a variety of environmental carcinogens has been widely applied in both basic as well as clinical research. Exposure to tobacco smoke presents an ideal environment with which to develop, characterize, and refine biological markers, especially of those carcinogens found in tobacco. In the present study, a sensitive gas chromatography/mass spectrometry (GC/MS) method was developed to measure nitrosamine- hemoglobin adducts (HPB-Hb (4-Hydroxy-3-pyridinyl-1-butanone) at trace levels in red blood cells of both African-American and Caucasian smoking and nonsmoking mothers and their infants. Gas chromatographic and mass spectrometric methods with chemical ionization (CI) of methane reagent gas in both positive and negative ion mode as well as electron ionization (EI) were studied to determine differences in sensitivity of detection among the various ionization methods. Detection limits using both positive and negative chemical ionization modes were found to be 30 femtomoles of HPB, whereas detection using electron impact modes yielded a detection limit of 80 femtomoles of HBP. Comparative derivatization of HPB was performed using O-bis(Trimethylsilyl)-trifluoroacetamide (BSTFA) and 2, 3, 4, 5, 6-Pentafluorobenzoylchloride (PFBC). Both Negative CI and Positive CI modes of analysis were compared to the more widely accepted EI modes of mass spectrometric analysis.
Collapse
Affiliation(s)
- Steven R. Myers
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 500 South Preston St. Louisville, KY 40292
| | - Yeakub Ali
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 500 South Preston St. Louisville, KY 40292
| |
Collapse
|
4
|
Abstract
Arylamines and nitroarenes are intermediates in the production of pharmaceuticals, dyes, pesticides, and plastics and are important environmental and occupational pollutants. N-Hydroxyarylamines are the toxic common intermediates of arylamines and nitroarenes. N-Hydroxyarylamines and their derivatives can form adducts with hemoglobin (Hb-adducts), albumin, DNA, and tissue proteins in a dose-dependent manner. Most of the arylamine Hb-adducts are labile and undergo hydrolysis in vitro, by mild acid or base, to form the arylamines. According to current knowledge of arylamine adduct-formation, the hydrolyzable fraction is derived from the reaction products of the arylnitroso derivatives that yield arylsulfinamide adducts with cysteine. Hb-adducts are markers for the bioavailability of N-hydroxyarylamines. Hb-adducts of arylamines and nitroarenes have been used for many biomonitoring studies for over 30 years. Hb-adducts reflect the exposure history of the last four months. Biomonitoring of urinary metabolites is a less invasive process than biomonitoring blood protein adducts, and urinary metabolites have served as short-lived biomarkers of exposure to these hazardous chemicals. However, in case of intermittent exposure, urinary metabolites may not be detected, and subjects may be misclassified as nonexposed. Arylamines and nitroarenes and/or their metabolites have been measured in urine, especially to monitor the exposure of workers. This review summarizes the results of human biomonitoring studies involving urinary metabolites and Hb-adducts of arylamines and nitroarenes. In addition, studies about the relationship between Hb-adducts and diseases are summarized.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology , Casella Postale 108, CH-6780 Airolo, Switzerland.,Alpine Institute of Chemistry and Toxicology , CH-6718 Olivone, Switzerland.,Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität , D-80336 München, Germany
| |
Collapse
|
5
|
Tae B, Oliveira KC, Conceição RRD, Valenti VE, de Souza JS, Laureano-Melo R, Sato MA, Maciel RMDB, Giannocco G. Evaluation of globins expression in brain, heart, and lung in rats exposed to side stream cigarette smoke. ENVIRONMENTAL TOXICOLOGY 2017; 32:1252-1261. [PMID: 27441981 DOI: 10.1002/tox.22321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
The side stream cigarette smoke (SSCS) is a contributing factor in the pathogenesis of cigarette smoking-induced toxicity. Hemoglobin (Hb), myoglobin (Mb), neuroglobin (Ngb), and cytoglobin (Cygb) are globins with different distributions and functions in the tissues and have similar actions by providing O2 (oxygen) for respiratory chain, detoxification of ROS and nitric oxide (NO), and protect tissues against irreversible lesions. We aimed to investigate the effects of SSCS exposure on gene and protein expression of Ngb, Cygb, and Mb in different tissue. The Ngb and Cygb gene and protein expression in the cerebral cortex increased after 1 week of rat exposure to SSCS. In hippocampus, the Ngb gene and protein expression increased after 1 week or more of exposure and no change was observed in Cygb gene and protein expression. In myocardium, Mb and Cygb gene expression increased at 1 and 4 weeks of exposure, while protein expression of both increased at 1, 2, 3, and 4 weeks. In lung, observed an increase in Cygb gene and protein expression after 2, 3, and 4 weeks of exposure. The findings suggest that SSCS modulates Ngb, Cygb, and Mb in central and peripheral tissue © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1252-1261, 2017.
Collapse
Affiliation(s)
- Barbara Tae
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Kelen Carneiro Oliveira
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Departament of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Monica Akemi Sato
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | | | - Gisele Giannocco
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Departament of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| |
Collapse
|
6
|
Munnia A, Giese RW, Polvani S, Galli A, Cellai F, Peluso MEM. Bulky DNA Adducts, Tobacco Smoking, Genetic Susceptibility, and Lung Cancer Risk. Adv Clin Chem 2017. [PMID: 28629590 DOI: 10.1016/bs.acc.2017.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The generation of bulky DNA adducts consists of conjugates formed between large reactive electrophiles and DNA-binding sites. The term "bulky DNA adducts" comes from early experiments that employed a 32P-DNA postlabeling approach. This technique has long been used to elucidate the association between adducts and carcinogen exposure in tobacco smoke studies and assess the predictive value of adducts in cancer risk. Molecular data showed increased DNA adducts in respiratory tracts of smokers vs nonsmokers. Experimental studies and meta-analysis demonstrated that the relationship between adducts and carcinogens was linear at low doses, but reached steady state at high exposure, possibly due to metabolic and DNA repair pathway saturation and increased apoptosis. Polymorphisms of metabolic and DNA repair genes can increase the effects of environmental factors and confer greater likelihood of adduct formation. Nevertheless, the central question remains as to whether bulky adducts cause human cancer. If so, lowering them would reduce cancer incidence. Pooled and meta-analysis has shown that smokers with increased adducts have increased risk of lung cancer. Adduct excess in smokers, especially in prospective longitudinal studies, supports their use as biomarkers predictive of lung cancer.
Collapse
Affiliation(s)
- Armelle Munnia
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, Florence, Italy
| | - Roger W Giese
- Bouve College of Health Sciences, Barnett Institute, Northeastern University, Boston, MA, United States
| | - Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Filippo Cellai
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, Florence, Italy
| | - Marco E M Peluso
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, Florence, Italy.
| |
Collapse
|
7
|
Epidemiological evidence on environmental tobacco smoke and cancers other than lung or breast. Regul Toxicol Pharmacol 2016; 80:134-63. [PMID: 27321059 DOI: 10.1016/j.yrtph.2016.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 02/07/2023]
Abstract
We reviewed 87 epidemiological studies relating environmental tobacco smoke (ETS) exposure to risk of cancer other than lung or breast in never smoking adults. This updates a 2002 review which also considered breast cancer. Meta-analysis showed no significant relationship with ETS for nasopharynx cancer, head and neck cancer, various digestive cancers (stomach, rectum, colorectal, liver, pancreas), or cancers of endometrium, ovary, bladder and brain. For some cancers (including oesophagus, colon, gall bladder and lymphoma) more limited data did not suggest a relationship. An increased cervix cancer risk (RR 1.58, 95%CI 1.29-1.93, n = 17 independent estimates), reducing to 1.29 (95%CI 1.01-1.65) after restriction to five estimates adjusting for HPV infection or sexual activity suggests a causal relationship, as do associations with nasosinus cancer observed in 2002 (no new studies since), and less so kidney cancer (RR 1.33, 95%CI 1.04-1.70, n = 6). A weaker association with total cancer (RR 1.13, 95%CI 1.03-1.35, n = 19) based on heterogeneous data is inconclusive. Inadequate confounder control, recall bias, publication bias, and occasional reports of implausibly large RRs in individual studies contribute to our conclusion that the epidemiological evidence does not convincingly demonstrate that ETS exposure causes any of the cancers studied.
Collapse
|
8
|
Peluso MEM, Munnia A. DNA adducts and the total sum of at-risk DNA repair alleles in the nasal epithelium, a target tissue of tobacco smoking-associated carcinogenesis. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50050k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
9
|
Peluso MEM, Munnia A, Bollati V, Srivatanakul P, Jedpiyawongse A, Sangrajrang S, Ceppi M, Giese RW, Boffetta P, Baccarelli AA. Aberrant methylation of hypermethylated-in-cancer-1 and exocyclic DNA adducts in tobacco smokers. Toxicol Sci 2013; 137:47-54. [PMID: 24154486 DOI: 10.1093/toxsci/kft241] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tobacco smoke has been shown to produce both DNA damage and epigenetic alterations. However, the potential role of DNA damage in generating epigenetic changes is largely underinvestigated in human studies. We examined the effects of smoking on the levels of DNA methylation in genes for tumor protein p53, cyclin-dependent kinase inhibitor2A, hypermethylated-in-cancer-1 (HIC1), interleukin-6, Long Interspersed Nuclear Element type1, and Alu retrotransposons in blood of 177 residents in Thailand using bisulfite-PCR andpyrosequencing. Then, we analyzed the relationship of this methylation with the oxidative DNA adduct, M₁dG (a malondialdehyde adduct), measured by ³²P-postlabeling. Multivariate statistical analyses showed that HIC1 methylation levels were significantly increased in smokers compared with nonsmokers (p ≤ .05). A dose response was observed, with the highest HIC1 methylation levels in smokers of ≥ 10 cigarettes/day relative to nonsmokers and intermediate values in smokers of 1-9 cigarettes/day (p for trend ≤ .001). No additional relationships were observed. We also evaluated correlations between M₁dG and the methylation changes at each HIC1 CpG site individually. The levels of this adduct in smokers showed a significant linear correlation with methylation at one of the 3 CpGs evaluated in HIC1: hypermethylation at position 1904864340 was significantly correlated with the adduct M₁dG (covariate-adjusted regression coefficient (β) = .224 ± .101 [SE], p ≤ .05). No other correlations were detected. Our study extends prior work by others associating hypermethylation of HIC1 with smoking; shows that a very specific hypermethylation event can arise from smoking; and encourages future studies that explore a possible role for M₁dG in connecting smoking to this latter hypermethylation.
Collapse
Affiliation(s)
- Marco E M Peluso
- * Cancer Risk Factor Branch, Cancer Prevention and Research Institute, Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Peluso MEM, Munnia A, Srivatanakul P, Jedpiyawongse A, Sangrajrang S, Ceppi M, Godschalk RWL, van Schooten FJ, Boffetta P. DNA adducts and combinations of multiple lung cancer at-risk alleles in environmentally exposed and smoking subjects. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:375-383. [PMID: 23797975 DOI: 10.1002/em.21788] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
Interindividual variation in DNA adduct levels in individuals exposed to similar amounts of environmental carcinogens may be due to genetic variability. We analysed the influence of genes involved in determining/modifying DNA damage, including microsomal epoxide hydrolase1 (EPHX1) His139Arg, N-acetyl-transferase, NAD(P)H:quinone oxidoreductase1 (NQO1) Pro187Ser, manganese superoxide dismutase2 (MnSOD2) Val16Ala, and apurinic/apyrimidinic endonuclease1 (APE1) Asp148Glu polymorphisms in blood of 120 smokers. Subsequently, we examined the effects of the combinations of the variant alleles of EPHX, NQO1 and MnSOD2 together with the wild type allele of APE1 on DNA damage by calculating the "sum of at-risk alleles." We reviewed the studies examining the relationships of DNA adducts with at-risk alleles in environmentally exposed subjects. Our findings showed that smokers carrying the EPHX1-139Arg and the NQO1-187Ser variants were significantly more likely to have higher adduct levels. Null associations were found with the other variants. Nevertheless, DNA adduct levels in smokers with ≥5 at-risk alleles were significantly different from those with fewer than two alleles. A similar picture emerged from studies of DNA adducts and at-risk alleles in environmentally exposed and smoking subjects. Certain at-risk allele combinations may confer a greater likelihood of increased levels of adducts after environmental insults. The increase in DNA adduct levels in susceptible subjects exposed to environmental carcinogens may reflect changes in the mechanisms that protect cells from the accumulation of genetic damage. Alterations of the physiological processes designed to maintain homeostasis may reduce the individual "genotoxic tolerance" to environmental challenges and result in phenotypes characterized by high levels of DNA adducts.
Collapse
Affiliation(s)
- Marco E M Peluso
- Cancer Risk Factor Branch, Cancer Prevention and Research Institute, Florence, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Phillips DH, Venitt S. DNA and protein adducts in human tissues resulting from exposure to tobacco smoke. Int J Cancer 2012; 131:2733-53. [PMID: 22961407 DOI: 10.1002/ijc.27827] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/03/2012] [Indexed: 12/15/2022]
Abstract
Tobacco smoke contains a variety of genotoxic carcinogens that form adducts with DNA and protein in the tissues of smokers. Not only are these biochemical events relevant to the carcinogenic process, but the detection of adducts provides a means of monitoring exposure to tobacco smoke. Characterization of smoking-related adducts has shed light on the mechanisms of smoking-related diseases and many different types of smoking-derived DNA and protein adducts have been identified. Such approaches also reveal the potential harm of environmental tobacco smoke (ETS) to nonsmokers, infants and children. Because the majority of tobacco-smoke carcinogens are not exclusive to this source of exposure, studies comparing smokers and nonsmokers may be confounded by other environmental sources. Nevertheless, certain DNA and protein adducts have been validated as biomarkers of exposure to tobacco smoke, with continuing applications in the study of ETS exposures, cancer prevention and tobacco product legislation. Our article is a review of the literature on smoking-related adducts in human tissues published since 2002.
Collapse
Affiliation(s)
- David H Phillips
- Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King's College London, London, United Kingdom.
| | | |
Collapse
|
12
|
Pavanello S, Lotti M. Biological monitoring of carcinogens: current status and perspectives. Arch Toxicol 2011; 86:535-41. [PMID: 22159923 DOI: 10.1007/s00204-011-0793-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/25/2011] [Indexed: 12/14/2022]
Abstract
Biomonitoring exposures to carcinogens is common practice and a variety of biomarkers have been developed to assess both exposures and biochemical/biological effects. However, their clinical and preventive relevance is still uncertain. The understanding of cancer as a genetic disease has dramatically evolved during last decades, showing that cancer cell types acquire their characteristics with different strategies, time frames and microenvironments. Therefore, the place of current biomarkers within this complex scenario of gene-environment interactions leading to cancer cannot be defined. Reasons are manifold. Most studies assessed cancer risk on a group basis through snapshots taken at unknown time-points of the postulated chain of events. Little attention has been paid to the variety and variability of exposures, and no prospective study validated the indicators of biochemical/biological effects. New opportunities and suggestions for biomonitoring exposures to carcinogens could derive from exploring the exposome that combines exposures from all sources both external and internal. The discovery of new biomarkers and the identification of relevant gene-specific pathways could be achieved through metabolomic and genome-wide studies. In conclusion, it is possible to envisage personalized biomonitoring procedures, such as those already implemented in the context of nutrition and clinical oncology.
Collapse
Affiliation(s)
- Sofia Pavanello
- Dipartimento di Medicina Ambientale e Sanità Pubblica, Università degli Studi Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | | |
Collapse
|
13
|
Wu KY, Chiang SY, Shih WC, Huang CCJ, Chen MF, Swenberg JA. The application of mass spectrometry in molecular dosimetry: ethylene oxide as an example. MASS SPECTROMETRY REVIEWS 2011; 30:733-756. [PMID: 21328599 DOI: 10.1002/mas.20299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mass spectrometry plays an increasingly important role in the search for and quantification of novel chemically specific biomarkers. The revolutionary advances in mass spectrometry instrumentation and technology empower scientists to specifically analyze DNA and protein adducts, considered as molecular dosimeters, derived from reactions of a carcinogen or its active metabolites with DNA or protein. Analysis of the adducted DNA bases and proteins can elucidate the chemically reactive species of carcinogens in humans and can serve as risk-associated biomarkers for early prediction of cancer risk. In this article, we review and compare the specificity, sensitivity, resolution, and ease-of-use of mass spectrometry methods developed to analyze ethylene oxide (EO)-induced DNA and protein adducts, particularly N7-(2-hydroxyethyl)guanine (N7-HEG) and N-(2-hydroxyethyl)valine (HEV), in human samples and in animal tissues. GC/ECNCI-MS analysis after HPLC cleanup is the most sensitive method for quantification of N7-HEG, but limited by the tedious sample preparation procedures. Excellent sensitivity and specificity in analysis of N7-HEG can be achieved by LC/MS/MS analysis if the mobile phase, the inlet (split or splitless), and the collision energy are properly optimized. GC/ECNCI-HRMS and GC/ECNCI-MS/MS analysis of HEV achieves the best performance as compared with GC/ECNCI-MS and GC/EI-MS. In conclusion, future improvements in high-throughput capabilities, detection sensitivity, and resolution of mass spectrometry will attract more scientists to identify and/or quantify novel molecular dosimeters or profiles of these biomarkers in toxicological and/or epidemiological studies.
Collapse
Affiliation(s)
- Kuen-Yuh Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
14
|
Yang M. A current global view of environmental and occupational cancers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2011; 29:223-249. [PMID: 21929381 DOI: 10.1080/10590501.2011.601848] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This review is focused on current information of avoidable environmental pollution and occupational exposure as causes of cancer. Approximately 2% to 8% of all cancers are thought to be due to occupation. In addition, occupational and environmental cancers have their own characteristics, e.g., specific chemicals and cancers, multiple factors, multiple causation and interaction, or latency period. Concerning carcinogens, asbestos/silica/wood dust, soot/polycyclic aromatic hydrocarbons [benzo(a) pyrene], heavy metals (arsenic, chromium, nickel), aromatic amines (4-aminobiphenyl, benzidine), organic solvents (benzene or vinyl chloride), radiation/radon, or indoor pollutants (formaldehyde, tobacco smoking) are mentioned with their specific cancers, e.g., lung, skin, and bladder cancers, mesothelioma or leukemia, and exposure routes, rubber or pigment manufacturing, textile, painting, insulation, mining, and so on. In addition, nanoparticles, electromagnetic waves, and climate changes are suspected as future carcinogenic sources. Moreover, the aspects of environmental and occupational cancers are quite different between developing and developed countries. The recent follow-up of occupational cancers in Nordic countries shows a good example for developed countries. On the other hand, newly industrializing countries face an increased burden of occupational and environmental cancers. Developing countries are particularly suffering from preventable cancers in mining, agriculture, or industries without proper implication of safety regulations. Therefore, industrialized countries are expected to educate and provide support for developing countries. In addition, citizens can encounter new environmental and occupational carcinogen nominators such as nanomaterials, electromagnetic wave, and climate exchanges. As their carcinogenicity or involvement in carcinogenesis is not clearly unknown, proper consideration for them should be taken into account. For these purposes, new technologies with a balance of environment and gene are required. Currently, various approaches with advanced technologies--genomics, exposomics, etc.--have accelerated development of new biomarkers for biological monitoring of occupational and environmental carcinogens. These advanced approaches are promising to improve quality of life and to prevent occupational and environmental cancers.
Collapse
Affiliation(s)
- Mihi Yang
- College of Pharmacy, Sookmyung Women's University, Chungpa-Dong, Yongsan-Gu, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Recent contributions of air- and biomarkers to the control of secondhand smoke (SHS): a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:648-82. [PMID: 21556172 PMCID: PMC3083663 DOI: 10.3390/ijerph8030648] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/12/2011] [Accepted: 01/21/2011] [Indexed: 11/25/2022]
Abstract
Since the publication of the US Surgeon General Reports in 1996 and 2006 and the report of the California Environmental Protection Agency in 1999, many reports have appeared on the contribution of air and biomarkers to different facets of the secondhand smoke (SHS) issue, which are the targets of this review. These recent studies have allowed earlier epidemiological surveys to be biologically validated, and their plausibility demonstrated, quantified the levels of exposure to SHS before the bans in various environments, showed the deficiencies of mechanical control methods and of partial bans and the frequently correct implementation of the efficient total bans. More stringent regulation remains necessary in the public domain (workplaces, hospitality venues, transport sector, etc.) in many countries. Personal voluntary protection efforts against SHS are also needed in the private domain (homes, private cars). The effects of SHS on the cardiovascular, respiratory and neuropsychic systems, on pregnancy and fertility, on cancers and on SHS genotoxicity are confirmed through experimental human studies and through the relationship between markers and prevalence of disease or of markers of disease risk.
Collapse
|
16
|
Schorp MK, Leyden DE. Biomonitoring of smoke constituents: exposure to 4-aminobiphenyl and 4-aminobiphenyl hemoglobin adduct levels in nonsmokers and smokers. Inhal Toxicol 2010; 22:725-37. [DOI: 10.3109/08958371003717043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Conlon MS, Johnson KC, Bewick MA, Lafrenie RM, Donner A. Smoking (active and passive), N-acetyltransferase 2, and risk of breast cancer. Cancer Epidemiol 2010; 34:142-9. [DOI: 10.1016/j.canep.2010.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 01/26/2010] [Accepted: 02/02/2010] [Indexed: 11/15/2022]
|
18
|
Rudin CM, Avila-Tang E, Harris CC, Herman JG, Hirsch FR, Pao W, Schwartz AG, Vahakangas KH, Samet JM. Lung cancer in never smokers: molecular profiles and therapeutic implications. Clin Cancer Res 2010; 15:5646-61. [PMID: 19755392 DOI: 10.1158/1078-0432.ccr-09-0377] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The majority of lung cancers are caused by long term exposure to the several classes of carcinogens present in tobacco smoke. Although a significant fraction of lung cancers in never smokers may also be attributable to tobacco, many such cancers arise in the absence of detectable tobacco exposure, and may follow a very different cellular and molecular pathway of malignant transformation. Recent studies summarized here suggest that lung cancers arising in never smokers have a distinct natural history, profile of oncogenic mutations, and response to targeted therapy. The majority of molecular analyses of lung cancer have focused on genetic profiling of pathways responsible for metabolism of primary tobacco carcinogens. Limited research has been conducted evaluating familial aggregation and genetic linkage of lung cancer, particularly among never smokers in whom such associations might be expected to be strongest. Data emerging over the past several years show that lung cancers in never smokers are much more likely to carry activating mutations of the epidermal growth factor receptor (EGFR), a key oncogenic factor and direct therapeutic target of several newer anticancer drugs. EGFR mutant lung cancers may represent a distinct class of lung cancers, enriched in the never-smoking population, and less clearly linked to direct tobacco carcinogenesis. These insights followed initial testing and demonstration of efficacy of EGFR-targeted drugs. Focused analysis of molecular carcinogenesis in lung cancers in never smokers is needed, and may provide additional biologic insight with therapeutic implications for lung cancers in both ever smokers and never smokers.
Collapse
Affiliation(s)
- Charles M Rudin
- Johns Hopkins University School of Medicine, David H. Koch Cancer Research Building, Room 544, 1550 Orleans Street, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rundle A, Richie J, Steindorf K, Peluso M, Overvad K, Raaschou-Nielsen O, Clavel-Chapelon F, Linseisen JP, Boeing H, Trichopoulou A, Palli D, Krogh V, Tumino R, Panico S, Bueno-De-Mesquita HB, Peeters PH, Lund E, Gonzalez CA, Martinez C, Dorronsoro M, Barricarte A, Tormo MJ, Quiros J, Agudo A, Berglund G, Jarvholm B, Bingham S, Key TJ, Gormally E, Saracci R, Kaaks R, Riboli E, Vineis P. Physical activity and lung cancer among non-smokers: a pilot molecular epidemiological study within EPIC. Biomarkers 2010; 15:20-30. [PMID: 20050820 DOI: 10.3109/13547500903186452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The association between physical activity, potential intermediate biomarkers and lung cancer risk was investigated in a study of 230 cases and 648 controls nested within the European Prospective Investigation of Cancer and Nutrition. Data on white blood cell aromatic-DNA adducts by (32)P-post-labelling and glutathione (GSH) in red blood cells were available from a subset of cases and controls. Compared with the first quartile, the fourth quartile of recreational physical activity was associated with a lower lung cancer risk (odds ratio (OR) 0.56, 95% confidence interval (CI) 0.35-0.90), higher GSH levels (+1.87 micromol GSH g(-1) haemoglobin, p = 0.04) but not with the presence of high levels of adducts (OR 1.05, 95% CI 0.38-2.86). Despite being associated with recreational physical activity, in these small-scale pilot analyses GSH levels were not associated with lung cancer risk (OR 0.95, 95% CI 0.84-1.07 per unit increase in GSH levels). Household and occupational activity was not associated with lung cancer risk or biomarker levels.
Collapse
Affiliation(s)
- Andrew Rundle
- Columbia University Mailman School of Public Health, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bernert JT, Gordon SM, Jain RB, Brinkman MC, Sosnoff CS, Seyler TH, Xia Y, McGuffey JE, Ashley DL, Pirkle JL, Sampson EJ. Increases in tobacco exposure biomarkers measured in non-smokers exposed to sidestream cigarette smoke under controlled conditions. Biomarkers 2009; 14:82-93. [PMID: 19330586 DOI: 10.1080/13547500902774613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
National surveys of the exposure of non-smokers to secondhand smoke based on serum cotinine analyses have consistently identified certain groups within the population including children, males and non-Hispanic Blacks as having relatively greater exposure. Although these differences in mean serum cotinine concentrations probably represent differences in exposure of individuals in their daily lives, it is also possible that metabolic or other differences in response might influence the results. To better define the nature of those findings, we have examined the response of 40 non-smokers including both men and women and African-Americans and whites to sidestream (SS) cigarette smoke generated by a smoking machine under controlled conditions. In this study, participants were exposed to aged, diluted SS smoke (ADSS) generated in an environmental chamber with a mean air nicotine concentration of 140 microg m(-3) and 8.6 ppm CO for 4 h. Salivary cotinine was measured every 30 min, and serum cotinine samples were taken prior to, and 2 h after exposure. Urinary nicotine metabolites and NNAL, a tobacco-specific nitrosamine, and 4-aminobiphenyl (4-AB) haemoglobin adducts were also measured prior to and 2 h following the exposure. Under these uniform, controlled conditions, we found a similar response to ADSS smoke exposure among all the participants. In all cases a significant increase in biomarker concentration was noted following exposure, and the short-term increases in salivary cotinine concentration were quite similar at approximately 12 pg ml(-1) min(-1) among the groups. In this small study, no significant differences by gender or race were seen in the mean increases observed in cotinine, NNAL or 4-AB adducts following 4 h of exposure. Thus, our results are most consistent with a relatively uniform response in tobacco biomarker concentrations following short-term exposure to ADSS tobacco smoke, and suggest that biomarker measurements are capable of effectively indicating increases in exposure among groups of non-smokers.
Collapse
Affiliation(s)
- John T Bernert
- Division of Laboratory Science, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sram RJ, Farmer P, Singh R, Garte S, Kalina I, Popov TA, Binkova B, Ragin C, Taioli E. Effect of vitamin levels on biomarkers of exposure and oxidative damage-the EXPAH study. Mutat Res 2008; 672:129-34. [PMID: 19071228 DOI: 10.1016/j.mrgentox.2008.11.005] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 11/20/2022]
Abstract
DNA adducts are markers of carcinogen exposure and of their biological effect; they have been shown to be related to mutagenesis, and therefore they could be a predictive biomarker of human cancer. The objective of this study was to assess if there is a relationship between vitamins A, C, and E, which are known to play a significant role as free radical scavengers and antioxidant agents, and biomarkers of genotoxicity and oxidative stress. Three hundred and fifty-six subjects from Czech Republic, Slovak Republic and Bulgaria, who completed a questionnaire on dietary information and had a measurement of plasma A, C, E vitamins, DNA adduct levels (benzo[a]pyrene (B[a]P) and bulky (DNA-Tot) DNA adducts) and oxidative damage (cyclic pyrimidopurinone N-1,N2 malondialdehyde-2 deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2_deoxyguanosine (8-oxodG)) were analyzed. A significant inverse correlation was observed between plasma vitamin levels and both benzo[a]pyrene (B[a]P) and bulky DNA adducts. Vitamin A was also significantly inversely correlated with M1dG, a marker of oxidative damage. The associations were stronger in non-smokers than in smokers. Dietary intake of certain antioxidants such as vitamins is associated with reduced levels of markers of DNA damage (B[a]P and DNA-Tot) and oxidation (M1dG and 8-oxodG) measured in peripheral white blood cells. This could contribute to the protective role of such a dietary pattern on cancer risk. The protective effect of dietary vitamins is less evident in smokers.
Collapse
Affiliation(s)
- R J Sram
- Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine of Academy AS CR and Health Institute of Central Bohemia, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Myers SR, Yeakub Ali M. Haemoglobin adducts as biomarkers of exposure to tobacco-related nitrosamines. Biomarkers 2008; 13:145-59. [DOI: 10.1080/13547500701470561] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Saletta F, Matullo G, Manuguerra M, Arena S, Bardelli A, Vineis P. Exposure to the tobacco smoke constituent 4-aminobiphenyl induces chromosomal instability in human cancer cells. Cancer Res 2007; 67:7088-94. [PMID: 17671175 DOI: 10.1158/0008-5472.can-06-4420] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relationships between environmental factors and the genetic abnormalities that drive carcinogenesis are supported by experimental and epidemiologic evidence but their molecular basis has not been fully elucidated. At the genomic level, most human cancers display either chromosomal (CIN) or microsatellite (MIN) instability. The molecular mechanisms through which normal cells acquire these forms of instability are largely unknown. The arylamine 4-aminobiphenyl (4-ABP) is a tobacco smoke constituent, an environmental contaminant, and a well-established carcinogen in humans. Among others, bladder, lung, colon, and breast cancers have been associated with 4-ABP. We have investigated the effects of 4-ABP and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on genetically stable colorectal (HCT116) and bladder (RT112) cancer cells. Cells were treated with carcinogens to generate resistant clones that were then subjected to genetic analysis to assess whether they displayed either CIN or MIN. We found that 50% to 60% of cells treated with 4-ABP developed CIN but none developed MIN as confirmed by their ability to gain and lose chromosomes. In contrast, all MNNG-treated clones (12/12) developed MIN but none developed CIN as shown by the microsatellite assay. The mismatch repair protein expression analysis suggests that the acquired mechanism of MIN resistance in the HCT116 MNNG-treated cells is associated with the reduction or the complete loss of MLH1 expression. By providing a mechanistic link between exposure to a tobacco constituent and the development of CIN, our results contribute to a better understanding of the origins of genetic instability, one of the remaining unsolved problems in cancer research.
Collapse
|
24
|
Meyers T, Vesper HW, Scott D, Mendez M, Myers GL. Assessing the effects of freezing and diluting specimens on total hemoglobin measurements. Clin Chim Acta 2007; 380:235-7. [PMID: 17367768 DOI: 10.1016/j.cca.2007.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/28/2022]
|