1
|
Arrieta O, Caballé-Pérez E, Hernández-Pedro N, Romero-Nuñez E, Lucio-Lozada J, Castillo-Ruiz C, Acevedo-Castillo K, María Álvarez-Gómez R, Molina-Garay C, Jiménez-Olivares M, Carrillo-Sánchez K, Cristina Mendoza-Caamal E, Cardona AF, Remon J, Alaez-Verson C. Prevalence of pathogenic or likely pathogenic germline variants in cancer predisposition genes among selected patients with lung adenocarcinoma: The GERMLUNG study. Lung Cancer 2024; 194:107864. [PMID: 38945003 DOI: 10.1016/j.lungcan.2024.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Pathogenic or likely pathogenic germline variants (PGVs) in cancer predisposition genes may play a role in lung cancer (LC) susceptibility. However, determining an eligible population for genetic testing remains uncertain. This study aimed to assess the prevalence of PGVs in a selected cohort of individuals with lung adenocarcinoma. METHODS A cross-sectional cohort study was conducted to assess the PGVs rate in lung adenocarcinoma patients with a family history of LC, young-onset presentation, history of never/light smoking, or actionable genomic alterations (AGAs). Sequencing was performed using Sophia Hereditary Cancer Solution panel F, including 144 cancer predisposition genes. Variants classified as pathogenic or likely pathogenic were included for further analysis. RESULTS Of 201 patients, 43 (21.4 %) exhibited PGVs, among which 64.5 % were DNA damage repair genes, and 86.1 % were clinically actionable. The main PGVs were in ATM (9.3 %), TP53 (6.9 %), BRCA2 (6.9 %), and CHEK2 (6.9 %) genes. PGVs were associated with male sex (adjusted odds ratio [aOR] 2.46, 95 % CI 1.15-5.32, p = 0.021), along with a trend toward association with AGAs (aOR 6.04, 95 % CI 0.77-49.74, p = 0.094). CONCLUSIONS In this study, a high PGVs prevalence was identified based on our selection criteria, which represents an effective strategy to identify candidates for germline genomic testing, potential screening strategies in close relatives, and personalized therapeutic modalities. Our results warrant further exploration in other populations to confirm them.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico; Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Enrique Caballé-Pérez
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Norma Hernández-Pedro
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Eunice Romero-Nuñez
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - José Lucio-Lozada
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Cesar Castillo-Ruiz
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Karla Acevedo-Castillo
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| | - Rosa María Álvarez-Gómez
- Hereditary Cancer Clinic, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Carolina Molina-Garay
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| | - Marco Jiménez-Olivares
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| | - Karol Carrillo-Sánchez
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| | | | - Andrés F Cardona
- Thoracic Oncology Unit and Direction of Research, Science and Education, Luis Carlos Sarmiento Angulo, Cancer Treatment and Research Center (CTIC), Bogotá, Colombia.
| | - Jordi Remon
- Gustave Roussy Cancer Campus, Medical Oncology Department, 114 Rue Edouard Vaillant, 94805 Villejuif, France.
| | - Carmen Alaez-Verson
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| |
Collapse
|
2
|
Varadhan V, Manikandan MS, Nagarajan A, Palaniyandi T, Ravi M, Sankareswaran SK, Baskar G, Wahab MRA, Surendran H. Ataxia-Telangiectasia Mutated (ATM) gene signaling pathways in human cancers and their therapeutic implications. Pathol Res Pract 2024; 260:155447. [PMID: 38981349 DOI: 10.1016/j.prp.2024.155447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Cancer is a multifaceted disease driven by abnormal cell growth and poses a significant global health threat. The multifactorial causes, differences in individual susceptibility to therapeutic drugs, and induced drug resistance pose major challenges in addressing cancers effectively. One of the most important aspects in making cancers highly heterogeneous in their physiology lies in the genes involved and the changes occurring to some of these genes in malignant conditions. The Genetic factors have been implicated in the oncogenesis, progression, responses to treatment, and metastasis. One such gene that plays a key role in human cancers is the mutated form of the Ataxia-telangiectasia gene (ATM). ATM gene located on chromosome 11q23, plays a vital role in maintaining genomic stability. Understanding the genetic basis of A-T is crucial for diagnosis, management, and treatment. Breast cancer, lung cancer, prostate cancer, and gastric cancer exhibit varying relationships with the ATM gene and influence their pathways. Targeting the ATM pathway proves promising for enhancing treatment effectiveness, especially in conjunction with DNA damage response pathways. Analyzing the therapeutic consequences of ATM mutations, especially in these cancer types facilitates the approaches for early detection, intervention, development of personalized treatment approaches, and improved patient outcomes. This review emphasizes the role of the ATM gene in various cancers, highlighting its impact on DNA repair pathways and therapeutic responses.
Collapse
Affiliation(s)
- Varsha Varadhan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| | - Monica Shri Manikandan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| | - Akshaya Nagarajan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, Tamil Nadu, India
| | - Senthil Kumar Sankareswaran
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| | | | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| |
Collapse
|
3
|
Sharma P, Mahadevia H, Donepudi S, Kujtan L, Gustafson B, Ponvilawan B, Al-Obaidi A, Subramanian J, Bansal D. A Novel EGFR Germline Mutation in Lung Adenocarcinoma: Case Report and Literature Review. Clin Lung Cancer 2024; 25:479-482. [PMID: 38777674 DOI: 10.1016/j.cllc.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Parth Sharma
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO.
| | - Himil Mahadevia
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO
| | - Sreekanth Donepudi
- Department of Hematology-Oncology, Saint Luke's Cancer Institute, Kansas City, MO
| | - Lara Kujtan
- Department of Hematology-Oncology, University of Missouri-Kansas City, Kansas City, MO
| | - Beth Gustafson
- Department of Pharmacology, Saint Luke's Cancer Institute, Kansas City, MO
| | - Ben Ponvilawan
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO
| | - Ammar Al-Obaidi
- Department of Hematology-Oncology, University of Missouri-Kansas City, Kansas City, MO
| | | | - Dhruv Bansal
- Department of Hematology-Oncology, Saint Luke's Cancer Institute, Kansas City, MO
| |
Collapse
|
4
|
Panagiotou E, Vathiotis IA, Makrythanasis P, Hirsch F, Sen T, Syrigos K. Biological and therapeutic implications of the cancer-related germline mutation landscape in lung cancer. THE LANCET. RESPIRATORY MEDICINE 2024:S2213-2600(24)00124-3. [PMID: 38885686 DOI: 10.1016/s2213-2600(24)00124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/20/2024]
Abstract
Although smoking is the primary cause of lung cancer, only about 15% of lifelong smokers develop the disease. Moreover, a substantial proportion of lung cancer cases occur in never-smokers, highlighting the potential role of inherited genetic factors in the cause of lung cancer. Lung cancer is significantly more common among those with a positive family history, especially for early-onset disease. Therefore, the presence of pathogenic germline variants might act synergistically with environmental factors. The incorporation of next-generation sequencing in routine clinical practice has led to the identification of cancer-predisposing mutations in an increasing proportion of patients with lung cancer. This Review summarises the landscape of germline susceptibility in lung cancer and highlights the importance of germline testing in patients diagnosed with the disease, which has the potential to identify individuals at risk, with implications for tailored therapeutic approaches and successful prevention through genetic counselling and screening.
Collapse
Affiliation(s)
- Emmanouil Panagiotou
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis A Vathiotis
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece.
| | - Periklis Makrythanasis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Genetic Medicine and Development, Medical School, University of Geneva, Geneva, Switzerland; Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Fred Hirsch
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Triparna Sen
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Konstantinos Syrigos
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Laguna JC, Tagliamento M, Lambertini M, Hiznay J, Mezquita L. Tackling Non-Small Cell Lung Cancer in Young Adults: From Risk Factors and Genetic Susceptibility to Lung Cancer Profile and Outcomes. Am Soc Clin Oncol Educ Book 2024; 44:e432488. [PMID: 38788188 DOI: 10.1200/edbk_432488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Lung cancer has traditionally been associated with advanced age; however, its increasing incidence among young adults raises concerning questions regarding its etiology and unique considerations for this population. In contrast to the older population, the onset of lung cancer at younger age may be attributed to a complex interplay of incompletely understood individual susceptibility and prevalent environmental risk factors beyond tobacco smoke exposure, such as radon gas and air pollution, which are widespread globally. Consequently, this leads to distinct clinical and molecular profiles, requiring a tailored approach. Furthermore, a diagnosis of cancer represents a threatening event during the prime years of a young person's life, prompting concern about career development, social aspects, fertility aspirations, and physical independence. This poses significant additional challenges for health care professionals in a field that remains underexplored. This comprehensive review recognizes lung cancer in young adults as a distinct entity, exploring its clinical and molecular characteristics, diverse predisposing factors, and priorities in terms of quality of life, with the aim of providing practical support to oncologists and enhancing our understanding of this under-researched population.
Collapse
Affiliation(s)
- Juan Carlos Laguna
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Marco Tagliamento
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genova, Genova, Italy
- Department of Medical Oncology, Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genova, Genova, Italy
- Department of Medical Oncology, Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Thu KL, Yoon JY. ATM-the gene at the moment in non-small cell lung cancer. Transl Lung Cancer Res 2024; 13:699-705. [PMID: 38601449 PMCID: PMC11002499 DOI: 10.21037/tlcr-23-853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Affiliation(s)
- Kelsie L. Thu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Sciences, St. Michael’s Hospital of Unity Health Toronto, Toronto, Canada
| | - Ju-Yoon Yoon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine, Division of Pathology, Unity Health Toronto, Toronto, Canada
| |
Collapse
|
7
|
Laguna JC, García-Pardo M, Alessi J, Barrios C, Singh N, Al-Shamsi HO, Loong H, Ferriol M, Recondo G, Mezquita L. Geographic differences in lung cancer: focus on carcinogens, genetic predisposition, and molecular epidemiology. Ther Adv Med Oncol 2024; 16:17588359241231260. [PMID: 38455708 PMCID: PMC10919138 DOI: 10.1177/17588359241231260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Lung cancer poses a global health challenge and stands as the leading cause of cancer-related deaths worldwide. However, its incidence, mortality, and characteristics are not uniform across all regions worldwide. Understanding the factors contributing to this diversity is crucial in a prevalent disease where most cases are diagnosed in advanced stages. Hence, prevention and early diagnosis emerge as the most efficient strategies to enhance outcomes. In Western societies, tobacco consumption constitutes the primary risk factor for lung cancer, accounting for up to 90% of cases. In other geographic locations, different significant factors play a fundamental role in disease development, such as individual genetic predisposition, or exposure to other carcinogens such as radon gas, environmental pollution, occupational exposures, or specific infectious diseases. Comprehensive clinical and molecular characterization of lung cancer in recent decades has enabled us to distinguish different subtypes of lung cancer with distinct phenotypes, genotypes, immunogenicity, treatment responses, and survival rates. The ultimate goal is to prevent and individualize lung cancer management in each community and improve patient outcomes.
Collapse
Affiliation(s)
- Juan Carlos Laguna
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Miguel García-Pardo
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joao Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute
| | - Carlos Barrios
- School of Medicine, Porto Alegre, Rio Grande do Sul, Brazil
| | - Navneet Singh
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Herbert Loong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Miquel Ferriol
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
- Barcelona Neural Networking Center, Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic of Barcelona, Calle Villarroel 170, Barcelona 08036, Spain
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
LoPiccolo J, Gusev A, Christiani DC, Jänne PA. Lung cancer in patients who have never smoked - an emerging disease. Nat Rev Clin Oncol 2024; 21:121-146. [PMID: 38195910 PMCID: PMC11014425 DOI: 10.1038/s41571-023-00844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Lung cancer is the most common cause of cancer-related deaths globally. Although smoking-related lung cancers continue to account for the majority of diagnoses, smoking rates have been decreasing for several decades. Lung cancer in individuals who have never smoked (LCINS) is estimated to be the fifth most common cause of cancer-related deaths worldwide in 2023, preferentially occurring in women and Asian populations. As smoking rates continue to decline, understanding the aetiology and features of this disease, which necessitate unique diagnostic and treatment paradigms, will be imperative. New data have provided important insights into the molecular and genomic characteristics of LCINS, which are distinct from those of smoking-associated lung cancers and directly affect treatment decisions and outcomes. Herein, we review the emerging data regarding the aetiology and features of LCINS, particularly the genetic and environmental underpinnings of this disease as well as their implications for treatment. In addition, we outline the unique diagnostic and therapeutic paradigms of LCINS and discuss future directions in identifying individuals at high risk of this disease for potential screening efforts.
Collapse
Affiliation(s)
- Jaclyn LoPiccolo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
9
|
Sorscher S, LoPiccolo J, Heald B, Chen E, Bristow SL, Michalski ST, Nielsen SM, Lacoste A, Keyder E, Lee H, Nussbaum RL, Martins R, Esplin ED. Rate of Pathogenic Germline Variants in Patients With Lung Cancer. JCO Precis Oncol 2023; 7:e2300190. [PMID: 37992258 PMCID: PMC10681406 DOI: 10.1200/po.23.00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 11/24/2023] Open
Abstract
PURPOSE Germline genetic testing (GGT) is now recommended for all patients diagnosed with ovarian or pancreatic cancer and for a large proportion of patients based solely on a diagnosis of colorectal or breast cancer. However, GGT is not yet recommended for all patients diagnosed with lung cancer (LC), primarily because of a lack of evidence that supports a significant frequency of identifying pathogenic germline variants (PGVs) in these patients. This study characterizes GGT results in a cohort of patients with LC. METHODS We reviewed deidentified data for 7,788 patients with GGT (2015-2022). PGV frequencies were compared to a control cohort of unaffected individuals. GGT results were stratified by genomic ancestry, history of cancer, and PGV clinical actionability per current guidelines. RESULTS Of all patients with LC, 14.9% (1,161/7,788) had PGVs. The rate was similar when restricted to patients with no cancer family history (FH) or personal history (PH) of other cancers (14.3%). PGVs were significantly enriched in BRCA2, ATM, CHEK2, BRCA1, and mismatch repair genes compared with controls. Patients of European (EUR) genomic ancestry had the highest PGV rate (18%) and variants of uncertain significance were significantly higher in patients of non-EUR genomic ancestry. Of the PGVs identified, 61.3% were in DNA damage repair (DDR) genes and 95% were clinically actionable. CONCLUSION This retrospective study shows a LC diagnosis identifies patients with a significant likelihood of having a cancer-predisposing PGV across genomic ancestries. Enrichment of PGVs in DDR genes suggests that these PGVs may contribute to LC cancer predisposition. The frequency of PGVs among patients with LC did not differ significantly according to FH or PH of other cancers.
Collapse
Affiliation(s)
| | - Jaclyn LoPiccolo
- Hematology/Oncology Division, Dana-Farber Cancer Center, Boston, MA
| | | | | | | | | | | | | | | | - Hayan Lee
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA
| | | | - Renato Martins
- Hematology, Oncology and Palliative Care Division, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | | |
Collapse
|
10
|
Farinea G, Crespi V, Listì A, Righi L, Bironzo P, Merlini A, Malapelle U, Novello S, Scagliotti GV, Passiglia F. The Role of Germline Mutations in Thoracic Malignancies: Between Myth and Reality. J Thorac Oncol 2023; 18:1146-1164. [PMID: 37331604 DOI: 10.1016/j.jtho.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
Considering the established contribution of environmental factors to the development of thoracic malignancies, the inherited susceptibility of these tumors has rarely been explored. However, the recent introduction of next-generation sequencing-based tumor molecular profiling in the real-word setting enabled us to deeply characterize the genomic background of patients with lung cancer with or without smoking-related history, increasing the likelihood of detecting germline mutations with potential prevention and treatment implications. Pathogenic germline variants have been detected in 2% to 3% of patients with NSCLC undergoing next-generation sequencing analysis, whereas the proportion of germline mutations associated with the development of pleural mesothelioma widely varies across different studies, ranging between 5% and 10%. This review provides an updated summary of emerging evidence about germline mutations in thoracic malignancies, focusing on pathogenetic mechanisms, clinical features, therapeutic implications, and screening recommendations for high-risk individuals.
Collapse
Affiliation(s)
- Giovanni Farinea
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Veronica Crespi
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Angela Listì
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Luisella Righi
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Paolo Bironzo
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | | | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| |
Collapse
|
11
|
Wang P, Sun S, Lam S, Lockwood WW. New insights into the biology and development of lung cancer in never smokers-implications for early detection and treatment. J Transl Med 2023; 21:585. [PMID: 37653450 PMCID: PMC10472682 DOI: 10.1186/s12967-023-04430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Despite never smokers comprising between 10 and 25% of all cases, lung cancer in never smokers (LCNS) is relatively under characterized from an etiological and biological perspective. The application of multi-omics techniques on large patient cohorts has significantly advanced the current understanding of LCNS tumor biology. By synthesizing the findings of multi-omics studies on LCNS from a clinical perspective, we can directly translate knowledge regarding tumor biology into implications for patient care. Primarily focused on never smokers with lung adenocarcinoma, this review details the predominance of driver mutations, particularly in East Asian patients, as well as the frequency and importance of germline variants in LCNS. The mutational patterns present in LCNS tumors are thoroughly explored, highlighting the high abundance of the APOBEC signature. Moreover, this review recognizes the spectrum of immune profiles present in LCNS tumors and posits how it can be translated to treatment selection. The recurring and novel insights from multi-omics studies on LCNS tumor biology have a wide range of clinical implications. Risk factors such as exposure to outdoor air pollution, second hand smoke, and potentially diet have a genomic imprint in LCNS at varying degrees, and although they do not encompass all LCNS cases, they can be leveraged to stratify risk. Germline variants similarly contribute to a notable proportion of LCNS, which warrants detailed documentation of family history of lung cancer among never smokers and demonstrates value in developing testing for pathogenic variants in never smokers for early detection in the future. Molecular driver subtypes and specific co-mutations and mutational signatures have prognostic value in LCNS and can guide treatment selection. LCNS tumors with no known driver alterations tend to be stem-like and genes contributing to this state may serve as potential therapeutic targets. Overall, the comprehensive findings of multi-omics studies exert a wide influence on clinical management and future research directions in the realm of LCNS.
Collapse
Affiliation(s)
- Peiyao Wang
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Sun
- Department of Medical Oncology, British Columbia Cancer Agency Vancouver, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Lee NY, Hum M, Zihara S, Wang L, Myint MK, Lim DWT, Toh CK, Skanderup A, Samol J, Tan MH, Ang P, Lee SC, Tan EH, Lai GGY, Tan DSW, Yap YS, Lee ASG. Landscape of germline pathogenic variants in patients with dual primary breast and lung cancer. Hum Genomics 2023; 17:66. [PMID: 37461096 PMCID: PMC10353088 DOI: 10.1186/s40246-023-00510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Cancer predisposition is most often studied in the context of single cancers. However, inherited cancer predispositions can also give rise to multiple primary cancers. Yet, there is a paucity of studies on genetic predisposition in multiple primary cancers, especially those outside of well-defined cancer predisposition syndromes. This study aimed to identify germline variants associated with dual primary cancers of the breast and lung. METHODS Exome sequencing was performed on germline DNA from 55 Singapore patients (52 [95%] never-smokers) with dual primaries in the breast and lung, confirmed by histopathology. Using two large control cohorts: the local SG10K_Health (n = 9770) and gnomAD non-cancer East Asians (n = 9626); and two additional local case cohorts of early-onset or familial breast cancer (n = 290), and lung cancer (n = 209), variants were assessed for pathogenicity in accordance with ACMG/AMP guidelines. In particular, comparisons were made with known pathogenic or likely pathogenic variants in the ClinVar database, pathogenicity predictions were obtained from in silico prediction software, and case-control association analyses were performed. RESULTS Altogether, we identified 19 pathogenic or likely pathogenic variants from 16 genes, detected in 17 of 55 (31%) patients. Six of the 19 variants were identified using ClinVar, while 13 variants were classified pathogenic or likely pathogenic using ACMG/AMP guidelines. The 16 genes include well-known cancer predisposition genes such as BRCA2, TP53, and RAD51D; but also lesser known cancer genes EXT2, WWOX, GATA2, and GPC3. Most of these genes are involved in DNA damage repair, reaffirming the role of impaired DNA repair mechanisms in the development of multiple malignancies. These variants warrant further investigations in additional populations. CONCLUSIONS We have identified both known and novel variants significantly enriched in patients with primary breast and lung malignancies, expanding the body of known cancer predisposition variants for both breast and lung cancer. These variants are mostly from genes involved in DNA repair, affirming the role of impaired DNA repair in the predisposition and development of multiple cancers.
Collapse
Affiliation(s)
- Ning-Yuan Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Melissa Hum
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Sabna Zihara
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Lanying Wang
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Matthew K Myint
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Chee-Keong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Anders Skanderup
- Genome Institute of Singapore, 60 Biopolis St, Singapore, 138672, Singapore
| | - Jens Samol
- Medical Oncology Department, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Min-Han Tan
- Lucence Diagnostics Pte Ltd, 211 Henderson Road, Singapore, 159552, Singapore
| | - Peter Ang
- Oncocare Cancer Centre, Gleneagles Medical Centre, 6 Napier Road, Singapore, 258499, Singapore
| | - Soo-Chin Lee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
- Cancer Science Institute, Singapore (CSI), National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Eng-Huat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
- Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Gillianne G Y Lai
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Genome Institute of Singapore, 60 Biopolis St, Singapore, 138672, Singapore
- Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ann S G Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore.
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore.
| |
Collapse
|
13
|
Borja NA, Silva-Smith R, Huang M, Parekh DJ, Sussman D, Tekin M. Atypical ATMs: Broadening the phenotypic spectrum of ATM-associated hereditary cancer. Front Oncol 2023; 13:1068110. [PMID: 36865800 PMCID: PMC9971806 DOI: 10.3389/fonc.2023.1068110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Heterozygous, loss-of-function germline variants in ATM have been associated with an increased lifetime risk of breast, pancreas, prostate, stomach, ovarian, colorectal, and melanoma cancers. We conducted a retrospective review of thirty-one unrelated patients found to be heterozygous for a germline pathogenic variant in ATM and identified a significant proportion of patients in this cohort with cancers not currently associated with the ATM hereditary cancer syndrome, including carcinomas of the gallbladder, uterus, duodenum, kidney, and lung as well as a vascular sarcoma. A comprehensive review of the literature found 25 relevant studies where 171 individuals with a germline deleterious ATM variant have been diagnosed with the same or similar cancers. The combined data from these studies were then used to estimate the prevalence of germline ATM pathogenic variants in these cancers, which ranged between 0.45% and 2.2%. Analysis of tumor sequencing performed in large cohorts demonstrated that the frequency of deleterious somatic ATM alterations in these atypical cancers equaled or exceeded the alteration frequency in breast cancer and occurred at a significantly higher rate than in other DNA-damage response tumor suppressors, namely BRCA1 and CHEK2. Furthermore, multi-gene analysis of somatic alterations in these atypical cancers demonstrated significant co-occurrence of pathogenic alterations in ATM with BRCA1 and CHEK2, while there was significant mutual exclusivity between pathogenic alterations in ATM and TP53. This indicates that germline ATM pathogenic variants may play a role in cancer initiation and progression in these atypical ATM malignancies, potentially influencing these cancers to be driven toward DNA-damage repair deficiency and away from loss of TP53. As such, these findings provide evidence for broadening of the ATM-cancer susceptibility syndrome phenotype to improve the recognition of affected patients and provide more efficacious, germline-directed therapies.
Collapse
Affiliation(s)
- Nicholas A. Borja
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Rachel Silva-Smith
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Marilyn Huang
- Division of Gynecologic Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Dipen J. Parekh
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Daniel Sussman
- Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States,John P. Hussmann Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States,*Correspondence: Mustafa Tekin,
| |
Collapse
|
14
|
Neuroendocrine neoplasms of the lung and gastrointestinal system: convergent biology and a path to better therapies. Nat Rev Clin Oncol 2023; 20:16-32. [PMID: 36307533 DOI: 10.1038/s41571-022-00696-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
Neuroendocrine neoplasms (NENs) can develop in almost any organ and span a spectrum from well-differentiated and indolent neuroendocrine tumours (NETs) to poorly differentiated and highly aggressive neuroendocrine carcinomas (NECs), including small-cell lung cancer (SCLC). These neoplasms are thought to primarily derive from neuroendocrine precursor cells located throughout the body and can also arise through neuroendocrine transdifferentiation of organ-specific epithelial cell types. Hence, NENs constitute a group of tumour types that share key genomic and phenotypic characteristics irrespective of their site of origin, albeit with some organ-specific differences. The establishment of representative preclinical models for several of these disease entities together with analyses of human tumour specimens has provided important insights into crucial aspects of their biology with therapeutic implications. In this Review, we provide a comprehensive overview of the current understanding of NENs of the gastrointestinal system and lung from clinical and biological perspectives. Research on NENs has typically been siloed by the tumour site of origin, and a cross-cutting view might enable advances in one area to accelerate research in others. Therefore, we aim to emphasize that a better understanding of the commonalities and differences of NENs arising in different organs might more effectively inform clinical research to define therapeutic targets and ultimately optimize patient care.
Collapse
|
15
|
Mukherjee S, Carrot-Zhang J. Whole-genome sequencing of East Asian lung cancers reveals new germline pathogenic variants. Cancer Cell 2022; 40:1081-1083. [PMID: 36179687 DOI: 10.1016/j.ccell.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this issue of Cancer Cell, Wang et al. use whole-genome sequencing of lung cancer cases and controls with East Asian ancestry to comprehensively characterize both common and rare variants that predispose to lung cancer. Their findings suggest that rare promoter variants in BRCA2 are associated with increased lung cancer risk.
Collapse
Affiliation(s)
- Semanti Mukherjee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jian Carrot-Zhang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|