1
|
Li L, Xiao H, Wu X, Tang Z, Khoury JD, Wang J, Wan S. RanBALL: An Ensemble Random Projection Model for Identifying Subtypes of B-Cell Acute Lymphoblastic Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.24.614777. [PMID: 39386448 PMCID: PMC11463541 DOI: 10.1101/2024.09.24.614777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
As the most common pediatric malignancy, B-cell acute lymphoblastic leukemia (B-ALL) has multiple distinct subtypes characterized by recurrent and sporadic somatic and germline genetic alterations. Identifying B-ALL subtypes can facilitate risk stratification and enable tailored therapeutic design. Existing methods for B-ALL subtyping primarily depend on immunophenotyping, cytogenetic tests and genomic profiling, which would be costly, complicated, and laborious. To overcome these challenges, we present RanBALL (an ensemble Random projection-based model for identifying B-ALL subtypes), an accurate and cost-effective model for B-ALL subtype identification. By leveraging random projection (RP) and ensemble learning, RanBALL can preserve patient-to-patient distances after dimension reduction and yield robustly accurate classification performance for B-ALL subtyping. Benchmarking results based on > 1700 B-ALL patients demonstrated that RanBALL achieved remarkable performance (accuracy: 0.93, F1-score: 0.93, and Matthews correlation coefficient: 0.93), significantly outperforming state-of-the-art methods like ALLSorts in terms of all performance metrics. In addition, RanBALL performs better than tSNE in terms of visualizing B-ALL subtype information. We believe RanBALL will facilitate the discovery of B-ALL subtype-specific marker genes and therapeutic targets to have consequential positive impacts on downstream risk stratification and tailored treatment design. To extend its applicability and impacts, a Python-based RanBALL package is available at https://github.com/wan-mlab/RanBALL.
Collapse
Affiliation(s)
- Lusheng Li
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hanyu Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xinchao Wu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zhenya Tang
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joseph D Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jieqiong Wang
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Broccia G, Carter J, Ozsin-Ozler C, De Matteis S, Cocco P. Epidemiology of acute lymphoblastic leukaemia in Sardinia, Italy: Age, sex, and environmental correlates. Cancer Epidemiol 2024; 91:102582. [PMID: 38733651 DOI: 10.1016/j.canep.2024.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Using a database of 1974-2003 incident cases of haematological malignancies, we explored the time trend, geographic spread and socio-economic and environmental correlates of ALL incidence in Sardinia, Italy, by sex and age. The age- and sex-standardized (World population) ALL incidence rate was 2.0 per 100,000 (95% CI 1.8 - 2.1) and showed variable trend patterns by sex and age. In the total population, ALL incidence showed an annual per cent change of -1.4% (95% CI -0.59 - -3.34) over the study period, with a knot separating a downward slope in 1974-1996 from an increase in 1996-2003. ALL incidence replicated such pattern in women but not men, whose incidence did not substantially vary over the study period (APC = -2.57%, 95% CI -5.45 - 0.26). Among women, the spatial analysis suggested a clustering of ALL in the southwestern part of the region, whilst only a commune had a high posterior probability of a high ALL incidence among men. Three unrelated communes showed a high posterior probability of ALL at age ≤ 24; only the most populated urban centre showed excess cases at age ≥ 25 years. There was no correlation between the geographic spread of ALL at ages ≤ 24 and ≥ 25 years (p = 0.082). Urban residence was a risk factor for the younger age group. Residences near industrial settlements and in the most populated urban centre were risk factors for subjects aged ≥ 25 years. Our findings suggest age-related differences in ALL aetiology.
Collapse
Affiliation(s)
- Giorgio Broccia
- Department of Haematology and Bone Marrow Transplants, Hospital A. Businco, Cagliari 09121, Italy
| | | | - Cansu Ozsin-Ozler
- Hacettepe University, Faculty of Dentistry, Department of Pediatric Dentistry, Ankara, Turkey
| | | | - Pierluigi Cocco
- Centre for Occupational and Environmental Health, Division of Public Health, Health Services Research &Primary Care, University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
3
|
Williams LA, Haynes D, Sample JM, Lu Z, Hossaini A, McGuinn LA, Hoang TT, Lupo PJ, Scheurer ME. PM2.5, vegetation density, and childhood cancer: a case-control registry-based study from Texas 1995-2011. J Natl Cancer Inst 2024; 116:876-884. [PMID: 38366656 DOI: 10.1093/jnci/djae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Air pollution is positively associated with some childhood cancers, whereas greenness is inversely associated with some adult cancers. The interplay between air pollution and greenness in childhood cancer etiology is unclear. We estimated the association between early-life air pollution and greenness exposure and childhood cancer in Texas (1995 to 2011). METHODS We included 6101 cancer cases and 109 762 controls (aged 0 to 16 years). We linked residential birth address to census tract annual average fine particulate matter <2.5 µg/m³ (PM2.5) and Normalized Difference Vegetation Index (NDVI). We estimated odds ratios (ORs) and 95% confidence intervals (CIs) between PM2.5/NDVI interquartile range increases and cancer. We assessed statistical interaction between PM2.5 and NDVI (likelihood ratio tests). RESULTS Increasing residential early-life PM2.5 exposure was associated with all childhood cancers (OR = 1.10, 95% CI = 1.06 to 1.15), lymphoid leukemias (OR = 1.15, 95% CI = 1.07 to 1.23), Hodgkin lymphomas (OR = 1.27, 95% CI = 1.02 to 1.58), non-Hodgkin lymphomas (OR = 1.24, 95% CI = 1.02 to 1.51), ependymoma (OR = 1.27, 95% CI = 1.01 to 1.60), and others. Increasing NDVI exposure was inversely associated with ependymoma (0- to 4-year-old OR = 0.75, 95% CI = 0.58 to 0.97) and medulloblastoma (OR = 0.75, 95% CI = 0.62 to 0.91) but positively associated with malignant melanoma (OR = 1.75, 95% CI = 1.23 to 2.47) and Langerhans cell histiocytosis (OR = 1.56, 95% CI = 1.07 to 2.28). There was evidence of statistical interaction between NDVI and PM2.5 (P < .04) for all cancers. CONCLUSION Increasing early-life exposure to PM2.5 increased the risk of childhood cancers. NDVI decreased the risk of 2 cancers yet increased the risk of others. These findings highlight the complexity between PM2.5 and NDVI in cancer etiology.
Collapse
Affiliation(s)
- Lindsay A Williams
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Brain Tumor Program, University of Minnesota, Minneapolis, MN, USA
| | - David Haynes
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Jeannette M Sample
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Zhanni Lu
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Ali Hossaini
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Laura A McGuinn
- Department of Family Medicine, University of Chicago, Chicago, IL, USA
| | - Thanh T Hoang
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Michael E Scheurer
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
4
|
Monterroso PS, Li Z, Domingues AM, Sample JM, Marcotte EL. Racial and ethnic and socioeconomic disparities in childhood cancer incidence trends in the United States, 2000-2019. J Natl Cancer Inst 2023; 115:1576-1585. [PMID: 37531268 PMCID: PMC10699844 DOI: 10.1093/jnci/djad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Population-based surveillance of pediatric cancer incidence trends is critical to determine high-risk populations, drive hypothesis generation, and uncover etiologic heterogeneity. We provide a comprehensive update to the current understanding of pediatric cancer incidence trends by sex, race and ethnicity, and socioeconomic status (SES). METHODS The Surveillance, Epidemiology, and End Results 22 data (2000-2019) was used to summarize age-adjusted incidence rates for children and adolescents aged 0-19 years at diagnosis. The annual percentage change (APC) and 95% confidence interval (CI) were estimated to evaluate incidence trends by sex, race and ethnicity, and SES overall and for cancer subtypes. Tests of statistical significance were 2-sided. RESULTS Substantial variation was observed overall and for several histologic types in race and ethnicity- and SES-specific rates. Overall, we observed a statistically significant increase in incidence rates (APC = 0.8%, 95% CI = 0.6% to 1.1%). All race and ethnic groups saw an increase in incidence rates, with the largest occurring among non-Hispanic American Indian and Alaska Native children and adolescents (APC = 1.7%, 95% CI = 0.5% to 2.8%) and the smallest increase occurring among non-Hispanic White children and adolescents (APC = 0.7%, 95% CI = 0.5% to 1.0%). The lowest SES quintiles saw statistically significant increasing trends, while the highest quintile remained relatively stable (quintile 1 [Q1] APC = 1.6%, 95% CI = 0.6% to 2.6%; quintile 5 [Q5] APC = 0.3%, 95% CI = -0.1% to 0.7%). CONCLUSIONS Childhood cancer incidence is increasing overall and among every race and ethnic group. Variation by race and ethnicity and SES may enable hypothesis generation on drivers of disparities observed.
Collapse
Affiliation(s)
- Pablo S Monterroso
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Zhaoheng Li
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Allison M Domingues
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jeannette M Sample
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Erin L Marcotte
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Al-Zayan NR, Ashour MJ, Abuwarda HN, Sharif FA. ARID5B, IKZF1, GATA3, CEBPE, and CDKN2A germline polymorphisms and predisposition to childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol 2023; 41:103-113. [PMID: 37578068 DOI: 10.1080/08880018.2023.2234946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/10/2023] [Accepted: 06/21/2023] [Indexed: 08/15/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent type of pediatric cancer. Germline single nucleotide polymorphisms (SNPs), including ARID5B (rs10821936 T/C), IKZF1 (rs4132601 T/G), GATA3 (rs3824662 G/T), CEBPE (rs2239633 G/A), and CDKN2A (rs3731217 A/C) have been linked to pediatric ALL in different populations. Hitherto, no previous studies have tested the relationship between these SNPs and pediatric ALL in Gaza strip. Therefore, we investigated the association between these polymorphisms and the occurrence of childhood ALL in this part of Palestine. This case-control study recruited 100 healthy controls and 78 ALL patients. Allele-specific PCR (AS-PCR) technique was used for SNPs genotyping. Relevant statistical tests were used and the multifactor dimensionality reduction (MDR) approach was applied in the analysis of gene-gene interactions. Minor alleles of ARID5B rs10821936 T/C (p = 0.007) and IKZF1 rs4132601 T/G (p = 0.045) were significantly higher in ALL patients. The homozygous (TT) genotype of GATA3 rs3824662 G/T (p = 0.038), (CC) of ARID5B rs10821936 T/C (p = 0.008), and (AC and CC) genotypes of CDKN2A rs3731217 A/C (p < 0.0001) were significantly higher in ALL cases. On MDR analysis, the best model for ALL risk was the five-factor model combination of the examined SNPs (CVC = 10/10; TBA = 0.632; p < 0.0001). This work demonstrates the association of ARID5B rs10821936 T/C, IKZF1 rs4132601 T/G, GATA3 rs3824662 G/T, and CDKN2A rs3731217 A/C polymorphisms with increased risk of pediatric ALL among a patient cohort from Gaza Strip. Further studies with a larger sample size are needed in order to confirm these findings and test the value of these SNPs in prognosis and treatment sensitivity.
Collapse
Affiliation(s)
| | | | | | - Fadel A Sharif
- Department of Medical Laboratory Sciences-IUG, Gaza, Palestine
| |
Collapse
|
6
|
Fouad FM, Eid JI. PAX5 fusion genes in acute lymphoblastic leukemia: A literature review. Medicine (Baltimore) 2023; 102:e33836. [PMID: 37335685 DOI: 10.1097/md.0000000000033836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a common cancer affecting children worldwide. The development of ALL is driven by several genes, some of which can be targeted for treatment by inhibiting gene fusions. PAX5 is frequently mutated in ALL and is involved in chromosomal rearrangements and translocations. Mutations in PAX5 interact with other genes, such as ETV6 and FOXP1, which influence B-cell development. PAX5/ETV6 has been observed in both B-ALL patients and a mouse model. The interaction between PAX5 and FOXP1 negatively suppresses the Pax5 gene in B-ALL patients. Additionally, ELN and PML genes have been found to fuse with PAX5, leading to adverse effects on B-cell differentiation. ELN-PAX5 interaction results in the decreased expression of LEF1, MB1, and BLNK, while PML-PAX5 is critical in the early stages of leukemia. PAX5 fusion genes prevent the transcription of the PAX5 gene, making it an essential target gene for the study of leukemia progression and the diagnosis of B-ALL.
Collapse
Affiliation(s)
- Fatma Mohamed Fouad
- Biology Department, College of Science, Sultan Qaboos University, Muscat, Oman
- Chemistry Department, Biotechnology/Bimolecular Chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Jehane I Eid
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Rasli NR, Hamid A, Awang N, Kamaludin NF. Series of Organotin(IV) Compounds with Different Dithiocarbamate Ligands Induced Cytotoxicity, Apoptosis and Cell Cycle Arrest on Jurkat E6.1, T Acute Lymphoblastic Leukemia Cells. Molecules 2023; 28:molecules28083376. [PMID: 37110610 PMCID: PMC10143845 DOI: 10.3390/molecules28083376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
The discovery of cisplatin has influenced scientists to study the anticancer properties of other metal complexes. Organotin(IV) dithiocarbamate compounds are gaining attention as anticancer agents due to their potent cytotoxic properties on cancer cells. In this study, a series of organotin compounds were assessed for their toxic effects on the Jurkat E6.1 cell line. WST-1 assay was used to determine the cytotoxic effect of the compounds and showed that six out of seven organotin(IV) dithiocarbamate compounds exhibited potent cytotoxic effects toward T-lymphoblastic leukemia cells, Jurkat E6.1 with the concentration of IC50 ranging from 0.67-0.94 µM. The apoptosis assay by Annexin V-FITC/PI staining showed that all tested compounds induced cell death mainly via apoptosis. Cell cycle analysis assessed using RNase/PI staining showed that organotin(IV) dithiocarbamate compounds induced cell cycle arrest at different phases. In conclusion, the tested organotin(IV) dithiocarbamate compounds demonstrated potent cytotoxicity against Jurkat E6.1 cells via apoptosis and cell cycle arrest at low IC50 value. However, further studies on the mechanisms of action are required to probe the possible potential of these compounds on leukemia cells before they can be developed into anti-leukemic agents.
Collapse
Affiliation(s)
- Nur Rasyiqin Rasli
- Program of Biomedical Science, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Asmah Hamid
- Program of Biomedical Science, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Normah Awang
- Program of Environmental Health and Industrial Safety, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nurul Farahana Kamaludin
- Program of Environmental Health and Industrial Safety, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
8
|
Metayer C, Imani P, Dudoit S, Morimoto L, Ma X, Wiemels JL, Petrick LM. One-Carbon (Folate) Metabolism Pathway at Birth and Risk of Childhood Acute Lymphoblastic Leukemia: A Biomarker Study in Newborns. Cancers (Basel) 2023; 15:1011. [PMID: 36831356 PMCID: PMC9953980 DOI: 10.3390/cancers15041011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Leukemia is the most common cancer in children in industrialized countries, and its initiation often occurs prenatally. Folic acid is a key vitamin in the production and modification of DNA, and prenatal folic acid intake is known to reduce the risk of childhood leukemia. We characterized the one-carbon (folate) metabolism nutrients that may influence risk of childhood acute lymphoblastic leukemia (ALL) among 122 cases diagnosed at age 0-14 years during 1988-2011 and 122 controls matched on sex, age, and race/ethnicity. Using hydrophilic interaction chromatography (HILIC) applied to neonatal dried blood spots, we evaluated 11 folate pathway metabolites, overall and by sex, race/ethnicity, and age at diagnosis. To conduct the prediction analyses, the 244 samples were separated into learning (75%) and test (25%) sets, maintaining the matched pairings. The learning set was used to train classification methods which were evaluated on the test set. High classification error rates indicate that the folate pathway metabolites measured have little predictive capacity for pediatric ALL. In conclusion, the one-carbon metabolism nutrients measured at birth were unable to predict subsequent leukemia in children. These negative findings are reflective of the last weeks of pregnancy and our study does not address the impact of these nutrients at the time of conception or during the first trimester of pregnancy that are critical for the embryo's DNA methylation programming.
Collapse
Affiliation(s)
- Catherine Metayer
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA 94704, USA
| | - Partow Imani
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94704, USA
| | - Sandrine Dudoit
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94704, USA
- Department of Statistics, University of California, Berkeley, CA 94720, USA
| | - Libby Morimoto
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA 94704, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA
| | - Joseph L. Wiemels
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lauren M. Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
- The Bert Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, Ramat Gan 5211401, Israel
| |
Collapse
|
9
|
Geris JM, Schleiss MR, Hooten AJ, Langer E, Hernandez-Alvarado N, Roesler MA, Sample J, Williams LA, Dickens DS, Mody RJ, Ravindranath Y, Gowans KL, Pridgeon MG, Spector LG, Nelson HH. Evaluation of the Association Between Congenital Cytomegalovirus Infection and Pediatric Acute Lymphoblastic Leukemia. JAMA Netw Open 2023; 6:e2250219. [PMID: 36622672 PMCID: PMC9856744 DOI: 10.1001/jamanetworkopen.2022.50219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPORTANCE Acute lymphoblastic leukemia (ALL) is the most common form of pediatric cancer, and a leading cause of death in children. Understanding the causes of pediatric ALL is necessary to enable early detection and prevention; congenital cytomegalovirus (cCMV) has recently been identified as a potential moderate-to-strong factor associated with risk for ALL. OBJECTIVE To compare the prevalence of cCMV infection between ALL cases and matched controls. DESIGN, SETTING, AND PARTICIPANTS In this population-based case-control study of ALL cases and matched controls, cases consisted of children aged 0 to 14 years between 1987 and 2014 with an ALL diagnosis identified through the Michigan Cancer Surveillance Program and born in Michigan on or after October 1, 1987. Cancer-free controls were identified by the Michigan BioTrust for Health and matched on age, sex, and mother's race and ethnicity. Data were analyzed from November to May 2022. EXPOSURES cCMV infection measured by quantitative polymerase chain reaction in newborn dried blood spots. MAIN OUTCOMES AND MEASURES ALL diagnosed in children aged 0 to 14 years. RESULTS A total of 1189 ALL cases and 4756 matched controls were included in the study. Bloodspots were collected from participants at birth, and 3425 (57.6%) participants were male. cCMV was detected in 6 ALL cases (0.5%) and 21 controls (0.4%). There was no difference in the odds of cCMV infection comparing ALL cases with controls (odds ratio, 1.30; 95% CI, 0.52-3.24). Immunophenotype was available for 536 cases (45.1%) and cytogenetic data for 127 (27%). When stratified by subtype characteristics, hyperdiploid ALL (74 cases) was associated with 6.26 times greater odds of cCMV infection compared with unmatched controls (95% CI, 1.44-27.19). CONCLUSIONS AND RELEVANCE In this case-control study of cCMV and pediatric ALL, cCMV was associated with increased risk of hyperdiploid ALL. These findings encourage continued research.
Collapse
Affiliation(s)
- Jennifer M. Geris
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis
- Institute for Molecular Virology, University of Minnesota, Minneapolis
| | - Mark R. Schleiss
- Institute for Molecular Virology, University of Minnesota, Minneapolis
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis
| | | | - Erica Langer
- Masonic Cancer Center, University of Minnesota, Minneapolis
| | - Nelmary Hernandez-Alvarado
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis
| | - Michelle A. Roesler
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis
| | - Jeannette Sample
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis
| | - Lindsay A. Williams
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis
| | - David S. Dickens
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Pediatrics, University of Iowa, Iowa City
| | - Rajen J. Mody
- Division of Hematology-Oncology, Department of Pediatrics, Michigan Medicine, Ann Arbor
| | - Yaddanapudi Ravindranath
- Division of Hematology/Oncology, Department of Pediatrics, Wayne State University School of Medicine, and Children’s Hospital of Michigan, Detroit
| | - Kate L. Gowans
- Department of Pediatric Hematology/Oncology, Beaumont Health, Royal Oak, Michigan
| | - Matthew G. Pridgeon
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
- Helen DeVos Children’s Hospital, Spectrum Health System, Grand Rapids, Michigan
| | - Logan G. Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis
| | - Heather H. Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis
| |
Collapse
|
10
|
Flores-Lujano J, Duarte-Rodríguez DA, Jiménez-Hernández E, Martín-Trejo JA, Allende-López A, Peñaloza-González JG, Pérez-Saldivar ML, Medina-Sanson A, Torres-Nava JR, Solís-Labastida KA, Flores-Villegas LV, Espinosa-Elizondo RM, Amador-Sánchez R, Velázquez-Aviña MM, Merino-Pasaye LE, Núñez-Villegas NN, González-Ávila AI, del Campo-Martínez MDLÁ, Alvarado-Ibarra M, Bekker-Méndez VC, Cárdenas-Cardos R, Jiménez-Morales S, Rivera-Luna R, Rosas-Vargas H, López-Santiago NC, Rangel-López A, Hidalgo-Miranda A, Vega E, Mata-Rocha M, Sepúlveda-Robles OA, Arellano-Galindo J, Núñez-Enríquez JC, Mejía-Aranguré JM. Persistently high incidence rates of childhood acute leukemias from 2010 to 2017 in Mexico City: A population study from the MIGICCL. Front Public Health 2022; 10:918921. [PMID: 36187646 PMCID: PMC9518605 DOI: 10.3389/fpubh.2022.918921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/09/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Over the years, the Hispanic population living in the United States has consistently shown high incidence rates of childhood acute leukemias (AL). Similarly, high AL incidence was previously observed in Mexico City (MC). Here, we estimated the AL incidence rates among children under 15 years of age in MC during the period 2010-2017. Methods The Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia conducted a study gathering clinical and epidemiological information regarding children newly diagnosed with AL at public health institutions of MC. Crude age incidence rates (cAIR) were obtained. Age-standardized incidence rates worldwide (ASIRw) and by municipalities (ASIRm) were calculated by the direct and indirect methods, respectively. These were reported per million population <15 years of age; stratified by age group, sex, AL subtypes, immunophenotype and gene rearrangements. Results A total of 903 AL cases were registered. The ASIRw was 63.3 (cases per million) for AL, 53.1 for acute lymphoblastic leukemia (ALL), and 9.4 for acute myeloblastic leukemia. The highest cAIR for AL was observed in the age group between 1 and 4 years (male: 102.34 and female: 82.73). By immunophenotype, the ASIRw was 47.3 for B-cell and 3.7 for T-cell. The incidence did not show any significant trends during the study period. The ASIRm for ALL were 68.6, 66.6 and 62.8 at Iztacalco, Venustiano Carranza and Benito Juárez, respectively, whereas, other municipalities exhibited null values mainly for AML. Conclusion The ASIRw for childhood AL in MC is among the highest reported worldwide. We observed spatial heterogeneity of rates by municipalities. The elevated AL incidence observed in Mexican children may be explained by a combination of genetic background and exposure to environmental risk factors.
Collapse
Affiliation(s)
- Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Centro Médico Nacional “La Raza, ” Hospital General “Gaudencio González Garza, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico,Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional “Siglo XXI, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Aldo Allende-López
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Aurora Medina-Sanson
- Departamento de HematoOncología, Hospital Infantil de México Federico Gómez, Secretaría de Salud (SS), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional “Siglo XXI, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre, ” Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Raquel Amador-Sánchez
- Servicio de Hematología Pediátrica, Hospital General Regional 1 “Dr. Carlos McGregor Sánchez Navarro, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre, ” Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Nora Nancy Núñez-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional “La Raza, ” Hospital General “Gaudencio González Garza, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ana Itamar González-Ávila
- Servicio de Hematología Pediátrica, Hospital General Regional 1 “Dr. Carlos McGregor Sánchez Navarro, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María de los Ángeles del Campo-Martínez
- Servicio de Hematología Pediátrica, Centro Médico Nacional “La Raza, ” Hospital General “Gaudencio González Garza, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Martha Alvarado-Ibarra
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre, ” Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Vilma Carolina Bekker-Méndez
- Hospital de Infectología “Dr. Daniel Méndez Hernández, ” “La Raza, ” Instituto Mexicano del Seguro Social (IMSS), Unidad de Investigación Médica en Inmunología e Infectología, Mexico City, Mexico
| | - Rocío Cárdenas-Cardos
- Servicio de Oncología Pediátrica, Instituto Nacional de Pediatría, Secretaría de Salud (SS), Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Roberto Rivera-Luna
- Servicio de Oncología Pediátrica, Instituto Nacional de Pediatría, Secretaría de Salud (SS), Mexico City, Mexico
| | - Haydee Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Norma C. López-Santiago
- Servicio de Hematología Pediátrica, Instituto Nacional de Pediatría, Secretaría de Salud (SS), Mexico City, Mexico
| | - Angélica Rangel-López
- Coordinación de Investigación en Salud, Unidad Habilitada de Apoyo al Predictamen, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Elizabeth Vega
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Arellano-Galindo
- Unidad de Investigación en Enfermedades Infecciosas, Laboratorio de Virología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Secretaría de Salud (SS), Mexico City, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico,Juan Carlos Núñez-Enríquez
| | - Juan Manuel Mejía-Aranguré
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico,Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico,Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico,*Correspondence: Juan Manuel Mejía-Aranguré
| |
Collapse
|
11
|
Marley AR, Ryder JR, Turcotte LM, Spector LG. Maternal obesity and acute lymphoblastic leukemia risk in offspring: A summary of trends, epidemiological evidence, and possible biological mechanisms. Leuk Res 2022; 121:106924. [PMID: 35939888 DOI: 10.1016/j.leukres.2022.106924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Acute lymphoblastic leukemia, a heterogenous malignancy characterized by uncontrolled proliferation of lymphoid progenitors and generally initiated in utero, is the most common pediatric cancer. Although incidence of ALL has been steadily increasing in recent decades, no clear reason for this trend has been identified. Rising concurrently with ALL incidence, increasing maternal obesity rates may be partially contributing to increasing ALL prevelance. Epidemiological studies, including a recent meta-analysis, have found an association between maternal obesity and leukemogenesis in offspring, although mechanisms underlying this association remain unknown. Therefore, the purpose of this review is to propose possible mechanisms connecting maternal obesity to ALL risk in offspring, including changes to fetal/neonatal epigenetics, altered insulin-like growth factor profiles and insulin resistance, modified adipokine production and secretion, changes to immune cell populations, and impacts on birthweight and childhood obesity/adiposity. We describe how each proposed mechanism is biologically plausible due to their connection with maternal obesity, presence in neonatal and/or fetal tissue, observation in pediatric ALL patients at diagnosis, and association with leukemogenesis, A description of ALL and maternal obesity trends, a summary of epidemiological evidence, a discussion of the pathway from intrauterine environment to subsequent malignancy, and propositions for future directions are also presented.
Collapse
Affiliation(s)
- Andrew R Marley
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA.
| | - Justin R Ryder
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA; Center for Pediatric Obesity Medicine, Department of Pediatrics, University of Minnesota, 2450 Riverside Ave S AO-102, Minneapolis, MN 55454, USA
| | - Lucie M Turcotte
- Division of Hematology/Oncology, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 484, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Childhood B-Cell Preleukemia Mouse Modeling. Int J Mol Sci 2022; 23:ijms23147562. [PMID: 35886910 PMCID: PMC9317949 DOI: 10.3390/ijms23147562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Leukemia is the most usual childhood cancer, and B-cell acute lymphoblastic leukemia (B-ALL) is its most common presentation. It has been proposed that pediatric leukemogenesis occurs through a “multi-step” or “multi-hit” mechanism that includes both in utero and postnatal steps. Many childhood leukemia-initiating events, such as chromosomal translocations, originate in utero, and studies so far suggest that these “first-hits” occur at a far higher frequency than the incidence of childhood leukemia itself. The reason why only a small percentage of the children born with such preleukemic “hits” will develop full-blown leukemia is still a mystery. In order to better understand childhood leukemia, mouse modeling is essential, but only if the multistage process of leukemia can be recapitulated in the model. Therefore, mouse models naturally reproducing the “multi-step” process of childhood B-ALL will be essential to identify environmental or other factors that are directly linked to increased risk of disease.
Collapse
|
13
|
Application of High-Efficiency Cell Expansion and High-Throughput Drug Sensitivity Screening for Leukemia Treatment. DISEASE MARKERS 2022; 2022:4052591. [PMID: 35845130 PMCID: PMC9277151 DOI: 10.1155/2022/4052591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022]
Abstract
This study is to assess the clinical value of in vitro primary cell high-efficiency expansion and high-throughput drug sensitivity screening (HEHDS) system in leukemia, and we evaluated a cohort of 121 patients with acute myeloid leukemia (AML) and 27 patients with acute lymphoblastic leukemia (ALL) using HEHDS. Bone marrow aspirates were collected from patients with leukemia. Purified leukemic cancer cells were obtained, cultured, and screened with a panel of 247 FDA-approved compounds by HEHDS technology. Ninety-six patients received HEHDS-guided therapy while 52 patients who were subjected to physician directed therapy served as controls. ALL patients who received treatment guided by HEHDS showed higher rate of complete remission (CR) than that of patients in the non-HEHDS group (90.91% vs. 56.25%). Similarly, AML patients received HEHDS-guided therapy were found to have greater CR rate, when compared with patients who received physician-directed therapy (45.88% vs. 25%). There was a significantly higher rate of CR in HEHDS-guided therapy group compared to the non-HEHDS group. The application of HEHDS could be beneficial for leukemia treatment.
Collapse
|
14
|
Williams LA, Sample J, McLaughlin CC, Mueller BA, Chow EJ, Carozza SE, Reynolds P, Spector LG. Sex differences in associations between birth characteristics and childhood cancers: a five-state registry-linkage study. Cancer Causes Control 2021; 32:1289-1298. [PMID: 34297242 DOI: 10.1007/s10552-021-01479-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND There is a well-recognized male excess in childhood cancer incidence; however, it is unclear whether there is etiologic heterogeneity by sex when defined by epidemiologic risk factors. METHODS Using a 5-state registry-linkage study (cases n = 16,411; controls n = 69,816), we estimated sex-stratified odds ratios (OR) and 95% confidence intervals (95% CI) between birth and demographic characteristics for 16 pediatric cancers. Evidence of statistical interaction (p-interaction < 0.01) by sex was evaluated for each characteristic in each cancer. RESULTS Males comprised > 50% of cases for all cancers, except Wilms tumor (49.6%). Sex interacted with a number of risk factors (all p-interaction < 0.01) including gestational age for ALL (female, 40 vs. 37-39 weeks OR: 0.84, 95% CI 0.73-0.97) and ependymoma (female, 40 vs. 37-39 OR: 1.78, 95% CI 1.14-2.79; female, ≥ 41 OR: 2.01. 95% CI 1.29-3.14), birth order for AML (female, ≥ 3rd vs. 1st OR: 1.39, 95% CI 1.01-1.92), maternal education for Hodgkin lymphoma (male, any college vs. < high school[HS] OR: 1.47, 95% CI 1.03-2.09) and Wilms tumor (female, any college vs. HS OR: 0.74, 95% CI 0.59-0.93), maternal race/ethnicity for neuroblastoma (male, black vs. white OR: 2.21, 95% CI 1.21-4.03; male, Hispanic vs. white OR: 1.86, 95% CI 1.26-2.75; female, Asian/Pacific Islander vs. white OR: 0.28, 95% CI 0.12-0.69), and paternal age (years) for hepatoblastoma in males (< 24 vs. 25-29 OR: 2.17, 95% CI 1.13-4.19; ≥ 35 vs. 25-29 OR: 2.44, 95% CI 1.28-4.64). CONCLUSIONS These findings suggest etiologic heterogeneity by sex for childhood cancers for gestational age, maternal education, and race/ethnicity and paternal age.
Collapse
Affiliation(s)
- Lindsay A Williams
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, MMC 715, 420 Delaware St. S.E, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Brain Tumor Program, University of Minnesota, Minneapolis, MN, USA.
| | - Jeannette Sample
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, MMC 715, 420 Delaware St. S.E, Minneapolis, MN, 55455, USA
| | | | - Beth A Mueller
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Eric J Chow
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Susan E Carozza
- Department of Epidemiology and Biostatistics, School of Rural Public Health, Texas A&M Health Science Center, College Station, TX, USA
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California San Francisco, Berkeley, CA, USA
| | - Logan G Spector
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, MMC 715, 420 Delaware St. S.E, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Brain Tumor Program, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Kachuri L, Jeon S, DeWan AT, Metayer C, Ma X, Witte JS, Chiang CWK, Wiemels JL, de Smith AJ. Genetic determinants of blood-cell traits influence susceptibility to childhood acute lymphoblastic leukemia. Am J Hum Genet 2021; 108:1823-1835. [PMID: 34469753 PMCID: PMC8546033 DOI: 10.1016/j.ajhg.2021.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Despite overlap between genetic risk loci for ALL and hematologic traits, the etiological relevance of dysregulated blood-cell homeostasis remains unclear. We investigated this question in a genome-wide association study (GWAS) of childhood ALL (2,666 affected individuals, 60,272 control individuals) and a multi-trait GWAS of nine blood-cell indices in the UK Biobank. We identified 3,000 blood-cell-trait-associated (p < 5.0 × 10-8) variants, explaining 4.0% to 23.9% of trait variation and including 115 loci associated with blood-cell ratios (LMR, lymphocyte-to-monocyte ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio). ALL susceptibility was genetically correlated with lymphocyte counts (rg = 0.088, p = 4.0 × 10-4) and PLR (rg = -0.072, p = 0.0017). In Mendelian randomization analyses, genetically predicted increase in lymphocyte counts was associated with increased ALL risk (odds ratio [OR] = 1.16, p = 0.031) and strengthened after accounting for other cell types (OR = 1.43, p = 8.8 × 10-4). We observed positive associations with increasing LMR (OR = 1.22, p = 0.0017) and inverse effects for NLR (OR = 0.67, p = 3.1 × 10-4) and PLR (OR = 0.80, p = 0.002). Our study shows that a genetically induced shift toward higher lymphocyte counts, overall and in relation to monocytes, neutrophils, and platelets, confers an increased susceptibility to childhood ALL.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Soyoung Jeon
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew T DeWan
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA; Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA
| | - Catherine Metayer
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
16
|
Marcotte EL, Domingues AM, Sample JM, Richardson MR, Spector LG. Racial and ethnic disparities in pediatric cancer incidence among children and young adults in the United States by single year of age. Cancer 2021; 127:3651-3663. [PMID: 34151418 DOI: 10.1002/cncr.33678] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Incidence rates of pediatric cancers in the United States are typically reported in 5-year age groups, obscuring variation by single year of age. Additionally, racial and ethnic variation in incidence is typically presented in broad categories rather than by narrow age ranges. METHODS The Surveillance, Epidemiology, and End Results (SEER) 18 data (2000-2017) were examined to calculate frequencies and age-adjusted incidence rates among individuals aged birth to 39 years. Incidence rate ratios (IRRs) and 95% confidence intervals (95% CIs) were estimated as the measure of association for rate comparisons by race and Hispanic origin overall and by single year of age. RESULTS Several histologic types showed substantial variation in race/ethnicity-specific and overall rates by single year of age. Overall, Black children and young adults experienced substantially decreased incidence of acute lymphoid leukemia (IRR, 0.52; 95% CI, 0.49-0.55) compared to Whites, and this decreased incidence was strongest at ages 1 through 7 years and 16 through 20 years. Hispanic individuals experienced decreased overall incidence of Hodgkin lymphoma (IRR, 0.50; 95% CI, 0.48-0.52) and astrocytoma (IRR, 0.54; 95% CI, 0.52-0.56) and increased risk of acute lymphoblastic leukemia (IRR, 1.46; 95% CI, 1.42-1.51) compared to non-Hispanic Whites, and the increased risk was strongest at ages 10 through 23 years. Substantial decreased risk across many tumor types was also observed for Asian/Pacific Islanders and American Indian/Alaska Natives. CONCLUSIONS Examination of incidence rates for pediatric cancers by narrow age groups may provide insights regarding etiological differences in subgroups. Additionally, variation in age-specific incidence rates by race and ethnicity may enable hypothesis generation on drivers of disparities observed.
Collapse
Affiliation(s)
- Erin L Marcotte
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - Allison M Domingues
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jeannette M Sample
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Michaela R Richardson
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Logan G Spector
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| |
Collapse
|
17
|
Williams LA, Richardson M, Spector LG, Marcotte EL. Cesarean Section Is Associated with an Increased Risk of Acute Lymphoblastic Leukemia and Hepatoblastoma in Children from Minnesota. Cancer Epidemiol Biomarkers Prev 2021; 30:736-742. [PMID: 33563647 DOI: 10.1158/1055-9965.epi-20-1406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/30/2020] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In recent decades, Cesarean section (C-section) rates have increased. C-section is hypothesized to negatively impact the developing immune system by altering activation of the hypothalamic-pituitary-adrenal axis and the infant microbiome, among other mechanisms, thereby potentially modulating childhood cancer risk. METHODS Using linked birth and cancer registry data from Minnesota (1976-2014), we included individuals ages 0-14 at diagnosis with one of 19 cancers. Cases and controls were frequency matched by birth year. We used logistic regression to estimate ORs and 95% confidence intervals (95% CI) as the measure of association between C-section and cancer. We assessed sex-C-section interactions for each cancer and conducted stratified analyses in acute lymphoblastic leukemia (ALL) for birth year, age at diagnosis, and maternal race. RESULTS There were 3,166 cases and 20,589 controls. One third (n = 1,174) of controls born during 2004-2014 were delivered via C-section compared with 42.2% of cases (n = 285). C-section was associated with ALL (n = 819; OR: 1.20; 95% CI: 1.01-1.43) and hepatoblastoma (n = 50; OR: 1.89; 95% CI: 1.03-3.48), particularly among females (ALL OR: 1.34; 95% CI: 1.04-1.72; hepatoblastoma OR: 3.87; 95% CI: 1.30-11.57). The risk of ALL was highest during 2005-2014 (OR: 1.62; 95% CI: 1.11-2.34) and among children ages 1-5 years (OR: 1.28; 95% CI: 1.02-1.61). CONCLUSIONS C-section was associated with an increased risk of ALL and hepatoblastoma. IMPACT These associations require investigation to determine causality and rule out confounding by indication or reverse causality. The mechanisms underlying these associations may depend on neonatal immune system processes altered during C-section deliveries.
Collapse
Affiliation(s)
- Lindsay A Williams
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Brain Tumor Program, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Michaela Richardson
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Erin L Marcotte
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota. .,Brain Tumor Program, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
18
|
Gutierrez-Camino A, Richer C, St-Onge P, Lopez-Lopez E, Bañeres AC, de Andoin NG, Sastre A, Astigarraga I, Martin-Guerrero I, Sinnett D, Garcia-Orad A. Role of rs10406069 in miR-5196 in hyperdiploid childhood acute lymphoblastic leukemia. Epigenomics 2020; 12:1949-1955. [PMID: 33245684 DOI: 10.2217/epi-2020-0152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To determine the role of single nucleotide polymorphisms (SNPs) in noncoding RNAs in childhood acute lymphoblastic leukemia (ALL) subtypes. Materials & methods: We screened all SNPs in 130 pre-miRNA genes to assess their role in the susceptibility of the most common subtypes of ALL: hyperdiploid and ETV6-RUNX1. Results: In two independent cohorts, we found a significant association between rs10406069 in miR-5196 and the risk of developing hyperdiploid ALL. This observation could be explained by the impact of the SNP on miR-5196 expression and in turn, in its target genes. Indeed, rs10406069 was associated with expression changes in SMC1A, a gene involved in sister chromatin cohesion. Conclusion: rs10406069 in miR-5196 may have a relevant role in hyperdiploid ALL risk.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain.,Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain.,Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Chantal Richer
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Pascal St-Onge
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain.,Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ana Carbone Bañeres
- Department of Paediatrics, University Hospital Miguel Servet, Zaragoza, Spain
| | - Nagore Garcia de Andoin
- Department of Paediatrics, University Hospital Donostia, San Sebastian, Spain.,Unit of Pediatric Oncohematology, BioDonostia Health Research Institute, San Sebastian, Spain.,Department of Pediatrics, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Ana Sastre
- Department of Oncohematology, University Hospital La Paz, Madrid, Spain
| | - Itziar Astigarraga
- Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Pediatrics, University of the Basque Country, UPV/EHU, Leioa, Spain.,Department of Paediatrics, University Hospital Cruces, Barakaldo, Spain
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain.,Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Daniel Sinnett
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain.,Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
19
|
Marcotte EL, Schraw JM, Desrosiers TA, Nembhard WN, Langlois PH, Canfield MA, Meyer RE, Plon SE, Lupo PJ. Male Sex and the Risk of Childhood Cancer: The Mediating Effect of Birth Defects. JNCI Cancer Spectr 2020; 4:pkaa052. [PMID: 33134832 PMCID: PMC7583156 DOI: 10.1093/jncics/pkaa052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 11/30/2022] Open
Abstract
Background There is a persistent, unexplained disparity in sex ratio among childhood cancer cases, whereby males are more likely to develop most cancers. This male predominance is also seen for most birth defects, which are strongly associated with risk of childhood cancer. We conducted mediation analysis to estimate whether the increased risk of cancer among males is partially explained by birth defect status. Methods We used a population-based birth cohort with linked data from birth certificates, birth defects registries, and cancer registries from Arkansas, Michigan, North Carolina, and Texas. We conducted counterfactual mediation analysis to estimate the natural direct and indirect effects of sex on cancer risk, modeling birth defect status as mediator. State; birth year; plurality; and maternal race and ethnicity, age, and education were considered confounders. We conducted separate analyses limited to cancers diagnosed younger than 1 year of age. Results Our dataset included 10 181 074 children: 15 110 diagnosed with cancer, 539 567 diagnosed with birth defects, and 2124 co-occurring cases. Birth defect status mediated 38% of the association between sex and cancer overall. The proportion mediated varied by cancer type, including acute myeloid leukemia (93%), neuroblastoma (35%), and non-Hodgkin lymphoma (6%). Among children younger than 1 year of age at cancer diagnosis, the proportion mediated was substantially higher (82%). Conclusions Our results suggest that birth defects mediate a statistically significant proportion of the relationship between sex and childhood cancer. The proportion mediated varied by cancer type and diagnosis age. These findings improve our understanding of the causal pathway underlying male sex as a risk factor for childhood cancer.
Collapse
Affiliation(s)
- Erin L Marcotte
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jeremy M Schraw
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tania A Desrosiers
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Wendy N Nembhard
- Department of Epidemiology, University of Arkansas for Medical Sciences, and Arkansas Children's Research Institute, Little Rock, AR, USA
| | | | | | - Robert E Meyer
- Department of Maternal and Child Health, University of North Carolina, Chapel Hill, NC, USA
| | - Sharon E Plon
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Philip J Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
20
|
Wang P, Deng Y, Yan X, Zhu J, Yin Y, Shu Y, Bai D, Zhang S, Xu H, Lu X. The Role of ARID5B in Acute Lymphoblastic Leukemia and Beyond. Front Genet 2020; 11:598. [PMID: 32595701 PMCID: PMC7303299 DOI: 10.3389/fgene.2020.00598] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/18/2020] [Indexed: 02/05/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children with distinct characteristics among different subtypes. Although the etiology of ALL has not been fully unveiled, initiation of ALL has been demonstrated to partly depend on genetic factors. As indicated by several genome wide association studies (GWASs) and candidate gene analyses, ARID5B, a member of AT-rich interactive domain (ARID) protein family, is associated with the occurrence and prognosis of ALL. However, the mechanisms by which ARID5B genotype impact on the susceptibility and treatment outcome remain vague. In this review, we outline developments in the understanding of ARID5B in the susceptibility of ALL and its therapeutic perspectives, and summarize the underlying mechanisms based on the limited functional studies, hoping to illustrate the possible mechanisms of ARID5B impact and highlight the potential treatment regimens.
Collapse
Affiliation(s)
- Peiqi Wang
- Department of Pediatric Hematology/Oncology, West China Second University Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun Deng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xinyu Yan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianhui Zhu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanyuan Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Shu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shouyue Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.,Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiaoxi Lu
- Department of Pediatric Hematology/Oncology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Lupo PJ, Spector LG. Cancer Progress and Priorities: Childhood Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1081-1094. [DOI: 10.1158/1055-9965.epi-19-0941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
|
22
|
Yu YH, Xin F, Dong L, Ge L, Zhai CY, Shen XL. Weighted gene coexpression network analysis identifies critical genes in different subtypes of acute myeloid leukaemia. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1811767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Yan-Hui Yu
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Fei Xin
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Lu Dong
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Li Ge
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Chun-Yan Zhai
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Xu-Liang Shen
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| |
Collapse
|
23
|
Association of genes ARID5B, CEBPE and folate pathway with acute lymphoblastic leukemia in a population from the Brazilian Amazon region. Leuk Res Rep 2019; 13:100188. [PMID: 31867206 PMCID: PMC6906641 DOI: 10.1016/j.lrr.2019.100188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is the most common childhood neoplasia. Studies have shown that susceptibility to ALL may be modulated by genetic variables. Our study investigated 21 genetic variants in the susceptibility of the population of the Brazilian Amazon region to B-cell ALL. The variants of the genes GGH, CEBPE, ARID5B, MTHFR and MTHFD1 were related to a protective effect against the development of ALL, whereas the variant of the gene ATIC was associated with a risk effect. The results suggest that genetic variants analyzed modulate of the risk of developing ALL in the studied population.
Collapse
|
24
|
Vijayakrishnan J, Qian M, Studd JB, Yang W, Kinnersley B, Law PJ, Broderick P, Raetz EA, Allan J, Pui CH, Vora A, Evans WE, Moorman A, Yeoh A, Yang W, Li C, Bartram CR, Mullighan CG, Zimmerman M, Hunger SP, Schrappe M, Relling MV, Stanulla M, Loh ML, Houlston RS, Yang JJ. Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk. Nat Commun 2019; 10:5348. [PMID: 31767839 PMCID: PMC6877561 DOI: 10.1038/s41467-019-13069-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
There is increasing evidence for a strong inherited genetic basis of susceptibility to acute lymphoblastic leukaemia (ALL) in children. To identify new risk variants for B-cell ALL (B-ALL) we conducted a meta-analysis with four GWAS (genome-wide association studies), totalling 5321 cases and 16,666 controls of European descent. We herein describe novel risk loci for B-ALL at 9q21.31 (rs76925697, P = 2.11 × 10-8), for high-hyperdiploid ALL at 5q31.1 (rs886285, P = 1.56 × 10-8) and 6p21.31 (rs210143 in BAK1, P = 2.21 × 10-8), and ETV6-RUNX1 ALL at 17q21.32 (rs10853104 in IGF2BP1, P = 1.82 × 10-8). Particularly notable are the pleiotropic effects of the BAK1 variant on multiple haematological malignancies and specific effects of IGF2BP1 on ETV6-RUNX1 ALL evidenced by both germline and somatic genomic analyses. Integration of GWAS signals with transcriptomic/epigenomic profiling and 3D chromatin interaction data for these leukaemia risk loci suggests deregulation of B-cell development and the cell cycle as central mechanisms governing genetic susceptibility to ALL.
Collapse
Affiliation(s)
- Jayaram Vijayakrishnan
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Maoxiang Qian
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - James B Studd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Elizabeth A Raetz
- Division of Pediatric Hematology and Oncology, New York University Langone Health, New York, New York, USA
| | - James Allan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - William E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anthony Moorman
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Allen Yeoh
- Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- VIVA-University Children's Cancer Centre, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Wentao Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Claus R Bartram
- Institute of Human Genetics, University Hospital, Heidelberg, Germany
| | - Charles G Mullighan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Martin Zimmerman
- Department of Paediatric Haematology and Oncology, Hannover Medical School, 30625, Hannover, Germany
| | - Stephen P Hunger
- Department of Paediatrics and Centre for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Martin Schrappe
- Department of Paediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Martin Stanulla
- Department of Paediatric Haematology and Oncology, Hannover Medical School, 30625, Hannover, Germany
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
25
|
Williams LA, Spector LG. Survival Differences Between Males and Females Diagnosed With Childhood Cancer. JNCI Cancer Spectr 2019; 3:pkz032. [PMID: 31259303 PMCID: PMC6580869 DOI: 10.1093/jncics/pkz032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Males have worse survival for childhood cancer, but whether this disparity exists among all childhood cancer types is undescribed. METHODS We estimated sex differences in survival for 18 cancers among children (0-19 years) in Surveillance, Epidemiology, and End Results 18 (2000-2014). We used Kaplan-Meier survival curves (log-rank P values) to characterize sex differences in survival and Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between sex and death for each cancer type. We used an inverse odds weighting method to determine whether the association between sex and death was mediated by stage of disease for solid tumors. RESULTS Males had worse overall survival and a higher risk of death for acute lymphoblastic leukemia (HR = 1.24, 95% CI = 1.12 to 1.37), ependymoma (HR = 1.36, 95% CI = 1.05 to 1.77), neuroblastoma (HR = 1.28, 95% CI = 1.09 to 1.51), osteosarcoma (HR = 1.29, 95% CI = 1.08 to 1.53), thyroid carcinoma (HR = 3.25, 95% CI = 1.45 to 7.33), and malignant melanoma (HR = 1.97, 95% CI = 1.33 to 2.92) (all log-rank P values < .02). The association between sex and death was mediated by stage of disease for neuroblastoma (indirect HR = 1.12, 95% CI = 1.05 to 1.19), thyroid carcinoma (indirect HR = 1.24, 95% CI = 1.03 to 1.48), and malignant melanoma (indirect HR = 1.28, 95% CI = 1.10 to 1.49). For these six tumors, if male survival had been as good as female survival, 21% of male deaths and 13% of total deaths after these cancer diagnoses could have been avoided. CONCLUSIONS Consideration of molecular tumor and clinical data may help identify mechanisms underlying the male excess in death after childhood cancer for the aforementioned cancers.
Collapse
Affiliation(s)
- Lindsay A Williams
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Logan G Spector
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| |
Collapse
|