1
|
Borella F, Gallio N, Mangherini L, Cassoni P, Bertero L, Benedetto C, Preti M. Recent advances in treating female genital human papillomavirus related neoplasms with topical imiquimod. J Med Virol 2023; 95:e29238. [PMID: 38009696 DOI: 10.1002/jmv.29238] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/29/2023]
Abstract
Human papillomavirus (HPV) encompasses a group of viruses that infect the skin and mucous membranes. In the presence of certain factors, persistent infection with high-risk HPVs can trigger a process of neoplastic transformation. Imiquimod is a topical agent that acts as a Toll-like receptor 7/8 agonist, stimulating the innate and adaptive immune system to exert antitumor and antiviral effects. It has been approved for the treatment of various skin conditions, however, its efficacy and safety in the management of HPV-related-neoplasms of the lower genital tract, such as vulvar, vaginal, and cervical neoplasia, are still under investigation. This review summarizes the current evidence on the use of imiquimod for the treatment of HPV-induced lesions of the female lower genital tract, focusing on its indications, mechanisms of action, outcomes, and predictors of response.
Collapse
Affiliation(s)
- Fulvio Borella
- Obstetrics and Gynecology Unit 1, Sant' Anna Hospital, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Niccolò Gallio
- Obstetrics and Gynecology Unit 2, Sant' Anna Hospital, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology Unit 1, Sant' Anna Hospital, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Mario Preti
- Obstetrics and Gynecology Unit 1, Sant' Anna Hospital, Department of Surgical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Transcriptomic analysis identifies differences in gene expression in actinic keratoses after treatment with imiquimod and between responders and non responders. Sci Rep 2021; 11:8775. [PMID: 33888854 PMCID: PMC8062619 DOI: 10.1038/s41598-021-88424-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
The presence of actinic keratoses (AKs) increases a patient’s risk of developing squamous cell carcinoma by greater than six-fold. We evaluated the effect of topical treatment with imiquimod on the tumor microenvironment by measuring transcriptomic differences in AKs before and after treatment with imiquimod 3.75%. Biopsies were collected prospectively from 21 patients and examined histologically. RNA was extracted and transcriptomic analyses of 788 genes were performed using the nanoString assay. Imiquimod decreased number of AKs by study endpoint at week 14 (p < 0.0001). Post-imiquimod therapy, levels of CDK1, CXCL13, IL1B, GADPH, TTK, ILF3, EWSR1, BIRC5, PLAUR, ISG20, and C1QBP were significantly lower (adjusted p < 0.05). Complete responders (CR) exhibited a distinct pattern of inflammatory gene expression pre-treatment relative to incomplete responders (IR), with alterations in 15 inflammatory pathways (p < 0.05) reflecting differential expression of 103 genes (p < 0.05). Presence of adverse effects was associated with improved treatment response. Differences in gene expression were found between pre-treatment samples in CR versus IR, suggesting that higher levels of inflammation pre-treament may play a part in regression of AKs. Further characterization of the immune micro-environment in AKs may help develop biomarkers predictive of response to topical immune modulators and may guide therapy.
Collapse
|
3
|
The uses of naltrexone in dermatologic conditions. J Am Acad Dermatol 2019; 80:1746-1752. [DOI: 10.1016/j.jaad.2018.12.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/30/2022]
|
4
|
Prognostic markers in lentigo maligna patients treated with imiquimod cream: A long-term follow-up study. J Am Acad Dermatol 2016; 74:81-87.e1. [DOI: 10.1016/j.jaad.2015.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
|
5
|
El-Khattouti A, Selimovic D, Hannig M, Taylor EB, Abd Elmageed ZY, Hassan SY, Haikel Y, Kandil E, Leverkus M, Brodell RT, Megahed M, Hassan M. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med 2015; 20:266-86. [PMID: 26578344 PMCID: PMC4727561 DOI: 10.1111/jcmm.12718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/15/2015] [Indexed: 12/21/2022] Open
Abstract
Melanoma is characterized by dysregulated intracellular signalling pathways including an impairment of the cell death machinery, ultimately resulting in melanoma resistance, survival and progression. This explains the tumour's extraordinary resistance to the standard treatment. Imiquimod is a topical immune response modifier (imidazoquinoline) with both antiviral and antitumour activities. The mechanism by which imiquimod triggers the apoptosis of melanoma cells has now been carefully elucidated. Imiquimod‐induced apoptosis is associated with the activation of apoptosis signalling regulating kinase1/c‐Jun‐N‐terminal kinase/p38 pathways and the induction of endoplasmic stress characterized by the activation of the protein kinase RNA‐like endoplasmic reticulum kinase signalling pathway, increase in intracellular Ca2+ release, degradation of calpain and subsequent cleavage of caspase‐4. Moreover, imiquimod triggers the activation of NF‐κB and the expression of the inhibitor of apoptosis proteins (IAPs) such as, X‐linked IAP (XIAP) together with the accumulation of reactive oxygen species (ROS). Also, imiquimod triggers mitochondrial dysregulation characterized by the loss of mitochondrial membrane potential (Δψm), the increase in cytochrome c release, and cleavage of caspase‐9, caspase‐3 and poly(ADP‐ribose) polymerase (PARP). Inhibitors of specific pathways, permit the elucidation of possible mechanisms of imiquimod‐induced apoptosis. They demonstrate that inhibition of NF‐kB by the inhibitor of nuclear factor kappa‐B kinase (IKK) inhibitor Bay 11‐782 or knockdown of XIAP induces melanoma apoptosis in cells exposed to imiquimod. These findings support the use of either IKK inhibitors or IAP antagonists as adjuvant therapies to improve the effectiveness topical imiquimod in the treatment of melanoma.
Collapse
Affiliation(s)
| | - Denis Selimovic
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital of Saarland, Homburg/Saar, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital of Saarland, Homburg/Saar, Germany
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Sofie Y Hassan
- Clinic of Dermatology, University Hospital of Aachen, Aachen, Germany
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, Strasbourg, France.,Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - Emad Kandil
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Martin Leverkus
- Clinic of Dermatology, University Hospital of Aachen, Aachen, Germany
| | - Robert T Brodell
- Department of Dermatology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, Aachen, Germany
| | - Mohamed Hassan
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital of Saarland, Homburg/Saar, Germany.,Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, Strasbourg, France.,Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
6
|
Kobold S, Wiedemann G, Rothenfußer S, Endres S. Modes of action of TLR7 agonists in cancer therapy. Immunotherapy 2015; 6:1085-95. [PMID: 25428647 DOI: 10.2217/imt.14.75] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
From the numerous Toll-like receptor agonists, only TLR7 agonists have been approved for cancer treatment, although they are current restricted to topical application. The main target cells of TLR7 agonists are plasmacytoid dendritic cells, producing IFN-α and thus acting on other immune cells. Thereby dendritic cells acquire enhanced costimulatory and antigen-presenting capacity, priming an adaptive immune response. Besides NK cells, antigen-specific T cells are the main terminal effectors of TLR7 agonists in tumor therapy. This qualifies TLR7 agonists as vaccine adjuvants, which is currently being tested in clinical trials. However, the systemic application of TLR7 agonists shows insufficient efficacy, most likely owing to toxicity-limited dosing. The use of TLR7 agonists in combinational therapy holds the promise of synergistic activity and lower required doses.
Collapse
Affiliation(s)
- Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) & Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
7
|
Chevolet I, Speeckaert R, Schreuer M, Neyns B, Krysko O, Bachert C, Van Gele M, van Geel N, Brochez L. Clinical significance of plasmacytoid dendritic cells and myeloid-derived suppressor cells in melanoma. J Transl Med 2015; 13:9. [PMID: 25592374 PMCID: PMC4326397 DOI: 10.1186/s12967-014-0376-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/26/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Immune markers in the peripheral blood of melanoma patients could provide prognostic information. However, there is currently no consensus on which circulating cell types have more clinical impact. We therefore evaluated myeloid-derived suppressor cells (MDSC), dendritic cells (DC), cytotoxic T-cells and regulatory T-cells (Treg) in a series of blood samples of melanoma patients in different stages of disease. METHODS Flow cytometry was performed on peripheral blood mononuclear cells of 69 stage I to IV melanoma patients with a median follow-up of 39 months after diagnosis to measure the percentage of monocytic MDSCs (mMDSCs), polymorphonuclear MDSCs (pmnMDSCs), myeloid DCs (mDCs), plasmacytoid DCs (pDCs), cytotoxic T-cells and Tregs. We also assessed the expression of PD-L1 and CTLA-4 in cytotoxic T-cells and Tregs respectively. The impact of cell frequencies on prognosis was tested with multivariate Cox regression modelling. RESULTS Circulating pDC levels were decreased in patients with advanced (P = 0.001) or active (P = 0.002) disease. Low pDC levels conferred an independent negative impact on overall (P = 0.025) and progression-free survival (P = 0.036). Even before relapse, a decrease in pDC levels was observed (P = 0.002, correlation coefficient 0.898). High levels of circulating MDSCs (>4.13%) have an independent negative prognostic impact on OS (P = 0.012). MDSC levels were associated with decreased CD3+ (P < 0.001) and CD3 + CD8+ (P = 0.017) T-cell levels. Conversely, patients with high MDSC levels had more PD-L1+ T-cells (P = 0.033) and more CTLA-4 expression by Tregs (P = 0.003). pDCs and MDSCs were inversely correlated (P = 0.004). The impact of pDC levels on prognosis and prediction of the presence of systemic disease was stronger than that of MDSC levels. CONCLUSION We demonstrated that circulating pDC and MDSC levels are inversely correlated but have an independent prognostic value in melanoma patients. These cell types represent a single immunologic system and should be evaluated together. Both are key players in the immunological climate in melanoma patients, as they are correlated with circulating cytotoxic and regulatory T-cells. Circulating pDC and MDSC levels should be considered in future immunoprofiling efforts as they could impact disease management.
Collapse
Affiliation(s)
- Ines Chevolet
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Reinhart Speeckaert
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Max Schreuer
- Department of Medical Oncology, UZ-Brussel, Brussels, Belgium.
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium.
| | - Bart Neyns
- Department of Medical Oncology, UZ-Brussel, Brussels, Belgium.
| | - Olga Krysko
- Upper Airways Research Laboratory, Ghent University Hospital, Ghent, Belgium.
| | - Claus Bachert
- Upper Airways Research Laboratory, Ghent University Hospital, Ghent, Belgium.
| | - Mireille Van Gele
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| |
Collapse
|
8
|
|
9
|
Type I interferons: key players in normal skin and select cutaneous malignancies. Dermatol Res Pract 2014; 2014:847545. [PMID: 24516470 PMCID: PMC3913103 DOI: 10.1155/2014/847545] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 02/01/2023] Open
Abstract
Interferons (IFNs) are a family of naturally existing glycoproteins known for their antiviral activity and their ability to influence the behavior of normal and transformed cell types. Type I Interferons include IFN- α and IFN- β . Currently, IFN- α has numerous approved antitumor applications, including malignant melanoma, in which IFN- α has been shown to increase relapse free survival. Moreover, IFN- α has been successfully used in the intralesional treatment of cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). In spite of these promising clinical results; however, there exists a paucity of knowledge on the precise anti-tumor action of IFN- α / β at the cellular and molecular levels in cutaneous malignancies such as SCC, BCC, and melanoma. This review summarizes current knowledge on the extent to which Type I IFN influences proliferation, apoptosis, angiogenesis, and immune function in normal skin, cutaneous SCC, BCC, and melanoma.
Collapse
|
10
|
|
11
|
Stanley MA. The imidazoquinolines — mechanism of action and therapeutic potential in HPV-associated disease. ACTA ACUST UNITED AC 2013. [DOI: 10.1179/095741905x41267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Guo Y, Wang L, Zhou Z, Wang M, Liu R, Wang L, Jiang Q, Song L. An opioid growth factor receptor (OGFR) for [Met5]-enkephalin in Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1228-1235. [PMID: 23462147 DOI: 10.1016/j.fsi.2013.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 06/01/2023]
Abstract
Opioid growth factor receptor (OGFR) is a receptor for [Met(5)]-enkephalin and plays important roles in the regulation of cell growth and embryonic development. In the present study, a cDNA of 2381 bp for the scallop Chlamys farreri OGFR (designated as CfOGFR) was identified by rapid amplification of cDNA ends (RACE) approach and expression sequence tag (EST) analysis. The complete cDNA sequence of CfOGFR contained an open reading frame (ORF) of 1200 bp, which encoded a protein of 399 amino acids. The amino acid sequence of CfOGFR shared 33-64% similarity with other OGFRs. There was a low complexity domain and a conserved OGFR_N domain at the N-terminal of CfOGFR. The mRNA transcripts of CfOGFR were constitutively expressed in the tested tissues with the highest expression level in hepatopancreas. During the early embryonic development, the mRNA transcripts of CfOGFR could be detected in different development stages, where the expression level presented a downward trend as a whole. The stimulations of LPS, Glu and poly (I:C) significantly induced the expression of CfOGFR mRNA in hemocytes (P < 0.05), while PGN stimulation exerted no influence. Co-IP and western blot results revealed that the CfOGFR in hemocytes displayed high affinity and specificity to [Met(5)]-enkephalin. Exogenous [Met(5)]-enkephalin was observed to inhibit the proliferation of HEK293T cells transfected with pcDNA3.1(+)-CfOGFR in a time and dosage dependent manner. These results collectively indicated that CfOGFR, as a homolog of OGFRs in C. farreri, played an important role in cells proliferation, and might be involved in the immune response of scallops.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Cell Proliferation
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Hemocytes/immunology
- Hemocytes/metabolism
- Immunity, Innate
- Molecular Sequence Data
- Organ Specificity
- Pectinidae/chemistry
- Pectinidae/genetics
- Pectinidae/immunology
- Pectinidae/metabolism
- Phylogeny
- Poly I-C/administration & dosage
- Polymerase Chain Reaction
- Polysaccharides, Bacterial/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Opioid/chemistry
- Receptors, Opioid/genetics
- Receptors, Opioid/immunology
- Receptors, Opioid/metabolism
- Sequence Alignment
- beta-Glucans/administration & dosage
Collapse
Affiliation(s)
- Ying Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Opioid system and Alzheimer's disease. Neuromolecular Med 2012; 14:91-111. [PMID: 22527793 DOI: 10.1007/s12017-012-8180-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Collapse
|
14
|
McLaughlin PJ, Stucki JK, Zagon IS. Modulation of the opioid growth factor ([Met5]-enkephalin)-opioid growth factor receptor axis: Novel therapies for squamous cell carcinoma of the head and neck. Head Neck 2011; 34:513-9. [DOI: 10.1002/hed.21759] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/03/2011] [Accepted: 01/24/2011] [Indexed: 01/22/2023] Open
|
15
|
Zagon IS, Donahue RN, Bonneau RH, McLaughlin PJ. T lymphocyte proliferation is suppressed by the opioid growth factor ([Met5]-enkephalin)–opioid growth factor receptor axis: Implication for the treatment of autoimmune diseases. Immunobiology 2011; 216:579-90. [DOI: 10.1016/j.imbio.2010.09.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 11/29/2022]
|
16
|
McLaughlin PJ, Rogosnitzky M, Zagon IS. Inhibition of DNA synthesis in mouse epidermis by topical imiquimod is dependent on opioid receptors. Exp Biol Med (Maywood) 2010; 235:1292-9. [DOI: 10.1258/ebm.2010.010203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The imidazoquinolines are immune response modifiers that have potent antiviral and antitumor properties. The mechanism by which they exert their effects on cell replication has been investigated in vitro and is related to the upregulation of the opioid growth factor receptor (OGFr) and modulation of opioid growth factor (OGF; [Met5]-enkephalin). The OGF–OGFr axis regulates cell proliferative events through a cyclin-dependent kinase inhibitory pathway. The present study examined the mechanism whereby imiquimod repressed cell proliferation in vivo. Using a nude mouse model that has a compromised T-cell immune system, as well as C57BL/6 mice with an intact immune system, the effects of topical imiquimod (Aldara®) on DNA synthesis of basal epithelial cells in skin were examined. Imiquimod's effects on DNA synthesis were detected 24 h after application, and could be observed for one week after a single treatment. The magnitude of change in DNA synthesis following imiquimod was similar for one, three or six applications. Naloxone, an opioid antagonist, blocked the inhibitory effect of imiquimod. Imiquimod in combination with OGF or a low dose of naltrexone (LDN; known to upregulate the OGF–OGFr axis) had no greater inhibitory response on DNA synthesis than either OGF or LDN alone. Both OGF and OGFr were upregulated in basal epithelium after imiquimod treatment. Both nude and C57BL/6 mice exhibited the same repressive action of imiquimod on epithelial DNA synthesis. Imiquimod was neither an opioid agonist nor antagonist using nociceptive testing, and did not induce apoptosis or necrosis. Exposure to imiquimod was found to depress DNA synthesis in cells located in distant epithelium from day 3 and lasted until day 5. These results suggest that the target of imiquimod on DNA synthesis is dependent on an opioid receptor-mediated pathway, and infers that imiquimod is reliant on the OGF–OGFr axis for modulating cell proliferation.
Collapse
Affiliation(s)
- Patricia J McLaughlin
- Department of Neural & Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | | | - Ian S Zagon
- Department of Neural & Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
17
|
Macpherson N, Lamrock E, Watt G. Effect of inflammation on positive margins of basal cell carcinomas. Australas J Dermatol 2010; 51:95-8. [DOI: 10.1111/j.1440-0960.2010.00628.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Zagon IS, Donahue RN, Rogosnitzky M, McLaughlin PJ. Imiquimod upregulates the opioid growth factor receptor to inhibit cell proliferation independent of immune function. Exp Biol Med (Maywood) 2008; 233:968-79. [PMID: 18480416 DOI: 10.3181/0802-rm-58] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The imidazoquinoline compounds imiquimod and resiquimod are low-molecular-weight immune response modifiers that have potent anti-viral and anti-tumor properties. The mechanism by which they exert their effects remains unclear. Using pancreatic and colorectal cancer cells, as well as squamous carcinoma cells of the head and neck in tissue culture, which eliminated the immune system and toll-like receptors, we show that the imidazoquinolines upregulate the Opioid Growth Factor receptor (OGFr), which in turn stimulates the interaction of the OGF-OGFr axis. This native, tonically active inhibitory pathway regulates cell proliferation by modulating cyclin dependent kinase inhibitors, resulting in a retardation of cells at the G(1)-S interface of the cell cycle. Neutralization of OGF or knockdown of OGFr by siRNA technology eliminates the inhibitory effects of imidazoquinolines on cell replication. This exciting new knowledge of the mechanism of imidazoquinolines has important physiological relevance, and allows strategies to be developed for the use of these agents that will enhance effectiveness as well as attenuate side-effects.
Collapse
Affiliation(s)
- Ian S Zagon
- Department of Neural and Behavioral Sciences, H109, The M.S. Hershey Medical Center, 500 University Drive, Rm. C3729, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
OBJECTIVE Since imiquimod, a nucleoside analogue of the imidazoquinoline family, has shown efficacy against many tumour entities, its mode of action has become a focus of scientific interest. RESULTS The major biologic effects of imiquimod are mediated through agonistic activity towards toll-like receptors (TLR) 7 and 8, and consecutively, activation of nuclear factor-kappa B (NF-kappaB). The result of this activity is the induction of pro-inflammatory cytokines, chemokines and other mediators leading to activation of antigen-presenting cells and other components of innate immunity and, eventually, the mounting of a profound T-helper (Th1)-weighted antitumoral cellular immune response. Several secondary effects on the molecular and cellular level may also be explained, at least in part, by the activation of NF-kappaB. Moreover, independent of TLR-7 and TLR-8, imiquimod appears to interfere with adenosine receptor signalling pathways, and the compound causes receptor-independent reduction of adenylyl cyclase activity. This novel mechanism may augment the pro-inflammatory activity of the compound through suppression of a negative regulatory feedback mechanism which normally limits inflammatory responses. Finally, imiquimod induces apoptosis of tumour cells at higher concentrations. The pro-apoptotic activity of imiquimod involves caspase activation and appears to depend on B cell lymphoma/leukemia protein (Bcl)-2 proteins. CONCLUSIONS Overall, imiquimod acts on several levels, which appear to synergistically underlie the profound antitumoral activity of the compound.
Collapse
Affiliation(s)
- M P Schön
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine and Department of Dermatology, Julius-Maximilians-University, Würzburg, Germany.
| | | |
Collapse
|
20
|
Abstract
Small-molecule agonists at Toll-like receptor 7 (TLR7) and TLR8 have sparked a vivid interest in cancer research owing to their profound antitumoral activity. The lead compound of the imidazoquinoline family, imiquimod, is marketed as a topical formulation. It is efficacious against many primary skin tumors and cutaneous metastases. Using different imidazoquinoline species, distinct functions of TLR7 and TLR8 have been discovered. The predominant antitumoral mode of action of these agents is TLR7/8-mediated activation of the central transcription factor nuclear factor-kappaB, which leads to induction of proinflammatory cytokines and other mediators. Cutaneous dendritic cells are the primary responsive cell type and initiate a strong Th1-weighted antitumoral cellular immune response. Recent research has shown that dendritic cells themselves acquire direct antitumoral activity upon stimulation by imiquimod. In addition, there are a number of secondary effects on the molecular and cellular level that can be explained through the activation of TLR7/8. The proinflammatory activity of imiquimod, but not resiquimod, appears to be augmented by suppression of a regulatory mechanism, which normally limits inflammatory responses. This is achieved independently of TLR7/8 through interference with adenosine receptor signaling pathways. Finally, at higher concentrations imiquimod exerts Bcl-2- and caspase-dependent proapoptotic activity against tumor cells.
Collapse
|
21
|
Urosevic M, Fujii K, Calmels B, Laine E, Kobert N, Acres B, Dummer R. Type I IFN innate immune response to adenovirus-mediated IFN-gamma gene transfer contributes to the regression of cutaneous lymphomas. J Clin Invest 2007; 117:2834-46. [PMID: 17823660 PMCID: PMC1964512 DOI: 10.1172/jci32077] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 06/13/2007] [Indexed: 12/30/2022] Open
Abstract
The fact that adenoviral vectors activate innate immunity and induce type I IFNs has not been fully appreciated in the context of cancer gene therapy. Type I IFNs influence different aspects of human immune response and are believed to be crucial for efficient tumor rejection. We performed transcriptional profiling to characterize the response of cutaneous lymphomas to intralesional adenovirus-mediated IFN-gamma (Ad-IFN-gamma) gene transfer. Gene expression profiles of skin lesions obtained from 19 cutaneous lymphoma patients before and after treatment with Ad-IFN-gamma revealed a distinct gene signature consisting of IFN-gamma- and numerous IFN-alpha-inducible genes (type II- and type I-inducible genes, respectively). The type I IFN response appears to have been induced by the vector itself, and its complexity, in terms of immune activation, was potentiated by the IFN-gamma gene insert. Intralesional IFN-gamma expression together with the induction of a combined type I/II IFN response to Ad-IFN-gamma gene transfer seem to underlie the objective (measurable) clinical response of the treated lesions. Biological effects of type I IFNs seem to enhance those set in motion by the transgene, in our case IFN-gamma. This combination may prove to be of therapeutic importance in cytokine gene transfer using Ads.
Collapse
Affiliation(s)
- Mirjana Urosevic
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Papadavid E, Stratigos AJ, Falagas ME. Imiquimod: an immune response modifier in the treatment of precancerous skin lesions and skin cancer. Expert Opin Pharmacother 2007; 8:1743-55. [PMID: 17685890 DOI: 10.1517/14656566.8.11.1743] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Actinic keratosis (AK) and basal cell carcinoma (BCC) are precancerous and cancerous skin lesions that should be treated especially when multiple or in cosmetically important areas. Apart from 5% 5-fluorouracil topical cream, which some feel is the gold standard topical treatment for AK, several invasive treatment modalities are available for AK and superficial BCC, such as cryotherapy, electrodessication, carbon dioxide laser and surgery causing patients discomfort and pain, pigmentary changes or necessitate multiple office visits. Additionally, there are precancerous lesions that necessitate non-invasive treatment with good esthetic results or skin cancer refractory to invasive techniques. Imiquimod is an immune response modifier approved by the FDA for the treatment of AK and superficial BCC lesions and its use is gradually expanded to various off-label precancerous and cancerous skin lesions.
Collapse
Affiliation(s)
- Evangelia Papadavid
- 2nd Department of Dermatology, ATTIKON University General Hospital, University of Athens Medical School, Athens, Greece
| | | | | |
Collapse
|
23
|
Torres A, Storey L, Anders M, Miller RL, Bulbulian BJ, Jin J, Raghavan S, Lee J, Slade HB, Birmachu W. Immune-mediated changes in actinic keratosis following topical treatment with imiquimod 5% cream. J Transl Med 2007; 5:7. [PMID: 17257431 PMCID: PMC1796543 DOI: 10.1186/1479-5876-5-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Accepted: 01/26/2007] [Indexed: 12/15/2022] Open
Abstract
Background The objective of this study was to identify the molecular processes responsible for the anti-lesional activity of imiquimod in subjects with actinic keratosis using global gene expression profiling. Methods A double-blind, placebo-controlled, randomized study was conducted to evaluate gene expression changes in actinic keratosis treated with imiquimod 5% cream. Male subjects (N = 17) with ≥ 5 actinic keratosis on the scalp applied placebo cream or imiquimod 3 times a week on nonconsecutive days for 4 weeks. To elucidate the molecular processes involved in actinic keratosis lesion regression by imiquimod, gene expression analysis using oligonucleotide arrays and real time reverse transcriptase polymerase chain reaction were performed on shave biopsies of lesions taken before and after treatment. Results Imiquimod modulated the expression of a large number of genes important in both the innate and adaptive immune response, including increased expression of interferon-inducible genes with known antiviral, anti-proliferative and immune modulatory activity, as well as various Toll-like receptors. In addition, imiquimod increased the expression of genes associated with activation of macrophages, dendritic cells, cytotoxic T cells, and natural killer cells, as well as activation of apoptotic pathways. Conclusion Data suggest that topical application of imiquimod stimulates cells in the skin to secrete cytokines and chemokines that lead to inflammatory cell influx into the lesions and subsequent apoptotic and immune cell-mediated destruction of lesions.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Adaptive Immunity/genetics
- Adjuvants, Immunologic/pharmacology
- Administration, Topical
- Aged
- Aged, 80 and over
- Aminoquinolines/administration & dosage
- Aminoquinolines/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Proliferation/drug effects
- Chemokines/genetics
- Chemokines/metabolism
- Demography
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Dosage Forms
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Humans
- Imiquimod
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Interferon Type I/pharmacology
- Keratosis, Actinic/drug therapy
- Keratosis, Actinic/genetics
- Keratosis, Actinic/immunology
- Keratosis, Actinic/pathology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- Receptors, Pattern Recognition/metabolism
- Reproducibility of Results
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Abel Torres
- Dermatology Office, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Leslie Storey
- Dermatology Office, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Makala Anders
- Dermatology Office, Loma Linda University Medical Center, Loma Linda, California, USA
| | | | | | - Jizhong Jin
- Pharmacology, 3M Pharmaceuticals, St Paul, Minnesota, USA
| | | | - James Lee
- Medical & Scientific Affairs, 3M Pharmaceuticals, St Paul, Minnesota, USA
| | - Herbert B Slade
- Medical & Scientific Affairs, 3M Pharmaceuticals, St Paul, Minnesota, USA
| | | |
Collapse
|
24
|
Schön MP, Schön M, Klotz KN. The Small Antitumoral Immune Response Modifier Imiquimod Interacts with Adenosine Receptor Signaling in a TLR7- and TLR8-Independent Fashion. J Invest Dermatol 2006; 126:1338-47. [PMID: 16575388 DOI: 10.1038/sj.jid.5700286] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Imiquimod, a small-molecule immune response modifier of the imidazoquinoline family, has shown profound antitumoral and antiviral efficacy both in vitro and in clinical applications in vivo. It has been demonstrated that this activity is mediated through the Toll-like receptor (TLR)7- and TLR8-signaling cascade resulting in the secretion of proinflammatory cytokines and, consecutively, induction of a tumor-directed cellular immune response. In addition, imiquimod exerts a direct proapoptotic activity in tumor cells. We demonstrate here that imiquimod induces activation of the transcription factor NF-kappaB and the downstream production of proinflammatory cytokines in the absence of TLR7 and TLR8. In Chinese hamster ovary cells stably transfected with the human adenosine receptor subtypes, we then show in radioligand-binding competition experiments that imiquimod binds to adenosine receptors at concentrations relevant in clinical settings, with highest affinities to the A(1) and A(2A) subtypes. The effect on the receptor-mediated activation of adenylyl cyclase was also studied, and these experiments revealed that imiquimod acts as an adenosine receptor antagonist. In addition, imiquimod had an inhibitory effect on adenylyl cyclase activity downstream from the receptor. Finally, using transformed human keratinocytes, we provide experimental evidence that imiquimod and A(2A) adenosine receptor-specific compounds similarly induce proinflammatory cytokines in the absence of immune cells. Thus, imiquimod appears to suppress an important feedback mechanism of inflammation by antagonism of adenosine receptor-dependent increase of cAMP and a concomitant receptor-independent inhibition of cAMP production. These novel mechanisms presumably act synergistic with the positive induction of proinflammatory cytokines and can, at least in part, explain the profound inflammation observed in some patients in vivo.
Collapse
Affiliation(s)
- Michael P Schön
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine and Department of Dermatology, Bayerische Julius Maximilians University, Würzburg, Germany.
| | | | | |
Collapse
|
25
|
Urosevic M, Dummer R, Conrad C, Beyeler M, Laine E, Burg G, Gilliet M. Disease-Independent Skin Recruitment and Activation of Plasmacytoid Predendritic Cells Following Imiquimod Treatment. ACTA ACUST UNITED AC 2005; 97:1143-53. [PMID: 16077073 DOI: 10.1093/jnci/dji207] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Imiquimod, an immune response modifier that is used topically to treat different types of skin cancer, induces the production of proinflammatory cytokines that stimulate an antitumor immune response. We assessed characteristics of the imiquimod-induced immune activation in epithelial and lymphoproliferative neoplasias of human skin. We focused on plasmacytoid predendritic cells (PDCs), the primary producer of interferon alpha (IFN-alpha) after imiquimod activation in vitro. METHODS We used Affymetrix oligonucleotide arrays to compare gene expression profiles from tumors from 16 patients, 10 with superficial basal cell carcinomas (sBCCs), five with cutaneous T-cell lymphomas (CTCLs), and one with Bowen's disease, before and after topical imiquimod treatment. We used quantitative immunohistochemistry with PDC-specific antibodies against BDCA-2 and CD123 to characterize the PDC population before and after imiquimod treatment in these specimens. Activation status of PDCs from four sBCC patients was assessed by intracellular IFN-alpha staining and flow cytometry. RESULTS Expression of various IFN-alpha-inducible genes (e.g., CIG5, G1P2, OASL, IFIT1, STAT1, IFI35, OAS1, ISG20, MxA, and IRF7), the so-called IFN-alpha signature, was increased similarly in both sBCC and CTCL lesions after imiquimod treatment. PDCs were recruited and activated in both lesion types, and they produced IFN-alpha after imiquimod treatment in vivo (mean percentage of PDCs producing IFN-alpha = 14.5%, 95% confidence interval [CI] = 4.9% to 24%; range = 3.3%-27%, n = 4 lesions). Imiquimod induced similar immune activation patterns in all three diseases, and these patterns were associated with the number of PDCs recruited to the treatment site. Two imiquimod-treated sBCC patients who did not mount an inflammatory response to imiquimod and whose lesions lacked the IFN-alpha signature after treatment had fewer PDCs in treated lesions compared with other treated patients with such a response. CONCLUSIONS Imiquimod induces immune activation patterns that relate to the number of the PDCs recruited to the treatment site, thus supporting the role of PDC in responsiveness to imiquimod in humans.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/therapeutic use
- Administration, Cutaneous
- Aminoquinolines/administration & dosage
- Aminoquinolines/immunology
- Aminoquinolines/therapeutic use
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/immunology
- Antineoplastic Agents/therapeutic use
- Bowen's Disease/drug therapy
- Bowen's Disease/immunology
- Carcinoma, Basal Cell/drug therapy
- Carcinoma, Basal Cell/immunology
- Clinical Trials as Topic
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Flow Cytometry
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Imiquimod
- Immunohistochemistry
- Interferon-alpha/metabolism
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/immunology
- Microscopy, Confocal
- Plasma Cells/drug effects
- Plasma Cells/immunology
- Polymerase Chain Reaction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
Collapse
Affiliation(s)
- Mirjana Urosevic
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|