1
|
Lim H, El-Serag HB, Luster M, Grove ML, Byun J, Jung Y, Han Y, Boerwinkle E, Amos CI, Thrift AP. DNA Methylation Profile in Buffy Coat Identifies Methylation Differences Between Cirrhosis with and Without Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:266. [PMID: 39858049 PMCID: PMC11763440 DOI: 10.3390/cancers17020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cirrhosis is the precursor to most cases of hepatocellular carcinoma (HCC). Understanding the mechanisms leading to the transition from cirrhosis to HCC and identifying key biomarkers is crucial to developing effective screening strategies and reducing HCC-related mortality. DNA methylation is associated with gene inactivation and plays an important role in physiological and pathological processes; however, its role in cirrhosis progression to HCC is unknown. METHODS We performed genome-wide DNA methylation profiling using Illumina Infinium MethylationEPI BeadChip in pre-diagnostic samples from 22 cirrhosis patients who subsequently developed HCC and 22 cirrhosis patients who remained HCC-free during an average 4-year follow-up. In a secondary analysis, we examined a subset of patients without hepatitis C virus (HCV) infection. RESULTS We identified three differentially methylated positions (DMPs) located in ADAM12 (cg13674437) and PSD3 (cg06758847 and cg24595678) that show a strong association with HCC risk (lower median vs. higher median hazards ratio (HR): HR cg13674437 = 0.34, 95% CI = 0.14-0.83; HR cg06758847 = 4.89, 95% CI = 1.79-13.33; HR cg24595678 = 11.19, 95% CI = 3.27-38.35). After excluding all HCV-active patients from our analysis, the HR for the DMPs remained significant. CONCLUSIONS In conclusion, the findings in this study support the theory that buffy coat-derived DNA methylation markers could be used to identify biomarkers among cirrhosis patients at high risk for HCC before clinical symptoms appear. A further study with a large prospective cohort is required to validate these findings.
Collapse
Affiliation(s)
- Hyeyeun Lim
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Hashem B. El-Serag
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (H.B.E.-S.); (M.L.)
| | - Michelle Luster
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (H.B.E.-S.); (M.L.)
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.L.G.); (E.B.)
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA; (J.B.); (Y.H.)
| | - Yuri Jung
- Ridgewood High School, Ridgewood, NJ 07450, USA;
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA; (J.B.); (Y.H.)
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.L.G.); (E.B.)
| | - Christopher I. Amos
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA; (J.B.); (Y.H.)
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77054, USA
| | - Aaron P. Thrift
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77054, USA
| |
Collapse
|
2
|
Zhang Y, Wang JW, Su X, Li JE, Wei XF, Yang JR, Gao S, Fan YC, Wang K. F-box protein 43 promoter methylation as a novel biomarker for hepatitis B virus-associated hepatocellular carcinoma. Front Microbiol 2023; 14:1267844. [PMID: 38029156 PMCID: PMC10652413 DOI: 10.3389/fmicb.2023.1267844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) has a high prevalence and poor prognosis worldwide. Therefore, it is urgent to find effective and timely diagnostic markers. The objective of this study was to evaluate the diagnostic value of F-box protein 43 promoter methylation in peripheral blood mononuclear cells (PBMCs) for HCC. Method A total of 247 participants were included in this study, comprising individuals with 123 hepatitis B virus-associated HCC, 79 chronic hepatitis B, and 45 healthy controls. F-box protein 43 methylation and mRNA levels in PBMCs were detected by MethyLight and quantitative real-time PCR. Result F-box protein 43 promoter methylation levels were significantly lower in HCC PBMCs than the chronic hepatitis B (P < 0.001) and healthy control PBMCs (P < 0.001). Relative mRNA expression levels of F-box protein 43 in HCC PBMCs were significantly higher than those in chronic hepatitis B (P < 0.001) and healthy control PBMCs (P < 0.001). Receiver operating characteristic analysis of F-box protein 43 promoter methylation levels yielded an area under curve (AUC) of 0.793 with 76.42% sensitivity and 68.35% specificity when differentiating HCC from chronic hepatitis. These values for the F-box protein 43 promoter methylation level were superior to those of the alpha-fetoprotein serum (AFP) level (AUC: 0.780, sensitivity: 47.97%, and specificity: 96.20%), with increments in values for the combination of F-box protein 43 promoter methylation AFP levels (AUC: 0.888, sensitivity: 76.42%, and specificity: 86.08%). Conclusion Hypomethylation of the F-box protein 43 promoter in PBMCs is a promising biochemical marker for HBV-associated HCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Wei Wang
- Department of Hepatology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Xing Su
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jin-E Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Fei Wei
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie-Ru Yang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Department of Hepatology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
3
|
Wang T, Li P, Qi Q, Zhang S, Xie Y, Wang J, Liu S, Ma S, Li S, Gong T, Xu H, Xiong M, Li G, You C, Luo Z, Li J, Du L, Wang C. A multiplex blood-based assay targeting DNA methylation in PBMCs enables early detection of breast cancer. Nat Commun 2023; 14:4724. [PMID: 37550304 PMCID: PMC10406825 DOI: 10.1038/s41467-023-40389-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
The immune system can monitor tumor development, and DNA methylation is involved in the body's immune response to tumors. In this work, we investigate whether DNA methylation alterations in peripheral blood mononuclear cells (PBMCs) could be used as markers for early detection of breast cancer (BC) from the perspective of tumor immune alterations. We identify four BC-specific methylation markers by combining Infinium 850 K BeadChips, pyrosequencing and targeted bisulfite sequencing. Based on the four methylation markers in PBMCs of BC, we develop an efficient and convenient multiplex methylation-specific quantitative PCR assay for the detection of BC and validate its diagnostic performance in a multicenter cohort. This assay was able to distinguish early-stage BC patients from normal controls, with an AUC of 0.940, sensitivity of 93.2%, and specificity of 90.4%. More importantly, this assay outperformed existing clinical diagnostic methods, especially in the detection of early-stage and minimal tumors.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Shujun Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Yan Xie
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Jing Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Shibiao Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Suhong Ma
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Shijun Li
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian, 116011, P. R. China
| | - Tingting Gong
- Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Huiting Xu
- Departmemt of Clinical Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, 226361, Jiangsu, China; Medical School of Nantong University, Nantong, 226001, P. R. China
| | - Mengqiu Xiong
- Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, P. R. China
| | - Guanghua Li
- Department of clinical laboratory, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510000, P. R. China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhaofan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China.
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China.
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Provincial Key Laboratory of Innovation Technology in Laboratory Medicine, Jinan, 250012, P. R. China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China.
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, China.
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, China.
| |
Collapse
|
4
|
Blood-based DNA methylation signatures in cancer: A systematic review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166583. [PMID: 36270476 DOI: 10.1016/j.bbadis.2022.166583] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
DNA methylation profiles are in dynamic equilibrium via the initiation of methylation, maintenance of methylation and demethylation, which control gene expression and chromosome stability. Changes in DNA methylation patterns play important roles in carcinogenesis and primarily manifests as hypomethylation of the entire genome and the hypermethylation of individual loci. These changes may be reflected in blood-based DNA, which provides a non-invasive means for cancer monitoring. Previous blood-based DNA detection objects primarily included circulating tumor DNA/cell-free DNA (ctDNA/cfDNA), circulating tumor cells (CTCs) and exosomes. Researchers gradually found that methylation changes in peripheral blood mononuclear cells (PBMCs) also reflected the presence of tumors. Blood-based DNA methylation is widely used in early diagnosis, prognosis prediction, dynamic monitoring after treatment and other fields of clinical research on cancer. The reversible methylation of genes also makes them important therapeutic targets. The present paper summarizes the changes in DNA methylation in cancer based on existing research and focuses on the characteristics of the detection objects of blood-based DNA, including ctDNA/cfDNA, CTCs, exosomes and PBMCs, and their application in clinical research.
Collapse
|
5
|
Zhang Y, Zhang L, Sun H, Liu Y, Xu J, Huang H, Fu J, Zhang D, Tian T, Zhao Y, Wang G. Inhibitory immune checkpoints PDCD-1 and LAG-3 hypermethylation may reduce the risk of colorectal cancer. Mol Med 2021; 27:114. [PMID: 34544358 PMCID: PMC8454079 DOI: 10.1186/s10020-021-00373-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Changes in DNA methylation of immunosuppressive checkpoints may impact express and consequently affect antigen processing and presentation by tumor cells and facilitates evasion of immunosurveillance and lead to colorectal cancer (CRC). This study is to investigate the effect of PDCD-1, LAG-3 methylation statuses in peripheral blood leukocytes on CRC risk. Methods GSE51032 dataset from Gene Expression Omnibus comprised of 166 CRC patients and 424 normal samples was used to identify significantly differentially methylated CpG sites of the two genes. A case–control study with 390 CRC patients and 397 cancer-free controls was carried out to validate the relationship between the methylation levels of the two genes and CRC susceptibility and then estimated their interactions with environmental factors on CRC risk. Results In the GSE51032 dataset, cg06291111 (PDCD-1) and cg10191002 (LAG-3) were screened as the candidate CpG sites for the following study. There were significant associations between hypermethylation of PDCD-1 and LAG-3 and lower risk of CRC (ORadj = 0.322, 95% CI 0.197–0.528; ORadj = 0.666, 95% CI 0.446–0.5996, respectively). Moreover, the results in case–control study showed similar trend, that hypermethylation of PDCD-1 and LAG-3 were associated with lower CRC risk (ORadj = 0.448, 95% CI 0.322–0.622; ORadj = 0.417, 95% CI 0.301–0.578, respectively). A synergistic interaction between LAG-3 hypermethylation and intake of eggs on CRC risk was observed. There were combination effects between hypermethylation of PDCD-1 and LAG-3 and environmental factors on CRC risk. Conclusions PDCD-1 and LAG-3 may potentially serve as blood-based predictive biomarkers for CRC risk. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00373-5.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Lei Zhang
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Ying Liu
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Jing Xu
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Hao Huang
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Jinming Fu
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Ding Zhang
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Tian Tian
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China.
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China.
| | - Guiyu Wang
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nangang District, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
6
|
Tsuji JS, Lennox KP, Watson HN, Chang ET. Essential concepts for interpreting the dose-response of low-level arsenic exposure in epidemiological studies. Toxicology 2021; 457:152801. [PMID: 33905760 DOI: 10.1016/j.tox.2021.152801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022]
Abstract
Scientifically robust selections of epidemiological studies and assessments of the dose-response of inorganic arsenic in the low-dose range must consider key issues specific to arsenic in order to reduce risk of bias. The abundance of toxicological, mechanistic, and epidemiological evidence on arsenic enables a nuanced assessment of risk of bias in epidemiological studies of low-level arsenic, as opposed to a generic evaluation based only on standard principles. Important concepts in this context include 1) arsenic metabolism and mode of action for toxicity and carcinogenicity; 2) effects of confounding factors such as diet, health status including nutritional deficiencies, use of tobacco and other substances, and body composition; 3) strengths and limitations of various metrics for assessing relevant exposures consistent with the mode of action; and 4) the potential for bias in the positive direction for the observed dose-response relationship as exposure increases in the low-dose range. As an example, evaluation of a recent dose-response modeling using eight epidemiological studies of inorganic arsenic and bladder cancer demonstrated that the pooled risk estimate was markedly affected by the single study that was ranked as having a high risk of bias, based on the above factors. The other seven studies were also affected by these factors to varying, albeit lesser, degrees that can influence the apparent dose-response in the low-dose range (i.e., drinking water concentration of 65 µg/L or dose of approximately ≤1 µg/kg-day). These issues are relevant considerations for assessing health risks of oral exposures to inorganic arsenic in the U.S. population, and setting evidence-based regulatory limits to protect human health.
Collapse
|
7
|
Li Y, Wu Y, Hu Y. Metabolites in the Tumor Microenvironment Reprogram Functions of Immune Effector Cells Through Epigenetic Modifications. Front Immunol 2021; 12:641883. [PMID: 33927716 PMCID: PMC8078775 DOI: 10.3389/fimmu.2021.641883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 12/29/2022] Open
Abstract
Cellular metabolism of both cancer and immune cells in the acidic, hypoxic, and nutrient-depleted tumor microenvironment (TME) has attracted increasing attention in recent years. Accumulating evidence has shown that cancer cells in TME could outcompete immune cells for nutrients and at the same time, producing inhibitory products that suppress immune effector cell functions. Recent progress revealed that metabolites in the TME could dysregulate gene expression patterns in the differentiation, proliferation, and activation of immune effector cells by interfering with the epigenetic programs and signal transduction networks. Nevertheless, encouraging studies indicated that metabolic plasticity and heterogeneity between cancer and immune effector cells could provide us the opportunity to discover and target the metabolic vulnerabilities of cancer cells while potentiating the anti-tumor functions of immune effector cells. In this review, we will discuss the metabolic impacts on the immune effector cells in TME and explore the therapeutic opportunities for metabolically enhanced immunotherapy.
Collapse
Affiliation(s)
- Yijia Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China.,Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Yangzhe Wu
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China.,Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Yi Hu
- Microbiology and Immunology Department, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Onwuka JU, Li D, Liu Y, Huang H, Xu J, Liu Y, Zhang Y, Zhao Y. A panel of DNA methylation signature from peripheral blood may predict colorectal cancer susceptibility. BMC Cancer 2020; 20:692. [PMID: 32711505 PMCID: PMC7382833 DOI: 10.1186/s12885-020-07194-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Differential DNA methylation panel derived from peripheral blood could serve as biomarkers of CRC susceptibility. However, most of the previous studies utilized post-diagnostic blood DNA which may be markers of disease rather than susceptibility. In addition, only a few studies have evaluated the predictive potential of differential DNA methylation in CRC in a prospective cohort and on a genome-wide basis. The aim of this study was to identify a potential panel of DNA methylation biomarkers in peripheral blood that is associated with CRC risk and therefore serve as epigenetic biomarkers of disease susceptibility. Methods DNA methylation profile of a nested case-control study with 166 CRC and 424 healthy normal subjects were obtained from the Gene Expression Omnibus (GEO) database. The differentially methylated markers were identified by moderated t-statistics. The DNA methylation panel was constructed by stepwise logistic regression and the least absolute shrinkage and selection operator in the training dataset. A methylation risk score (MRS) model was constructed and the association between MRS and CRC risk assessed. Results We identified 48 differentially methylated CpGs sites, of which 33 were hypomethylated. Of these, sixteen-CpG based MRS that was associated with CRC risk (OR = 2.68, 95% CI: 2.13, 3.38, P < 0.0001) was constructed. This association is confirmed in the testing dataset (OR = 2.02, 95% CI: 1.48, 2.74, P < 0.0001) and persisted in both males and females, younger and older subjects, short and long time-to-diagnosis. The MRS also predicted CRC with AUC 0.82 (95% CI: 0.76, 0.88), indicating high accuracy. Conclusions Our study has identified a novel DNA methylation panel that is associated with CRC and could, if validated be useful for the prediction of CRC risk in the future.
Collapse
Affiliation(s)
- Justina Ucheojor Onwuka
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Dapeng Li
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yupeng Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Hao Huang
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Jing Xu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Ying Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yuanyuan Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
9
|
Lubecka K, Flower K, Beetch M, Qiu J, Kurzava L, Buvala H, Ruhayel A, Gawrieh S, Liangpunsakul S, Gonzalez T, McCabe G, Chalasani N, Flanagan JM, Stefanska B. Loci-specific differences in blood DNA methylation in HBV-negative populations at risk for hepatocellular carcinoma development. Epigenetics 2018; 13:605-626. [PMID: 29927686 PMCID: PMC6140905 DOI: 10.1080/15592294.2018.1481706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
Late onset of clinical symptoms in hepatocellular carcinoma (HCC) results in late diagnosis and poor disease outcome. Approximately 85% of individuals with HCC have underlying liver cirrhosis. However, not all cirrhotic patients develop cancer. Reliable tools that would distinguish cirrhotic patients who will develop cancer from those who will not are urgently needed. We used the Illumina HumanMethylation450 BeadChip microarray to test whether white blood cell DNA, an easily accessible source of DNA, exhibits site-specific changes in DNA methylation in blood of diagnosed HCC patients (post-diagnostic, 24 cases, 24 controls) and in prospectively collected blood specimens of HCC patients who were cancer-free at blood collection (pre-diagnostic, 21 cases, 21 controls). Out of 22 differentially methylated loci selected for validation by pyrosequencing, 19 loci with neighbouring CpG sites (probes) were confirmed in the pre-diagnostic study group and subjected to verification in a prospective cirrhotic cohort (13 cases, 23 controls). We established for the first time 9 probes that could distinguish HBV-negative cirrhotic patients who subsequently developed HCC from those who stayed cancer-free. These probes were identified within regulatory regions of BARD1, MAGEB3, BRUNOL5, FXYD6, TET1, TSPAN5, DPPA5, KIAA1210, and LSP1. Methylation levels within DPPA5, KIAA1210, and LSP1 were higher in prospective samples from HCC cases vs. cirrhotic controls. The remaining probes were hypomethylated in cases compared with controls. Using blood as a minimally invasive material and pyrosequencing as a straightforward quantitative method, the established probes have potential to be developed into a routine clinical test after validation in larger cohorts.
Collapse
Affiliation(s)
- Katarzyna Lubecka
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Kirsty Flower
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Megan Beetch
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jay Qiu
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Lucinda Kurzava
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Hannah Buvala
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Adam Ruhayel
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tracy Gonzalez
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - George McCabe
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James M Flanagan
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Barbara Stefanska
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
Beetch M, Lubecka K, Kristofzski H, Suderman M, Stefanska B. Subtle Alterations in DNA Methylation Patterns in Normal Cells in Response to Dietary Stilbenoids. Mol Nutr Food Res 2018; 62:e1800193. [PMID: 29797699 DOI: 10.1002/mnfr.201800193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/18/2018] [Indexed: 01/24/2023]
Abstract
SCOPE Searching for correlations between dietary polyphenols and risk of chronic diseases has been a challenge due to the lack of quantitative evaluation methods of long-term exposure. We previously observed substantial DNA methylation changes in human cancer cells upon treatment with polyphenols of the stilbenoid class. When induced in normal cells, such molecular changes may persist and reflect chronic exposure. METHODS AND RESULTS Illumina 450K microarray is used to delineate a genome wide DNA methylation landscape in MCF10A human immortalized mammary epithelial cells exposed to resveratrol (RSV) at noncytotoxic 15 μM dose for 9 days. Subtle alterations are observed suggesting remodeling of DNA methylation patterns rather than switch on/off changes. Using pyrosequencing, DNA methylation is quantitatively measured at eight CpG sites located within KCNJ4, RNF169, BCHE, DAOA, HOXA9, RUNX3, KRTAP2-1, and TAGAP, upon exposure to RSV or pterostilbene and shows similar differences induced by both stilbenoids. Two of the probes, Runx3 and Kcnj4, are successfully verified in whole blood DNA from healthy rats on diets supplemented with stilbenoids. CONCLUSIONS The study provides strong support for testing the utility of polyphenol-mediated changes in DNA methylation as quantitative measures of long-term dietary exposures in nutritional epidemiology and clinical trials.
Collapse
Affiliation(s)
- Megan Beetch
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Katarzyna Lubecka
- Department of Biomedical Chemistry, Medical University of Lodz, Lodz, 92-215, Poland
| | - Heather Kristofzski
- Department of Nutrition Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthew Suderman
- School of Social and Community Medicine, University of Bristol, Bristol, BS8 2BN, UK.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
11
|
Parashar S, Cheishvili D, Mahmood N, Arakelian A, Tanvir I, Khan HA, Kremer R, Mihalcioiu C, Szyf M, Rabbani SA. DNA methylation signatures of breast cancer in peripheral T-cells. BMC Cancer 2018; 18:574. [PMID: 29776342 PMCID: PMC5960123 DOI: 10.1186/s12885-018-4482-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 05/07/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Immune surveillance acts as a defense mechanism in cancer, and its disruption is involved in cancer progression. DNA methylation reflects the phenotypic identity of cells and recent data suggested that DNA methylation profiles of T cells and peripheral blood mononuclear cells (PBMC) are altered in cancer progression. METHODS We enrolled 19 females with stage 1 and 2, nine with stage 3 and 4 and 9 age matched healthy women. T cells were isolated from peripheral blood and extracted DNA was subjected to Illumina 450 K DNA methylation array analysis. Raw data was analyzed by BMIQ, ChAMP and ComBat followed by validation of identified genes by pyrosequencing. RESULTS Analysis of data revealed ~ 10,000 sites that correlated with breast cancer progression and established a list of 89 CG sites that were highly correlated (p < 0.01, r > 0.7, r < - 0.7) with breast cancer progression. The vast majority of these sites were hypomethylated and enriched in genes with functions in the immune system. CONCLUSIONS The study points to the possibility of using DNA methylation signatures as a noninvasive method for early detection of breast cancer and its progression which need to be tested in clinical studies.
Collapse
Affiliation(s)
- Surabhi Parashar
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | - David Cheishvili
- Department of Pharmacology and Therapeutics, McGill University Health Center, Montreal, QC, Canada.,Present address: Montreal EpiTerapia Inc., Montreal, QC, Canada
| | - Niaz Mahmood
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | - Ani Arakelian
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | | | | | - Richard Kremer
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | - Catalin Mihalcioiu
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University Health Center, Montreal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada.
| |
Collapse
|
12
|
Moazzen S, Dolatkhah R, Tabrizi JS, Shaarbafi J, Alizadeh BZ, de Bock GH, Dastgiri S. Folic acid intake and folate status and colorectal cancer risk: A systematic review and meta-analysis. Clin Nutr 2017; 37:1926-1934. [PMID: 29132834 DOI: 10.1016/j.clnu.2017.10.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS To evaluate the controversies among the studies assessing the association between folic acid intake or folate status and colorectal cancer risk. METHODS PubMed, Cochrane library and references of related articles were searched from January 2000 to September 2016. Studies on folic acid intake or folate status and colorectal cancer or adenoma risk were included. Full text review was conducted for potentially eligible studies. Quality assessment was performed. Random-effects meta-analysis was used to estimate risk ratio and 95% Confidence Intervals. Analysis was conducted by Comprehensive Meta-Analysis software. RESULTS Folic acid supplement intake showed no significant effect on colorectal cancer risk in meta-analysis of randomized controlled trials, RR: 1.07 (95% CI: 0.86-1.43). The effect on risk was not significant in cohort studies either; RR = 0.96 (95% CI: 0.76-1.21). However, there was significant reduced colorectal cancer risk in total folate intake in cohort studies; 0.71 (95% CI: 0.59-0.86). Odds Ratio was also significantly reduced in case control studies; 0.77 (95% CI: 0.62-0.95). Nevertheless once folate status was measured as Red Blood Cell folate content, no significant effect on colorectal cancer risk was observed; 1.05 (95% CI: 0.85-1.30). CONCLUSION The differences in bioavailability and metabolism of synthetic folic acid and natural dietary folate as well as variation in the baseline characteristics of subjects and various methods of folate status assessment might be the main reasons for these controversies. Findings of present study highlight the importance of individualized folic acid supplement intake given the fact that the beneficiary effects of long term folic acid supplementation is not confirmed.
Collapse
Affiliation(s)
- Sara Moazzen
- Health Service Management Research Center, Tabriz University of Medical Sciences, Tabriz 51666114731, Iran; Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands.
| | - Roya Dolatkhah
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz 51666114731, Iran.
| | - Jafar Sadegh Tabrizi
- Health Service Management Research Center, Tabriz University of Medical Sciences, Tabriz 51666114731, Iran.
| | | | - Behrooz Z Alizadeh
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands; The Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51666114731, Iran.
| | - Geertruida H de Bock
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands.
| | - Saeed Dastgiri
- School of Medicine, Health Service Management Research Center, Tabriz University of Medical Sciences, Tabriz 51666114731, Iran.
| |
Collapse
|
13
|
Shen J, Song R, Gong Y, Zhao H. Global DNA hypomethylation in leukocytes associated with glioma risk. Oncotarget 2017; 8:63223-63231. [PMID: 28968983 PMCID: PMC5609915 DOI: 10.18632/oncotarget.18739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/21/2017] [Indexed: 11/25/2022] Open
Abstract
Global DNA hypomethylation in leukocytes has been associated with increased risk for a variety of cancers. However, the role of leukocyte global DNA hypomethylation in glioma development, if any, is largely unknown. To define this role, we performed a case-control study with 390 glioma patients and 390 controls with no known cancer. Levels of 5-methylcytosine (5-mC%), a marker for global DNA methylation, were measured in leukocyte DNA. Overall, median levels of 5-mC% were significantly lower in glioma cases than in controls (3.45 vs 3.82, P=0.001). Levels of 5-mC% differed significantly by age and sex among controls and by tumor subtype and grade among glioma cases. In multivariate analysis, lower levels of 5-mC% were associated with a 1.31-fold increased risk of glioma (odds ratio = 1.31, 95% confidence interval = 1.10-1.41). A significant dose-response trend was observed in quartile analysis (P=0.001). In an analysis further stratified by clinical characteristics at baseline, the association between lower levels of 5-mC% and glioma risk was evident only among younger participants (age <52 years), women, and those with aggressive tumor characteristics, such as glioblastoma subtype, high tumor grade (grade III or IV), and absence of IDH1 mutation. Our findings indicate that global DNA hypomethylation in leukocytes may contribute to the development of glioma and that the association is affected by age, sex, and tumor aggressiveness.
Collapse
Affiliation(s)
- Jie Shen
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renduo Song
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hua Zhao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Liu Y, Wang Y, Hu F, Sun H, Zhang Z, Wang X, Luo X, Zhu L, Huang R, Li Y, Li G, Li X, Lin S, Wang F, Liu Y, Rong J, Yuan H, Zhao Y. Multiple gene-specific DNA methylation in blood leukocytes and colorectal cancer risk: a case-control study in China. Oncotarget 2017; 8:61239-61252. [PMID: 28977860 PMCID: PMC5617420 DOI: 10.18632/oncotarget.18054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022] Open
Abstract
The relationship between gene-specific DNA methylation in peripheral blood leukocytes and colorectal cancer (CRC) susceptibility is unclear. In this case-control study, the methylation status of a panel of 10 CRC-related genes in 428 CRC cases and 428 cancer-free controls were detected with methylation-sensitive high-resolution melting analysis. We calculated a weighted methylation risk score (MRS) that comprehensively combined the methylation status of the panel of 10 genes and found that the MRS_10 was significantly associated with CRC risk. Compared with MRS-Low group, MRS-High group and MRS-Medium group exhibited a 6.51-fold (95% CI, 3.77-11.27) and 3.85-fold (95% CI, 2.72-5.45) increased risk of CRC, respectively. Moreover, the CRC risk increased with increasing MRS_10 (Ptrend < 0.0001). Stratified analyses demonstrated that the significant association retained in both men and women, younger and older, and normal weight or underweight and overweight or obese subjects. The area under the receiver operating characteristic curves for the MRS_10 model was 69.04% (95% CI, 65.57-72.66%) and the combined EF and MRS_10 model yielded an AUC of 79.12% (95% CI, 76.22-82.15%). Together, the panel of 10 gene-specific DNA methylation in leukocytes was strongly associated with the risk of CRC and might be a useful marker of susceptibility for CRC.
Collapse
Affiliation(s)
- Yupeng Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Yibaina Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Fulan Hu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Zuoming Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Xuan Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Xiang Luo
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Lin Zhu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Rong Huang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Yan Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Guangxiao Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Xia Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Shangqun Lin
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Fan Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Yanhong Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Jiesheng Rong
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Huiping Yuan
- Key Laboratory of Ophthalmology, Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| |
Collapse
|
15
|
Shen J, Song R, Wan J, Huff C, Fang S, Lee JE, Zhao H. Global methylation of blood leukocyte DNA and risk of melanoma. Int J Cancer 2017; 140:1503-1509. [PMID: 28006848 DOI: 10.1002/ijc.30577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/10/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Global DNA methylation, possibly influenced by lifestyle and environmental factors, has been suggested to play an active role in carcinogenesis. However, its role in melanoma has rarely been explored. The aims of this study were to evaluate the relationship between melanoma risk and levels of 5-methylcytosine (5-mC), a marker for global DNA methylation, in blood leukocyte DNA, and to determine whether this 5-mC level is influenced by pigmentation and sun exposure. This case-control study included 540 melanoma cases and 540 healthy controls. Overall, melanoma cases had significantly lower levels of 5-mC% than healthy controls (median: 3.24 vs. 3.91, p < 0.001). The significant difference between two groups did not differ by pigmentation or sun exposure. Among healthy controls, however, those who had fair skin color (p = 0.041) or light or no tanning after prolonged sun exposure (p = 0.031) or used a sunlamp (p = 0.028) had lower levels of 5-mC% than their counterparts. In addition, those with an intermediate or high phenotypic index, an indicator of cutaneous cancer susceptibility, had 2.58-fold greater likelihood of having a low level of 5-mC% [odds ratio (OR): 2.58; 95% confidence interval (CI): 1.72, 3.96] than those with a low phenotypic index. Lower levels of 5-mC% were associated with a 1.25-fold greater risk of melanoma (OR: 1.25; 95% CI: 1.08, 1.37). A significant dose-response relationship was observed in quartile analysis (p = 0.001). Our results suggest that global hypomethylation in blood leukocyte DNA is associated with increased risk of melanoma and that the level of methylation is influenced by pigmentation and sun exposure.
Collapse
Affiliation(s)
- Jie Shen
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Renduo Song
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Jie Wan
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Chad Huff
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Shenying Fang
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Jeffrey E Lee
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Hua Zhao
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| |
Collapse
|
16
|
Carrick DM, Black A, Gohagan JK, Khan A, Pettit K, Williams C, Yu K, Yurgalevitch S, Huang WY, Zhu C. The PLCO Biorepository: Creating, Maintaining, and Administering a Unique Biospecimen Resource. Rev Recent Clin Trials 2016; 10:212-22. [PMID: 26238117 DOI: 10.2174/1574887110666150730121429] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 12/12/2022]
Abstract
Inclusion of biospecimens in population-based studies is an integral part of understanding disease etiology, identifying biomarkers and developing prevention and treatment strategies. The Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial collected, processed and stored biospecimens from participants to create a biorepository of specimens which serves as a useful resource for a broad research community. PLCO collected blood samples from consented screening arm participants at six screening rounds and a buccal sample from consented control arm participants. In addition, formalin-fixed paraffin embedded tumor tissue specimens were collected for participants in both arms for selected cancer sites. Collection of biospecimens at multiple timepoints (i.e. serial samples) and prior to cancer diagnosis, paired with rich epidemiologic and screening data, makes the PLCO collection of biospecimens a uniquely valuable resource. As such, access to the PLCO biorepository is granted to investigators by a rigorous scientific review process and guided by a steering committee which is responsible for developing and implementing the biospecimen use policies. Here, we describe the procedures for biospecimen collection, processing, storage, requisition, and distribution, as well as data management employed in PLCO. We also provide examples of how the biospecimens have been used to advance cancer research and describe relevant lessons learned to help inform cohorts wishing to add or modify biospecimen collection.
Collapse
Affiliation(s)
- Danielle M Carrick
- Epidemiology and Genomics Research Program DCCPS, NCI, NIH, 9609 Medical Center Drive 4E224 Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mendoza-Pérez J, Gu J, Herrera LA, Tannir NM, Matin SF, Karam JA, Huang M, Chang DW, Wood CG, Wu X. Genomic DNA Hypomethylation and Risk of Renal Cell Carcinoma: A Case-Control Study. Clin Cancer Res 2015; 22:2074-82. [PMID: 26655847 DOI: 10.1158/1078-0432.ccr-15-0977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/22/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Genomic DNA hypomethylation is a hallmark of most cancer genomes, promoting genomic instability and cell transformation. In the present study, we sought to determine whether global DNA methylation in peripheral blood is associated with risk of renal cell carcinoma (RCC). EXPERIMENTAL DESIGN A retrospective case-control study consisting of 889 RCC cases and an equal number of age, gender, and ethnicity-matched controls was applied. Global DNA methylation was measured as 5-mC% content. Logistic regression was used to estimate odds ratio (OR) and 95% confidence interval (CI) for the association between DNA methylation level and the risk of RCC. RESULTS The median 5-mC% was significantly lower in cases than in healthy controls (P< 0.001). In multivariate logistic regression analysis, individuals in the lowest tertile (T1) of 5-mC% had higher risk of RCC with OR of 1.40 (95% CI, 1.06-1.84), compared with individuals in the highest tertile (T3;Pfor trend= 0.02). When stratified by RCC risk factors, associations between hypomethylation and increased RCC risk appeared to be stronger among males (OR, 1.61;Pfor trend= 0.01), younger age (OR, 1.47;Pfor trend= 0.03), never smokers (OR, 1.55;Pfor trend= 0.02), family history of other cancer (OR, 1.64;Pfor trend= 1.22E-03), and late stage (OR, 2.06,Pfor trend= 4.98E-04). Additionally, we observed significant interaction between gender and 5-mC% in elevating RCC risk (Pfor interaction= 0.03). CONCLUSIONS Our findings suggest an association between global DNA hypomethylation and RCC risk. To establish global DNA hypomethylation as a risk factor for RCC, future prospective studies are warranted. This study may provide further understanding of the etiology of RCC tumorigenesis.
Collapse
Affiliation(s)
- Julia Mendoza-Pérez
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Surena F Matin
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jose A Karam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David W Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
18
|
Xue M, Lai SC, Xu ZP, Wang LJ. Noninvasive DNA methylation biomarkers in colorectal cancer: A systematic review. J Dig Dis 2015; 16:699-712. [PMID: 26565661 DOI: 10.1111/1751-2980.12299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/25/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To summarize the current evidence on the biomarkers associated with DNA methylation in the screening and diagnosis of colorectal cancer (CRC). METHODS A literature search was conducted on the databases of PubMed and Web of Science to identify articles published from 1 January 2000 to 6 June 2015 with language striction. Stuides focusing on the association between noninvasive biomarkers indicating DNA methylation and CRC were included. RESULTS Altogether 74 studies were finally included in the study. Varied genetic markers in the feces and blood samples were hypermethylated in patients with CRC than in the healthy controls. Some of them could even be detected at the early stage of the tumors. The sensitivity of the genetic markers was superior to that of fecal occult blood test and carcinoembryonic antigen. Multitarget DNA assays using a combination of different methylated genes could improve the diagnostic sensitivity. CONCLUSIONS Genetic markers might be minimally invasive, economical and accurate for the screening and surveillance of CRC. Large multicenter studies evaluating these biomarkers systematically and prospectively not only in CRC but also in other types of cancers are needed in the future.
Collapse
Affiliation(s)
- Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University.,Institute of Gastroenterology, Zhejiang University
| | - San Chuan Lai
- Institute of Gastroenterology, Zhejiang University.,Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhi Peng Xu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University
| | - Liang Jing Wang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University.,Institute of Gastroenterology, Zhejiang University
| |
Collapse
|
19
|
Abstract
Constitutional epimutation, which is an aberration in gene expression due to an altered epigenotype that is widely distributed in normal tissues (albeit frequently mosaic), provides an alternative mechanism to genetic mutation for cancer predisposition. Observational studies in cancer-affected families have revealed intergenerational inheritance of constitutional epimutation, providing unique insights into the heritability of epigenetic traits in humans. In this Opinion article, the potential contribution of constitutional epimutation to the 'missing' causality and heritability of cancer is explored.
Collapse
Affiliation(s)
- Megan P Hitchins
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Grant Building S169, 1291 Welch Road, Stanford, California 94305, USA
| |
Collapse
|
20
|
Abstract
Theory and empirical evidence suggest that psychological stress and other adverse psychosocial experiences can contribute to cancer progression. Research has begun to explore the potential role of epigenetic changes in these pathways. In basic, animal and human models, exposure to stressors or to the products of the physiological stress response (e.g., cortisol) has been associated with epigenetic changes, such as DNA methylation and microRNA (miR) expression, which may influence tumor growth, progression, metastasis, or chemoresistance. However, the specific biological pathways linking stress, epigenetic changes, and cancer outcomes remain unclear. Numerous opportunities exist to extend the preliminary evidence for the role of epigenetic mechanisms in the biopsychosocial pathways contributing to cancer progression. Such work will improve our understanding of how the psychosocial environment influences cancer risk and survival, potentially leading to improved prevention and treatment strategies.
Collapse
|
21
|
Barrow TM, Michels KB. Epigenetic epidemiology of cancer. Biochem Biophys Res Commun 2014; 455:70-83. [PMID: 25124661 DOI: 10.1016/j.bbrc.2014.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/15/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023]
Abstract
Epigenetic epidemiology includes the study of variation in epigenetic traits and the risk of disease in populations. Its application to the field of cancer has provided insight into how lifestyle and environmental factors influence the epigenome and how epigenetic events may be involved in carcinogenesis. Furthermore, it has the potential to bring benefit to patients through the identification of diagnostic markers that enable the early detection of disease and prognostic markers that can inform upon appropriate treatment strategies. However, there are a number of challenges associated with the conduct of such studies, and with the identification of biomarkers that can be applied to the clinical setting. In this review, we delineate the challenges faced in the design of epigenetic epidemiology studies in cancer, including the suitability of blood as a surrogate tissue and the capture of genome-wide DNA methylation. We describe how epigenetic epidemiology has brought insight into risk factors associated with lung, breast, colorectal and bladder cancer and review relevant research. We discuss recent findings on the identification of epigenetic diagnostic and prognostic biomarkers for these cancers.
Collapse
Affiliation(s)
- Timothy M Barrow
- Institute for Prevention and Tumor Epidemiology, Freiburg Medical Center, University of Freiburg, 79106, Germany; German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Karin B Michels
- Institute for Prevention and Tumor Epidemiology, Freiburg Medical Center, University of Freiburg, 79106, Germany; Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Tsuji JS, Perez V, Garry MR, Alexander DD. Association of low-level arsenic exposure in drinking water with cardiovascular disease: a systematic review and risk assessment. Toxicology 2014; 323:78-94. [PMID: 24953689 DOI: 10.1016/j.tox.2014.06.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/04/2014] [Accepted: 06/18/2014] [Indexed: 02/02/2023]
Abstract
The U.S. Environmental Protection Agency (EPA) is developing an integrated assessment of non-cancer and cancer risk assessment of inorganic arsenic (iAs). Cardiovascular disease (CVD) in association with iAs exposure has been examined in a number of studies and provides a basis for evaluating a reference dose (RfD) for assessing potential non-cancer health risks of arsenic exposure. In this systematic review of low-level iAs exposure (i.e., <100-150μg/L arsenic water concentration) and CVD in human populations, 13 cohort and case-control studies from the United States, Taiwan, Bangladesh, and China were identified and critically examined for evidence for derivation of a RfD. Eight cross-sectional and ecological studies from the United States were also examined for additional information. Prospective cohort data from Bangladesh provided the strongest evidence for determining the point of departure in establishing a candidate RfD based on a combined endpoint of mortality from "ischemic heart disease and other heart diseases." This study as well as the overall literature supported a no-observed-adverse-effect level of 100μg/L for arsenic in water, which was equivalent to an iAs dose of 0.009mg/kg-day (based on population-specific water consumption rates and dietary iAs intake). The study population was likely sensitive to arsenic toxicity because of nutritional deficiencies affecting arsenic methylation and one-carbon metabolism, as well as increasing CVD risk. Evidence is less clear on the interaction of CVD risk factors in the United States (e.g., diabetes, obesity, and hypertension) with arsenic at low doses. Potential uncertainty factors up to 3 resulted in a RfD for CVD in the range of 0.003-0.009mg/kg-day. Although caution should be exercised in extrapolating these results to the U.S. general population, these doses allow a margin of exposure that is 10-30 times the current RfD derived by EPA (based on skin lesions in Southwest Taiwan). These findings suggest that the current EPA RfD is protective of CVD.
Collapse
|
23
|
Ashbury JE, Taylor SA, Tse MY, Pang SC, Louw JA, Vanner SJ, King WD. Biomarkers measured in buccal and blood leukocyte DNA as proxies for colon tissue global methylation. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2014; 5:120-4. [PMID: 24959316 PMCID: PMC4065400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
There is increasing interest in clarifying the role of global DNA methylation levels in colorectal cancer (CRC) etiology. Most commonly, in epidemiologic studies, methylation is measured in DNA derived from blood leukocytes as a proxy measure of methylation changes in colon tissue. However, little is known about the correlations between global methylation levels in DNA derived from colon tissue and more accessible tissues such as blood or buccal cells. This cross-sectional study utilized DNA samples from a screening colonoscopy population to determine to what extent LINE-1 methylation levels (as a proxy for genome-wide methylation) in non-target tissue (e.g., blood, buccal cells) reflected methylation patterns of colon mucosal tissue directly at risk of developing CRC. The strongest Pearson correlation was observed between LINE-1 methylation levels in buccal and blood leukocyte DNA (r = 0.50; N = 67), with weaker correlations for comparisons between blood and colon tissue (r = 0.36; N = 280), and buccal and colon tissue (r = 0.27; N = 72). These findings of weak/moderate correlations have important implications for interpreting and planning future investigations of epigenetic markers and CRC risk.
Collapse
Affiliation(s)
- Janet E Ashbury
- Department of Public Health Sciences, Queen’s UniversityKingston, ON, Canada
| | - Sherryl A Taylor
- Department of Medical Genetics, University of AlbertaEdmonton AB, Canada
- Molecular Diagnostics, Genetic Laboratory Services, Alberta Health ServicesEdmonton, AB, Canada
| | - M Yat Tse
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingston, ON, Canada
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingston, ON, Canada
| | - Jacob A Louw
- Department of Medicine, Division of Gastroenterology, Hotel Dieu Hospital/Queen’s UniversityKingston, ON, Canada
| | - Stephen J Vanner
- Department of Medicine, Division of Gastroenterology, Hotel Dieu Hospital/Queen’s UniversityKingston, ON, Canada
- Gastrointestinal Diseases Research Unit (GIDRU), Queen’s UniversityKingston, ON, Canada
| | - Will D King
- Department of Public Health Sciences, Queen’s UniversityKingston, ON, Canada
| |
Collapse
|
24
|
Verma M, Rogers S, Divi RL, Schully SD, Nelson S, Su LJ, Ross S, Pilch S, Winn DM, Khoury MJ. Epigenetic research in cancer epidemiology: trends, opportunities, and challenges. Cancer Epidemiol Biomarkers Prev 2014; 23:223-33. [PMID: 24326628 PMCID: PMC3925982 DOI: 10.1158/1055-9965.epi-13-0573] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetics is emerging as an important field in cancer epidemiology that promises to provide insights into gene regulation and facilitate cancer control throughout the cancer care continuum. Increasingly, investigators are incorporating epigenetic analysis into the studies of etiology and outcomes. To understand current progress and trends in the inclusion of epigenetics in cancer epidemiology, we evaluated the published literature and the National Cancer Institute (NCI)-supported research grant awards in this field to identify trends in epigenetics research. We present a summary of the epidemiologic studies in NCI's grant portfolio (from January 2005 through December 2012) and in the scientific literature published during the same period, irrespective of support from the NCI. Blood cells and tumor tissue were the most commonly used biospecimens in these studies, although buccal cells, cervical cells, sputum, and stool samples were also used. DNA methylation profiling was the focus of the majority of studies, but several studies also measured microRNA profiles. We illustrate here the current status of epidemiologic studies that are evaluating epigenetic changes in large populations. The incorporation of epigenomic assessments in cancer epidemiology studies has and is likely to continue to provide important insights into the field of cancer research.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Scott Rogers
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Rao L. Divi
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Sheri D. Schully
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Stefanie Nelson
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - L. Joseph Su
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Sharon Ross
- Division of Cancer Prevention, NCI, NIH, Bethesda, MD
| | - Susan Pilch
- Office of the Director, Information Resources and Services Branch, NIH, Bethesda, MD
| | - Deborah M. Winn
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Muin J. Khoury
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
- Office of Public Health Genomics, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
25
|
Pharmacodynamic study of disulfiram in men with non-metastatic recurrent prostate cancer. Prostate Cancer Prostatic Dis 2013; 16:357-61. [PMID: 23958896 PMCID: PMC3830644 DOI: 10.1038/pcan.2013.28] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/01/2013] [Accepted: 07/21/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Preclinical drug screens identified disulfiram as a potent in vitro inhibitor of prostate cancer (PCa) cell growth. Although many mechanisms for its anticancer activity have been proposed, tumor suppressor gene re-expression through promoter demethylation emerged as one of the more plausible. METHODS We conducted an open-label, dose escalation trial of disulfiram in men with non-metastatic recurrent PCa after local therapy. Dose escalation occurred if a demethylating 'response' (that is, 10% decrease in peripheral blood mononuclear cell (PBMC) global 5-methyl cytosine (5(me)C) content) was observed in <3 patients in cohort 1. Cohorts 1 and 2 received disulfiram 250 mg and 500 mg daily, respectively. The primary end point was the proportion of subjects with a demethylation response. Secondary end points included the rate of PSA progression at 6 months, changes in PSA doubling time and safety/tolerability. RESULTS Changes in global 5(me)C content were observed in two of nine patients (22.2%) in cohort 1 and 3 of 10 (30.0%) in cohort 2. Only five subjects were on trial for 6 months, all were in cohort 1 and all had PSA progression by 6 months. No changes in PSA kinetics were observed in either cohort. Disulfiram was poorly tolerated with six patients experiencing grade 3 adverse events (three per cohort). Three of the responders displayed pretreatment instability in their 5(me)C content. CONCLUSIONS A minority of patients had transient global PBMC demethylation changes. Instability in 5(me)C may limit the reproducibility of these findings, limiting our ability to confirm our hypothesis. Given the toxicities and no clinical benefits, further development of disulfiram should not be pursued in this population.
Collapse
|
26
|
Yamauchi M, Lochhead P, Imamura Y, Kuchiba A, Liao X, Qian ZR, Nishihara R, Morikawa T, Shima K, Wu K, Giovannucci E, Meyerhardt JA, Fuchs CS, Chan AT, Ogino S. Physical activity, tumor PTGS2 expression, and survival in patients with colorectal cancer. Cancer Epidemiol Biomarkers Prev 2013; 22:1142-52. [PMID: 23629521 PMCID: PMC3681847 DOI: 10.1158/1055-9965.epi-13-0108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Higher levels of physical activity are associated with lower colorectal carcinoma incidence and mortality, perhaps through influencing energy balance, cellular prosta7 systemic inflammation. Although evidence suggests interactive effects of energetics, sedentary lifestyle, and tumor CTNNB1 (β-catenin) or CDKN1B (p27) status on colon cancer prognosis, interactive effects of physical activity and tumor PTGS2 (the official symbol for COX-2) status on clinical outcome remain unknown. METHODS Using molecular pathological epidemiology database of 605 stage I-III colon and rectal cancers in two prospective cohort studies (the Nurse's Health Study and the Health Professionals Follow-up Study), we examined patient survival according to postdiagnosis physical activity and tumor PTGS2 status (with 382 PTGS2-positive and 223 PTGS2-negative tumors by immunohistochemistry). Cox proportional hazards models were used to calculate colorectal cancer-specific mortality HR, adjusting for clinical and other tumor variables including microsatellite instability status. RESULTS Among PTGS2-positive cases, compared with the least active first quartile, the multivariate HRs (95% confidence interval) were 0.30 (0.14-0.62) for the second, 0.38 (0.20-0.71) for the third, and 0.18 (0.08-0.41) for the fourth quartile of physical activity level (Ptrend = 0.0002). In contrast, among PTGS2-negative cases, physical activity level was not significantly associated with survival (Ptrend = 0.84; Pinteraction = 0.024, between physical activity and tumor PTGS2 status). CONCLUSIONS Postdiagnosis physical activity is associated with better survival among patients with PTGS2-positive tumors but not among patients with PTGS2-negative tumors. IMPACT Immunohistochemical PTGS2 expression in colorectal carcinoma may serve as a predictive biomarker in pathology practice, which may predict stronger benefit from exercise.
Collapse
Affiliation(s)
- Mai Yamauchi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Paul Lochhead
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Gastrointestinal Research Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Yu Imamura
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Aya Kuchiba
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Xiaoyun Liao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Reiko Nishihara
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Teppei Morikawa
- Department of Pathology, University of Tokyo Hospital, Tokyo, Japan
| | - Kaori Shima
- Department of Oral Pathology, Kagoshima University, Kagoshima, Japan
| | - Kana Wu
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Edward Giovannucci
- Department of Nutrition, Harvard School of Public Health, Boston, MA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| | - Jeffrey A. Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Charles S. Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| | - Andrew T. Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
27
|
Nan H, Giovannucci EL, Wu K, Selhub J, Paul L, Rosner B, Fuchs CS, Cho E. Pre-diagnostic leukocyte genomic DNA methylation and the risk of colorectal cancer in women. PLoS One 2013; 8:e59455. [PMID: 23560049 PMCID: PMC3613344 DOI: 10.1371/journal.pone.0059455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 02/14/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Abnormal one-carbon metabolism may lead to general genomic (global) hypomethylation, which may predispose an individual to the development of colorectal neoplasia. METHODS We evaluated the association between pre-diagnostic leukocyte genomic DNA methylation level and the risk of colorectal cancer in a nested case-control study of 358 colorectal cancer cases and 661 matched controls within the all-female cohort of the Nurses' Health Study (NHS). Among control subjects, we further examined major plasma components in the one-carbon metabolism pathway in relation to genomic DNA methylation level. Liquid chromatography/tandem mass spectrometry was used to examine leukocyte genomic DNA methylation level. We calculated odds ratios (ORs) and 95% confidence intervals (95% CIs) using logistic regression. RESULTS Overall genomic DNA methylation level was not associated with the risk of colorectal cancer (p for trend, 0.45). Compared with women in the lowest quintile of methylation, the multivariate OR of colorectal cancer risk was 1.32 (95% CI, 0.82-2.13) for those in the highest quintile. We did not find significant associations between major plasma components of one-carbon metabolism or risk factors for colorectal cancer and genomic DNA methylation level (all p for trend >0.05). Also, neither one-carbon metabolism-related plasma components nor well-known risk factors for colorectal cancer modified the association between genomic DNA methylation level and the risk of colorectal cancer (all p for interaction >0.05). CONCLUSIONS We found no evidence that hypomethylation of leukocyte genomic DNA increases risk of colorectal cancer among women. Additional studies are needed to investigate the association between pre-diagnostic genomic DNA methylation level and colorectal cancer risk among diverse populations.
Collapse
Affiliation(s)
- Hongmei Nan
- Division of Cancer Epidemiology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Edward L. Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Kana Wu
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jacob Selhub
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Ligi Paul
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Charles S. Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eunyoung Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, Meyerhardt JA, Meissner A, Schernhammer ES, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol 2013; 26:465-84. [PMID: 23307060 PMCID: PMC3637979 DOI: 10.1038/modpathol.2012.214] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetics acts as an interface between environmental/exogenous factors, cellular responses, and pathological processes. Aberrant epigenetic signatures are a hallmark of complex multifactorial diseases (including neoplasms and malignancies such as leukemias, lymphomas, sarcomas, and breast, lung, prostate, liver, and colorectal cancers). Epigenetic signatures (DNA methylation, mRNA and microRNA expression, etc) may serve as biomarkers for risk stratification, early detection, and disease classification, as well as targets for therapy and chemoprevention. In particular, DNA methylation assays are widely applied to formalin-fixed, paraffin-embedded archival tissue specimens as clinical pathology tests. To better understand the interplay between etiological factors, cellular molecular characteristics, and disease evolution, the field of 'molecular pathological epidemiology (MPE)' has emerged as an interdisciplinary integration of 'molecular pathology' and 'epidemiology'. In contrast to traditional epidemiological research including genome-wide association studies (GWAS), MPE is founded on the unique disease principle, that is, each disease process results from unique profiles of exposomes, epigenomes, transcriptomes, proteomes, metabolomes, microbiomes, and interactomes in relation to the macroenvironment and tissue microenvironment. MPE may represent a logical evolution of GWAS, termed 'GWAS-MPE approach'. Although epigenome-wide association study attracts increasing attention, currently, it has a fundamental problem in that each cell within one individual has a unique, time-varying epigenome. Having a similar conceptual framework to systems biology, the holistic MPE approach enables us to link potential etiological factors to specific molecular pathology, and gain novel pathogenic insights on causality. The widespread application of epigenome (eg, methylome) analyses will enhance our understanding of disease heterogeneity, epigenotypes (CpG island methylator phenotype, LINE-1 (long interspersed nucleotide element-1; also called long interspersed nuclear element-1; long interspersed element-1; L1) hypomethylation, etc), and host-disease interactions. In this article, we illustrate increasing contribution of modern pathology to broader public health sciences, which attests pivotal roles of pathologists in the new integrated MPE science towards our ultimate goal of personalized medicine and prevention.
Collapse
Affiliation(s)
- Shuji Ogino
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|