1
|
Luo Z, Li W, Zheng W, Shi Y, Ye M, Guo X, Fu K, Yan C, Wang B, Lv B, Mo S, Zhang H, Zhang J, He C, Luo F, Zhang W, Liu J. Elucidating epigenetic landscape of gastric premalignant lesions through genome-wide mapping of 5-hydroxymethylcytosines: A 12-year median follow-up study. Clin Transl Med 2024; 14:e70114. [PMID: 39625179 PMCID: PMC11613102 DOI: 10.1002/ctm2.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Epigenetic modifications are crucial in tumourigenesis, yet the changes in novel epigenetic regulators like 5-hydroxymethylcytosines (5hmC) during the evolution of gastric premalignant lesions remain poorly understood. This study aims to investigate the implications of 5hmC in the progression from gastric premalignant lesions to gastric adenocarcinoma (GAC). METHODS To our knowledge, we conducted the largest and longest longitudinal study of a Chinese population with gastric precursor lesions, involving 29,176 patients with gastritis who underwent gastroscopy and biopsy between 2001 and 2015, with follow-up until 1 August, 2022. The median follow-up time was 12.2 years, and the overall GAC incidence rate was 0.82%. Genome-wide mapping of 5hmC in gastric premalignant lesions from a subset of individuals was performed using the 5hmC-Seal assay, including 21 samples that progressed to GAC during follow-up and 48 non-progressed age- and sex-matched controls. RESULTS We identified 213 differentially modified gene bodies, primarily concentrated in pathways related to cell division, cell cycle, energy metabolism, inflammation and tumourigenesis. An exploratory study was conducted to summarize a 5hmC-based epigenetic model for predicting cancer progression using multivariable logistic regression and machine learning. The nine-gene model showed an area under the curve of 87.5% (95% confidence interval: 72%-100%) in the validation samples (one of three), which were set aside before model training. CONCLUSIONS This study is the first to explore the 5hmC molecular landscape in gastric premalignant lesions, suggesting relevant pathways implicated in their evolution to GAC as well as the feasibility of exploiting genome-wide 5hmC mapping in assessing the risk of future cancer progression. KEY POINTS A largest longitudinal follow-up study of gastric precursor lesions in Chinese patients. Revealing novel 5hmC molecular landscape linked to gastric premalignant lesions. The feasibility of an innovative 5hmC-based predictive model for assessing gastric cancer progression risk.
Collapse
Affiliation(s)
- Zhongguang Luo
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Wenshuai Li
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Wanwei Zheng
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Yixiang Shi
- Bionova (Shanghai) Medical Technology Co., Ltd.ShanghaiChina
| | - Maolin Ye
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Xiangyu Guo
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Kaiyi Fu
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Changsheng Yan
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Bowen Wang
- Bionova (Shanghai) Medical Technology Co., Ltd.ShanghaiChina
| | - Bin Lv
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Shaocong Mo
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Hongyang Zhang
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Jun Zhang
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Chuan He
- Department of Chemistry and The Howard Hughes Medical InstituteThe University of ChicagoChicagoIllinoisUSA
| | - Feifei Luo
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Centre for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Wei Zhang
- Department of Preventive Medicine and The Robert h. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jie Liu
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Centre for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Conway K, Edmiston SN, Vondras A, Reiner A, Corcoran DL, Shen R, Parrish EA, Hao H, Lin L, Kenney JM, Ilelaboye G, Kostrzewa CE, Kuan PF, Busam KJ, Lezcano C, Lee TK, Hernando E, Googe PB, Ollila DW, Moschos S, Gorlov I, Amos CI, Ernstoff MS, Cust AE, Wilmott JS, Scolyer RA, Mann GJ, Vergara IA, Ko J, Rees JR, Yan S, Nagore E, Bosenberg M, Rothberg BG, Osman I, Lee JE, Saenger Y, Bogner P, Thompson CL, Gerstenblith M, Holmen SL, Funchain P, Brunsgaard E, Depcik-Smith ND, Luo L, Boyce T, Orlow I, Begg CB, Berwick M, Thomas NE. DNA Methylation Classes of Stage II and III Primary Melanomas and Their Clinical and Prognostic Significance. JCO Precis Oncol 2024; 8:e2400375. [PMID: 39509669 PMCID: PMC11737429 DOI: 10.1200/po-24-00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
PURPOSE Patients with stage II and III cutaneous primary melanoma vary considerably in their risk of melanoma-related death. We explore the ability of methylation profiling to distinguish primary melanoma methylation classes and their associations with clinicopathologic characteristics and survival. MATERIALS AND METHODS InterMEL is a retrospective case-control study that assembled primary cutaneous melanomas from American Joint Committee on Cancer (AJCC) 8th edition stage II and III patients diagnosed between 1998 and 2015 in the United States and Australia. Cases are patients who died of melanoma within 5 years from original diagnosis. Controls survived longer than 5 years without evidence of melanoma recurrence or relapse. Methylation classes, distinguished by consensus clustering of 850K methylation data, were evaluated for their clinicopathologic characteristics, 5-year survival status, and differentially methylated gene sets. RESULTS Among 422 InterMEL melanomas, consensus clustering revealed three primary melanoma methylation classes (MethylClasses): a CpG island methylator phenotype (CIMP) class, an intermediate methylation (IM) class, and a low methylation (LM) class. CIMP and IM were associated with higher AJCC stage (both P = .002), Breslow thickness (CIMP P = .002; IM P = .006), and mitotic index (both P < .001) compared with LM, while IM had higher N stage than CIMP (P = .01) and LM (P = .007). CIMP and IM had a 2-fold higher likelihood of 5-year death from melanoma than LM (CIMP odds ratio [OR], 2.16 [95% CI, 1.18 to 3.96]; IM OR, 2.00 [95% CI, 1.12 to 3.58]) in a multivariable model adjusted for age, sex, log Breslow thickness, ulceration, mitotic index, and N stage. Despite more extensive CpG island hypermethylation in CIMP, CIMP and IM shared similar patterns of differential methylation and gene set enrichment compared with LM. CONCLUSION Melanoma MethylClasses may provide clinical value in predicting 5-year death from melanoma among patients with primary melanoma independent of other clinicopathologic factors.
Collapse
Affiliation(s)
- Kathleen Conway
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sharon N. Edmiston
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Amanda Vondras
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Allison Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David L. Corcoran
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eloise A. Parrish
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Honglin Hao
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
| | - Lan Lin
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
| | - Jessica M Kenney
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gbemisola Ilelaboye
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Caroline E. Kostrzewa
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pei Fen Kuan
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY
| | - Klaus J. Busam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Cecilia Lezcano
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tim K. Lee
- British Columbia Cancer Research Center, Vancouver, BC, Canada
| | - Eva Hernando
- Grossman School of Medicine, New York University, New York, NY
| | - Paul B. Googe
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David W. Ollila
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Stergios Moschos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ivan Gorlov
- Department of Medicine, Baylor Medical Center, Houston, TX
| | | | | | - Anne E. Cust
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, Australia
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - James S. Wilmott
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
| | - Richard A. Scolyer
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Graham J. Mann
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
- John Curtin School of Medical Research, Australian National University, ACT 2601, Australia
| | - Ismael A. Vergara
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Judy R. Rees
- Department of Epidemiology, Dartmouth Medical School, Lebanon NH
| | - Shaofeng Yan
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon NH
| | - Eduardo Nagore
- Instituto Valenciano de Oncologia, Valencia, Spain
- Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | | | | | - Iman Osman
- Grossman School of Medicine, New York University, New York, NY
| | - Jeffrey E. Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yvonne Saenger
- Columbia University Medical School, New York, NY
- Albert Einstein School of Medicine, New York, NY
| | - Paul Bogner
- Departments of Pathology and Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Cheryl L. Thompson
- Case Western Reserve University, Cleveland, OH
- Penn State University, Hershey, PA
| | | | - Sheri L. Holmen
- Department of Surgery, University of Utah Health Sciences Center and Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Elise Brunsgaard
- Department of Dermatology, Rush University Medical Center, Chicago, Il
| | | | - Li Luo
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Tawny Boyce
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Colin B. Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marianne Berwick
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Nancy E. Thomas
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | |
Collapse
|
3
|
Wang Y, Liu H, Zhang M, Xu J, Zheng L, Liu P, Chen J, Liu H, Chen C. Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives. MedComm (Beijing) 2024; 5:e670. [PMID: 39184862 PMCID: PMC11344282 DOI: 10.1002/mco2.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Liuxian Zheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengpeng Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Talari FF, Bozorg A, Zeinali S, Zali M, Mohsenifar Z, Asadzadeh Aghdaei H, Baghaei K. Low incidence of microsatellite instability in gastric cancers and its association with the clinicopathological characteristics: a comparative study. Sci Rep 2023; 13:21743. [PMID: 38065969 PMCID: PMC10709324 DOI: 10.1038/s41598-023-48157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastric cancer is a complex heterogeneous disease with different molecular subtypes that have clinical implications. It is characterized by high mortality rates and limited effective therapies. Microsatellite instability (MSI) has been recognized as a subgroup with a good prognosis based on TCGA and ACRG categorizations. Besides its prognostic and predictive value, gastric cancers with high MSI exhibit different clinical behaviors. The prevalence of high MSI has been assessed in gastric cancer worldwide, especially in East Asia, but there is a lack of such information in the Middle East. Therefore, this study aimed to investigate the incidence and status of MSI in Iranian gastric cancer patients using 53 samples collected from 2015 to 2020 at Taleghani Hospital Medical Center. DNA from tumoral and normal tissues were extracted and assessed through multiplex-PCR based on five mononucleotide repeats panel. Clinicopathological variables, including age, sex, Lauren classification, lymph node involvement, TNM stage, differentiation, localization, and tumor size, were also analyzed. With 2 males and 2 females, high microsatellite instability represented a small subgroup of almost 7.5% of the samples with a median age of 60.5 years. High microsatellite instability phenotypes were significantly associated with patients aged 68 years and older (p‑value of 0.0015) and lower lymph node involvement (p‑value of 0.0004). Microsatellite instability was also more frequent in females, with distal gastric location, bigger tumor size, and in the intestinal type of gastric cancer rather than the diffuse type.
Collapse
Affiliation(s)
| | - Ali Bozorg
- Biotechnology Department, College of Science, University of Tehran, Tehran, Iran.
| | - Sirous Zeinali
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammadreza Zali
- Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zhale Mohsenifar
- Department of Pathology, School of Medicine, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Shin HJ, Hua JT, Li H. Recent advances in understanding DNA methylation of prostate cancer. Front Oncol 2023; 13:1182727. [PMID: 37234978 PMCID: PMC10206257 DOI: 10.3389/fonc.2023.1182727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Epigenetic modifications, such as DNA methylation, is widely studied in cancer. DNA methylation patterns have been shown to distinguish between benign and malignant tumors in various cancers, including prostate cancer. It may also contribute to oncogenesis, as it is frequently associated with downregulation of tumor suppressor genes. Aberrant patterns of DNA methylation, in particular the CpG island hypermethylator phenotype (CIMP), have shown associative evidence with distinct clinical features and outcomes, such as aggressive subtypes, higher Gleason score, prostate-specific antigen (PSA), and overall tumor stage, overall worse prognosis, as well as reduced survival. In prostate cancer, hypermethylation of specific genes is significantly different between tumor and normal tissues. Methylation patterns could distinguish between aggressive subtypes of prostate cancer, including neuroendocrine prostate cancer (NEPC) and castration resistant prostate adenocarcinoma. Further, DNA methylation is detectable in cell-free DNA (cfDNA) and is reflective of clinical outcome, making it a potential biomarker for prostate cancer. This review summarizes recent advances in understanding DNA methylation alterations in cancers with the focus on prostate cancer. We discuss the advanced methodology used for evaluating DNA methylation changes and the molecular regulators behind these changes. We also explore the clinical potential of DNA methylation as prostate cancer biomarkers and its potential for developing targeted treatment of CIMP subtype of prostate cancer.
Collapse
Affiliation(s)
- Hyun Jin Shin
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Junjie T Hua
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Weng S, Li M, Deng J, Xu H, Ren Y, Zhou Z, Wang L, Zhang Y, Xing Z, Li L, Liu Z, Han X. Epigenetically regulated gene expression profiles decipher four molecular subtypes with prognostic and therapeutic implications in gastric cancer. Clin Epigenetics 2023; 15:64. [PMID: 37061743 PMCID: PMC10105476 DOI: 10.1186/s13148-023-01478-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/31/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract which seriously endangers the health of human beings worldwide. Transcriptomic deregulation by epigenetic mechanisms plays a crucial role in the heterogeneous progression of GC. This study aimed to investigate the impact of epigenetically regulated genes on the prognosis, immune microenvironment, and potential treatment of GC. RESULTS Under the premise of verifying significant co-regulation of the aberrant frequencies of microRNA (miRNA) correlated (MIRcor) genes and DNA methylation-correlated (METcor) genes. Four GC molecular subtypes were identified and validated by comprehensive clustering of MIRcor and METcor GEPs in 1521 samples from five independent multicenter GC cohorts: cluster 1 was characterized by up-regulated cell proliferation and transformation pathways, with good prognosis outcomes, driven by mutations, and was sensitive to 5-fluorouracil and paclitaxel; cluster 2 performed moderate prognosis and benefited more from apatinib and cisplatin; cluster 3 was featured by an up-regulated ligand-receptor formation-related pathways, poor prognosis, an immunosuppression phenotype with low tumor purity, resistant to chemotherapy (e.g., 5-fluorouracil, paclitaxel, and cisplatin), and targeted therapy drug (apatinib) and sensitive to dasatinib; cluster 4 was characterized as an immune-activating phenotype, with advanced tumor stages, benefit more from immunotherapy and displayed worst prognosis. CONCLUSIONS According to the epigenetically regulated GEPs, we developed four robust GC molecular subtypes, which facilitated the understanding of the epigenetic mechanisms underlying GC heterogeneity, offering an optimized decision-making and surveillance platform for GC patients.
Collapse
Affiliation(s)
- Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Minghao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaokai Zhou
- Department of Urologic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Henan, China
| | - Lifeng Li
- Medical School, Huanghe Science and Technology University, 666 Zi Jing Shan Road, Zhengzhou, 450000, Henan, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
7
|
Qiu R, Zhao S, Lu C, Xu Z, Shu E, Weng Q, Chen W, Fang S, Chen W, Zheng L, Zhao Z, Yang Y, Ji J. Proteomic analysis of DZIP3 interactome and its role in proliferation and metastasis in gastric cancer cells. Exp Cell Res 2023; 425:113525. [PMID: 36841324 DOI: 10.1016/j.yexcr.2023.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Gastric cancer is a serious malignant tumor in the world, accounting for the third cause of cancer death worldwide. The pathogenesis of gastric cancer is very complex, in which epigenetic inheritance plays an important role. In our study, we found that DZIP3 was significantly up-regulated in gastric cancer tissues as compared to adjacent normal tissue, which suggested it may be play a crucial part in gastric cancer. To clarify the mechanism of it, we further analyzed the interacting proteome and transcriptome of DZIP3. An association between DZIP3 and some epigenetic regulators, such as CUL4B complex, was verified. We also present the first proteomic characterization of the protein-protein interaction (PPI) network of DZIP3. Then, the transcriptome analysis of DZIP3 demonstrated that knockdown DZIP3 increased a cohort of genes, including SETD7 and ZBTB4, which have essential role in tumors. We also revealed that DZIP3 promotes proliferation and metastasis of gastric cancer cells. And the higher expression of DZIP3 is positively associated with the poor prognosis of several cancers. In summary, our study revealed a mechanistic role of DZIP3 in promoting proliferation and metastasis in gastric cancer, supporting the pursuit of DZIP3 as a potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Siyu Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Ziwei Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Enfen Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiyue Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| |
Collapse
|
8
|
Hu D, Zhang T, Yan Z, Wang L, Wang Y, Meng N, Tu B, Teng Y, Li Z, Lou X, Lei Y, Ren X, Zou Y, Wang F. Multimolecular characteristics of cell-death related hub genes in human cancers: a comprehensive pan-cancer analysis. Cell Cycle 2022; 21:2444-2454. [PMID: 35848940 DOI: 10.1080/15384101.2022.2101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Failure of the normal process of cell death pathways contributes to the defection of immune systems and the occurrence of cancers. The key genes, the multimolecular mechanisms, and the immune functions of these genes in pan-cancers remain unclear. Using online databases of The Cancer Genome Atlas, GEPIA2, TISIDB, HPA, Kaplan-Meier Plotter, PrognoScan, cBioPortal, GSCALite, TIMER, and Sangerbox, we identified the key genes from the six primary cell death-related pathways and performed a comprehensive analysis to investigate the multimolecular characteristics and immunological functions of the hub genes in 33 human cancers. We identified five hub genes in the six primary cell death-related pathways (JUN, NFKB1, CASP3, PARP1, and TP53). We found that CASP3, PARP1, and TP53 were overexpressed in 28, 23, and 27 cancers. The expression of the five genes was associated with the development and prognosis of many cancers. Particularly, JUN, NFKB1, CASP3, and TP53 have prognostic values in Brain Lower Grade Glioma (LGG), while PARP1 and CASP3 could predict the survival outcomes in Adrenocortical carcinoma (ACC). In addition, an extensive association between five genes' expression, DNA methylation, and tumor-immune system interactions was noticed. The five cell death-related hub genes could function as potential biomarkers for various cancers, particularly LGG and ACC. The immunological function analysis of the five genes also proposes new targets for developing immunosuppressants and improving the immunotherapy efficacy of cancers. However, further extensive clinical and experimental research are required to validate their clinical values.
Collapse
Affiliation(s)
- Dingtao Hu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui, China.,Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, China
| | - Tingyu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Ziye Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Linlin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Yuhua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Nana Meng
- Department of Quality Management Office, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Bizhi Tu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Ying Teng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Xiaoqi Lou
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Xiaoshuang Ren
- Department of Social Management, Ritsumeikan University, Osaka, Japan
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
9
|
Danilova NV, Chayka AV, Khomyakov VM, Oleynikova NA, Andreeva YY, Malkov PG. [Microsatellite instability in gastric cancer is a predictor of a favorable prognosis]. Arkh Patol 2022; 84:5-15. [PMID: 36469712 DOI: 10.17116/patol2022840615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Evaluation of the frequency of microsatellite instability in gastric adenocarcinomas in patients of the Russian Federation, determination of the relationship of microsatellite instability with clinical and morphological characteristics and the impact on the prognosis. MATERIAL AND METHODS We used samples of surgical material from 310 patients with a verified diagnosis of gastric cancer. The age of the patients ranged from 22 to 85 years (mean 63 years). The median follow-up of patients was 83 months. Each sample was immunohistochemically stained with antibodies to microsatellite instability markers MLH1, MSH2, MSH6, and PMS2. The results were compared with the main clinical and morphological characteristics of gastric cancer and data on patient survival. RESULTS The frequency of detection of MMR-negative tumors in the Russian population is 8.1% of all patients with gastric cancer. It was found that patients with MMR-negative gastric carcinomas are older (mean age 69 years, p=0.008). In this group predominates distal localization of tumors, type 2 according to R. Bormann classification (p=0.010), tubular histological type (p=0.010), intestinal subtype according to P. Lauren classification (p=0.003). There were no significant differences between MMR-negative and MMR-positive tumors in terms of other clinical and morphological parameters (including the stage of the tumor process). The overall median survival of patients with MMR-negative tumors was 76%, which significantly (p=0.013) exceeds that in the group of MMR-positive tumors (36%). It was found that despite significant differences in survival, MMR-status is not an significant prognostic factor in gastric cancer (HR=0.983). CONCLUSION The established differences in patient survival make it possible to distinguish a group of MMR-negative tumors into a separate pathogenetic subtype of gastric cancer (MSI subtype) based on immunohistochemical studies. This subtype occurs predominantly in elderly patients with tubular gastric adenocarcinomas and is characterized by a favorable prognosis.
Collapse
Affiliation(s)
- N V Danilova
- Lomonosov Moscow State University, Moscow, Russia
| | - A V Chayka
- P. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Center, Moscow, Russia
| | - V M Khomyakov
- P. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Center, Moscow, Russia
| | | | - Yu Yu Andreeva
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - P G Malkov
- Lomonosov Moscow State University, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
10
|
Sun SY, Hu XT, Yu XF, Zhang YY, Liu XH, Liu YH, Wu SH, Li YY, Cui SX, Qu XJ. Nuclear translocation of ATG5 induces DNA mismatch repair deficiency (MMR-D)/microsatellite instability (MSI) via interacting with Mis18α in colorectal cancer. Br J Pharmacol 2021; 178:2351-2369. [PMID: 33645631 DOI: 10.1111/bph.15422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 01/30/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE It is well known that microsatellite instability-high (MSI-H) is associated with 5-fluorouracil (5-FU) resistance in colorectal cancer. MSI-H is the phenotype of DNA mismatch repair deficiency (MMR-D), mainly occurring due to hypermethylation of MLH1 promoter CpG island. However, the mechanisms of MMR-D/MSI-H are unclear. We aim to investigate the pathway of MMR-D/MSI-H involved in 5-FU resistance. EXPERIMENTAL APPROACH Human colorectal cancer specimens were diagnosed for MSI-H by immunohistochemistry and western blotting. Proteome microarray interactome assay was performed to screen nuclear proteins interacting with ATG5. Nuclear ATG5 and ATG5-Mis18α overexpression were analysed in ATG5high colorectal cancer bearing mice. The methylation assay determined the hypermethylation of hMLH1 promoter CpG island in freshly isolated human colorectal cancer tissue samples and HT29atg5 and SW480atg5 cancer cells. KEY RESULTS In ATG5high colorectal cancer patients, 5-FU-based therapy resulted in nuclear translocation of ATG5, leading to MSI-H. Colorectal cancer in Atg5 Tg mice demonstrated 5-FU resistance, compared to Atg5+/- and WT mice. Proteome microarray assay identified Mis18α, a protein localized on the centromere and a source for methylation of the underlying chromatin, which responded to the translocated nuclear ATG5 leading to ATG5-Mis18α conjugate overexpression. This resulted in MLH1 deficiency due to hypermethylation of hMLH1 promoter CpG island, while the deletion of nuclear Mis18α failed to induce ATG5-Mis18α complex and MMR-D/MSI-H. CONCLUSIONS AND IMPLICATIONS Nuclear ATG5 resulted in MMR-D/MSI-H through its interaction with Mis18α in ATG5high colorectal cancer cells. We suggest that ATG5-Mis18α or Mis18α may be a therapeutic target for treating colorectal cancer.
Collapse
Affiliation(s)
- Shi-Yue Sun
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Institute of Acu-moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Tao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin-Feng Yu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue-Ying Zhang
- Department of Experimental Pathology, College of Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao-Hui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuan-Hang Liu
- Department of Pathology, Hospital of Bin Zhou Medical College, Binzhou, China
| | - Shu-Hua Wu
- Department of Pathology, Hospital of Bin Zhou Medical College, Binzhou, China
| | - Yang-Yang Li
- Department of Pathology, Hospital of Bin Zhou Medical College, Binzhou, China
| | - Shu-Xiang Cui
- Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Xian-Jun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, Luposella M, Maltese L, Currò G, Marone G, Ranieri G, Memeo R. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int J Mol Sci 2019; 20:E2106. [PMID: 31035644 PMCID: PMC6540185 DOI: 10.3390/ijms20092106] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is diagnosed in nearly one million new patients each year and it remains the second leading cause of cancer-related deaths worldwide. Although gastric cancer represents a heterogeneous group of diseases, chronic inflammation has been shown to play a role in tumorigenesis. Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumour initiation and progression. The stromal microenvironment is important in maintaining normal tissue homeostasis or promoting tumour development. A plethora of immune cells (i.e., lymphocytes, macrophages, mast cells, monocytes, myeloid-derived suppressor cells, Treg cells, dendritic cells, neutrophils, eosinophils, natural killer (NK) and natural killer T (NKT) cells) are components of gastric cancer microenvironment. Mast cell density is increased in gastric cancer and there is a correlation with angiogenesis, the number of metastatic lymph nodes and the survival of these patients. Mast cells exert a protumorigenic role in gastric cancer through the release of angiogenic (VEGF-A, CXCL8, MMP-9) and lymphangiogenic factors (VEGF-C and VEGF-F). Gastric mast cells express the programmed death ligands (PD-L1 and PD-L2) which are relevant as immune checkpoints in cancer. Several clinical undergoing trials targeting immune checkpoints could be an innovative therapeutic strategy in gastric cancer. Elucidation of the role of subsets of mast cells in different human gastric cancers will demand studies of increasing complexity beyond those assessing merely mast cell density and microlocalization.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
| | - Valentina Ferraro
- Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, Aldo Moro University, 74124 Bari, Italy.
| | - Michele Ammendola
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Michele De Fazio
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| | | | - Maria Luposella
- Cardiovascular Disease Unit, San Giovanni di Dio Hospital, 88900 Crotone, Italy.
| | - Lorenza Maltese
- Pathology Unit, Pugliese-Ciaccio Hospital, 88100 Catanzaro, Italy.
| | - Giuseppe Currò
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
- Department of Human Pathology of Adult and Evolutive Age G. Barresi, University of Messina, 98122 Messina, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy.
| | - Girolamo Ranieri
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 74124 Bari, Italy.
| | - Riccardo Memeo
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| |
Collapse
|
12
|
Ghosh J, Schultz B, Coutifaris C, Sapienza C. Highly variant DNA methylation in normal tissues identifies a distinct subclass of cancer patients. Adv Cancer Res 2019; 142:1-22. [PMID: 30885359 DOI: 10.1016/bs.acr.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The "CpG Island Methylator Phenotype" (CIMP) has been found to be a useful concept in stratifying several types of human cancer into molecularly and clinically distinguishable subgroups. We have identified an additional epigenetic stratification category, the "Outlier Methylation Phenotype" (OMP). Whereas CIMP is defined on the basis of hyper-methylation in tumor genomes, OMP is defined on the basis of highly variant (either or both hyper- and hypo-methylation) methylation at many sites in normal tissues. OMP was identified and defined, originally, as being more common among low birth weight individuals conceived in vitro but we have also identified OMP individuals among colon cancer patients profiled by us, as well as multiple types of cancer patients in the TCGA database. The cause(s) of OMP are unknown, as is whether these individuals identify a clinically useful subgroup of patients, but both the causes of, and potential consequences to, this epigenetically distinct group are of great interest.
Collapse
Affiliation(s)
- Jayashri Ghosh
- Fels Institute of Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute of Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Christos Coutifaris
- Department of Obstetrics & Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Carmen Sapienza
- Fels Institute of Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
13
|
Tahara T, Tahara S, Horiguchi N, Okubo M, Terada T, Yamada H, Yoshida D, Omori T, Osaki H, Maeda K, Kamano T, Funasaka K, Nagasaka M, Nakagawa Y, Shibata T, Ohmiya N. Molecular subtyping of gastric cancer combining genetic and epigenetic anomalies provides distinct clinicopathological features and prognostic impacts. Hum Mutat 2019; 40:347-354. [PMID: 30575210 DOI: 10.1002/humu.23700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022]
Abstract
Both genetic and epigenetic abnormalities play important roles in gastric cancer (GC) development. We investigated whether the molecular subtypes of gastric cancer by combining genetic and epigenetic anomalies define its clinicopathological features and prognosis. The CpG island methylator phenotype (CIMP), MLH1 methylation, TP53, and KRAS mutation statuses were characterized in 214 GCs in relation to their clinicopathological features and prognosis. The molecular subtypes based on CIMP and TP53 hot spot mutation status (R175, G245, R248, R273, and R282) best predicted prognosis of GC. These subtypes contained 120 CIMP-positive (CIMP+) TP53 hot spot mutation-negative (TP53 hot spot-) cases, 81 CIMP-negative (CIMP-) TP53 hot spot- cases, 8 CIMP+TP53 hot spot mutation-positive (TP53 hot spot+) cases, and 5 CIMP- TP53 hot spot+ cases. The CIMP-TP53 hot spot+ group presented the worst overall survival (OS) and progression-free survival (PFS), followed by the CIMP+TP53 hot spot+, CIMP-TP53 hot spot- and CIMP+TP53 hot spot- groups (both P < 0.0001). These subtypes also correlated well with several aggressive clinicopathological features in that order. The molecular subtypes were independent factors for predicting overall survival (hazard ratio = 1.66, 95% CI = 1.07-2.57, P = 0.006). The molecular subtypes combining the CIMP and TP53 hot spot mutation status provide distinct clinicopathological features and prognostic impacts in GC.
Collapse
Affiliation(s)
- Tomomitsu Tahara
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Sayumi Tahara
- Department of Diagnostic Pathology I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Noriyuki Horiguchi
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Masaaki Okubo
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Tsuyoshi Terada
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Hyuga Yamada
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Dai Yoshida
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Takafumi Omori
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Hayato Osaki
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kohei Maeda
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Toshiaki Kamano
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kohei Funasaka
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Mitsuo Nagasaka
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yoshihito Nakagawa
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
14
|
Powell AGMT, Soul S, Christian A, Lewis WG. Meta-analysis of the prognostic value of CpG island methylator phenotype in gastric cancer. Br J Surg 2018; 105:e61-e68. [PMID: 29341152 DOI: 10.1002/bjs.10742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/24/2017] [Accepted: 10/02/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND CpG island methylator phenotype (CIMP) has been identified as a distinct molecular subtype of gastric cancer, yet associations with survival are conflicting. A meta-analysis was performed to estimate the prognostic significance of CIMP. METHODS Embase, MEDLINE, PubMed, PubMed Central and Cochrane databases were searched systematically for studies related to the association between CIMP and survival in patients undergoing potentially curative resection for gastric cancer. RESULTS A total of 918 patients from ten studies were included, and the median proportion of tumours with CIMP-high (CIMP-H) status was 40·9 (range 4·8-63) per cent. Gene panels for assessing CIMP status varied between the studies. Pooled analysis suggested that specimens exhibiting CIMP-H were associated with poorer 5-year survival (odds ratio (OR) for death 1·48, 95 per cent c.i. 1·10 to 1·99; P = 0·009). Significant heterogeneity was observed between studies (I2 = 88 per cent, P < 0·001). Subgroup analysis according to whether studies showed a tendency towards poor (5 studies) or improved (5) outcomes for patients with CIMP-H tumours, revealed that CIMP-H was associated with both poor (OR for death 8·15, 4·65 to 14·28, P < 0·001; heterogeneity I2 = 52 per cent, P = 0·08) and improved (OR 0·42, 0·27 to 0·65; P < 0·001, heterogeneity I2 = 0 per cent, P = 0·960) survival. CONCLUSION There was heterogeneity in the gene panels used to identify CIMP, which may explain the survival differences.
Collapse
Affiliation(s)
- A G M T Powell
- Division of Cancer and Genetics, Cardiff University, Cardiff, UK
| | - S Soul
- Department of Surgery, Cardiff and Vales University Health Board, Cardiff, UK
| | - A Christian
- Department of Pathology, Cardiff and Vales University Health Board, Cardiff, UK
| | - W G Lewis
- Department of Surgery, Cardiff and Vales University Health Board, Cardiff, UK
| |
Collapse
|
15
|
Xiao H, Fu J, Abe M, Ji J, Zong L. Prognostic value of CpG island methylator phenotype in gastric cancer. Cancer Sci 2018; 109:2623-2625. [PMID: 30155960 PMCID: PMC6113443 DOI: 10.1111/cas.13705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Huashi Xiao
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China.,Clinical Medical College, Dalian Medical University, Dalian, China
| | - Jiaxin Fu
- Medical Research Center, Northern Jingsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Masanobu Abe
- Division for Health Service Promotion, University of Tokyo, Tokyo, Japan
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liang Zong
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Patel TN, Chakraborty M, Bhattacharya P. Microsatellite Instability in Chronic Myeloid Leukemia using D17S261 and D3S643 markers: A Pilot Study in Gujarat Population. Indian J Cancer 2018; 54:426-429. [PMID: 29469071 DOI: 10.4103/ijc.ijc_275_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CONTEXT Tumor progresses through a series of genetic alterations that involve proto-oncogenes and tumor suppressor genes - the gatekeeper, caretakers, and landscaper genes. Microsatellites are short tandem repeat sequences, present over the span of human genome and are known to be variable at multiple loci due to errors in DNA Mismatch Repair machinery. AIM The present study was aimed to evaluate the association between Microsatellite Instability (MSI) and evolution of Chronic Myeloid Leukemia (CML) - genetically a rare event but profound in this pilot study. SETTINGS AND DESIGNS We explore the possibility of MSI in primary CML patients confirmed by t(9;22) using capillary electrophoresis. Fifteen CML patients and healthy individual samples, respectively, were used to study the markers D17S261 and D3S643. MATERIALS AND METHODS The DNA was amplified using tagged and nontagged primers and further subjected to bioanalysis and fragment analysis. RESULTS While the results from bioanalyzer fluctuated, fragment analysis indicated the presence of microsatellite variability in 80% of the patients' samples as compared to no MSI in normal individuals for both the markers. CONCLUSION These findings suggest that MSI is a genetic event that may have a role in CML progression or evolution. Further studies are warranted to understand the plausible underlying causes.
Collapse
Affiliation(s)
- T N Patel
- Departments of Integrative Biology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - M Chakraborty
- Departments of Biomedical Genetics, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - P Bhattacharya
- Departments of Integrative Biology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
17
|
Vedeld HM, Goel A, Lind GE. Epigenetic biomarkers in gastrointestinal cancers: The current state and clinical perspectives. Semin Cancer Biol 2018; 51:36-49. [PMID: 29253542 PMCID: PMC7286571 DOI: 10.1016/j.semcancer.2017.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Each year, almost 4.1 million people are diagnosed with gastrointestinal (GI) cancers. Due to late detection of this disease, the mortality is high, causing approximately 3 million cancer-related deaths annually, worldwide. Although the incidence and survival differs according to organ site, earlier detection and improved prognostication have the potential to reduce overall mortality burden from these cancers. Epigenetic changes, including aberrant promoter DNA methylation, are common events in both cancer initiation and progression. Furthermore, such changes may be identified non-invasively with the use of PCR based methods, in bodily fluids of cancer patients. These features make aberrant DNA methylation a promising substrate for the development of disease biomarkers for early detection, prognosis and for predicting response to therapy. In this article, we will provide an update and current clinical perspectives for DNA methylation alterations in patients with colorectal, gastric, pancreatic, liver and esophageal cancers, and discuss their potential role as cancer biomarkers.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ajay Goel
- Center for Gastrointestinal Research, and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
18
|
Lv W, Zhang M, Zhu J, Zhang M, Ci C, Shang S, Wei Y, Liu H, Li X, Zhang Y. Exploration of drug-response mechanism by integrating genetics and epigenetics across cancers. Epigenomics 2018; 10:993-1010. [DOI: 10.2217/epi-2017-0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: To discover CpG island methylator phenotype (CIMP) as a predictor for cancer drug-response mechanism. Materials & methods: CIMP classification of 966 cancer cell lines was determined according to identified copy number alteration and differential methylation by DNA methylation profiles. CIMP-related drugs were analyzed by analysis of variance. Tissue–cell–drug networks were developed to predict drug response of individual samples. Results & conclusion: One hundred and thirty-six copy number gain and 142 copy number loss cell lines were classified into CIMP-high and CIMP-low groups, meanwhile 9 and 24 CIMP-associated drugs were identified, respectively. Specially, breast invasive carcinoma samples primarily composed by HCC1419 were predicted to be sensitive to GSK690693. The study provides guidance for drug response in cancer therapy through genome-wide DNA methylation.
Collapse
Affiliation(s)
- Wenhua Lv
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Mengying Zhang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Jiang Zhu
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Min Zhang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Ce Ci
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Shipeng Shang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Yanjun Wei
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Hui Liu
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Xin Li
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, PR China
| | - Yan Zhang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| |
Collapse
|
19
|
Yu LB, Tu YT, Huang JW, Zhang YN, Zheng GQ, Xu XW, Wang JW, Xiao JQ, Christiani DC, Xia ZL. Hypermethylation of CpG islands is associated with increasing chromosomal damage in chinese lead-exposed workers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:549-556. [PMID: 29761860 DOI: 10.1002/em.22194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/13/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Lead is a widely existing environmental pollutant with potential carcinogenicity. To investigate the association of blood lead level (B-Pb) with potential chromosomal damage and cancer, we analyzed micronucleus (MN) frequency of peripheral blood lymphocytes (PBLs) and the methylation status of six human tumor suppressor genes (TSGs) post lead exposure. In the study, 147 lead-exposed workers were divided into two groups according to their B-Pb P50 value, with other 50 lead-unexposed workers as a control group. The cytokinesis-blocked micronucleus (CBMN) assay was performed to detect chromosomal damage of PBLs of both lead-exposed and -unexposed workers. The methylation-specific polymerase chain reaction (MSP-PCR) was further used to examine the methylation status of six TSGs (GSTP1, hMLH1, MGMT, p14, p15, and p16). Results showed that MN frequencies of high B-Pb workers 8.1 ± 3.1‰ and low B-Pb workers 5.7 ± 2.3‰ were significantly higher than that of control group 2.8 ± 1.9‰ (P < 0.01), while the MN frequency of high B-Pb workers was also higher than that of the low B-Pb workers (P < 0.01). The MN frequency in PBLs of lead-exposed group with the methylated TSGs was significantly higher than that in PBLs with the unmethylated TSGs (P < 0.05). Notably, the CpG island methylator phenotype (CIMP) correlated with chromosome damage (P < 0.05). Additionally, workers with high B-Pb had higher chromosome damage than those with low B-Pb (P < 0.05). Taken altogether, the results suggest that lead-exposed workers with CIMP positive and high B-Pb have a higher risk of being vulnerable to tumorigenesis. Environ. Mol. Mutagen. 59:549-556, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Li-Bo Yu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yu-Ting Tu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jing-Wen Huang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Ya-Nan Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Guo-Qiao Zheng
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Xiao-Wen Xu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jin-Wei Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jean Qin Xiao
- Waterfront Medical Service/Valley Health System P.O. Box 1378, Ridgewood, NJ 07451
| | - David C Christiani
- Department of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts, 02115
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| |
Collapse
|
20
|
Zeng D, Zhou R, Yu Y, Luo Y, Zhang J, Sun H, Bin J, Liao Y, Rao J, Zhang Y, Liao W. Gene expression profiles for a prognostic immunoscore in gastric cancer. Br J Surg 2018; 105:1338-1348. [PMID: 29691839 PMCID: PMC6099214 DOI: 10.1002/bjs.10871] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/22/2018] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
Background Increasing evidence has indicated an association between immune infiltration in gastric cancer and clinical outcome. However, reliable prognostic signatures, based on systematic assessments of the immune landscape inferred from bulk tumour transcriptomes, have not been established. The aim was to develop an immune signature, based on the cellular composition of the immune infiltrate inferred from bulk tumour transcriptomes, to improve the prognostic predictions of gastric cancer. Methods Twenty‐two types of immune cell fraction were estimated based on large public gastric cancer cohorts from the Gene Expression Omnibus using CIBERSORT. An immunoscore based on the fraction of immune cell types was then constructed using a least absolute shrinkage and selection operator (LASSO) Cox regression model. Results Using the LASSO model, an immunoscore was established consisting of 11 types of immune cell fraction. In the training cohort (490 patients), significant differences were found between high‐ and low‐immunoscore groups in overall survival across and within subpopulations with an identical TNM stage. Multivariable analysis revealed that the immunoscore was an independent prognostic factor (hazard ratio 1·92, 95 per cent c.i. 1·54 to 2·40). The prognostic value of the immunoscore was also confirmed in the validation (210) and entire (700) cohorts. Conclusion The proposed immunoscore represents a promising signature for estimating overall survival in patients with gastric cancer. Immunoscore predicts prognosis
Collapse
Affiliation(s)
- D Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - R Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Y Yu
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Breast Tumour Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Y Luo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - J Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - H Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - J Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Y Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - J Rao
- Key Laboratory of New Drug Screening of Guangdong Province, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Y Zhang
- Key Laboratory of Zebrafish Modelling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - W Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Ye P, Shi Y, Li A. Association Between hMLH1 Promoter Methylation and Risk of Gastric Cancer: A Meta-Analysis. Front Physiol 2018; 9:368. [PMID: 29719511 PMCID: PMC5914280 DOI: 10.3389/fphys.2018.00368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Human mutL homolog 1 (hMLH1) is located on chromosome 3q21-23. As a classic tumor suppressor gene, many researchers have studied the association between hMLH1 promoter methylation and gastric cancer, but their conclusions were not always consistent. Therefore, we performed a meta-analysis to make a more integrated and precise estimate of the associations. Method: PubMed, EMBASE, and Cochrane Library were retrieved without language restrictions. Data were analyzed by Review Manager 5.2 and Stata 12.0 software. Odds ratio (OR) with 95% confidence interval (95%CI) was used to assess the statistical associations. Result: A total of 39 studies published before January 20, 2018 were included in this study. The results indicated that the frequency of hMLH1 promoter methylation in gastric cancers was substantially higher than that in non-cancer controls (OR = 7.94, 95%CI = 4.32–14.58, P < 0.001). Furthermore, hMLH1 promoter methylation had considerable associations with lymph node metastasis, microsatellite instability (MSI), and low expression of hMLH1 protein (OR = 1.53, 95%CI = 1.04–2.26, P = 0.03; OR = 15.33, 95%CI = 9.26–25.36, P < 0.001; OR = 37.86, 95%CI = 18.03–79.50, P < 0.001, respectively). No association was found between hMLH1 promoter methylation and Lauren classification or Helicobacter pylori (HP) infection status. Conclusion: The present study provides evidence that promoter methylation of hMLH1 is a major causative event in the occurrence and development of human gastric cancer.
Collapse
Affiliation(s)
- Peng Ye
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Shi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Anling Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Patil PA, Blakely AM, Lombardo KA, Machan JT, Miner TJ, Wang LJ, Marwaha AS, Matoso A. Expression of PD-L1, indoleamine 2,3-dioxygenase and the immune microenvironment in gastric adenocarcinoma. Histopathology 2018; 73:124-136. [PMID: 29489025 DOI: 10.1111/his.13504] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/24/2018] [Indexed: 12/11/2022]
Abstract
AIMS The tumour microenvironment is increasingly important in several tumours. We studied the relationship of key players of immune microenvironment with clinicopathological parameters in gastric adenocarcinomas. METHODS AND RESULTS Tissue microarrays were constructed from gastrectomy specimens, 2004-13. Immunohistochemistry was performed for programmed cell death ligand 1 (PD-L1), indoleamine 2,3-dioxygenase (IDO), tryptophanyl-tRNA synthetase (WARS), guanylate-binding protein 5 (GBP5), tumour-infiltrating lymphocytes (TIL) expressing CD3/CD8/FoxP3/PD1 and mismatch repair proteins (MMRs) MLH1, PMS2, MSH2 and MSH6. Clinicopathological parameters and clinical follow-up were recorded. The study included 86 patients; median follow-up was 34 months (0-148). Tumour types were 45% tubular, 38% diffuse, 17% mixed. PD-L1 was positive in 70%, epithelial IDO in 58%, stromal IDO in 91%, epithelial WARS in 67%, stromal WARS in 100%, epithelial GBP5 in 53% and stromal GBP5 in 71%. MMR-deficiency was found in 22%. There was no difference in biomarker expression by histological subtype, with the exception of fewer diffuse-type being MMR-deficient. Low stromal IDO was associated with decreased progression-free, overall and disease-specific survival. PD-L1-positive tumours were larger with MMR-deficiency and with increasing TILs, and had significantly higher FoxP3TILs. CONCLUSIONS PD-L1 is expressed in a large proportion of gastric carcinomas, suggesting that therapy targeting this pathway could be relevant to many patients. PD-L1 expression and MMR-deficiency are associated with increased TILs and larger tumour size, emphasising their role in tumour biology. Higher stromal IDO expression is associated with better prognosis. Finally, we observed that immune modulators WARS and GBP5 are expressed highly in gastric adenocarcinomas, suggesting an important role in tumour pathobiology.
Collapse
Affiliation(s)
- Pallavi A Patil
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Brown University, Providence, RI, USA
| | - Andrew M Blakely
- Department of Surgery, Lifespan Academic Medical Center and Brown University, Providence, RI, USA
| | - Kara A Lombardo
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Brown University, Providence, RI, USA
| | - Jason T Machan
- Department of Biostatistics, Lifespan Academic Medical Center and Brown University, Providence, RI, USA
| | - Thomas J Miner
- Department of Surgery, Lifespan Academic Medical Center and Brown University, Providence, RI, USA
| | - Li-Juan Wang
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Brown University, Providence, RI, USA
| | - Alexander S Marwaha
- Departments of Pathology, Urology and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andres Matoso
- Departments of Pathology, Urology and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
23
|
Wong CC, Li W, Chan B, Yu J. Epigenomic biomarkers for prognostication and diagnosis of gastrointestinal cancers. Semin Cancer Biol 2018; 55:90-105. [PMID: 29665409 DOI: 10.1016/j.semcancer.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Altered epigenetic regulation is central to many human diseases, including cancer. Over the past two decade, major advances have been made in our understanding of the role of epigenetic alterations in carcinogenesis, particularly for DNA methylation, histone modifications and non-coding RNAs. Aberrant hypermethylation of DNA at CpG islands is a well-established phenomenon that mediates transcriptional silencing of tumor suppressor genes, and it is an early event integral to gastrointestinal cancer development. As such, detection of aberrant DNA methylation is being developed as biomarkers for prognostic and diagnostic purposes in gastrointestinal cancers. Diverse tissue types are suitable for the analyses of methylated DNA, such as tumor tissues, blood, plasma, and stool, and some of these markers are already utilized in the clinical setting. Recent advances in the genome-wide epigenomic approaches are enabling the comprehensive mapping of the cancer methylome, thus providing new avenues for mining novel biomarkers for disease prognosis and diagnosis. Here, we review the current knowledge on DNA methylation biomarkers for the prognostication and non-invasive diagnosis of gastrointestinal cancers and highlight their clinical application.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Bertina Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
24
|
Puneet, Kazmi HR, Kumari S, Tiwari S, Khanna A, Narayan G. Epigenetic Mechanisms and Events in Gastric Cancer-Emerging Novel Biomarkers. Pathol Oncol Res 2018; 24:757-770. [PMID: 29552712 DOI: 10.1007/s12253-018-0410-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
Gastric cancer is one of the most common malignancy worldwide. The various genetic and epigenetic events have been found to be associated with its carcinogenesis. The epigenetic is a heritable and transient/reversible change in the gene expression that is not accompanied by modification in the DNA sequence. This event is characterized by the alteration in the promoter CpG island of the gene or histone modification. These events are associated with silencing of critical tumor suppressor gene and activation of oncogenes leading to carcinogenesis. The DNA methylation is a chemical change in the DNA sequence that most commonly occurs at cytosine moiety of CpG dinucleotide and histone, primarily on N- terminal tail that ultimately effect the interaction of DNA with chromatin modifying protein.Hypermethylation of tumor suppressor genes and global hypomethylation of oncogenes are widely studied epigenetic modifications. There are large number of publish reports regarding epigenetic events involving gastric cancer. These changes are potentially useful in identifying markers for early diagnosis and management of this lethal malignancy. Also, role of specific miRNAs and long non coding RNAs in regulation of gene expression is gaining interest and is a matter of further investigation. In this review, we aimed to summarize major epigenetic events (DNA methylation) in gastric cancer along with alteration in miRNAs and long non coding RNAs which plays an important role in pathology of this poorly understood malignancy.
Collapse
Affiliation(s)
- Puneet
- Department of Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Hasan Raza Kazmi
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Soni Kumari
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Satendra Tiwari
- Department of Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - A Khanna
- Department of Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Gopeshwar Narayan
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
25
|
Kim HS, Shin SJ, Beom SH, Jung M, Choi YY, Son T, Kim HI, Cheong JH, Hyung WJ, Noh SH, Chung H, Park JC, Shin SK, Lee SK, Lee YC, Koom WS, Lim JS, Chung HC, Rha SY, Kim H. Comprehensive expression profiles of gastric cancer molecular subtypes by immunohistochemistry: implications for individualized therapy. Oncotarget 2018; 7:44608-44620. [PMID: 27331626 PMCID: PMC5190122 DOI: 10.18632/oncotarget.10115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/29/2016] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) is a leading cause of death. We aim to establish a clinically relevant assay that encompasses recent molecular classifications and provides useful clinical information in a large cohort of GC patients. A consecutive series of 438 GC patients that underwent palliative chemotherapy between 2014 and 2015 were assessed using 10 GC panels: EBER in-situ hybridization, immunohistochemistry for mismatch repair (MMR) proteins (MLH1, PMS2, MSH2, and MSH6), receptor tyrosine kinases (RTKs; HER2, EGFR, and MET), PTEN, and p53 protein. With a median of one aberration, 3.3 % of samples analyzed were Epstein-Barr virus (EBV)-positive; 4.8%, MMR-deficient. RTKs were overexpressed in 218 patients; EGFR was most commonly overexpressed (39.9%), followed by HER2 (13.5%) and MET (12.1%). Furthermore, 2.5 % and 10.7 % of cases had simultaneous overexpression of three and two RTKs, respectively. p53 overexpression/null tumors were identified in 259 patients (59.1%), and PTEN loss was identified in 89 patients (20.3%). EBV-positivity was mutually exclusive with MMR-deficiency, predominantly identified in male patients, and these tumors were undifferentiated with proximal location. p53 mutant type was significantly found predominantly in the EBV-negative (60.6% vs 14.3%, P=0.001) and HER2-positive (78.0% vs 56.2%, P=0.002) groups. We described a molecular spectrum of distinct GC subtypes using clinically applicable assay. This assay will provide a convenient screening tool and facilitate the development of targeted agents in clinical trials.
Collapse
Affiliation(s)
- Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Hoon Beom
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Young Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taeil Son
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyoung-Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Hyung
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Hoon Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunsoo Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Chul Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Kwan Shin
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Kil Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Chan Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Seok Lim
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Cheol Chung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
26
|
Yuza K, Nagahashi M, Watanabe S, Takabe K, Wakai T. Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget 2017; 8:112103-112115. [PMID: 29340115 PMCID: PMC5762383 DOI: 10.18632/oncotarget.22783] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Recent progress in cancer genome analysis using next-generation sequencing has revealed a high mutation burden in some tumors. The particularly high rate of somatic mutation in these tumors correlates with the generation of neo-antigens capable of eliciting an immune response. Identification of hypermutated tumors is therefore clinically valuable for selecting patients suitable for immunotherapy treatment. There are several known causes of hypermutation in tumors, such as ultraviolet light in melanoma, tobacco smoke in lung cancer, and excessive APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) activity in breast and gastric cancer. In gastrointestinal cancers, one of the leading causes of hypermutation is a defect in DNA mismatch repair, which results in microsatellite instability (MSI). This review will focus on the frequency, characteristics and genomic signature of hypermutated gastrointestinal cancers with MSI. Detection of tumor hypermutation in cancer is expected to not only predict the clinical benefit of immune checkpoint inhibitor treatment, but also to provide better surgical strategies for the patients with hypermutated tumors. Thus, in an era of precision medicine, identification of hypermutation and MSI will play an important role directing surgical and chemotherapeutic treatment.
Collapse
Affiliation(s)
- Kizuki Yuza
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14203, USA
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| |
Collapse
|
27
|
Polom K, Marano L, Marrelli D, De Luca R, Roviello G, Savelli V, Tan P, Roviello F. Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br J Surg 2017; 105:159-167. [PMID: 29091259 DOI: 10.1002/bjs.10663] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/03/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Several associations between microsatellite instability (MSI) and other clinicopathological factors have been reported in gastric cancer, but the results have been ambiguous. This systematic review and meta-analysis investigated the relationship between MSI and overall survival and clinicopathological characteristics of patients with gastric cancer. METHODS A systematic literature search of the PubMed, Cochrane and Ovid databases until 31 January 2016 was performed in accordance with the PRISMA statement. The articles were screened independently according to PICO (population, intervention, comparator, outcome) eligibility criteria. All eligible articles were evaluated independently by two reviewers for risk of bias according to the Quality In Prognosis Study tool. RESULTS Overall, 48 studies with a total of 18 612 patients were included. MSI was found in 9·2 per cent of patients (1718 of 18 612), and was associated with female sex (odds ratio (OR) 1·57, 95 per cent c.i. 1·31 to 1·89; P < 0·001), older age (OR 1·58, 2·20 to 1·13; P < 0·001), intestinal Laurén histological type (OR 2·23, 1·94 to 2·57; P < 0·001), mid/lower gastric location (OR 0·38, 0·32 to 0·44; P < 0·001), lack of lymph node metastases (OR 0·70, 0·57 to 0·86, P < 0·001) and TNM stage I-II (OR 1·77, 1·47 to 2·13; P < 0·001). The pooled hazard ratio for overall survival of patients with MSI versus those with non-MSI gastric cancer from 21 studies was 0·69 (95 per cent c.i. 0·56 to 0·86; P < 0·001). CONCLUSION MSI in gastric cancer was associated with good overall survival, reflected in several favourable clinicopathological tumour characteristics.
Collapse
Affiliation(s)
- K Polom
- Department General Surgery and Surgical Oncology, University of Siena, Siena, Italy.,Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - L Marano
- General, Minimally Invasive and Robotic Surgery, Department of Surgery, San Matteo degli Infermi Hospital, Spoleto, Italy
| | - D Marrelli
- Department General Surgery and Surgical Oncology, University of Siena, Siena, Italy
| | - R De Luca
- Department of Surgical Oncology, National Cancer Research Centre-Istituto Tumori G. Paolo II, Bari, Italy
| | - G Roviello
- Department of Oncology, Medical Oncology Unit, San Donato Hospital, Arezzo, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - V Savelli
- Department General Surgery and Surgical Oncology, University of Siena, Siena, Italy
| | - P Tan
- Cancer and Stem Cell Biology, Duke-National University of Singapore Graduate Medical School, Genome Institute of Singapore, Cancer Science Institute of Singapore, National University of Singapore, and Cellular and Molecular Research, National Cancer Centre, Singapore
| | - F Roviello
- Department General Surgery and Surgical Oncology, University of Siena, Siena, Italy
| |
Collapse
|
28
|
Shen H, Zhong M, Wang W, Liao P, Yin X, Rotroff D, Knepper TC, Mcleod HL, Zhou C, Xie S, Li W, Xu B, He Y. EBV infection and MSI status significantly influence the clinical outcomes of gastric cancer patients. Clin Chim Acta 2017; 471:216-221. [PMID: 28601671 DOI: 10.1016/j.cca.2017.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epstein-Barr virus (EBV) and microsatellite instability (MSI) are associated with the carcinogenesis of many kinds of tumors, including gastric cancer (GC). However, the impact of EBV and MSI status on the prognosis of stage II and III GC is still unclear. The aim of this study was to find out the prognostic value of EBV and MSI status in a population of GC patients from Southern China. METHODS Patients were genotyped for EBV infection based on the detection of EBV DNA from the formalin-fixed paraffin-embedded (FFPE) specimens. Sequentially, MSI status was measured by direct sequencing. Clinical characteristics and overall survival (OS) were analyzed in 202 GC patients. Additionally, the association of EBV and MSI status with chemotherapy-based toxicity was analyzed in 324 GC patients. RESULTS The survival analysis revealed EBV+ patients had a poorer OS than EBV- patients (HR=1.75, 95% CI: 1.08-2.82, FDR p=0.04). This survival advantage for EBV- patients was also found in patients <60y (FDR p=0.04) and patient with stage III disease (FDR p=0.04). CONCLUSIONS EBV infection and MSI status are associated with overall survival of gastric cancer patients. However, traditional chemotherapy showed no difference on outcome of patients in EBV and MSI subgroups.
Collapse
Affiliation(s)
- Hua Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; Gastroenterology and Urology Department, Hunan Cancer hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Weili Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Ping Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Xianli Yin
- Gastroenterology and Urology Department, Hunan Cancer hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Daniel Rotroff
- Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL, USA
| | - Todd C Knepper
- Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL, USA
| | - Howard L Mcleod
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China; Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL, USA
| | - Chengfang Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Shangchen Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Wei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Biaobo Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China; Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL, USA.
| |
Collapse
|
29
|
Micevic G, Theodosakis N, Bosenberg M. Aberrant DNA methylation in melanoma: biomarker and therapeutic opportunities. Clin Epigenetics 2017; 9:34. [PMID: 28396701 PMCID: PMC5381063 DOI: 10.1186/s13148-017-0332-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Aberrant DNA methylation is an epigenetic hallmark of melanoma, known to play important roles in melanoma formation and progression. Recent advances in genome-wide methylation methods have provided the means to identify differentially methylated genes, methylation signatures, and potential biomarkers. However, despite considerable effort and advances in cataloging methylation changes in melanoma, many questions remain unanswered. The aim of this review is to summarize recent developments, emerging trends, and important unresolved questions in the field of aberrant DNA methylation in melanoma. In addition to reviewing recent developments, we carefully synthesize the findings in an effort to provide a framework for understanding the current state and direction of the field. To facilitate clarity, we divided the review into DNA methylation changes in melanoma, biomarker opportunities, and therapeutic developments. We hope this review contributes to accelerating the utilization of the diagnostic, prognostic, and therapeutic potential of DNA methylation for the benefit of melanoma patients.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Nicholas Theodosakis
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
30
|
Liang G, Weisenberger DJ. DNA methylation aberrancies as a guide for surveillance and treatment of human cancers. Epigenetics 2017; 12:416-432. [PMID: 28358281 DOI: 10.1080/15592294.2017.1311434] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA methylation aberrancies are hallmarks of human cancers and are characterized by global DNA hypomethylation of repetitive elements and non-CpG rich regions concomitant with locus-specific DNA hypermethylation. DNA methylation changes may result in altered gene expression profiles, most notably the silencing of tumor suppressors, microRNAs, endogenous retorviruses and tumor antigens due to promoter DNA hypermethylation, as well as oncogene upregulation due to gene-body DNA hypermethylation. Here, we review DNA methylation aberrancies in human cancers, their use in cancer surveillance and the interplay between DNA methylation and histone modifications in gene regulation. We also summarize DNA methylation inhibitors and their therapeutic effects in cancer treatment. In this context, we describe the integration of DNA methylation inhibitors with conventional chemotherapies, DNA repair inhibitors and immune-based therapies, to bring the epigenome closer to its normal state and increase sensitivity to other therapeutic agents to improve patient outcome and survival.
Collapse
Affiliation(s)
- Gangning Liang
- a Department of Urology , University of Southern California, USC Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| | - Daniel J Weisenberger
- b Department of Biochemistry and Molecular Medicine , University of Southern California, USC Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| |
Collapse
|
31
|
Genetic differences stratified by PCR-based microsatellite analysis in gastric intramucosal neoplasia. Gastric Cancer 2017; 20:286-296. [PMID: 27236438 DOI: 10.1007/s10120-016-0616-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although genetic alterations in patients with advanced gastric cancer have been extensively studied, those in patients with intramucosal neoplasia (IMN) are still poorly understood. METHODS We evaluated genetic differences in 158 IMNs, including 51 low-grade dysplasias, 58 high-grade dysplasias (HGDs), 30 intramucosal cancers (IMCs), and 19 mixed tumors (composed of IMC and HGD within the same tumor), using PCR-based microsatellite analysis [allelic imbalance (AI) and microsatellite instability (MSI)]. We classified the DNA methylation status as a hypermethylated epigenome, a moderately methylated epigenome, or a hypomethylated epigenome. In addition, p53 overexpression, β-catenin nuclear localization, and mucin expression were also examined. RESULTS From cluster analysis, the IMNs examined were categorized into four subgroups as follows. Tumors in subgroup 1 were characterized by MSI-high status, a hypermethylated epigenome, and loss or reduction of expression of MLH-1. Tumors in subgroup 2 showed a mixed pattern consisting of AI and MSI. In contrast, tumors in subgroup 3, which showed accumulation of multiple AIs, were closely associated with HGD, IMC, or mixed tumor and exhibited nuclear expression of β-catenin. Tumors in subgroup 4, which were generally low-grade dysplasias, exhibited a low frequency of AIs and no MSI. Although the mucin phenotype was not correlated with any subgroup, expression of mucin was associated with some subgroups. Overexpression of p53 was common in all subgroups. CONCLUSION The approach described herein was useful for studying genetic differences in IMNs. In addition, we suggest that stratification of genetic differences may help to identify genetic molecular profiles in IMNs.
Collapse
|
32
|
The Emergence of Pan-Cancer CIMP and Its Elusive Interpretation. Biomolecules 2016; 6:biom6040045. [PMID: 27879658 PMCID: PMC5197955 DOI: 10.3390/biom6040045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022] Open
Abstract
Epigenetic dysregulation is recognized as a hallmark of cancer. In the last 16 years, a CpG island methylator phenotype (CIMP) has been documented in tumors originating from different tissues. However, a looming question in the field is whether or not CIMP is a pan-cancer phenomenon or a tissue-specific event. Here, we give a synopsis of the history of CIMP and describe the pattern of DNA methylation that defines the CIMP phenotype in different cancer types. We highlight new conceptual approaches of classifying tumors based on CIMP in a cancer type-agnostic way that reveal the presence of distinct CIMP tumors in a multitude of The Cancer Genome Atlas (TCGA) datasets, suggesting that this phenotype may transcend tissue-type specificity. Lastly, we show evidence supporting the clinical relevance of CIMP-positive tumors and suggest that a common CIMP etiology may define new mechanistic targets in cancer treatment.
Collapse
|
33
|
Polom K, Marrelli D, Pascale V, Roviello G, Voglino C, Rho H, Vindigni C, Marini M, Macchiarelli R, Roviello F. High-risk and low-risk gastric cancer areas in Italy and its association with microsatellite instability. J Cancer Res Clin Oncol 2016; 142:1817-24. [PMID: 27206556 DOI: 10.1007/s00432-016-2181-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE The different pathological characteristics and prognoses between gastric cancer patients coming from high-risk (group A) and low-risk (group B) areas of Italy were analyzed. We investigated a suspected difference in microsatellite instability (MSI) between these two groups. METHODS MSI analyses of 452 gastric cancer patients were performed using five quasimonomorphic mononucleotide repeats NR-21, NR-24, NR-27, BAT-25, and BAT-26. MSI analysis was done by PCR usage. An allelic profile of these five mononucleotides was detected on an automated DNA sequencer ABI PRISM 3100 Genetic Analyser. Data were analyzed according to high-risk and low-risk gastric cancer areas. RESULTS MSI was observed in 23.9 % of all gastric cancer patients studied. Patients from group A showed a higher rate of MSI (28.4 %) than from group B (13.5 %) (p < 0.001). We analyzed this association together with tumor location and Lauren classification: A nonsignificant differences were seen when analyzing cardia and non-cardia tumors (p = 0.854) but significant for Lauren histotype (p = 0.028). There was no statistical difference in survival between high-risk and low-risk areas (p = 0.437), with a nonsignificant trend for better survival in the high-risk group, especially when measured over a longer period of time. Analyzing MSI or MSS in these groups, the survival curves were almost the same. CONCLUSIONS A higher frequency of MSI in patients coming from high-risk areas may help explain geographical differences in gastric cancer. The trend of better survival in high-risk areas may be due to a higher rate of MSI gastric cancer patients.
Collapse
Affiliation(s)
- Karol Polom
- General Surgery and Surgical Oncology Department, University of Siena, viale Bracci 16, 53-100, Siena, Italy.
| | - Daniele Marrelli
- General Surgery and Surgical Oncology Department, University of Siena, viale Bracci 16, 53-100, Siena, Italy
| | - Valeria Pascale
- General Surgery and Surgical Oncology Department, University of Siena, viale Bracci 16, 53-100, Siena, Italy
| | - Giandomenico Roviello
- Section of Pharmacology and University Center DIFF-Drug Innovation Forward Future, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Costantino Voglino
- General Surgery and Surgical Oncology Department, University of Siena, viale Bracci 16, 53-100, Siena, Italy
| | - Henry Rho
- University of Medical Sciences, Poznan, Poland
| | - Carla Vindigni
- Department of Pathology, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Mario Marini
- Department of Medicine, Surgery and Neurosciences, Unit of Endoscopy and Gastroenterology, University of Siena, Siena, Italy
| | - Raffaele Macchiarelli
- Department of Medicine, Surgery and Neurosciences, Unit of Endoscopy and Gastroenterology, University of Siena, Siena, Italy
| | - Franco Roviello
- General Surgery and Surgical Oncology Department, University of Siena, viale Bracci 16, 53-100, Siena, Italy
| |
Collapse
|
34
|
Hughes LAE, Melotte V, de Schrijver J, de Maat M, Smit VTHBM, Bovée JVMG, French PJ, van den Brandt PA, Schouten LJ, de Meyer T, van Criekinge W, Ahuja N, Herman JG, Weijenberg MP, van Engeland M. The CpG island methylator phenotype: what's in a name? Cancer Res 2013; 73:5858-68. [PMID: 23801749 DOI: 10.1158/0008-5472.can-12-4306] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although the CpG island methylator phenotype (CIMP) was first identified and has been most extensively studied in colorectal cancer, the term "CIMP" has been repeatedly used over the past decade to describe CpG island promoter methylation in other tumor types, including bladder, breast, endometrial, gastric, glioblastoma (gliomas), hepatocellular, lung, ovarian, pancreatic, renal cell, and prostate cancers, as well as for leukemia, melanoma, duodenal adenocarninomas, adrenocortical carcinomas, and neuroblastomas. CIMP has been reported to be useful for predicting prognosis and response to treatment in a variety of tumor types, but it remains unclear whether or not CIMP is a universal phenomenon across human neoplasia or if there should be cancer-specific definitions of the phenotype. Recently, it was shown that somatic isocitrate dehydrogenase-1 (IDH1) mutations, frequently observed in gliomas, establish CIMP in primary human astrocytes by remodeling the methylome. Interestingly, somatic IDH1 and IDH2 mutations, and loss-of-function mutations in ten-eleven translocation (TET) methylcytosine dioxygenase-2 (TET2) associated with a hypermethylation phenotype, are also found in multiple enchondromas of patients with Ollier disease and Mafucci syndrome, and leukemia, respectively. These data provide the first clues for the elucidation of a molecular basis for CIMP. Although CIMP appears as a phenomenon that occurs in various cancer types, the definition is poorly defined and differs for each tumor. The current perspective discusses the use of the term CIMP in cancer, its significance in clinical practice, and future directions that may aid in identifying the true cause and definition of CIMP in different forms of human neoplasia.
Collapse
Affiliation(s)
- Laura A E Hughes
- Authors' Affiliations: Departments of Epidemiology and Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht; Department of Surgery, Orbis Medical Center, Sittard-Geleen; Department of Pathology, Leiden University Medical Center, Leiden; Department of Neurology, Erasmus University Medical Center, Erasmus University, Rotterdam, the Netherlands; Department of Mathematical Modeling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium; and The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim KJ, Lee TH, Cho NY, Yang HK, Kim WH, Kang GH. Differential clinicopathologic features in microsatellite-unstable gastric cancers with and without MLH1 methylation. Hum Pathol 2012; 44:1055-64. [PMID: 23266441 DOI: 10.1016/j.humpath.2012.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 12/18/2022]
Abstract
Key clinicopathologic features of microsatellite instability-positive (MSI+) gastric cancers (GCs) are that they tend to be located in the antrum and have an intestinal phenotype and an expanding-type growth pattern. They are also associated with a better prognosis. Although MSI occurs mainly as a result of promoter CpG island hypermethylation in the mismatch repair gene MLH1, only a minority of MSI+ GCs develop from genetic mutations of mismatch repair enzymes, including MLH1 and MSH2. Furthermore, it is unknown whether there are differences in the clinicopathologic features of MSI+ GCs with and without MLH1 methylation. The methylation status of 17 genes (including MLH1) was assessed in 102 cases of MSI+ GC to determine whether there was a correlation between the clinicopathologic/molecular features of MSI+ GC and MLH1 methylation status. Compared with MSI+ GCs without MLH1 methylation (n = 22), MSI+ GCs with MLH1 methylation (n = 80) had an older age of onset (66.9 versus 60.9 years, P = .018), were more frequently located in the antrum (86.3% versus 50%, P = .001), exhibited an ulcerofungating gross type of tumor morphology (50.0% versus 9.1 %, P < .001), and had a higher number of unstable microsatellite loci (4.7 versus 3.8, P < .001) and a higher number of methylated genes (11.4 versus 6.2, P < .001). In addition, MLH1-deficient tumors without MLH1 methylation were associated with a better clinical outcome than MLH1-deficient tumors with MLH1 methylation or tumors that retained expression of both MLH1 and MSH2 (P = .002). These findings suggest that MSI+ GCs with and without MLH1 methylation may have different clinicopathologic features. Furthermore, some of the known clinicopathologic features of MSI+ GC, including older age of onset, ulcerofungating gross morphology, and antral location, are not typical of MSI+ GC without MLH1 methylation.
Collapse
Affiliation(s)
- Kyung-Ju Kim
- Department of Pathology, and Seoul National University College of Medicine, Chongno-gu, Seoul 110-744, South Korea
| | | | | | | | | | | |
Collapse
|
36
|
Fu T, Pappou EP, Guzzetta AA, Jeschke J, Kwak R, Dave P, Hooker CM, Morgan R, Baylin SB, Iacobuzio-Donahue CA, Wolfgang CL, Ahuja N. CpG island methylator phenotype-positive tumors in the absence of MLH1 methylation constitute a distinct subset of duodenal adenocarcinomas and are associated with poor prognosis. Clin Cancer Res 2012; 18:4743-52. [PMID: 22825585 DOI: 10.1158/1078-0432.ccr-12-0707] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Little information is available on genetic and epigenetic changes in duodenal adenocarcinomas. The purpose was to identify possible subsets of duodenal adenocarcinomas based on microsatellite instability (MSI), DNA methylation, mutations in the KRAS and BRAF genes, clinicopathologic features, and prognosis. EXPERIMENTAL DESIGN Demographics, tumor characteristics, and survival were available for 99 duodenal adenocarcinoma patients. Testing for KRAS and BRAF mutations, MSI, MLH1 methylation, and CpG island methylator phenotype (CIMP) status was conducted. A Cox proportional hazard model was built to predict survival. RESULTS CIMP(+) was detected in 27 of 99 (27.3%) duodenal adenocarcinomas and was associated with MSI (P = 0.011) and MLH1 methylation (P < 0.001), but not with KRAS mutations (P = 0.114), as compared with CIMP(-) tumors. No BRAF V600E mutation was detected. Among the CIMP(+) tumors, 15 (55.6%) were CIMP(+)/MLH1-unmethylated (MLH1-U). Kaplan-Meier analysis showed that tumors classified by CIMP, CIMP/MLH1 methylation status, or CIMP/MSI status could predict overall survival (OS; P = 0.047, 0.002, and 0.002, respectively), whereas CIMP/MLH1 methylation status could also predict time-to-recurrence (TTR; P = 0.016). In multivariate analysis, CIMP/MLH1 methylation status showed a significant prognostic value in both OS (P < 0.001) and TTR (P = 0.023). Patients with CIMP(+)/MLH1-U tumors had the worst OS and TTR. CONCLUSIONS Our results showed existence of CIMP in duodenal adenocarcinomas. The combination of CIMP(+)/MLH1-U seems to be independently associated with poor prognosis in patients with duodenal adenocarcinomas. This study also suggests that BRAF mutations are not involved in duodenal tumorigenesis, MSI, or CIMP development.
Collapse
Affiliation(s)
- Tao Fu
- Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ottini L, Falchetti M, Nesi G. Gene Signatures in Gastric Cancer. DIAGNOSTIC, PROGNOSTIC AND THERAPEUTIC VALUE OF GENE SIGNATURES 2012:95-113. [DOI: 10.1007/978-1-61779-358-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|