1
|
Blechter B, Wang X, Shi J, Shiraishi K, Choi J, Matsuo K, Chen TY, Dai J, Hung RJ, Chen K, Shu XO, Kim YT, Choudhury PP, Williams J, Landi MT, Lin D, Zheng W, Yin Z, Zhou B, Wang J, Seow WJ, Song L, Chang IS, Hu W, Chien LH, Cai Q, Hong YC, Kim HN, Wu YL, Wong MP, Richardson BD, Li S, Zhang T, Breeze C, Wang Z, Bassig BA, Kim JH, Albanes D, Wong JY, Shin MH, Chung LP, Yang Y, An SJ, Zheng H, Yatabe Y, Zhang XC, Kim YC, Caporaso NE, Chang J, Man Ho JC, Kubo M, Daigo Y, Song M, Momozawa Y, Kamatani Y, Kobayashi M, Okubo K, Honda T, Hosgood HD, Kunitoh H, Watanabe SI, Miyagi Y, Nakayama H, Matsumoto S, Horinouchi H, Tsuboi M, Hamamoto R, Goto K, Ohe Y, Takahashi A, Goto A, Minamiya Y, Hara M, Nishida Y, Takeuchi K, Wakai K, Matsuda K, Murakami Y, Shimizu K, Suzuki H, Saito M, Ohtaki Y, Tanaka K, Wu T, Wei F, Dai H, Machiela MJ, Su J, Kim YH, Oh IJ, Fun Lee VH, Chang GC, Tsai YH, Che KY, Huang MS, Su WC, Chen YM, Seow A, Park JY, Kweon SS, Chen KC, Gao YT, Qian B, Wu C, Lu D, Liu J, Schwartz AG, Houlston R, Spitz MR, Gorlov IP, Wu X, Yang P, Lam S, Tardon A, Chen C, Bojesen SE, Johansson M, Risch A, Bickeböller H, Ji BT, Wichmann HE, Christiani DC, Rennert G, Arnold S, Brennan P, McKay J, Field JK, Davies MPA, Shete SS, Le Marchand L, Liu G, Andrew A, Kiemeney LA, Zienolddiny-Narui S, Grankvist K, Johansson M, Cox A, Taylor F, Yuan JM, Lazarus P, Schabath MB, Aldrich MC, Jeon HS, Jiang SS, Sung JS, Chen CH, Hsiao CF, Jung YJ, Guo H, Hu Z, Burdett L, Yeager M, Hutchinson A, Hicks B, Liu J, Zhu B, Berndt SI, Wu W, Wang J, Li Y, Choi JE, Park KH, Sung SW, Liu L, Kang CH, Wang WC, Xu J, Guan P, Tan W, Yu CJ, Yang G, Loon Sihoe AD, Chen Y, Choi YY, Kim JS, Yoon HI, Park IK, Xu P, He Q, Wang CL, Hung HH, Vermeulen RCH, Cheng I, Wu J, Lim WY, Tsai FY, Chan JKC, Li J, Chen H, Lin HC, Jin L, Liu J, Sawada N, Yamaji T, Wyatt K, Li SA, Ma H, Zhu M, Wang Z, Cheng S, Li X, Ren Y, Chao A, Iwasaki M, Zhu J, Jiang G, Fei K, Wu G, Chen CY, Chen CJ, Yang PC, Yu J, Stevens VL, Fraumeni JF, Chatterjee N, Gorlova OY, Amos CI, Shen H, Hsiung CA, Chanock SJ, Rothman N, Kohno T, Lan Q, Zhang H. Stratifying Lung Adenocarcinoma Risk with Multi-ancestry Polygenic Risk Scores in East Asian Never-Smokers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.26.24309127. [PMID: 38978671 PMCID: PMC11230324 DOI: 10.1101/2024.06.26.24309127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Polygenic risk scores (PRSs) are promising for risk stratification but have mainly been developed in European populations. This study developed single- and multi-ancestry PRSs for lung adenocarcinoma (LUAD) in East Asian (EAS) never-smokers using genome-wide association study summary statistics from EAS (8,002 cases; 20,782 controls) and European (2,058 cases; 5,575 controls) populations. A multi-ancestry PRS, developed using CT-SLEB, was strongly associated with LUAD risk (odds ratio=1.71, 95% confidence interval (CI):1.61,1.82), with an area under the receiver operating curve value of 0.640 (95% CI:0.629,0.653). Individuals in the highest 20% of the PRS had nearly four times the risk compared to the lowest 20%. Individuals in the 95 th percentile of the PRS had an estimated 6.69% lifetime absolute risk. Notably, this group reached the average population 10-year LUAD risk at age 50 (0.42%) by age 41. Our study underscores the potential of multi-ancestry PRS approaches to enhance LUAD risk stratification in EAS never-smokers.
Collapse
|
2
|
Arrieta O, Arroyo-Hernández M, Soberanis-Piña PD, Viola L, Del Re M, Russo A, de Miguel-Perez D, Cardona AF, Rolfo C. Facing an un-met need in lung cancer screening: The never smokers. Crit Rev Oncol Hematol 2024; 202:104436. [PMID: 38977146 DOI: 10.1016/j.critrevonc.2024.104436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide and the second most common cancer in both men and women. In addition to smoking, other risk factors, such as environmental tobacco smoke, air pollution, biomass combustion, radon gas, occupational exposure, lung disease, family history of cancer, geographic variability, and genetic factors, play an essential role in developing LC. Current screening guidelines and eligibility criteria have limited efficacy in identifying LC cases (50 %), as most screening programs primarily target subjects with a smoking history as the leading risk factor. Implementing LC screening programs in people who have never smoked (PNS) can significantly impact cancer-specific survival and early disease detection. However, the available evidence regarding the feasibility and effectiveness of such programs is limited. Therefore, further research on LC screening in PNS is warranted to determine the necessary techniques for accurately identifying individuals who should be included in screening programs.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.
| | | | | | - Lucia Viola
- Thoracic Oncology Unit, Fundación Neumológica Colombiana, Bogotá, Colombia
| | - Marzia Del Re
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Alessandro Russo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Diego de Miguel-Perez
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Andrés F Cardona
- Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center 1/ Foundation for Clinical and Applied Cancer Research (FICMAC)/ Molecular Oncology and Biology Systems Research Group (Fox‑G), Universidad El Bosque, Bogotá, Colombia
| | - Christian Rolfo
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA.
| |
Collapse
|
3
|
Lai GGY, Tan DSW. Lung cancer screening in never smokers. Curr Opin Oncol 2024:00001622-990000000-00212. [PMID: 39258345 DOI: 10.1097/cco.0000000000001099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
PURPOSE OF REVIEW Low-dose computed tomography (LDCT) lung cancer screening has been established in smokers, but its role in never smokers remains unclear. The differences in lung cancer biology between smokers and nonsmokers highlight the importance of a discriminated approach. This overview focuses on the emerging data and implementation challenges for LDCT screening in nonsmokers. RECENT FINDINGS The first LDCT screening study in nonsmokers enriched with risk factors demonstrated a lung cancer detection rate double that of the phase 3 trials in smokers. The relative risk of lung cancer detected by LDCT has also been found to be similar amongst female never smokers and male ever smokers in Asia. Majority of lung cancers detected through LDCT screening are stage 0/1, leading to concerns of overdiagnosis. Risk prediction models to enhance individual selection and nodule management could be useful to enhance the utility of LDCT screening in never smokers. SUMMARY With appropriate risk stratification, LDCT screening in never smokers may attain similar efficacy as compared to smokers. A global effort is needed to generate evidence surrounding optimal screening strategies, as well as health and economic benefits to determine the suitability of widespread implementation.
Collapse
Affiliation(s)
- Gillianne G Y Lai
- Division of Medical Oncology, National Cancer Centre Singapore
- Duke-NUS Medical School
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore
- Duke-NUS Medical School
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore
| |
Collapse
|
4
|
Nguyen OTD, Fotopoulos I, Nøst TH, Markaki M, Lagani V, Tsamardinos I, Røe OD. The HUNT lung-SNP model: genetic variants plus clinical variables improve lung cancer risk assessment over clinical models. J Cancer Res Clin Oncol 2024; 150:389. [PMID: 39129029 PMCID: PMC11317451 DOI: 10.1007/s00432-024-05909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE The HUNT Lung Cancer Model (HUNT LCM) predicts individualized 6-year lung cancer (LC) risk among individuals who ever smoked cigarettes with high precision based on eight clinical variables. Can the performance be improved by adding genetic information? METHODS A polygenic model was developed in the prospective Norwegian HUNT2 study with clinical and genotype data of individuals who ever smoked cigarettes (n = 30749, median follow up 15.26 years) where 160 LC were diagnosed within six years. It included the variables of the original HUNT LCM plus 22 single nucleotide polymorphisms (SNPs) highly associated with LC. External validation was performed in the prospective Norwegian Tromsø Study (n = 2663). RESULTS The novel HUNT Lung-SNP model significantly improved risk ranking of individuals over the HUNT LCM in both HUNT2 (p < 0.001) and Tromsø (p < 0.05) cohorts. Furthermore, detection rate (number of participants selected to detect one LC case) was significantly better for the HUNT Lung-SNP vs. HUNT LCM in both cohorts (42 vs. 48, p = 0.003 and 11 vs. 14, p = 0.025, respectively) as well as versus the NLST, NELSON and 2021 USPSTF criteria. The area under the receiver operating characteristic curve (AUC) was higher for the HUNT Lung-SNP in both cohorts, but significant only in HUNT2 (AUC 0.875 vs. 0.844, p < 0.001). However, the integrated discrimination improvement index (IDI) indicates a significant improvement of LC risk stratification by the HUNT Lung-SNP in both cohorts (IDI 0.019, p < 0.001 (HUNT2) and 0.013, p < 0.001 (Tromsø)). CONCLUSION The HUNT Lung-SNP model could have a clinical impact on LC screening and has the potential to replace the HUNT LCM as well as the NLST, NELSON and 2021 USPSTF criteria in a screening setting. However, the model should be further validated in other populations and evaluated in a prospective trial setting.
Collapse
Affiliation(s)
- Olav Toai Duc Nguyen
- Department of Clinical Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gate. 1, Trondheim, NO, 7030, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Cancer Clinic, Kirkegata 2, Levanger, NO, 7600, Norway
| | - Ioannis Fotopoulos
- Department of Computer Science, University of Crete, Voutes Campus, Heraklion, GR, 70013, Greece
| | - Therese Haugdahl Nøst
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050, Langnes, Tromsø, NO-9037, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Håkon Jarls Gate 12, Trondheim, 7030, Norway
| | - Maria Markaki
- Institute of Applied and Computational Mathematics, FORTH, Heraklion, Crete, GR-700 13, Greece
| | - Vincenzo Lagani
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23952, Saudi Arabia
- SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence, Thuwal, 23952, Saudi Arabia
- Institute of Chemical Biology, Ilia State University, Tbilisi, 0162, Georgia
| | - Ioannis Tsamardinos
- Department of Computer Science, University of Crete, Voutes Campus, Heraklion, GR, 70013, Greece
- Institute of Applied and Computational Mathematics, FORTH, Heraklion, Crete, GR-700 13, Greece
- JADBio Gnosis DA S.A, STEP-C, N. Plastira 100, Heraklion, 700-13, GR, Greece
| | - Oluf Dimitri Røe
- Department of Clinical Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gate. 1, Trondheim, NO, 7030, Norway.
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Cancer Clinic, Kirkegata 2, Levanger, NO, 7600, Norway.
- Clinical Cancer Research Center, Department of Clinical Medicine, Aalborg University Hospital, Hobrovej 18-22, Aalborg, DK-9100, Denmark.
| |
Collapse
|
5
|
Wu YJ, Tang EK, Wu FZ. Evaluating Efficiency and Adherence in Asian Lung Cancer Screening: Comparing Self-paid and Clinical Study Approaches in Taiwan. Acad Radiol 2024; 31:2109-2117. [PMID: 38480076 DOI: 10.1016/j.acra.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 05/12/2024]
Abstract
RATIONALE AND OBJECTIVES This study aimed to assess how different screening methods, specifically self-paid screening versus participation in clinical studies, affect screening efficiency and adherence in a real-world Asian lung cancer screening population. MATERIALS AND METHODS This study collected 4166 participants from our hospital imaging database who underwent baseline low-dose computed tomography (LDCT) between January 2014 and August 2021. Adherence status was determined by counting CT scans, with one check indicating non-adherence and two or more checks indicating adherence. The primary objective was to investigate adherence to LDCT follow-up schedules among individuals with baseline pure ground-glass nodules (GGNs) based on different screening settings and to evaluate adherence status and CT follow-up clinical profiles. RESULTS Of the 4166 participants in the study, 3619 in the self-paid group and 547 in the clinical study group were men, with an average follow-up period of 4.5 years. Significant differences were observed in the proportions of Lung-RADS 4 lesions, subsolid nodules, and pure GGN lesions between the self-paid and clinical trial groups. A significant difference was found in adherence rates between the self-paid screening group (60.5%) and the clinical study group (84.8%) (p < 0.001). Adherence status rates significantly increased with larger GGN sizes across categories (p < 0.001). Multivariate logistic regression revealed that age (odds ratio [OR], 1.025; p = 0.012), smoking habits (OR, 1.744; p = 0.036), and clinical study screening type (OR, 3.097; p < 0.001) significantly influenced the adherence status. CONCLUSION The disparities in Asian lung cancer screening emphasize the need for increased efficacy, public awareness, and culturally sensitive approaches to mitigate overdiagnosis and enhance adherence among self-paying groups.
Collapse
Affiliation(s)
- Yun-Ju Wu
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - En-Kuei Tang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Fu-Zong Wu
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Education, National Sun Yat-sen University, 70, Lien-hai Road, Kaohsiung 80424, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Faculty of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Wei X, Sun D, Gao J, Zhang J, Zhu M, Yu C, Ma Z, Fu Y, Ji C, Pei P, Yang L, Millwood IY, Walters RG, Chen Y, Du H, Jin G, Chen Z, Hu Z, Li L, Shen H, Lv J, Ma H. Development and evaluation of a polygenic risk score for lung cancer in never-smoking women: A large-scale prospective Chinese cohort study. Int J Cancer 2024; 154:807-815. [PMID: 37846649 DOI: 10.1002/ijc.34765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
The proportion of lung cancer in never smokers is rising, especially among Asian women, but there is no effective early detection tool. Here, we developed a polygenic risk score (PRS), which may help to identify the population with higher risk of lung cancer in never-smoking women. We first performed a large GWAS meta-analysis (8595 cases and 8275 controls) to systematically identify the susceptibility loci for lung cancer in never-smoking Asian women and then generated a PRS using GWAS datasets. Furthermore, we evaluated the utility and effectiveness of PRS in an independent Chinese prospective cohort comprising 55 266 individuals. The GWAS meta-analysis identified eight known loci and a novel locus (5q11.2) at the genome-wide statistical significance level of P < 5 × 10-8 . Based on the summary statistics of GWAS, we derived a polygenic risk score including 21 variants (PRS-21) for lung cancer in never-smoking women. Furthermore, PRS-21 had a hazard ratio (HR) per SD of 1.29 (95% CI = 1.18-1.41) in the prospective cohort. Compared with participants who had a low genetic risk, those with an intermediate (HR = 1.32, 95% CI: 1.00-1.72) and high (HR = 2.09, 95% CI: 1.56-2.80) genetic risk had a significantly higher risk of incident lung cancer. The addition of PRS-21 to the conventional risk model yielded a modest significant improvement in AUC (0.697 to 0.711) and net reclassification improvement (24.2%). The GWAS-derived PRS-21 significantly improves the risk stratification and prediction accuracy for incident lung cancer in never-smoking Asian women, demonstrating the potential for identification of high-risk individuals and early screening.
Collapse
Affiliation(s)
- Xiaoxia Wei
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Jiaxin Gao
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Zhimin Ma
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yating Fu
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Ji
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pei Pei
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Ling Yang
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, UK
| | - Iona Y Millwood
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, UK
| | - Robin G Walters
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, UK
| | - Yiping Chen
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, UK
| | - Huaidong Du
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, UK
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, UK
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Blechter B, Chien LH, Chen TY, Chang IS, Choudhury PP, Hsiao CF, Shu XO, Wong JYY, Chen KY, Chang GC, Tsai YH, Su WC, Huang MS, Chen YM, Chen CY, Hung HH, Hu JW, Shi J, Zheng W, Rositch AF, Chen CJ, Chatterjee N, Yang PC, Rothman N, Hsiung CA, Lan Q. Polygenic Risk Score, Environmental Tobacco Smoke, and Risk of Lung Adenocarcinoma in Never-Smoking Women in Taiwan. JAMA Netw Open 2023; 6:e2339254. [PMID: 37955902 PMCID: PMC10644212 DOI: 10.1001/jamanetworkopen.2023.39254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/05/2023] [Indexed: 11/14/2023] Open
Abstract
Importance Estimating absolute risk of lung cancer for never-smoking individuals is important to inform lung cancer screening programs. Objectives To integrate data on environmental tobacco smoke (ETS), a known lung cancer risk factor, with a polygenic risk score (PRS) that captures overall genetic susceptibility, to estimate the absolute risk of lung adenocarcinoma (LUAD) among never-smokers in Taiwan. Design, Setting, and Participants The analyses were conducted in never-smoking women in the Taiwan Genetic Epidemiology Study of Lung Adenocarcinoma, a case-control study. Participants were recruited between September 17, 2002, and March 30, 2011. Data analysis was performed from January 17 to July 15, 2022. Exposures A PRS was derived using 25 genetic variants that achieved genome-wide significance (P < 5 × 10-8) in a recent genome-wide association study, and ETS was defined as never exposed, exposed at home or at work, and exposed at home and at work. Main Outcomes and Measures The Individualized Coherent Absolute Risk Estimator software was used to estimate the lifetime absolute risk of LUAD in never-smoking women aged 40 years over a projected 40-year span among the controls by using the relative risk estimates for the PRS and ETS exposures, as well as age-specific lung cancer incidence rates for never-smokers in Taiwan. Likelihood ratio tests were conducted to assess an additive interaction between the PRS and ETS exposure. Results Data were obtained on 1024 women with LUAD (mean [SD] age, 59.6 [11.4] years, 47.9% ever exposed to ETS at home, and 19.5% ever exposed to ETS at work) and 1024 controls (mean [SD] age, 58.9 [11.0] years, 37.0% ever exposed to ETS at home, and 14.3% ever exposed to ETS at work). The overall average lifetime 40-year absolute risk of LUAD estimated using PRS alone was 2.5% (range, 0.6%-10.3%) among women never exposed to ETS. When integrating both ETS and PRS data, the estimated absolute risk was 3.7% (range, 0.6%-14.5%) for women exposed to ETS at home or work and 5.3% (range, 1.2%-12.1%) for women exposed to ETS at home and work. A super-additive interaction between ETS and the PRS (P = 6.5 × 10-4 for interaction) was identified. Conclusions and Relevance This study found differences in absolute risk of LUAD attributed to genetic susceptibility according to levels of ETS exposure in never-smoking women. Future studies are warranted to integrate these findings in expanded risk models for LUAD.
Collapse
Affiliation(s)
- Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Li-Hsin Chien
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- Department of Applied Mathematics, Chung Yuan Christian University, Zhongli, Taiwan
| | - Tzu-Yu Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Parichoy Pal Choudhury
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
- Now with American Cancer Society, Kennesaw, Georgia
| | - Chin-Fu Hsiao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jason Y. Y. Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
- Now with Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, Bethesda, Maryland
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gee-Chen Chang
- School of Medicine and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Huang Tsai
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
- Department of Pulmonary and Critical Care, Xiamen Chang Gung Hospital, Xiamen, China
| | - Wu-Chou Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yuh-Min Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiao-Han Hung
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jia-Wei Hu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anne F. Rositch
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
8
|
Lam DCL, Liam CK, Andarini S, Park S, Tan DSW, Singh N, Jang SH, Vardhanabhuti V, Ramos AB, Nakayama T, Nhung NV, Ashizawa K, Chang YC, Tscheikuna J, Van CC, Chan WY, Lai YH, Yang PC. Lung Cancer Screening in Asia: An Expert Consensus Report. J Thorac Oncol 2023; 18:1303-1322. [PMID: 37390982 DOI: 10.1016/j.jtho.2023.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/23/2023] [Accepted: 06/10/2023] [Indexed: 07/02/2023]
Abstract
INTRODUCTION The incidence and mortality of lung cancer are highest in Asia compared with Europe and USA, with the incidence and mortality rates being 34.4 and 28.1 per 100,000 respectively in East Asia. Diagnosing lung cancer at early stages makes the disease amenable to curative treatment and reduces mortality. In some areas in Asia, limited availability of robust diagnostic tools and treatment modalities, along with variations in specific health care investment and policies, make it necessary to have a more specific approach for screening, early detection, diagnosis, and treatment of patients with lung cancer in Asia compared with the West. METHOD A group of 19 advisors across different specialties from 11 Asian countries, met on a virtual Steering Committee meeting, to discuss and recommend the most affordable and accessible lung cancer screening modalities and their implementation, for the Asian population. RESULTS Significant risk factors identified for lung cancer in smokers in Asia include age 50 to 75 years and smoking history of more than or equal to 20 pack-years. Family history is the most common risk factor for nonsmokers. Low-dose computed tomography screening is recommended once a year for patients with screening-detected abnormality and persistent exposure to risk factors. However, for high-risk heavy smokers and nonsmokers with risk factors, reassessment scans are recommended at an initial interval of 6 to 12 months with subsequent lengthening of reassessment intervals, and it should be stopped in patients more than 80 years of age or are unable or unwilling to undergo curative treatment. CONCLUSIONS Asian countries face several challenges in implementing low-dose computed tomography screening, such as economic limitations, lack of efforts for early detection, and lack of specific government programs. Various strategies are suggested to overcome these challenges in Asia.
Collapse
Affiliation(s)
- David Chi-Leung Lam
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chong-Kin Liam
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sita Andarini
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia - Persahabatan Hospital, Jakarta, Indonesia
| | - Samina Park
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Duke-NUS Medical School, Singapore
| | - Navneet Singh
- Lung Cancer Clinic, Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Seung Hun Jang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Varut Vardhanabhuti
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Antonio B Ramos
- Department of Thoracic Surgery and Anesthesia, Lung Center of the Philippines, Quezon City, Philippines
| | - Tomio Nakayama
- Division of Screening Assessment and Management, National Cancer Center Institute for Cancer Control, Japan
| | - Nguyen Viet Nhung
- Vietnam National Lung Hospital, University of Medicine and Pharmacy, VNU Hanoi, Vietnam
| | - Kazuto Ashizawa
- Department of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yeun-Chung Chang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jamsak Tscheikuna
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Wai Yee Chan
- Imaging Department, Gleneagles Hospital Kuala Lumpur, Jalan Ampang, 50450 Kuala Lumpur; Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia
| | - Yeur-Hur Lai
- School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Nursing, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan & National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
9
|
Wang P, Sun S, Lam S, Lockwood WW. New insights into the biology and development of lung cancer in never smokers-implications for early detection and treatment. J Transl Med 2023; 21:585. [PMID: 37653450 PMCID: PMC10472682 DOI: 10.1186/s12967-023-04430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Despite never smokers comprising between 10 and 25% of all cases, lung cancer in never smokers (LCNS) is relatively under characterized from an etiological and biological perspective. The application of multi-omics techniques on large patient cohorts has significantly advanced the current understanding of LCNS tumor biology. By synthesizing the findings of multi-omics studies on LCNS from a clinical perspective, we can directly translate knowledge regarding tumor biology into implications for patient care. Primarily focused on never smokers with lung adenocarcinoma, this review details the predominance of driver mutations, particularly in East Asian patients, as well as the frequency and importance of germline variants in LCNS. The mutational patterns present in LCNS tumors are thoroughly explored, highlighting the high abundance of the APOBEC signature. Moreover, this review recognizes the spectrum of immune profiles present in LCNS tumors and posits how it can be translated to treatment selection. The recurring and novel insights from multi-omics studies on LCNS tumor biology have a wide range of clinical implications. Risk factors such as exposure to outdoor air pollution, second hand smoke, and potentially diet have a genomic imprint in LCNS at varying degrees, and although they do not encompass all LCNS cases, they can be leveraged to stratify risk. Germline variants similarly contribute to a notable proportion of LCNS, which warrants detailed documentation of family history of lung cancer among never smokers and demonstrates value in developing testing for pathogenic variants in never smokers for early detection in the future. Molecular driver subtypes and specific co-mutations and mutational signatures have prognostic value in LCNS and can guide treatment selection. LCNS tumors with no known driver alterations tend to be stem-like and genes contributing to this state may serve as potential therapeutic targets. Overall, the comprehensive findings of multi-omics studies exert a wide influence on clinical management and future research directions in the realm of LCNS.
Collapse
Affiliation(s)
- Peiyao Wang
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Sun
- Department of Medical Oncology, British Columbia Cancer Agency Vancouver, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Ma Z, Lv J, Zhu M, Yu C, Ma H, Jin G, Guo Y, Bian Z, Yang L, Chen Y, Chen Z, Hu Z, Li L, Shen H. Lung cancer risk score for ever and never smokers in China. Cancer Commun (Lond) 2023; 43:877-895. [PMID: 37410540 PMCID: PMC10397566 DOI: 10.1002/cac2.12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Most lung cancer risk prediction models were developed in European and North-American cohorts of smokers aged ≥ 55 years, while less is known about risk profiles in Asia, especially for never smokers or individuals aged < 50 years. Hence, we aimed to develop and validate a lung cancer risk estimate tool for ever and never smokers across a wide age range. METHODS Based on the China Kadoorie Biobank cohort, we first systematically selected the predictors and explored the nonlinear association of predictors with lung cancer risk using restricted cubic splines. Then, we separately developed risk prediction models to construct a lung cancer risk score (LCRS) in 159,715 ever smokers and 336,526 never smokers. The LCRS was further validated in an independent cohort over a median follow-up of 13.6 years, consisting of 14,153 never smokers and 5,890 ever smokers. RESULTS A total of 13 and 9 routinely available predictors were identified for ever and never smokers, respectively. Of these predictors, cigarettes per day and quit years showed nonlinear associations with lung cancer risk (Pnon-linear < 0.001). The curve of lung cancer incidence increased rapidly above 20 cigarettes per day and then was relatively flat until approximately 30 cigarettes per day. We also observed that lung cancer risk declined sharply within the first 5 years of quitting, and then continued to decrease but at a slower rate in the subsequent years. The 6-year area under the receiver operating curve for the ever and never smokers' models were respectively 0.778 and 0.733 in the derivation cohort, and 0.774 and 0.759 in the validation cohort. In the validation cohort, the 10-year cumulative incidence of lung cancer was 0.39% and 2.57% for ever smokers with low (< 166.2) and intermediate-high LCRS (≥ 166.2), respectively. Never smokers with a high LCRS (≥ 21.2) had a higher 10-year cumulative incidence rate than those with a low LCRS (< 21.2; 1.05% vs. 0.22%). An online risk evaluation tool (LCKEY; http://ccra.njmu.edu.cn/lckey/web) was developed to facilitate the use of LCRS. CONCLUSIONS The LCRS can be an effective risk assessment tool designed for ever and never smokers aged 30 to 80 years.
Collapse
Affiliation(s)
- Zhimin Ma
- Department of EpidemiologyCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuP. R. China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuP. R. China
- Department of EpidemiologySchool of Public HealthSoutheast UniversityNanjingJiangsuP. R. China
| | - Jun Lv
- Department of Epidemiology & BiostatisticsSchool of Public HealthPeking UniversityBeijingP. R. China
- Ministry of EducationKey Laboratory of Molecular Cardiovascular Sciences (Peking University)BeijingP. R. China
| | - Meng Zhu
- Department of EpidemiologyCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuP. R. China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Canqing Yu
- Department of Epidemiology & BiostatisticsSchool of Public HealthPeking UniversityBeijingP. R. China
| | - Hongxia Ma
- Department of EpidemiologyCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuP. R. China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Guangfu Jin
- Department of EpidemiologyCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuP. R. China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Yu Guo
- Chinese Academy of Medical SciencesBeijingP. R. China
| | - Zheng Bian
- Chinese Academy of Medical SciencesBeijingP. R. China
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU)Nuffield Department of Population HealthUniversity of OxfordOxfordOxfordshireUK
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU)Nuffield Department of Population HealthUniversity of OxfordOxfordOxfordshireUK
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU)Nuffield Department of Population HealthUniversity of OxfordOxfordOxfordshireUK
| | - Zhibin Hu
- Department of EpidemiologyCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuP. R. China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Liming Li
- Department of Epidemiology & BiostatisticsSchool of Public HealthPeking UniversityBeijingP. R. China
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU)Nuffield Department of Population HealthUniversity of OxfordOxfordOxfordshireUK
| | - Hongbing Shen
- Department of EpidemiologyCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsuP. R. China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsuP. R. China
- Research Units of Cohort Study on Cardiovascular Diseases and CancersChinese Academy of Medical SciencesBeijingP. R. China
| |
Collapse
|
11
|
Vachani A, Caruso C. Impact of low-dose computed tomography screening on lung cancer incidence and outcomes. Curr Opin Pulm Med 2023; 29:232-238. [PMID: 37191171 PMCID: PMC10247528 DOI: 10.1097/mcp.0000000000000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
PURPOSE OF REVIEW To review findings from clinical trials of lung cancer screening (LCS), assess contemporary issues with implementation in clinical practice, and review emerging strategies to increase the uptake and efficiency of LCS. RECENT FINDINGS In 2013, the USPSTF recommended annual screening for individuals aged 55-80 years and currently smoke or quit within the past 15 years based on reduced mortality from lung cancer with annual low-dose computed tomography (LDCT) screening in the National Lung Screening Trial. Subsequent trials have demonstrated similar mortality outcomes in individuals with lower pack-year smoking histories. These findings, coupled with evidence for disparities in screening eligibility by race, resulted in updated guidelines by USPSTF to broaden eligibility criteria for screening. Despite this body of evidence, implementation in the United States has been suboptimal with fewer than 20% of eligible individuals receiving a screen. Barriers to efficient implementation are multifactorial and include patient, clinician, and system-level factors. SUMMARY Multiple randomized trials have established that annual LCS reduces mortality from lung cancer; however, several areas of uncertainty exist on the effectiveness of annual LDCT. Ongoing research is examining approaches to improve the uptake and efficiency of LCS, such as the use of risk-prediction models and biomarkers for identification of high-risk individuals.
Collapse
Affiliation(s)
- Anil Vachani
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
| | - Christopher Caruso
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
12
|
Chiu CH, Yang PC. Never Say No to Never-Smokers. J Thorac Oncol 2023; 18:689-693. [PMID: 37210179 DOI: 10.1016/j.jtho.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 05/22/2023]
Affiliation(s)
- Chao-Hua Chiu
- Taipei Cancer Center and Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
13
|
Triphuridet N, Zhang SS, Nagasaka M, Gao Y, Zhao JJ, Syn NL, Hanaoka T, Ou SHI, Shum E. Low-Dose Computed Tomography (LDCT) Lung Cancer Screening in Asian Female Never-Smokers Is as Efficacious in Detecting Lung Cancer as in Asian Male Ever-Smokers: A Systematic Review and Meta-Analysis. J Thorac Oncol 2023; 18:698-717. [PMID: 36775191 DOI: 10.1016/j.jtho.2023.01.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
INTRODUCTION Lung cancer in never-smokers is the major cancer cause of death globally. We compared the efficacy of low-dose computed tomography (LDCT) lung cancer screening among never-smokers versus ever-smokers using systematic review and meta-analysis. METHODS LDCT lung cancer screening studies that simultaneously included both ever-smoker and never-smoker participants published by April 30, 2021, were searched through PubMed and Scopus. Primary outcome measure was relative risk (RR) of lung cancer diagnosed among never-smokers versus ever-smokers. RESULTS A total of 14 studies (13 from Asia) were included (141,396 ever-smokers, 109,251 never-smokers, 1961 lung cancer cases diagnosed). RR of lung cancer diagnosed between ever-smokers versus never-smokers overall was 1.21 (95% confidence interval [CI]: 0.89-1.65), 1.37 (95% CI: 1.08-1.75) among males, and 0.88 (95% CI: 0.59-1.31) among females. RR was 1.78 (95% CI: 1.41-2.24) and 1.22 (95% CI: 0.89-1.68) for Asian female never-smokers versus male never-smokers and versus male ever-smokers, respectively, and 0.99 (95% CI: 0.65-1.50) versus high-risk ever-smokers (≥30 pack-years). Proportional meta-analysis revealed significantly more lung cancers diagnosed at first scan (95.4% [95% CI: 84.9-100.0] versus 70.9% [95% CI: 54.6-84.9], p = 0.010) and at stage 1 (88.5% [95% CI: 79.3-95.4] versus 79.7% [95% CI: 71.1-87.4], p = 0.071) among never-smokers versus ever-smokers, respectively. RR of lung cancer death and 5-year all-cause mortality in never-smokers versus ever-smokers was 0.27 (95% CI: 0.1-0.55, p < 0.001) and 0.13 (95% CI: 0.05-0.33, p < 0.001), respectively. CONCLUSIONS The RR of lung cancer detected by LDCT screening among female never-smokers and male ever-smokers in Asia was statistically similar. Overall and lung cancer specific mortality from the lung cancer diagnosed from LDCT screening was significantly reduced among never-smokers compared to ever-smokers.
Collapse
Affiliation(s)
- Natthaya Triphuridet
- Department of Medicine, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Shannon S Zhang
- Department of Medicine, Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, California
| | - Misako Nagasaka
- Department of Medicine, Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, California; Chao Family Comprehensive Cancer Center, Orange, California; Dalian Best Biotechnology Ltd., Beijing, People's Republic of China
| | - Yanfei Gao
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Joseph J Zhao
- National University of Singapore Yong Loo Lin School of Medicine, Singapore
| | - Nicholas L Syn
- National University of Singapore Yong Loo Lin School of Medicine, Singapore
| | - Takaomi Hanaoka
- Department of Thoracic Surgery, JA Nagano North Alps Medical Center Azumi Hospital, Nagano, Japan
| | - Sai-Hong Ignatius Ou
- Department of Medicine, Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, California; Chao Family Comprehensive Cancer Center, Orange, California.
| | - Elaine Shum
- Division of Medical Oncology, Department of Medicine, NYU Perlmutter Cancer Center/NYU Langone Health, New York, New York
| |
Collapse
|
14
|
Baldwin DR, O'Dowd EL, Tietzova I, Kerpel-Fronius A, Heuvelmans MA, Snoeckx A, Ashraf H, Kauczor HU, Nagavci B, Oudkerk M, Putora PM, Ryzman W, Veronesi G, Borondy-Kitts A, Rosell Gratacos A, van Meerbeeck J, Blum TG. Developing a pan-European technical standard for a comprehensive high-quality lung cancer computed tomography screening programme: an ERS technical standard. Eur Respir J 2023; 61:2300128. [PMID: 37202154 DOI: 10.1183/13993003.00128-2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/16/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Screening for lung cancer with low radiation dose computed tomography (LDCT) has a strong evidence base. The European Council adopted a recommendation in November 2022 that lung cancer screening (LCS) be implemented using a stepwise approach. The imperative now is to ensure that implementation follows an evidence-based process that delivers clinical and cost-effectiveness. This European Respiratory Society (ERS) Task Force was formed to provide a technical standard for a high-quality LCS programme. METHOD A collaborative group was convened to include members of multiple European societies. Topics were identified during a scoping review and a systematic review of the literature was conducted. Full text was provided to members of the group for each topic. The final document was approved by all members and the ERS Scientific Advisory Committee. RESULTS Topics were identified representing key components of a screening programme. The actions on findings from the LDCT were not included as they are addressed by separate international guidelines (nodule management and clinical management of lung cancer) and by a linked ERS Task Force (incidental findings). Other than smoking cessation, other interventions that are not part of the core screening process were not included (e.g. pulmonary function measurement). 56 statements were produced and areas for further research identified. CONCLUSIONS This European collaborative group has produced a technical standard that is a timely contribution to implementation of LCS. It will serve as a standard that can be used, as recommended by the European Council, to ensure a high-quality and effective programme.
Collapse
Affiliation(s)
- David R Baldwin
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Emma L O'Dowd
- Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Ilona Tietzova
- 1st Department of Tuberculosis and Respiratory Diseases, Charles University, Prague, Czech Republic
| | - Anna Kerpel-Fronius
- Department of Radiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Marjolein A Heuvelmans
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Institute for DiagNostic Accuracy (iDNA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Haseem Ashraf
- Department of Radiology, Akershus University Hospital, Oslo, Norway
- Institute for Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway
| | - Hans-Ulrich Kauczor
- Department of Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Blin Nagavci
- Institute for Evidence in Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Matthijs Oudkerk
- Institute for DiagNostic Accuracy (iDNA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul Martin Putora
- Department of Radiation Oncology, Kantonsspital Sankt Gallen, Sankt Gallen, Switzerland
- Department of Radiation Oncology, Inselspital Universitätsspital Bern, Bern, Switzerland
| | - Witold Ryzman
- Department of Thoracic Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Giulia Veronesi
- Department of Thoracic Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Jan van Meerbeeck
- Department of Pulmonology and Thoracic Oncology, UZ Antwerpen, Edegem, Belgium
| | - Torsten G Blum
- Lungenklinik Heckeshorn, HELIOS Klinikum Emil von Behring GmbH, Berlin, Germany
| |
Collapse
|
15
|
Shi J, Shiraishi K, Choi J, Matsuo K, Chen TY, Dai J, Hung RJ, Chen K, Shu XO, Kim YT, Landi MT, Lin D, Zheng W, Yin Z, Zhou B, Song B, Wang J, Seow WJ, Song L, Chang IS, Hu W, Chien LH, Cai Q, Hong YC, Kim HN, Wu YL, Wong MP, Richardson BD, Funderburk KM, Li S, Zhang T, Breeze C, Wang Z, Blechter B, Bassig BA, Kim JH, Albanes D, Wong JYY, Shin MH, Chung LP, Yang Y, An SJ, Zheng H, Yatabe Y, Zhang XC, Kim YC, Caporaso NE, Chang J, Ho JCM, Kubo M, Daigo Y, Song M, Momozawa Y, Kamatani Y, Kobayashi M, Okubo K, Honda T, Hosgood DH, Kunitoh H, Patel H, Watanabe SI, Miyagi Y, Nakayama H, Matsumoto S, Horinouchi H, Tsuboi M, Hamamoto R, Goto K, Ohe Y, Takahashi A, Goto A, Minamiya Y, Hara M, Nishida Y, Takeuchi K, Wakai K, Matsuda K, Murakami Y, Shimizu K, Suzuki H, Saito M, Ohtaki Y, Tanaka K, Wu T, Wei F, Dai H, Machiela MJ, Su J, Kim YH, Oh IJ, Lee VHF, Chang GC, Tsai YH, Chen KY, Huang MS, Su WC, Chen YM, Seow A, Park JY, Kweon SS, Chen KC, Gao YT, Qian B, Wu C, Lu D, Liu J, Schwartz AG, Houlston R, Spitz MR, Gorlov IP, Wu X, Yang P, Lam S, Tardon A, Chen C, Bojesen SE, Johansson M, Risch A, Bickeböller H, Ji BT, Wichmann HE, Christiani DC, Rennert G, Arnold S, Brennan P, McKay J, Field JK, Shete SS, Le Marchand L, Liu G, Andrew A, Kiemeney LA, Zienolddiny-Narui S, Grankvist K, Johansson M, Cox A, Taylor F, Yuan JM, Lazarus P, Schabath MB, Aldrich MC, Jeon HS, Jiang SS, Sung JS, Chen CH, Hsiao CF, Jung YJ, Guo H, Hu Z, Burdett L, Yeager M, Hutchinson A, Hicks B, Liu J, Zhu B, Berndt SI, Wu W, Wang J, Li Y, Choi JE, Park KH, Sung SW, Liu L, Kang CH, Wang WC, Xu J, Guan P, Tan W, Yu CJ, Yang G, Sihoe ADL, Chen Y, Choi YY, Kim JS, Yoon HI, Park IK, Xu P, He Q, Wang CL, Hung HH, Vermeulen RCH, Cheng I, Wu J, Lim WY, Tsai FY, Chan JKC, Li J, Chen H, Lin HC, Jin L, Liu J, Sawada N, Yamaji T, Wyatt K, Li SA, Ma H, Zhu M, Wang Z, Cheng S, Li X, Ren Y, Chao A, Iwasaki M, Zhu J, Jiang G, Fei K, Wu G, Chen CY, Chen CJ, Yang PC, Yu J, Stevens VL, Fraumeni JF, Chatterjee N, Gorlova OY, Hsiung CA, Amos CI, Shen H, Chanock SJ, Rothman N, Kohno T, Lan Q. Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population. Nat Commun 2023; 14:3043. [PMID: 37236969 PMCID: PMC10220065 DOI: 10.1038/s41467-023-38196-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications.
Collapse
Affiliation(s)
- Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Research Institute, Tokyo, Japan
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tzu-Yu Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Young Tae Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Dongxin Lin
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bao Song
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Jiucun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Jie Seow
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Li-Hsin Chien
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Nam Kim
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Maria Pik Wong
- Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Brian Douglas Richardson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Karen M Funderburk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Shilan Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown University Medical Center, Washington, DC, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Charles Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jin Hee Kim
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Lap Ping Chung
- Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Yang Yang
- Shanghai Pulmonary Hospital, Shanghai, China
| | - She-Juan An
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yasushi Yatabe
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Young-Chul Kim
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasuneup, Republic of Korea
- Department of Internal Medicine, Chonnam National Univerisity Medical School, Gwangju, Republic of Korea
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jiang Chang
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - James Chung Man Ho
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Medical Oncology and Cancer Center, and Center for Advanced Medicine against Cancer, Shiga University of Medical Science, Shiga, Japan
| | - Minsun Song
- Department of Statistics & Research Institute of Natural Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masashi Kobayashi
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Okubo
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Honda
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dean H Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Hideo Kunitoh
- Department of Medical Oncology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Harsh Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Haruhiko Nakayama
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuichiro Ohe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Graduate School of Medicine, Akita University, Akita, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kimihiro Shimizu
- Department of Surgery, Division of General Thoracic Surgery, Shinshu University School of Medicine Asahi, Nagano, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoichi Ohtaki
- Department of Integrative center of General Surgery, Gunma University Hospital, Gunma, Japan
| | - Kazumi Tanaka
- Department of Integrative center of General Surgery, Gunma University Hospital, Gunma, Japan
| | - Tangchun Wu
- Institute of Occupational Medicine and Ministry of Education Key Lab for Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Fusheng Wei
- China National Environmental Monitoring Center, Beijing, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jian Su
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yeul Hong Kim
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - In-Jae Oh
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasuneup, Republic of Korea
- Department of Internal Medicine, Chonnam National Univerisity Medical School, Gwangju, Republic of Korea
| | - Victor Ho Fun Lee
- Department of Clinical Oncology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Gee-Chen Chang
- School of Medicine and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Division of Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Huang Tsai
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
- Department of Pulmonary and Critical Care, Xiamen Chang Gung Hospital, Xiamen, China
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University and Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wu-Chou Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, and school of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Adeline Seow
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jae Yong Park
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Jeonnam Regional Cancer Center, Chonnam National University, Hwasun, Republic of Korea
| | - Kun-Chieh Chen
- Department of Internal Medicine, Division of Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Biyun Qian
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Chen Wu
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Daru Lu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianjun Liu
- Genome Institute of Singapore, Agency of Science, Technology and Research, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Richard Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Margaret R Spitz
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
| | - Ivan P Gorlov
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
| | - Xifeng Wu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Chu Chen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stig E Bojesen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mattias Johansson
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Angela Risch
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- University of Salzburg and Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - H-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians University, Munich, Germany
- Helmholtz Center Munich, Institute of Epidemiology, Munich, Germany
- Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, Germany
| | | | | | | | - Paul Brennan
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - James McKay
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | - Sanjay S Shete
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Geoffrey Liu
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | | | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | | | | | - Jian-Min Yuan
- UPMC Hillman Cancer Center and Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip Lazarus
- Washington State University College of Pharmacy, Spokane, WA, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hyo-Sung Jeon
- Cancer Research Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jae Sook Sung
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chin-Fu Hsiao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yoo Jin Jung
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Huan Guo
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Jia Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Wei Wu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Junwen Wang
- Department of Biochemistry, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Genomic Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuqing Li
- Department of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Jin Eun Choi
- Cancer Research Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Kyong Hwa Park
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Sook Whan Sung
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Li Liu
- Department of Oncology, Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Hyun Kang
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wen-Chang Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jun Xu
- School of Public Health, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Peng Guan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, China
| | - Wen Tan
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Gong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Ying Chen
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yi Young Choi
- Cancer Research Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Jun Suk Kim
- Department of Internal Medicine, Division of Medical Oncology, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Ho-Il Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - In Kyu Park
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ping Xu
- Department of Oncology, Wuhan Iron and Steel (Group) Corporation Staff-Worker Hospital, Wuhan, China
| | - Qincheng He
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Chih-Liang Wang
- Department of Pulmonary and Critical Care, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiao-Han Hung
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Roel C H Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Junjie Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei-Yen Lim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Jihua Li
- Qujing Center for Diseases Control and Prevention, Qujing, China
| | - Hongyan Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hsien-Chih Lin
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Kathleen Wyatt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Shengchao A Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Rockville, MD, USA
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhehai Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Sensen Cheng
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, China
| | - Yangwu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, China
| | - Ann Chao
- Center for Global Health, National Cancer Institute, Bethesda, MD, USA
| | - Motoki Iwasaki
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Junjie Zhu
- Shanghai Pulmonary Hospital, Shanghai, China
| | | | - Ke Fei
- Shanghai Pulmonary Hospital, Shanghai, China
| | - Guoping Wu
- China National Environmental Monitoring Center, Beijing, China
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Jen Chen
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jinming Yu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | | | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Olga Y Gorlova
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Christopher I Amos
- Department of Medicine, Section of Epidemiology and Population Science, Institute for Clinical and Translational Research, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Research Institute, Tokyo, Japan
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
16
|
Sandler KL, Henry TS, Amini A, Elojeimy S, Kelly AM, Kuzniewski CT, Lee E, Martin MD, Morris MF, Peterson NB, Raptis CA, Silvestri GA, Sirajuddin A, Tong BC, Wiener RS, Witt LJ, Donnelly EF. ACR Appropriateness Criteria® Lung Cancer Screening: 2022 Update. J Am Coll Radiol 2023; 20:S94-S101. [PMID: 37236754 DOI: 10.1016/j.jacr.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 05/28/2023]
Abstract
Lung cancer remains the leading cause of cancer-related mortality for men and women in the United States. Screening for lung cancer with annual low-dose CT is saving lives, and the continued implementation of lung screening can save many more. In 2015, the CMS began covering annual lung screening for those who qualified based on the original United States Preventive Services Task Force (USPSTF) lung screening criteria, which included patients 55 to 77 year of age with a 30 pack-year history of smoking, who were either currently using tobacco or who had smoked within the previous 15 years. In 2021, the USPSTF issued new screening guidelines, decreasing the age of eligibility to 80 years of age and pack-years to 20. Lung screening remains controversial for those who do not meet the updated USPSTF criteria, but who have additional risk factors for the development of lung cancer. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
- Kim L Sandler
- Vanderbilt University Medical Center, Nashville, Tennessee.
| | | | - Arya Amini
- City of Hope National Medical Center, Duarte, California; Commission on Radiation Oncology
| | - Saeed Elojeimy
- Medical University of South Carolina, Charleston, South Carolina; Commission on Nuclear Medicine and Molecular Imaging
| | | | | | - Elizabeth Lee
- University of Michigan Health System, Ann Arbor, Michigan
| | - Maria D Martin
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Neeraja B Peterson
- Division of General Internal Medicine and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee, Primary care physician
| | | | - Gerard A Silvestri
- Medical University of South Carolina, Charleston, South Carolina; American College of Chest Physicians
| | | | - Betty C Tong
- Duke University School of Medicine, Durham, North Carolina; The Society of Thoracic Surgeons
| | - Renda Soylemez Wiener
- Boston University School of Medicine and Center for Healthcare Organization & Implementation Research, VA Boston Healthcare System, Boston, Massachusetts; American College of Chest Physicians
| | - Leah J Witt
- University of California San Francisco, San Francisco, California; American Geriatrics Society
| | - Edwin F Donnelly
- Specialty Chair, Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
17
|
Voigt W, Prosch H, Silva M. Clinical Scores, Biomarkers and IT Tools in Lung Cancer Screening-Can an Integrated Approach Overcome Current Challenges? Cancers (Basel) 2023; 15:cancers15041218. [PMID: 36831559 PMCID: PMC9954060 DOI: 10.3390/cancers15041218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
As most lung cancer (LC) cases are still detected at advanced and incurable stages, there are increasing efforts to foster detection at earlier stages by low dose computed tomography (LDCT) based LC screening. In this scoping review, we describe current advances in candidate selection for screening (selection phase), technical aspects (screening), and probability evaluation of malignancy of CT-detected pulmonary nodules (PN management). Literature was non-systematically assessed and reviewed for suitability by the authors. For the selection phase, we describe current eligibility criteria for screening, along with their limitations and potential refinements through advanced clinical scores and biomarker assessments. For LC screening, we discuss how the accuracy of computerized tomography (CT) scan reading might be augmented by IT tools, helping radiologists to cope with increasing workloads. For PN management, we evaluate the precision of follow-up scans by semi-automatic volume measurements of CT-detected PN. Moreover, we present an integrative approach to evaluate the probability of PN malignancy to enable safe decisions on further management. As a clear limitation, additional validation studies are required for most innovative diagnostic approaches presented in this article, but the integration of clinical risk models, current imaging techniques, and advancing biomarker research has the potential to improve the LC screening performance generally.
Collapse
Affiliation(s)
- Wieland Voigt
- Medical Innovation and Management, Steinbeis University Berlin, Ernst-Augustin-Strasse 15, 12489 Berlin, Germany
- Correspondence:
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, General Hospital, 1090 Vienna, Austria
| | - Mario Silva
- Scienze Radiologiche, Department of Medicine and Surgery (DiMeC), University of Parma, 43121 Parma, Italy
| |
Collapse
|
18
|
Toward More Effective Lung Cancer Risk Stratification to Empower Screening Programs for the Asian Nonsmoking Population. J Am Coll Radiol 2023; 20:156-161. [PMID: 36646597 DOI: 10.1016/j.jacr.2022.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 01/15/2023]
|
19
|
Vachani A, Nana-Sinkam P. Expanding the Reach of Lung Cancer Screening: Risk Models for Individuals Who Never Smoked. Am J Respir Crit Care Med 2023; 207:13-15. [PMID: 35952353 PMCID: PMC9952870 DOI: 10.1164/rccm.202208-1521ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Anil Vachani
- Department of Medicine University of Pennsylvania Philadelphia, Pennsylvania
| | | |
Collapse
|
20
|
Osarogiagbon RU, Yang PC, Sequist LV. Expanding the Reach and Grasp of Lung Cancer Screening. Am Soc Clin Oncol Educ Book 2023; 43:e389958. [PMID: 37098234 DOI: 10.1200/edbk_389958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Low-dose computer tomographic (LDCT) lung cancer screening reduces lung cancer-specific and all-cause mortality among high-risk individuals, but implementation has been challenging. Despite health insurance coverage for lung cancer screening in the United States since 2015, fewer than 10% of eligible persons have participated; striking geographic, racial, and socioeconomic disparities were already evident, especially in the populations at greatest risk of lung cancer and, therefore, most likely to benefit from screening; and adherence to subsequent testing is significantly lower than that reported in clinical trials, potentially reducing the realized benefit. Lung cancer screening is a covered health care benefit in very few countries. Obtaining the full population-level benefit of lung cancer screening will require improved participation of already eligible persons (the grasp of screening) and improved eligibility criteria that more closely match up with the full spectrum of persons at risk (the reach of screening), irrespective of smoking history. We used the socioecological framework of health care to systematically review implementation barriers to lung cancer screening and discuss multilevel solutions. We also discussed guideline-concordant management of incidentally detected lung nodules as a complementary approach to early lung cancer detection that can extend the reach and strengthen the grasp of screening. Furthermore, we discussed ongoing efforts in Asia to explore the possibility of LDCT screening in populations in whom lung cancer risk is relatively independent of smoking. Finally, we summarized innovative technological solutions, including biomarker selection and artificial intelligence strategies, to improve the safety, effectiveness, and cost-effectiveness of lung cancer screening in diverse populations.
Collapse
Affiliation(s)
- Raymond U Osarogiagbon
- Thoracic Oncology Research Group, Multidisciplinary Thoracic Oncology Program, Baptist Cancer Center, Memphis, TN
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Lecia V Sequist
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
21
|
Chien LH, Chen TY, Chen CH, Chen KY, Hsiao CF, Chang GC, Tsai YH, Su WC, Huang MS, Chen YM, Chen CY, Liang SK, Chen CY, Wang CL, Hung HH, Jiang HF, Hu JW, Rothman N, Lan Q, Liu TW, Chen CJ, Yang PC, Chang IS, Hsiung CA. Recalibrating Risk Prediction Models by Synthesizing Data Sources: Adapting the Lung Cancer PLCO Model for Taiwan. Cancer Epidemiol Biomarkers Prev 2022; 31:2208-2218. [PMID: 36129788 PMCID: PMC9720426 DOI: 10.1158/1055-9965.epi-22-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Methods synthesizing multiple data sources without prospective datasets have been proposed for absolute risk model development. This study proposed methods for adapting risk models for another population without prospective cohorts, which would help alleviate the health disparities caused by advances in absolute risk models. To exemplify, we adapted the lung cancer risk model PLCOM2012, well studied in the west, for Taiwan. METHODS Using Taiwanese multiple data sources, we formed an age-matched case-control study of ever-smokers (AMCCSE), estimated the number of ever-smoking lung cancer patients in 2011-2016 (NESLP2011), and synthesized a dataset resembling the population of cancer-free ever-smokers in 2010 regarding the PLCOM2012 risk factors (SPES2010). The AMCCSE was used to estimate the overall calibration slope, and the requirement that NESLP2011 equals the estimated total risk of individuals in SPES2010 was used to handle the calibration-in-the-large problem. RESULTS The adapted model PLCOT-1 (PLCOT-2) had an AUC of 0.78 (0.75). They had high performance in calibration and clinical usefulness on subgroups of SPES2010 defined by age and smoking experience. Selecting the same number of individuals for low-dose computed tomography screening using PLCOT-1 (PLCOT-2) would have identified approximately 6% (8%) more lung cancers than the US Preventive Services Task Forces 2021 criteria. Smokers having 40+ pack-years had an average PLCOT-1 (PLCOT-2) risk of 3.8% (2.6%). CONCLUSIONS The adapted PLCOT models had high predictive performance. IMPACT The PLCOT models could be used to design lung cancer screening programs in Taiwan. The methods could be applicable to other cancer models.
Collapse
Affiliation(s)
- Li-Hsin Chien
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Tzu-Yu Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Fu Hsiao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.,Taiwan Lung Cancer Tissue/Specimen Information Resource Center, National Health Research Institutes, Zhunan, Taiwan
| | - Gee-Chen Chang
- School of Medicine and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Huang Tsai
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan.,Department of Pulmonary and Critical Care, Xiamen Chang Gung Hospital, Xiamen, China
| | - Wu-Chou Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yuh-Min Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Sheng-Kai Liang
- Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan.,Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chung-Yu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Chih-Liang Wang
- Department of Pulmonary and Critical Care, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiao-Han Hung
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hsin-Fang Jiang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Jia-Wei Hu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Tsang-Wu Liu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan.,Corresponding Authors: Chao A. Hsiung, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan. Phone: 372-06166, ext. 36120; Fax: 375-86467; E-mail: ; and I-Shou Chang, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan. Phone: 372-06166, ext. 36130; E-mail:
| | - Chao A. Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.,Corresponding Authors: Chao A. Hsiung, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan. Phone: 372-06166, ext. 36120; Fax: 375-86467; E-mail: ; and I-Shou Chang, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan. Phone: 372-06166, ext. 36130; E-mail:
| |
Collapse
|
22
|
Warkentin MT, Tammemägi MC, Espin-Garcia O, Budhathoki S, Liu G, Hung RJ. Lung Cancer Absolute Risk Models for Mortality in an Asian Population using the China Kadoorie Biobank. J Natl Cancer Inst 2022; 114:1665-1673. [PMID: 36083018 PMCID: PMC9949588 DOI: 10.1093/jnci/djac176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer mortality globally. Early detection through risk-based screening can markedly improve prognosis. However, most risk models were developed in North American cohorts of smokers, whereas less is known about risk profiles for never-smokers, which represent a growing proportion of lung cancers, particularly in Asian populations. METHODS Based on the China Kadoorie Biobank, a population-based prospective cohort of 512 639 adults with up to 12 years of follow-up, we built Asian Lung Cancer Absolute Risk Models (ALARM) for lung cancer mortality using flexible parametric survival models, separately for never and ever-smokers, accounting for competing risks of mortality. Model performance was evaluated in a 25% hold-out test set using the time-dependent area under the curve and by comparing model-predicted and observed risks for calibration. RESULTS Predictors assessed in the never-smoker lung cancer mortality model were demographics, body mass index, lung function, history of emphysema or bronchitis, personal or family history of cancer, passive smoking, and indoor air pollution. The ever-smoker model additionally assessed smoking history. The 5-year areas under the curve in the test set were 0.77 (95% confidence interval = 0.73 to 0.80) and 0.81 (95% confidence interval = 0.79 to 0.84) for ALARM-never-smokers and ALARM-ever smokers, respectively. The maximum 5-year risk for never and ever-smokers was 2.6% and 12.7%, respectively. CONCLUSIONS This study is among the first to develop risk models specifically for Asian populations separately for never and ever-smokers. Our models accurately identify Asians at high risk of lung cancer death and may identify those with risks exceeding common eligibility thresholds who may benefit from screening.
Collapse
Affiliation(s)
- Matthew T Warkentin
- Prosserman Center for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada,Department of Public Health Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Martin C Tammemägi
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Osvaldo Espin-Garcia
- Department of Public Health Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada,Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sanjeev Budhathoki
- Prosserman Center for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Geoffrey Liu
- Department of Public Health Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada,Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Rayjean J Hung
- Correspondence to: Rayjean J. Hung, PhD, Prosserman Center for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Dalla Lana School of Public Health, University of Toronto, 60 Murray St, Toronto, ON M5T 3L9, Canada (e-mail: )
| |
Collapse
|
23
|
Zeng H, Yang Z, Li J, Wen Y, Wu Z, Zheng Y, Yu Y, Xu Y, Gao S, Tan F, Li N, Xue Q, He J. Associations between female lung cancer risk and sex steroid hormones: a systematic review and meta-analysis of the worldwide epidemiological evidence on endogenous and exogenous sex steroid hormones. BMC Cancer 2021; 21:690. [PMID: 34112140 PMCID: PMC8194027 DOI: 10.1186/s12885-021-08437-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background Published findings suggest sex differences in lung cancer risk and a potential role for sex steroid hormones. Our aim was to perform a meta-analysis to investigate the effects of sex steroid hormone exposure specifically on the risk of lung cancer in women. Methods The PubMed, MEDLINE, Web of Science, and EMBASE databases were searched. The pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) for female lung cancer risk associated with sex steroid hormones were calculated overall and by study design, publication year, population, and smoking status. Sensitivity analysis, publication bias, and subgroup analysis were performed. Results Forty-eight studies published between 1987 and 2019 were included in the study with a total of 31,592 female lung cancer cases and 1,416,320 subjects without lung cancer. Overall, higher levels of sex steroid hormones, both endogenous (OR: 0.92, 95% CI: 0.87–0.98) and exogenous (OR: 0.86, 95% CI: 0.80–0.93), significantly decreased the risk of female lung cancer by 10% (OR: 0.90, 95% CI: 0.86–0.95). The risk of lung cancer decreased more significantly with a higher level of sex steroid hormones in non-smoking women (OR: 0.88, 95% CI: 0.78–0.99) than in smoking women (OR: 0.98, 95% CI: 0.77–1.03), especially in Asia women (OR: 0.84, 95% CI: 0.74–0.96). Conclusions Our meta-analysis reveals an association between higher levels of sex steroid hormone exposure and the decreased risk of female lung cancer. Surveillance of sex steroid hormones might be used for identifying populations at high risk for lung cancer, especially among non-smoking women. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08437-9.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Zhuoyu Yang
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiang Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Wen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Zheng Wu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yadi Zheng
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yiwen Yu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yongjie Xu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.,Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| |
Collapse
|
24
|
Ji G, Bao T, Li Z, Tang H, Liu D, Yang P, Li W, Huang Y. Current lung cancer screening guidelines may miss high-risk population: a real-world study. BMC Cancer 2021; 21:50. [PMID: 33430831 PMCID: PMC7802250 DOI: 10.1186/s12885-020-07750-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Despite much research published on lung cancer screening, China has had no large-scale study on the missed diagnosis of lung cancer in a health examination population. We therefore did a real-world study using the current lung cancer screening guidelines to a health examination population in China to determine the proportion of lung cancer cases that have been missed. METHODS A real-world cohort study of screening, with the use of low-dose computed tomography, was conducted among people who took yearly health checkup in health management center of West China Hospital between 2006 and 2017. We respectively used current guidelines including lung cancer screening guidelines of the U.S. Preventive Services Task Force (USPSTF) and expert consensus on low dose spiral CT lung cancer screening in China. RESULTS In a total of 15,996 participants with health examination who completed the baseline screening, 6779 (42.4%) subjects had at least one positive finding, and 142 (2.1%) cases of lung cancer were screened positive. The false positive rate was 97.9%. Of 142 lung cancer cases detected in our study, only 9.2% met the lung cancer screening guidelines proposed by the USPSTF, and 24.4% met that of China. The rates of missed diagnosis were as high as 90.8 and 75.6% respectively. In addition, we did an in-depth analysis by gender. We found that among male patients with lung cancer, the proportion of smokers was 75%, and the proportion of young people under 50 was 23.2%. Among female patients with lung cancer, the proportion of smokers was only 5.8%, and the proportion of young people under 50 was up to 33.3%. CONCLUSIONS The rate of missed diagnosis was as high as 90.8% applying the current lung cancer screening guidelines to the health examination population in China. Further study to determine screening guidelines for targeted populations, is warranted.
Collapse
Affiliation(s)
- Guiyi Ji
- Health Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Bao
- Health Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenzhen Li
- Health Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huairong Tang
- Health Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Liu
- Division of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Yang
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Weimin Li
- Division of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China.,The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China
| | - Yan Huang
- Health Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Tu Y, Wu Y, Lu Y, Bi X, Chen T. Development of risk prediction models for lung cancer based on tumor markers and radiological signs. J Clin Lab Anal 2020; 35:e23682. [PMID: 33325592 PMCID: PMC7957970 DOI: 10.1002/jcla.23682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022] Open
Abstract
Background Accurate prediction of malignancy risk for pulmonary lesions with pleural effusion improves early diagnosis of lung cancer. This study aimed to develop and validate a model to predict lung cancer. Methods Clinical data of 536 patients with pulmonary diseases were collected. The risk factors were identified by regression analysis. Three prediction models were developed. The predictive performances of the models were measured by the area under the curves (AUCs) and calibrated with 1000 bootstrap samples to minimize the over‐fitting bias. The net benefits of the models were evaluated by decision curve analysis. Finally, a separate cohort of 134 patients was used to validate the models externally. Results Seven independent risk factors were identified from 18 clinical variables, which included the pleural fluid carcinoembryonic antigen (CEA), serum cytokeratin‐19 fragment (CYFRA 21‐1), the ratio of CEA in the pleural fluid to serum, extrathoracic cancer history (>5 years), tumor size, vessel convergence, and lobulation. The AUCs of the three models were 0.976, 0.927, and 0.944 in the training set and 0.930, 0.845, and 0.944 in the external set, respectively. The accuracies of the three models were 89.6%, 81.4%, and 88.8%. Model 1 showed the best iteration fit (R2 = 0.84, 0.68, and 0.73) and a higher net benefit on decision curve analysis when compared to the other two models. Conclusion The advantageous model could assess the risk of lung cancer in patients with pleural effusion and act as a useful tool for early identification of lung cancer.
Collapse
Affiliation(s)
- Yuqin Tu
- Department of Medical Laboratory, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yan Wu
- Department of Blood Transfusion, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yunfeng Lu
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoyun Bi
- Department of Medical Laboratory, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Te Chen
- Department of Medical Laboratory, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|