1
|
Emile MH, Emile SH, El-Karef AA, Ebrahim MA, Mohammed IE, Ibrahim DA. Association between the expression of epithelial-mesenchymal transition (EMT)-related markers and oncologic outcomes of colorectal cancer. Updates Surg 2024; 76:2181-2191. [PMID: 38762631 DOI: 10.1007/s13304-024-01865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is a key step in the development of colorectal cancer (CRC) that confers metastatic capabilities to cancer cells. The present study aimed to assess the immunohistochemical (IHC) expression and impact of EMT markers, including E-cadherin, Vimentin, β-catenin, and SMAD4, on the oncologic outcomes of CRC. METHODS This was a retrospective review of 118 CRC patients. Tissue slides were retrieved from the slide archive and five tissue microarray construction blocks were constructed. IHC for E-cadherin, Vimentin, β-catenin, and SMAD4 was done. The main outcome was the association between abnormal marker expression and overall survival (OS), and disease-free survival (DFS). RESULTS Adenocarcinomas accounted for 71.2% of tumors, whereas 25.4% and 3.4% were mucinous and signet ring cell carcinomas. The rates of lymphovascular invasion and perineural invasion were 72.9% and 20.3%, respectively. There was a positive, significant correlation, and association between the four markers. Abnormal expression of E-cadherin was associated with significantly lower OS (p < 0.0001) and similar DFS (p = 0.06). Abnormal Vimentin expression was associated with a significantly higher rate of distant metastasis (p = 0.005) and significantly lower OS and DFS (p < 0.0001). Abnormal expression of β-catenin was associated with significantly lower OS (p < 0.0001) and similar DFS (p = 0.15). Abnormal expression of SMAD4 was associated with significantly lower OS and DFS (p < 0.0001). Abnormal expression of all four markers was associated with a higher disease recurrence, lower OS, and lower DFS. CONCLUSION Abnormal expression of each marker was associated with lower OS, whereas abnormal expression of Vimentin and SMAD4 only was associated with lower DFS.
Collapse
Affiliation(s)
- Mona Hany Emile
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sameh Hany Emile
- Colorectal Surgery Unit, General Surgery Department, Mansoura University Hospitals, Mansoura University, 60 El-Gomhouria Street, Mansoura, 35516, Dakahlia, Egypt.
| | - Amr Awad El-Karef
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Awad Ebrahim
- Medical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | |
Collapse
|
2
|
Wismayer R, Matthews R, Whalley C, Kiwanuka J, Kakembo FE, Thorn S, Wabinga H, Odida M, Tomlinson I. Determination of the frequency and distribution of APC, PIK3CA, and SMAD4 gene mutations in Ugandan patients with colorectal cancer. BMC Cancer 2024; 24:1212. [PMID: 39350061 PMCID: PMC11440721 DOI: 10.1186/s12885-024-12967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Uganda is a developing low-income country with a low incidence of colorectal cancer, which is steadily increasing. Ugandan colorectal cancer (CRC) patients are young and present with advanced-stage disease. In our population, there is a scarcity of genetic oncological studies, therefore, we investigated the mutational status of CRC tissues, focusing in particular on the adenomatous polyposis coli (APC), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and SMAD4 genes. Our objective was to determine whether there were any differences between other populations and Ugandan patients. We performed next-generation sequencing on the extracted DNA from formalin-fixed paraffin-embedded adenocarcinoma samples from 127 patients (mean (SD) age: 54.9 (16.0) years; male:female sex ratio: 1.2:1). Most tumours were located in the rectum 56 (44.1%), 14 (11%) tumours were high grade, and 96 (75.6%) were moderate grade CRC. Stage III + IV CRC tumours were found in 109 (85.8%) patients. We identified 48 variants of APC, including 9 novel APC mutations that were all pathogenic or deleterious. For PIK3CA, we found 19 variants, of which 9 were deleterious or pathogenic. Four PIK3CA novel pathogenic or deleterious variants were included (c.1397C > G, c.2399_2400insA, c.2621G > C, c.2632C > G). Three SMAD4 variants were reported, including two pathogenic or deleterious variants (c.1268G > T, c.556dupC) and one tolerant (c.563A > C) variant. One novel SMAD4 deleterious mutation (c.1268G > T) was reported. In conclusion, we provide clinicopathological information and new genetic variation data pertinent to CRC in Uganda.
Collapse
Affiliation(s)
- Richard Wismayer
- Department of Surgery, Masaka Regional Referral Hospital, Masaka, Uganda.
- Department of Surgery, Faculty of Health Sciences, Equator University of Science and Technology, Masaka, Uganda.
- Department of Surgery, Faculty of Health Sciences, Habib Medical School, IUIU University, Kampala, Uganda.
- Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.
| | - Rosie Matthews
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Celina Whalley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julius Kiwanuka
- Department of Epidemiology and Biostatistics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Fredrick Elishama Kakembo
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- African Centre of Excellence in Bioinformatics and Data Intensive Sciences, Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Steve Thorn
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Henry Wabinga
- Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Michael Odida
- Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Pathology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Ian Tomlinson
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
- Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Niu B, Tian T, Wang L, Tian Y, Tian T, Guo Y, Zhou H, Zhang Z. CCL9/CCR1 axis-driven chemotactic nanovesicles for attenuating metastasis of SMAD4-deficient colorectal cancer by trapping TGF- β. Acta Pharm Sin B 2024; 14:3711-3729. [PMID: 39220887 PMCID: PMC11365421 DOI: 10.1016/j.apsb.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 09/04/2024] Open
Abstract
SMAD4 deficiency in colorectal cancer (CRC) is highly correlated with liver metastasis and high mortality, yet there are few effective precision therapies available. Here, we show that CCR1+-granulocytic myeloid-derived suppressor cells (G-MDSCs) are highly infiltrated in SMAD4-deficient CRC via CCL15/CCR1 and CCL9/CCR1 axis in clinical specimens and mouse models, respectively. The excessive TGF-β, secreted by tumor-infiltrated CCR1+-G-MDSCs, suppresses the immune response of cytotoxic T lymphocytes (CTLs), thus facilitating metastasis. Hereby, we develop engineered nanovesicles displaying CCR1 and TGFBR2 molecules (C/T-NVs) to chemotactically target the tumor driven by CCL9/CCR1 axis and trap TGF-β through TGF-β-TGFBR2 specific binding. Chemotactic C/T-NVs counteract CCR1+-G-MDSC infiltration through competitive responding CCL9/CCR1 axis. C/T-NVs-induced intratumoral TGF-β exhaustion alleviates the TGF-β-suppressed immune response of CTLs. Collectively, C/T-NVs attenuate liver metastasis of SMAD4-deficient CRC. In further exploration, high expression of programmed cell death ligand-1 (PD-L1) is observed in clinical specimens of SMAD4-deficient CRC. Combining C/T-NVs with anti-PD-L1 antibody (aPD-L1) induces tertiary lymphoid structure formation with sustained activation of CTLs, CXCL13+-CD4+ T, CXCR5+-CD20+ B cells, and enhanced secretion of cytotoxic cytokine interleukin-21 and IFN-γ around tumors, thus eradicating metastatic foci. Our strategy elicits pleiotropic antimetastatic immunity, paving the way for nanovesicle-mediated precision immunotherapy in SMAD4-deficient CRC.
Collapse
Affiliation(s)
- Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tian Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen 361102, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Fasano M, Pirozzi M, Miceli CC, Cocule M, Caraglia M, Boccellino M, Vitale P, De Falco V, Farese S, Zotta A, Ciardiello F, Addeo R. TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. Int J Mol Sci 2024; 25:7400. [PMID: 39000507 PMCID: PMC11242595 DOI: 10.3390/ijms25137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with 20% of patients presenting with metastatic disease at diagnosis. TGF-β signaling plays a crucial role in various cellular processes, including growth, differentiation, apoptosis, epithelial-mesenchymal transition (EMT), regulation of the extracellular matrix, angiogenesis, and immune responses. TGF-β signals through SMAD proteins, which are intracellular molecules that transmit TGF-β signals from the cell membrane to the nucleus. Alterations in the TGF-β pathway and mutations in SMAD proteins are common in metastatic CRC (mCRC), making them critical factors in CRC tumorigenesis. This review first analyzes normal TGF-β signaling and then investigates its role in CRC pathogenesis, highlighting the mechanisms through which TGF-β influences metastasis development. TGF-β promotes neoangiogenesis via VEGF overexpression, pericyte differentiation, and other mechanisms. Additionally, TGF-β affects various elements of the tumor microenvironment, including T cells, fibroblasts, and macrophages, promoting immunosuppression and metastasis. Given its strategic role in multiple processes, we explored different strategies to target TGF-β in mCRC patients, aiming to identify new therapeutic options.
Collapse
Affiliation(s)
- Morena Fasano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mario Pirozzi
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Chiara Carmen Miceli
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mariateresa Cocule
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale Vitale
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Vincenzo De Falco
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Stefano Farese
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Alessia Zotta
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| |
Collapse
|
5
|
Sritharan S, Sivalingam N. Doxorubicin-induced chemoresistance in Duke's type B colon adenocarcinoma cell line is aggravated in the presence of TGF-β2 through non-apoptotic cell death. Clin Transl Oncol 2024; 26:1630-1638. [PMID: 38308764 DOI: 10.1007/s12094-023-03380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/24/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND The current challenge in clinical cancer treatment is chemoresistance. Colon cells have inherently higher xenobiotic transporters expression and hence can attain resistance rapidly. Increased levels of TGF-β2 expression in patients have been attributed to cancer progression, aggressiveness, and resistance. To investigate resistance progression, we treated doxorubicin (dox) to HT-29 colon adenocarcinoma cells in the presence or absence of TGF-β2 ligand. METHODS After 1, 3-, and 7-day treatment, we investigated cell proliferation, viability, and cytotoxicity by MTT, trypan blue staining, and lactate dehydrogenase enzyme release. The mechanism of cell death was elucidated by hoechst33342 and propidium iodide dual staining and apoptosis assay. The development of resistance was detected by rhodamine123 efflux and P-glycoprotein (P-gp)/MDR1 antibody staining through fluorimetry and flow cytometry. The colony formation ability of the cells was also elucidated. RESULTS Inhibition of cell proliferation was noted after day 1, while a significant reduction in viability and a significant increase in lactate dehydrogenase release was detected after day 3. Reduction of intracellular rhodamine123 levels was detected after day 3 and was significantly lower in dox with TGF-β2 treatment compared to dox alone. Increased surface P-gp levels after days 3 and 7 were observed in the treated groups. Hoechst33342/propidium iodide staining and apoptosis assay indicated non-apoptotic cell death. The cells treated with TGF-β2 had higher colony formation ability. CONCLUSIONS TGF-β2 expression might play a significant role in the development of chemoresistance to doxorubicin in Duke's type B colon adenocarcinoma cell line, HT-29.
Collapse
Affiliation(s)
- Sruthi Sritharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
6
|
Wu Y, Yu B, Ai X, Zhang W, Chen W, Laurence A, Zhang M, Chen Q, Shao Y, Zhang B. TIF1γ and SMAD4 regulation in colorectal cancer: impact on cell proliferation and liver metastasis. Biol Chem 2024; 405:241-256. [PMID: 38270141 DOI: 10.1515/hsz-2023-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
We investigated the effects of transcriptional intermediary factor 1γ (TIF1γ) and SMAD4 on the proliferation and liver metastasis of colorectal cancer (CRC) cells through knockdown of TIF1γ and/or SMAD4 and knockdown of TIF1γ and/or restoration of SMAD4 expression. Furthermore, we examined TIF1γ and SMAD4 expression in human primary CRC and corresponding liver metastatic CRC specimens. TIF1γ promoted but SMAD4 inhibited the proliferation of CRC cells by competitively binding to activated SMAD2/SMAD3 complexes and then reversely regulating c-Myc, p21, p27, and cyclinA2 levels. Surprisingly, both TIF1γ and SMAD4 reduced the liver metastasis of all studied CRC cell lines via inhibition of MEK/ERK pathway-mediated COX-2, Nm23, uPA, and MMP9 expression. In patients with advanced CRC, reduced TIF1γ or SMAD4 expression was correlated with increased invasion and liver metastasis and was a significant, independent risk factor for recurrence and survival after radical resection. Patients with advanced CRC with reduced TIF1γ or SAMD4 expression had higher recurrence rates and shorter overall survival. TIF1γ and SMAD4 competitively exert contrasting effects on cell proliferation but act complementarily to suppress the liver metastasis of CRC via MEK/ERK pathway inhibition. Thus, reduced TIF1γ or SMAD4 expression in advanced CRC predicts earlier liver metastasis and poor prognosis.
Collapse
Affiliation(s)
- Yanhui Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Bin Yu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xi Ai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Weixun Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mingzhi Zhang
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Qian Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, HUST, 1095 Jiefang Ave, Wuhan 430030, China
| | - Yajie Shao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, HUST, 1095 Jiefang Ave, Wuhan 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| |
Collapse
|
7
|
Ouyang W, Li Q, Niu Q, Qui M, Fu H, Du Y, Mo X. A multiplexed time-resolved fluorescence resonance energy transfer ultrahigh-throughput screening assay for targeting the SMAD4-SMAD3-DNA complex. J Mol Cell Biol 2024; 15:mjad068. [PMID: 37968137 PMCID: PMC11063955 DOI: 10.1093/jmcb/mjad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/07/2023] [Accepted: 11/14/2023] [Indexed: 11/17/2023] Open
Abstract
The transforming growth factor-beta (TGFβ) signaling pathway plays crucial roles in the establishment of an immunosuppressive tumor microenvironment, making anti-TGFβ agents a significant area of interest in cancer immunotherapy. However, the clinical translation of current anti-TGFβ agents that target upstream cytokines and receptors remains challenging. Therefore, the development of small-molecule inhibitors specifically targeting SMAD4, the downstream master regulator of the TGFβ pathway, would offer an alternative approach with significant therapeutic potential for anti-TGFβ signaling. In this study, we present the development of a cell lysate-based multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) 1536-well plate format. This assay enables simultaneous monitoring of the protein‒protein interaction between SMAD4 and SMAD3, as well as the protein‒DNA interaction between SMADs and their consensus DNA-binding motif. The multiplexed TR-FRET assay exhibits high sensitivity, allowing the dynamic analysis of the SMAD4-SMAD3-DNA complex at single-amino acid resolution. Moreover, the multiplexed uHTS assay demonstrates robustness for screening small-molecule inhibitors. Through a pilot screening of an FDA-approved bioactive compound library, we identified gambogic acid and gambogenic acid as potential hit compounds. These proof-of-concept findings underscore the utility of our optimized multiplexed TR-FRET platform for large-scale screening to discover small-molecule inhibitors that target the SMAD4-SMAD3-DNA complex as novel anti-TGFβ signaling agents.
Collapse
Affiliation(s)
- Wukun Ouyang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qianjin Li
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qiankun Niu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Min Qui
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Tong K, Bandari M, Carrick JN, Zenkevich A, Kothari OA, Shamshad E, Stefanik K, Haro KS, Perekatt AO, Verzi MP. In Vitro Organoid-Based Assays Reveal SMAD4 Tumor-Suppressive Mechanisms for Serrated Colorectal Cancer Invasion. Cancers (Basel) 2023; 15:5820. [PMID: 38136364 PMCID: PMC10742020 DOI: 10.3390/cancers15245820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Colon cancer is the third most prominent cancer and second leading cause of cancer-related deaths in the United States. Up to 20% of colon cancers follow the serrated tumor pathway driven by mutations in the MAPK pathway. Loss of SMAD4 function occurs in the majority of late-stage colon cancers and is associated with aggressive cancer progression. Therefore, it is important to develop technology to accurately model and better understand the genetic mechanisms behind cancer invasion. Organoids derived from tumors found in the Smad4KO BRAFV600E/+ mouse model present multiple phenotypes characteristic of invasion both in ex vivo and in vivo systems. Smad4KO BRAFV600E/+ tumor organoids can migrate through 3D culture and infiltrate through transwell membranes. This invasive behavior can be suppressed when SMAD4 is re-expressed in the tumor organoids. RNA-Seq analysis reveals that SMAD4 expression in organoids rapidly regulates transcripts associated with extracellular matrix and secreted proteins, suggesting that the mechanisms employed by SMAD4 to inhibit invasion are associated with regulation of extracellular matrix and secretory pathways. These findings indicate new models to study SMAD4 regulation of tumor invasion and an additional layer of complexity in the tumor-suppressive function of the SMAD4/Tgfβ pathway.
Collapse
Affiliation(s)
- Kevin Tong
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA (A.O.P.)
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
- Department of Medical Sciences, Hackensack Meridian Health School of Medicine, Nutley, NJ 07110, USA
| | - Manisha Bandari
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA (A.O.P.)
| | - Jillian N. Carrick
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA (A.O.P.)
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Anastasia Zenkevich
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Om A. Kothari
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA (A.O.P.)
| | - Eman Shamshad
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA (A.O.P.)
| | - Katarina Stefanik
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA (A.O.P.)
- Department of Biology, The College of New Jersey, Ewing Township, NJ 08618, USA
| | - Katherine S. Haro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA (A.O.P.)
| | - Ansu O. Perekatt
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA (A.O.P.)
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Michael P. Verzi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA (A.O.P.)
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
| |
Collapse
|
9
|
Ma C, Liu M, Feng W, Rao H, Zhang W, Liu C, Xu Y, Wang Z, Teng Y, Yang X, Ni L, Xu J, Gao W, Lu B, Li L. Loss of SETD2 aggravates colorectal cancer progression caused by SMAD4 deletion through the RAS/ERK signalling pathway. Clin Transl Med 2023; 13:e1475. [PMID: 37962020 PMCID: PMC10644329 DOI: 10.1002/ctm2.1475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGOUND Colorectal cancer (CRC) is a complex, multistep disease that arises from the interplay genetic mutations and epigenetic alterations. The histone H3K36 trimethyltransferase SET domain-containing 2 (SETD2), as an epigenetic signalling molecule, has a 5% mutation rate in CRC. SETD2 expression is decreased in the development of human CRC and mice treated with Azoxymethane /Dextran sodium sulfate (AOM/DSS). Loss of SETD2 promoted CRC development. SMAD Family member 4 (SMAD4) has a 14% mutation rate in CRC, and SMAD4 ablation leads to CRC. The co-mutation of SETD2 and SMAD4 predicted advanced CRC. However, little is known on the potential synergistic effect of SETD2 and SMAD4. METHODS CRC tissues from mice and SW620 cells were used as research subjects. Clinical databases of CRC patients were analyzed to investigate the association between SETD2 and SMAD4. SETD2 and SMAD4 double-knockout mice were established to further investigate the role of SETD2 in SMAD4-deficient CRC. The intestinal epithelial cells (IECs) were isolated for RNA sequencing and chromatin immunoprecipitation sequencing (ChIP-seq) to explore the mechanism and the key molecules resulting in CRC. Molecular and cellular experiments were conducted to analyze the role of SETD2 in SMAD4-deficient CRC. Finally, rescue experiments were performed to confirm the molecular mechanism of SETD2 in the development of SMAD4-dificient CRC. RESULTS The deletion of SETD2 promotes the malignant progression of SMAD4-deficient CRC. Smad4Vil-KO ; Setd2Vil-KO mice developed a more severe CRC phenotype after AOM/DSS induction, with a larger tumour size and a more vigorous epithelial proliferation rate. Further mechanistic findings revealed that the loss of SETD2 resulted in the down-regulation of DUSP7, which is involved in the inhibition of the RAS/ERK signalling pathway. Finally, the ERK1/2 inhibitor SCH772984 significantly attenuated the progression of CRC in Smad4Vil-KO ;Setd2Vil-KO mice, and overexpression of DUSP7 significantly inhibited the proliferation rates of SETD2KO ; SMAD4KO SW620 cells. CONCLUSIONS Our results demonstrated that SETD2 inhibits the RAS/ERK signaling pathway by facilitating the transcription of DUSP7 in SMAD4-deficient CRC, which could provide a potential therapeutic target for the treatment of advanced CRC.
Collapse
Affiliation(s)
- Chunxiao Ma
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Min Liu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wenxin Feng
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hanyu Rao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yue Xu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Ziyi Wang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Li Ni
- Department of NursingShanghai East Hospital, Tongji UniversityShanghaiChina
| | - Jin Xu
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei‐Qiang Gao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Bing Lu
- Department of General Surgery, Department of Colorectal Surgery, Shanghai East HospitalSchool of Medicine, Tongji UniversityShanghaiChina
| | - Li Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
10
|
Ouyang W, Niu Q, Qui M, Fu H, Du Y, Mo X. A multiplexed time-resolved fluorescence resonance energy transfer ultrahigh-throughput screening assay for targeting SMAD4-SMAD3-DNA complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.15.549169. [PMID: 37503208 PMCID: PMC10370110 DOI: 10.1101/2023.07.15.549169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The signaling pathway of transforming growth factor-beta (TGFβ) plays crucial roles in the establishment of an immunosuppressive tumor microenvironment, making anti-TGFβ agents a significant area of interest in cancer immunotherapy. However, the clinical translation of current anti-TGFβ agents that target upstream cytokines and receptors remains challenging. Therefore, the development of small molecule inhibitors specifically targeting SMAD4, the downstream master regulator of TGFβ pathway, would offer an alternative approach with significant therapeutic potential for anti-TGF-β signaling. In this study, we present the development of a cell lysate-based multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) 1536-well plate format. This assay enables simultaneous monitoring of the protein-protein interaction (PPI) between SMAD4 and SMAD3, as well as the protein-DNA interaction (PDI) between SMADs and their consensus DNA binding motif. The multiplexed TR-FRET assay exhibits high sensitivity, allowing the dynamic analysis of the SMAD4-SMAD3-DNA complex at single amino acid resolution. Moreover, the multiplexed uHTS assay demonstrates robustness for screening small molecule inhibitors. Through a pilot screening of an FDA-approved and bioactive compound library, we identified gambogic acid and gambogenic acid as potential hit compounds. These proof-of-concept findings underscore the utility of our optimized multiplexed TR-FRET platform for large-scale screening to discover small molecule inhibitors that target the SMAD4-SMAD3-DNA complex as novel anti-TGFβ signaling agents.
Collapse
|
11
|
Wosiak A, Szmajda-Krygier D, Pietrzak J, Boncela J, Balcerczak E. Assessment of the Influence of 5-Fluorouracil on SMAD4 and TGFB1 Gene Expression, Apoptosis Induction and DNA Damage in Human Cell Lines. Bioengineering (Basel) 2023; 10:bioengineering10050570. [PMID: 37237640 DOI: 10.3390/bioengineering10050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE Suppressor of mothers against decapentaplegic homolog 4 (SMAD family member 4, SMAD4) is involved in the adenoma-carcinoma pathway, leading to the development of colon cancer. The encoded protein is a key downstream signaling mediator in the TGFβ pathway. This pathway has tumor-suppressor functions, including cell-cycle arrest and apoptosis. Its activation in late-stage cancer can promote tumorigenesis, including metastasis and chemoresistance. Most colorectal cancer patients receive chemotherapy based on 5-FU as an adjuvant treatment. However, the success of therapy is hampered by multidrug resistance by neoplastic cells. In colorectal cancer, resistance to 5-FU-based therapy is influenced by SMAD4 gene expression, as patients with decreased SMAD4 gene expression probably have a higher risk of developing 5-FU-induced resistance. The mechanism leading to the development of this phenomenon is not fully understood. Therefore, the present study assesses the possible influence of 5-FU on changes in the expression of the SMAD4 and TGFB1 genes. PATIENTS AND METHODS The effect of 5-FU on the expression of SMAD4 and TGFB1 in colorectal cancer cells derived from the CACO-2, SW480 and SW620 cell lines was evaluated using real-time PCR. The cytotoxicity of 5-FU on colon cancer cells was assessed by the MTT method, and its effect on the induction of cell apoptosis and the initiation of DNA damage using a flow cytometer. RESULTS Significant changes in the level of SMAD4 and TGFB1 gene expression were noted in the CACO-2, SW480 and SW620 cells treated with 5-FU at various concentrations during 24 h and 48 h exposure. The use of 5-FU at a concentration of 5 µmol/L resulted in a decrease in the expression of the SMAD4 gene in all cell lines at both exposure times, while the concentration of 100 µmol/L increased the expression of the SMAD4 gene in CACO-2 cells. The level of expression of the TGFB1 gene was higher for all cells treated with 5-FU at the highest concentrations, while the exposure time was extended to 48 h. CONCLUSION The observed in vitro changes in CACO-2 cells caused by 5-FU may be of clinical relevance when choosing the drug concentration for treating patients with colorectal cancer. It is possible that 5-FU has a stronger effect on colorectal cancer cells at the higher concentrations. Low concentrations of 5-FU may not have a therapeutic effect and may also influence drug resistance in cancer cells. Higher concentrations and prolonged exposure time may affect SMAD4 gene expression, which may increase the effectiveness of therapy.
Collapse
Affiliation(s)
- Agnieszka Wosiak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland
| | - Jacek Pietrzak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Science, 106 Lodowa, 93-232 Lodz, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland
| |
Collapse
|
12
|
Erasimus H, Kolnik V, Lacroix F, Sidhu S, D'Agostino S, Lemaitre O, Rohaut A, Sanchez I, Thill G, Didier M, Debussche L, Marcireau C. Genome-wide CRISPR Screen Reveals RAB10 as a Synthetic Lethal Gene in Colorectal and Pancreatic Cancers Carrying SMAD4 Loss. CANCER RESEARCH COMMUNICATIONS 2023; 3:780-792. [PMID: 37377893 PMCID: PMC10158796 DOI: 10.1158/2767-9764.crc-22-0301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 06/29/2023]
Abstract
The TGFβ signaling mediator SMAD4 is frequently mutated or deleted in colorectal and pancreatic cancers. SMAD4 acts as a tumor suppressor and its loss is associated with poorer patient outcomes. The purpose of this study was to find synthetic lethal interactions with SMAD4 deficiency to find novel therapeutic strategies for the treatment of patients with SMAD4-deficient colorectal or pancreatic cancers. Using pooled lentiviral single-guide RNA libraries, we conducted genome-wide loss-of-function screens in Cas9-expressing colorectal and pancreatic cancer cells harboring altered or wild-type SMAD4. The small GTPase protein RAB10 was identified and validated as a susceptibility gene in SMAD4-altered colorectal and pancreatic cancer cells. Rescue assays showed that RAB10 reintroduction reversed the antiproliferative effects of RAB10 knockout in SMAD4-negative cell lines. Further investigation is necessary to shed light on the mechanism by which RAB10 inhibition decreases cell proliferation of SMAD4-negative cells. Significance This study identified and validated RAB10 as new synthetic lethal gene with SMAD4. This was achieved by conducting a whole-genome CRISPR screens in different colorectal and pancreatic cell lines. A future RAB10 inhibitors could correspond to a new therapeutic solution for patients with cancer with SMAD4 deletion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gilbert Thill
- Sanofi, Translational Sciences, Chilly-Mazarin, France
| | - Michel Didier
- Sanofi, Translational Sciences, Chilly-Mazarin, France
| | | | | |
Collapse
|
13
|
Sultana TN, Chaity NI, Hasan MM, Shrabonee II, Rivu SF, Aziz MA, Sahaba SA, Apu MNH, Nahid NA, Islam MS, Islam MS. TGFβ1 rs1800469 and SMAD4 rs10502913 polymorphisms and genetic susceptibility to colorectal cancer in Bangladeshi population. Mol Biol Rep 2023; 50:1393-1401. [PMID: 36469259 DOI: 10.1007/s11033-022-08146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/22/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND Among Bangladeshi males and females, colorectal cancer is the fourth and fifth most prevalent cancer, respectively. Several studies have shown that the transforming growth factor beta 1 (TGFβ1) gene and SMAD4 gene have a great impact on colorectal cancer. OBJECTIVE The present study aimed to investigate whether TGFβ1 rs1800469 and SMAD4 rs10502913 genetic polymorphisms are associated with susceptibility to colorectal cancer in the Bangladeshi population. METHODS AND MATERIALS This case-control study was performed on 167 colorectal cancer patients and 162 healthy volunteers, and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was employed for genotyping. RESULTS In case of SMAD4 rs10502913 G > A polymorphism, the A allele reduced the colorectal cancer risk significantly (adjusted OR 0.35, 95% CI 0.23-0.52, p < 0.001) when compared to the G allele. It was also found that G/A and A/A genotypes of SMAD4 rs10502913 G > A polymorphism reduced the risk of colorectal cancer in comparison to the G/G genotype (G/A vs. G/G: adjusted OR 0.24, 95% CI 0.12-0.45, p < 0.001 and A/A vs. G/G: adjusted OR 0.06, 95% CI 0.02-0.21, p < 0.001). TGFβ1 rs1800469 C > T polymorphism showed an elevated risk of developing colorectal cancer, although the results were not statistically significant. CONCLUSION This study confirms the association of SMAD4 rs10502913 gene polymorphism with colorectal cancer susceptibility among the Bangladeshi population.
Collapse
Affiliation(s)
- Taposhi Nahid Sultana
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.,Department of Pharmacy, University of Asia Pacific, Dhaka, 1205, Bangladesh.,Department of Pharmacy, Independent University, Bangladesh, Dhaka, 1229, Bangladesh
| | - Nusrat Islam Chaity
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Mehedi Hasan
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ishrat Islam Shrabonee
- Department of Medicine, Mymensingh Medical College Hospital, Mymensingh, 2200, Bangladesh
| | - Sanzana Fareen Rivu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.,Department of Pharmacy, Faculty of Science and Engineering, East West University, Dhaka, 1212, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh.,Bangladesh Pharmacogenomics Research Network (BD-PGRN), Dhaka, Bangladesh
| | - Shaid All Sahaba
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh
| | - Mohd Nazmul Hasan Apu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Noor Ahmed Nahid
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh. .,Bangladesh Pharmacogenomics Research Network (BD-PGRN), Dhaka, Bangladesh.
| | - Md Saiful Islam
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
14
|
Corry SM, McCorry AM, Lannagan TR, Leonard NA, Fisher NC, Byrne RM, Tsantoulis P, Cortes-Lavaud X, Amirkhah R, Redmond KL, McCooey AJ, Malla SB, Rogan E, Sakhnevych S, Gillespie MA, White M, Richman SD, Jackstadt RF, Campbell AD, Maguire S, McDade SS, Longley DB, Loughrey MB, Coleman HG, Kerr EM, Tejpar S, Maughan T, Leedham SJ, Small DM, Ryan AE, Sansom OJ, Lawler M, Dunne PD. Activation of innate-adaptive immune machinery by poly(I:C) exposes a therapeutic vulnerability to prevent relapse in stroma-rich colon cancer. Gut 2022; 71:2502-2517. [PMID: 35477539 PMCID: PMC9664095 DOI: 10.1136/gutjnl-2021-326183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/12/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Stroma-rich tumours represent a poor prognostic subtype in stage II/III colon cancer (CC), with high relapse rates and limited response to standard adjuvant chemotherapy. DESIGN To address the lack of efficacious therapeutic options for patients with stroma-rich CC, we stratified our human tumour cohorts according to stromal content, enabling identification of the biology underpinning relapse and potential therapeutic vulnerabilities specifically within stroma-rich tumours that could be exploited clinically. Following human tumour-based discovery and independent clinical validation, we use a series of in vitro and stroma-rich in vivo models to test and validate the therapeutic potential of elevating the biology associated with reduced relapse in human tumours. RESULTS By performing our analyses specifically within the stroma-rich/high-fibroblast (HiFi) subtype of CC, we identify and validate the clinical value of a HiFi-specific prognostic signature (HPS), which stratifies tumours based on STAT1-related signalling (High-HPS v Low-HPS=HR 0.093, CI 0.019 to 0.466). Using in silico, in vitro and in vivo models, we demonstrate that the HPS is associated with antigen processing and presentation within discrete immune lineages in stroma-rich CC, downstream of double-stranded RNA and viral response signalling. Treatment with the TLR3 agonist poly(I:C) elevated the HPS signalling and antigen processing phenotype across in vitro and in vivo models. In an in vivo model of stroma-rich CC, poly(I:C) treatment significantly increased systemic cytotoxic T cell activity (p<0.05) and reduced liver metastases (p<0.0002). CONCLUSION This study reveals new biological insight that offers a novel therapeutic option to reduce relapse rates in patients with the worst prognosis CC.
Collapse
Affiliation(s)
- Shania M Corry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Amy Mb McCorry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | - Niamh A Leonard
- Lambe Institute for Translational Research, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland
- Discipline of Pharmacology & Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Natalie C Fisher
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ryan M Byrne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | | | - Raheleh Amirkhah
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Keara L Redmond
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Aoife J McCooey
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Sudhir B Malla
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emily Rogan
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Svetlana Sakhnevych
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Michael A Gillespie
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mark White
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Susan D Richman
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Rene-Filip Jackstadt
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH) and Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew D Campbell
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
| | - Sarah Maguire
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Maurice B Loughrey
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - Helen G Coleman
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Sabine Tejpar
- Digestive Oncology Unit, University Ospital Gasthuisberg, Leuven, Belgium
| | | | - Simon J Leedham
- Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | - Donna M Small
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Aideen E Ryan
- Lambe Institute for Translational Research, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland
- Discipline of Pharmacology & Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Owen J Sansom
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mark Lawler
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
15
|
Takayama H, Kobayashi S, Gotoh K, Sasaki K, Iwagami Y, Yamada D, Tomimaru Y, Akita H, Asaoka T, Noda T, Wada H, Takahashi H, Tanemura M, Doki Y, Eguchi H. Prognostic value of functional SMAD4 localization in extrahepatic bile duct cancer. World J Surg Oncol 2022; 20:291. [PMID: 36088360 PMCID: PMC9463834 DOI: 10.1186/s12957-022-02747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
SMAD4 is a key mediator of TGFβ signaling and one of the mutated genes in extrahepatic bile duct cancer (eBDC). It has been also reported that SMAD4 has dual functions, in carcinogenesis via silencing and in tumor invasion/metastasis via signaling, depending on tumor stage. We previously visualized more nuclear transitioning functional SMAD4 at the tumor invasion front than the central lesion. So, we investigated the localization of functional SMAD4 (e.g., invasion area or metastasis lesion) and its association with chemotherapy and chemo-radiation therapy.
Methods
We performed SMAD4 immunostaining on 98 resected eBDC specimens and evaluated the presence of the functional form of nuclear SMAD4 at the central lesion, invasion front, and metastatic lymph node. We also examined the influence on chemotherapy after recurrence (n = 33) and neoadjuvant chemo-radiation therapy (NAC-RT, n = 21) and the prognostic value of using retrospective data.
Results
In 73 patients without NAC-RT, 8.2% had loss of SMAD4 expression and 23.3% had heterogeneous expression. Patients without SMAD4 expression at any site had significantly poorer overall survival (OS) than other patients (P = 0.014). Expression of SMAD4 at the invasion front was related to better survival (recurrence-free survival [RFS] P = 0.033; OS P = 0.047), and no SMAD4 expression at the metastatic lymph node was related to poorer OS (P = 0.011). The patients who had high SMAD4 expression had poorer prognosis after recurrence (RFS P = 0.011; OS P = 0.056). At the residual cancer in the resected specimen, SMAD4 was highly expressed after NAC-RT (P = 0.039).
Conclusions
Loss of SMAD4 protein expression was a poor prognostic factor in eBDC at resectable stage. However, the intensity of functional SMAD4 in eBDC is a marker of resistance to chemo-radiotherapy and malignant potential at advanced stages.
Collapse
|
16
|
Wang C, Sandhu J, Tsao A, Fakih M. Presence of Concurrent TP53 Mutations Is Necessary to Predict Poor Outcomes within the SMAD4 Mutated Subgroup of Metastatic Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14153644. [PMID: 35892903 PMCID: PMC9332822 DOI: 10.3390/cancers14153644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Prior studies have resulted in conflicting conclusions on the value of SMAD4 mutations as a prognostic biomarker in metastatic colorectal cancer. In a cohort study of 433 patients with metastatic colorectal cancer, we showed that the presence of a coexisting mutation in TP53 is necessary to culminate in a negative overall survival impact in patients with SMAD4 mutations (multivariate HR = 2.5, 95% CI 1.44–4.36, p = 0.001). Our findings indicate that patients with concurrent SMAD4 and TP53 mutations represent a distinct poor-prognosis subgroup that may benefit from further translational studies. Abstract Prior studies have resulted in conflicting conclusions on the value of SMAD4 mutations as a prognostic biomarker in metastatic colorectal cancer. In this study, the impact of coexisting mutations with SMAD4 on overall survival was evaluated retrospectively in 433 patients with metastatic colorectal cancer. SMAD4 mutation was found in 16.2% (70/433) of tumors. A systemic univariate and multivariate survival analysis model including age, gender, sidedness of primary tumor, RAS, BRAFV600E, APC, TP53 and SMAD4 status showed that SMAD4 mutations were not associated with worse prognosis (multivariate HR = 1.25, 95% CI 0.90–1.73, p = 0.18). However, coexisting mutations in SMAD4 and TP53 were significantly associated with worse overall survival (multivariate HR = 2.5, 95% CI 1.44–4.36, p = 0.001). The median overall survival of patients with coexisting SMAD4 and TP53 mutation was 24.2 months, compared to 42.2 months for the rest of the population (p = 0.002). Concurrent SMAD4 and TP53 defines a new subgroup of patients of metastatic colorectal cancer with poor clinical outcomes.
Collapse
Affiliation(s)
| | | | | | - Marwan Fakih
- Correspondence: ; Tel.: +1-626-256-4673 (ext. 83087); Fax: +1-626-218-8233
| |
Collapse
|
17
|
Ray M, Rath SN, Sarkar S, Sable MN. Presentation of potential genes and deleterious variants associated with non-syndromic hearing loss: a computational approach. Genomics Inform 2022; 20:e5. [PMID: 35399004 PMCID: PMC9001992 DOI: 10.5808/gi.21070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
Non-syndromic hearing loss (NSHL) is a common hereditary disorder. Both clinical and genetic heterogeneity has created many obstacles to understanding the causes of NSHL. The present study has attempted to ravel the genetic aetiology in NSHL progression and to screen out potential target genes using computational approaches. The reported NSHL target genes (2009-2020) have been studied by analyzing different biochemical and signaling pathways, interpretation of their functional association network, and discovery of important regulatory interactions with three previously established miRNAs in the human inner ear as well as in NSHL such as miR-183, miR-182, and miR-96. This study has identified SMAD4 and SNAI2 as the most putative target genes of NSHL. But pathogenic and deleterious non-synonymous single nucleotide polymorphisms discovered within SMAD4 is anticipated to have an impact on NSHL progression. Additionally, the identified deleterious variants in the functional domains of SMAD4 added a supportive clue for further study. Thus, the identified deleterious variant i.e., rs377767367 (G491V) in SMAD4 needs further clinical validation. The present outcomes would provide insights into the genetics of NSHL progression.
Collapse
Affiliation(s)
- Manisha Ray
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Surya Narayan Rath
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Saurav Sarkar
- Department of Ear Nose Throat, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Mukund Namdev Sable
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| |
Collapse
|
18
|
Shirin M, Madadi S, Peyravian N, Pezeshkian Z, Rejali L, Hosseini M, Moradi A, Khanabadi B, Sherkat G, Aghdaei HA, Nazemalhosseini-Mojarad E. A linkage between effectual genes in progression of CRC through canonical and non-canonical TGF-β signaling pathways. Med Oncol 2022; 39:40. [PMID: 35092502 DOI: 10.1007/s12032-021-01634-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022]
Abstract
Different molecular signaling pathways have been involved in the incidence and progression of CRC. We aimed to examine the correlation between eight candidate genes, including TFGβ, SMAD2, SMAD4, RhoA, EGFR, MAP2K1, MTA1, and LEF1 in the progression of colorectal cancer (CRC) and their association with clinicopathological variables and CRC patients prognosis. Immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) analysis 2-ΔΔct, were performed to assess the expression of eight genes in 64 and 122 patients with CRC, respectively and 20 normal samples were added for verification. We showed a positive correlation between SMAD2 and MAP2K1 (r = 0.337, P < 0.001), MAP2K1 and LEF1 (r = 0.187, P = 0.03), SMAD4 and RhoA (r = 0.214, P = 0.01) and as well, a negative correlation between SMAD2 and TGFβ (r = - 0.197, P = 0.02), and RhoA and LEF1 (r = - 0.180, P = 0.04) in tumor tissues. A decrease in RhoA mRNA expression was associated with the advanced TNM stage (P = 0.01), while the EGFR and SMAD2 mRNA expression upregulated in advanced stages (P = 0.03, P = 0.03), respectively. Also, an increase in EGFR and SMAD4 protein expression was significantly associated with the advanced TNM stage (P = 0.000) (P = .002), respectively. Perceiving the connections between canonical and non-canonical Transforming growth factor (TGF-β) signaling pathway along with the epidermal growth factor receptor (EGFR) and WNT cascades may trigger the development of novel approaches for CRC prediction.
Collapse
Affiliation(s)
- Marzieh Shirin
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Sajedeh Madadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Noshad Peyravian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Zahra Pezeshkian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Masoumeh Hosseini
- Department of Pathology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Afshin Moradi
- Department of Pathology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Binazir Khanabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Ghazal Sherkat
- Medicin Faculty of Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19875-17411, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yaman Street, Chamran Expressway, 19857-17411, Tehran, Iran.
| |
Collapse
|
19
|
Rosic J, Dragicevic S, Miladinov M, Despotovic J, Bogdanovic A, Krivokapic Z, Nikolic A. SMAD7 and SMAD4 expression in colorectal cancer progression and therapy response. Exp Mol Pathol 2021; 123:104714. [PMID: 34717960 DOI: 10.1016/j.yexmp.2021.104714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/12/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022]
Abstract
Inhibitory SMAD7 and common mediator SMAD4 play crucial roles in SMAD-dependent TGF-β signaling that is often disrupted in colorectal cancer (CRC). This study aimed to profile the expression of SMAD7 and SMAD4 in primary and metastatic CRC and to evaluate their significance in disease progression and therapy response. The expression of SMAD7 and SMAD4 genes was analyzed by quantitative real-time PCR in tissues from 35 primary and metastatic CRC patients and in vitro in 7 human cell lines originating from colon tissue. Expression levels of SMAD7 and SMAD4, as well as their ratio, were determined and their association with tumor characteristics and response to therapy were evaluated. SMAD4 level was significantly lower in tumors compared to non-tumor tissues in both primary (p = 0.001) and metastatic (p = 0.001) CRC patients, while tumor expression of SMAD7 was significantly lower from non-tumor tissue only in metastatic patients (p = 0.017). SMAD7/SMAD4 ratio was elevated in CRC primary tumor tissues and cell lines compared to corresponding non-tumor tissues and cell line, respectively (p = 0.003). SMAD7 expression was significantly elevated in primary tumor tissues obtained from responders to neoadjuvant chemoradiotherapy (nCRT) compared to non-responders (p = 0.014). Alterations of expression and ratio of SMAD7 and SMAD4 in CRC cell lines, primary rectal cancer, and liver metastasis emphasize the importance of these genes in different stages of disease progression. Differential expression of SMAD7 in responders versus non-responders to nCRT should be further investigated for its potential predictive value.
Collapse
Affiliation(s)
- Jovana Rosic
- School of Medicine, University of Belgrade, 11 000 Belgrade, Serbia.
| | - Sandra Dragicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia
| | - Marko Miladinov
- Clinic for Digestive Surgery, University Clinical Center of Serbia, 11 000 Belgrade, Serbia
| | - Jovana Despotovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia
| | - Aleksandar Bogdanovic
- School of Medicine, University of Belgrade, 11 000 Belgrade, Serbia; Clinic for Digestive Surgery, University Clinical Center of Serbia, 11 000 Belgrade, Serbia
| | - Zoran Krivokapic
- School of Medicine, University of Belgrade, 11 000 Belgrade, Serbia; Clinic for Digestive Surgery, University Clinical Center of Serbia, 11 000 Belgrade, Serbia; Serbian Academy of Sciences and Arts, 11 000 Belgrade, Serbia
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia
| |
Collapse
|
20
|
Ouahoud S, Jacobs RJ, Kodach LL, Voorneveld PW, Hawinkels LJAC, Weil NL, van Vliet B, Herings RM, van der Burg LRA, van Wezel T, Morreau H, Slingerland M, Bastiaannet E, Putter H, Hardwick JCH. Statin use is associated with a reduced incidence of colorectal cancer expressing SMAD4. Br J Cancer 2021; 126:297-301. [PMID: 34703008 DOI: 10.1038/s41416-021-01604-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Long-term use of statins is associated with a small reduced risk of colorectal cancer but their mechanism of action is not well understood. While they are generally believed to act on KRAS, we have previously proposed that they act via influencing the BMP pathway. The objective of this study was to look for associations between statin use and the risk of developing colorectal cancer of a particular molecular subtype. METHODS By linking two registries unique to the Netherlands, 69,272 statin users and 94,753 controls were identified and, if they developed colorectal cancer, their specimens traced. Colorectal cancers were molecularly subtyped according to the expression of SMAD4 and the mutation status of KRAS and BRAF. RESULTS Statin use was associated with a reduction in the risk of developing colorectal cancer regardless of molecular subtype (HR 0.77; 95% CI 0.66-0.89) and a larger reduction in the risk of developing SMAD4-positive colorectal cancer (OR 0.64; 95% CI 0.42-0.82). There was no relationship between statin use and the risk of developing colorectal cancer with a mutation in KRAS and/or BRAF. CONCLUSIONS Statin use is associated with a reduced risk of developing colorectal cancer with intact SMAD4 expression.
Collapse
Affiliation(s)
- Sarah Ouahoud
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Utrecht, The Netherlands
| | - Rutger J Jacobs
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Utrecht, The Netherlands
| | - Ludmilla L Kodach
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Utrecht, The Netherlands
| | - Philip W Voorneveld
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Utrecht, The Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Utrecht, The Netherlands
| | - Nikki L Weil
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Utrecht, The Netherlands
| | - Britt van Vliet
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Utrecht, The Netherlands
| | - Ron M Herings
- PHARMO Institute for Drug Outcomes Research, Utrecht, The Netherlands.,Department of Epidemiology & Data Science, Utrecht, The Netherlands
| | - Lennart R A van der Burg
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Utrecht, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marije Slingerland
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Esther Bastiaannet
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hein Putter
- Department of Medical Statistics, Leiden University Medical Centre, Leiden, The Netherlands
| | - James C H Hardwick
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Rothzerg E, Ho XD, Xu J, Wood D, Märtson A, Kõks S. Upregulation of 15 Antisense Long Non-Coding RNAs in Osteosarcoma. Genes (Basel) 2021; 12:genes12081132. [PMID: 34440306 PMCID: PMC8394133 DOI: 10.3390/genes12081132] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
The human genome encodes thousands of natural antisense long noncoding RNAs (lncRNAs); they play the essential role in regulation of gene expression at multiple levels, including replication, transcription and translation. Dysregulation of antisense lncRNAs plays indispensable roles in numerous biological progress, such as tumour progression, metastasis and resistance to therapeutic agents. To date, there have been several studies analysing antisense lncRNAs expression profiles in cancer, but not enough to highlight the complexity of the disease. In this study, we investigated the expression patterns of antisense lncRNAs from osteosarcoma and healthy bone samples (24 tumour-16 bone samples) using RNA sequencing. We identified 15 antisense lncRNAs (RUSC1-AS1, TBX2-AS1, PTOV1-AS1, UBE2D3-AS1, ERCC8-AS1, ZMIZ1-AS1, RNF144A-AS1, RDH10-AS1, TRG-AS1, GSN-AS1, HMGA2-AS1, ZNF528-AS1, OTUD6B-AS1, COX10-AS1 and SLC16A1-AS1) that were upregulated in tumour samples compared to bone sample controls. Further, we performed real-time polymerase chain reaction (RT-qPCR) to validate the expressions of the antisense lncRNAs in 8 different osteosarcoma cell lines (SaOS-2, G-292, HOS, U2-OS, 143B, SJSA-1, MG-63, and MNNG/HOS) compared to hFOB (human osteoblast cell line). These differentially expressed IncRNAs can be considered biomarkers and potential therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Xuan Dung Ho
- Department of Oncology, College of Medicine and Pharmacy, Hue University, Hue 53000, Vietnam;
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
| | - David Wood
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu University Hospital, 50411 Tartu, Estonia;
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: ; Tel.: +61-(0)-8-6457-0313
| |
Collapse
|
22
|
Szeglin BC, Wu C, Marco MR, Park HS, Zhang Z, Zhang B, Garcia-Aguilar J, Beauchamp RD, Chen XS, Smith JJ. A SMAD4-modulated gene profile predicts disease-free survival in stage II and III colorectal cancer. Cancer Rep (Hoboken) 2021; 5:e1423. [PMID: 34114372 PMCID: PMC8789617 DOI: 10.1002/cnr2.1423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Background Colorectal cancer is the second‐leading cause of cancer‐related mortality in the United States and a leading cause of cancer‐related mortality worldwide. Loss of SMAD4, a critical tumor suppressor and the central node of the transforming growth factor‐beta superfamily, is associated with worse outcomes for colorectal cancer patients; however, it is unknown whether an RNA‐based profile associated with SMAD4 expression could be used to better identify high‐risk colorectal cancer patients. Aim Identify a gene expression‐based SMAD4‐modulated profile and test its association with patient outcome. Methods and results Using a discovery dataset of 250 colorectal cancer patients, we analyzed expression of BMP/Wnt target genes for association with SMAD4 expression. Promoters of the BMP/Wnt genes were interrogated for SMAD‐binding elements. Fifteen genes were implicated and three tested for modulation by SMAD4 in patient‐derived colorectal cancer tumoroids. Expression of the 15 genes was used for unsupervised hierarchical clustering of a training dataset and two resulting clusters modeled in a centroid model. This model was applied to an independent validation dataset of stage II and III patients. Disease‐free survival was analyzed by the Kaplan‐Meier method. In vitro analysis of three genes identified in the SMAD4‐modulated profile (JAG1, TCF7, and MYC) revealed modulation by SMAD4 consistent with the trend observed in the profile. In the training dataset (n = 553), the profile was not associated with outcome. However, among stage II and III patients (n = 461), distinct clusters were identified by unsupervised hierarchical clustering that were associated with disease‐free survival (p = .02, log‐rank test). The main model was applied to a validation dataset of stage II/III CRC patients (n = 257) which confirmed the association of clustering with disease‐free survival (p = .013, log‐rank test). Conclusions A SMAD4‐modulated gene expression profile identified high‐risk stage II and III colorectal cancer patients, can predict disease‐free survival, and has prognostic potential for stage II and III colorectal cancer patients.
Collapse
Affiliation(s)
- Bryan C Szeglin
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA.,Albert Einstein College of Medicine, Bronx, New York, USA
| | - Chao Wu
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Michael R Marco
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Hyun Sung Park
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA.,Weill Cornell Medical College, New York, USA
| | - Zeda Zhang
- Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bing Zhang
- Department of Molecular and Human Genetics and the Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Julio Garcia-Aguilar
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - R Daniel Beauchamp
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - X Steven Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - J Joshua Smith
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
23
|
Marincola Smith P, Choksi YA, Markham NO, Hanna DN, Zi J, Weaver CJ, Hamaamen JA, Lewis KB, Yang J, Liu Q, Kaji I, Means AL, Beauchamp RD. Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G936-G957. [PMID: 33759564 PMCID: PMC8285585 DOI: 10.1152/ajpgi.00053.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Defective barrier function is a predisposing factor in inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Although TGFβ signaling defects have been associated with IBD and CAC, few studies have examined the relationship between TGFβ and intestinal barrier function. Here, we examine the role of TGFβ signaling via SMAD4 in modulation of colon barrier function. The Smad4 gene was conditionally deleted in the intestines of adult mice and intestinal permeability assessed using an in vivo 4 kDa FITC-Dextran (FD4) permeability assay. Mouse colon was isolated for gene expression (RNA-sequencing), Western blot, and immunofluorescence analysis. In vitro colon organoid culture was utilized to assess junction-related gene expression by qPCR and transepithelial resistance (TER). In silico analyses of human IBD and colon cancer databases were performed. Mice lacking intestinal expression of Smad4 demonstrate increased colonic permeability to FD4 without gross mucosal damage. mRNA/protein expression analyses demonstrate significant increases in Cldn2/Claudin 2 and Cldn8/Claudin 8, and decreases in Cldn3, Cldn4, and Cldn7/Claudin 7 with intestinal SMAD4 loss in vivo without changes in Claudin protein localization. TGFβ1/BMP2 treatment of polarized SMAD4+ colonoids increases TER. Cldn2, Cldn4, Cldn7, and Cldn8 are regulated by canonical TGFβ signaling, and TGFβ-dependent regulation of these genes is dependent on nascent RNA transcription (Cldn2, Cldn4, Cldn8) but not nascent protein translation (Cldn4, Cldn8). Human IBD/colon cancer specimens demonstrate decreased SMAD4, CLDN4, CLDN7, and CLDN8 and increased CLDN2 compared with healthy controls. Canonical TGFβ signaling modulates the expression of tight junction proteins and barrier function in mouse colon.NEW & NOTEWORTHY We demonstrate that canonical TGFβ family signaling modulates the expression of critical tight junction proteins in colon epithelial cells, and that expression of these tight junction proteins is associated with maintenance of colon epithelial barrier function in mice.
Collapse
Affiliation(s)
- Paula Marincola Smith
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee,2Graduate Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yash A. Choksi
- 3Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee,4Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Nicholas O. Markham
- 3Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee,5Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee,6Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David N. Hanna
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jinghuan Zi
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Connie J. Weaver
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jalal A. Hamaamen
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keeli B. Lewis
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jing Yang
- 7Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee,8Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qi Liu
- 7Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee,8Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Izumi Kaji
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee,5Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna L. Means
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee,2Graduate Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,6Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee,9Vanderbilt Ingram Cancer Center, Vanderbilt University
Medical Center, Nashville, Tennessee,10Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - R. Daniel Beauchamp
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee,2Graduate Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,5Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee,6Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee,9Vanderbilt Ingram Cancer Center, Vanderbilt University
Medical Center, Nashville, Tennessee,10Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
24
|
Cerrito MG, Grassilli E. Identifying Novel Actionable Targets in Colon Cancer. Biomedicines 2021; 9:biomedicines9050579. [PMID: 34065438 PMCID: PMC8160963 DOI: 10.3390/biomedicines9050579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high-throughput screening using FDA-approved libraries of “known” drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.e., in defined subgroups of patients whose tumors carry certain mutations.
Collapse
|
25
|
Genomic analysis for the prediction of prognosis in small-bowel cancer. PLoS One 2021; 16:e0241454. [PMID: 34014970 PMCID: PMC8136681 DOI: 10.1371/journal.pone.0241454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
The current understanding of clinicopathological features and genomic variants of small-bowel cancer is limited, in part due to the rarity of the disease. However, understanding of these factors is necessary for the development of novel therapeutic agents for small-bowel cancer. Thus, we aimed to identify the clinicopathological features and genomic variants associated with its prognosis and recurrence. We retrospectively examined 24 consecutive patients with primary small-bowel cancer surgically treated between May 2005 and August 2018 and collected 29 tumor specimens. The 29 lesions were subjected to mismatch repair status evaluation, using immunohistochemistry (IHC), and targeted genomic sequencing, after which they were analyzed using a panel of 90 cancer-related genes. IHC revealed that 45% (13/29) of the lesions exhibited deficient mismatch repair. The most common genomic variants in small-bowel cancers were in TP53 (48%, 13/27), followed by KRAS (44%, 12/27), ARID1A (33%, 9/27), PIK3CA (26%, 7/27), APC (26%, 7/27), and SMAD4, NOTCH3, CREBBP, PTCH1, and EP300 (22%, 6/27 each). Overall survival and disease-specific survival of patients with tumor mutational burden (TMB) ≥10 mutations/Mb (n = 17) were significantly better than those of patients with TMB <10 mutations/Mb (n = 6). Additionally, patients with a mutant SMAD4 had poorer recurrence-free survival than those with wild-type SMAD4. Our results suggested that TMB and SMAD4 mutations were associated with the prognosis of small-bowel cancer patients. Thus, cancer genomic analysis could be useful in the search for biomarkers of prognosis prediction in small-bowel cancers.
Collapse
|
26
|
Lanauze CB, Sehgal P, Hayer K, Torres-Diz M, Pippin JA, Grant SFA, Thomas-Tikhonenko A. Colorectal Cancer-Associated Smad4 R361 Hotspot Mutations Boost Wnt/β-Catenin Signaling through Enhanced Smad4-LEF1 Binding. Mol Cancer Res 2021; 19:823-833. [PMID: 33608451 PMCID: PMC8137583 DOI: 10.1158/1541-7786.mcr-20-0721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/05/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
About 10% to 30% of patients with colorectal cancer harbor either loss of or missense mutations in SMAD4, a critical component of the TGFβ signaling pathway. The pathophysiologic function of missense mutations in Smad4 is not fully understood. They usually map to the MH2 domain, specifically to residues that are involved in heterodimeric complex formation with regulatory Smads (such as Smad2/3) and ensuing transcriptional activation. These detrimental effects suggest that SMAD4 missense mutations can be categorized as loss-of-function. However, they tend to cluster in a few hotspots, which is more consistent with them acting by a gain-of-function mechanism. In this study, we investigated the functional role of Smad4 R361 mutants by re-expressing two R361 Smad4 variants in several Smad4-null colorectal cancer cell lines. As predicted, R361 mutations disrupted Smad2/3-Smad4 heteromeric complex formation and abolished canonical TGFβ signaling. In that, they were similar to SMAD4 loss. However, RNA sequencing and subsequent RT-PCR assays revealed that Smad4mut cells acquired a gene signature associated with enhanced Lef1 protein function and increased Wnt signaling. Mechanistically, Smad4 mutant proteins retained binding to Lef1 protein and drove a commensurate increase in downstream Wnt signaling as measured by TOP/FOP luciferase assay and Wnt-dependent cell motility. Consistent with these findings, human colorectal cancers with SMAD4 missense mutations were less likely to acquire activating mutations in the key Wnt pathway gene CTNNB1 (encoding β-catenin) than colorectal cancers with truncating SMAD4 nonsense mutations. IMPLICATIONS: Our studies suggest that in colorectal cancer hotspot mutations in Smad4 confer enhanced Wnt signaling and possibly heightened sensitivity to Wnt pathway inhibitors. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/5/823/F1.large.jpg.
Collapse
Affiliation(s)
- Claudia B Lanauze
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Priyanka Sehgal
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania
| | - Katharina Hayer
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania
- Department of Biomedical & Health Informatics, Children's Hospital of Philadelphia
| | - Manuel Torres-Diz
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania
| | - James A Pippin
- Division of Human Genetics, Children's Hospital of Philadelphia, Pennsylvania
| | - Struan F A Grant
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Human Genetics, Children's Hospital of Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrei Thomas-Tikhonenko
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Wosiak A, Wodziński D, Michalska K, Pietrzak J, Kordek R, Balcerczak E. Assessment of the Role of Selected SMAD3 and SMAD4 Genes Polymorphisms in the Development of Colorectal Cancer: Preliminary Research. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:167-178. [PMID: 33542644 PMCID: PMC7853629 DOI: 10.2147/pgpm.s281958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022]
Abstract
Background Colon cancer is one of the most common types of malignant tumor worldwide. The molecular mechanism of colorectal carcinogenesis is very complex and not yet fully understood. The TGFβ (transforming growth factor β) signaling pathway plays a significant role in the development of many cancers, including colorectal cancer pathogenesis. Changes in TGFβ pathway are associated with increased colorectal cancer risk, because this pathway participates in the control of important cellular processes such as cell growth, proliferation, differentiation, or apoptosis. The family of SMAD (similar to mother against decapentaplegic) proteins is closely correlated to this pathway. SMADs genes expression affects modulation of the transcription of many genes, which leads to the inhibition of cell-growth and apoptosis in colon epithelial cells. The presence of SNPs (single nucleotide polymorphisms) in SMADs genes encoding proteins involved in the control of biological processes important for the cell may play a significant role in the predisposition to the development of colorectal cancer, or in the regulation of the severity of changes related to tumor growth. Extension of data in this field may provide clinically significant conclusions influencing the implementation of personalized treatment based on specific changes characteristic of a patient with colorectal cancer. Purpose The subject of this research was genotyping polymorphisms of SMAD3 (rs6494629) and SMAD4 (rs10502913, rs12968012, rs1057520801) genes in the group of patients with colorectal cancer and in the control group, and comparing the genotypic frequency distributions with clinical-pathological features within the study group and between the groups. Materials and Methods SNP genotyping analysis was performed on genomic DNA isolated from 84 frozen tissue sections of colorectal cancer and from 60 peripheral blood samples of patients without cancer. To evaluate the polymorphic variants of SMAD genes, the restricted fragment length of a polymorphism reaction (PCR-RFLP) was used. Results The results obtained in the study showed no significant association between the examined polymorphisms and the risk of developing colorectal cancer. Conclusion More extensive studies to confirm the results obtained in this study are needed. Further studies on a larger study group divided according to the clinical stage and histological differentiation may allow finding or excluding the significance of the studied SNPs as potential markers of colorectal cancer in relation to the clinico-pathological data.
Collapse
Affiliation(s)
- Agnieszka Wosiak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz 90-151, Poland
| | - Damian Wodziński
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz 90-151, Poland
| | - Katarzyna Michalska
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz 90-151, Poland
| | - Jacek Pietrzak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz 90-151, Poland
| | - Radzisław Kordek
- Department of Pathology, Cathedral of Oncology, Medical University of Lodz, Lodz 92-213, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz 90-151, Poland
| |
Collapse
|
28
|
Shi C, Yang EJ, Liu Y, Mou PK, Ren G, Shim JS. Bromodomain and extra-terminal motif (BET) inhibition is synthetic lethal with loss of SMAD4 in colorectal cancer cells via restoring the loss of MYC repression. Oncogene 2020; 40:937-950. [PMID: 33293694 DOI: 10.1038/s41388-020-01580-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
The tumor suppressor SMAD4 is frequently mutated in colorectal cancer (CRC). However, no effective targeted therapies exist for CRC with SMAD4 loss. Here, we employed a synthetic lethality drug screening in isogenic SMAD4+/+ and SMAD4-/- HCT116 CRC cells and found that bromodomain and extra-terminal motif (BET) inhibitors, as selective drugs for the growth of SMAD4-/- HCT116 cells. BET inhibition selectively induced G1 cell cycle arrest in SMAD4-/- cells and this effect was accompanied by the reprogramming of the MYC-p21 axis. Mechanistically, SMAD4 is a transcription repressor of MYC, and MYC in turn represses p21 transcription. SMAD4-/- cells lost MYC repression ability, thereby causing the cells addicted to the MYC oncogenic signaling. BET inhibition significantly reduced MYC level and restored p21 expression in SMAD4-/- cells, inducing the selective growth arrest. The ectopic overexpression of MYC or the silencing of p21 could rescue the BET inhibitor-induced growth arrest in SMAD4-/- cells, verifying this model. Tumor xenograft mouse experiments further demonstrated the synthetic lethality interaction between BET and SMAD4 in vivo. Taken together, our data suggest that BET could be a potential drug target for the treatment of SMAD4-deficient CRC.
Collapse
Affiliation(s)
- Changxiang Shi
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Eun Ju Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Yifan Liu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Pui Kei Mou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Guowen Ren
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
| |
Collapse
|
29
|
Stahler A, Stintzing S, von Einem JC, Westphalen CB, Heinrich K, Krämer N, Michl M, Modest DP, von Weikersthal LF, Decker T, Kiani A, Heintges T, Kahl C, Kullmann F, Scheithauer W, Moehler M, Kaiser F, Kirchner T, Jung A, Heinemann V. Single-nucleotide variants, tumour mutational burden and microsatellite instability in patients with metastatic colorectal cancer: Next-generation sequencing results of the FIRE-3 trial. Eur J Cancer 2020; 137:250-259. [PMID: 32810748 DOI: 10.1016/j.ejca.2020.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Molecular biomarkers and primary tumour sidedness guide treatment decisions in metastatic colorectal cancer. Comprehensive molecular profiling aims to identify targetable alterations and measure tumour mutational burden (TMB) to enable precision oncology. MATERIAL AND METHODS FoundationOne® next-generation sequencing identified single-nucleotide variants (SNVs), copy number alterations, high TMB (TMB-H) and high-grade microsatellite instability (MSI-H) in patients treated in the FIRE-3 trial. Data were correlated with objective response rate (ORR), progression-free survival (PFS) and overall survival (OS). RESULTS Three hundred seventy-three (49.6%) of 752 patients provided material for this analysis. Frequent SNVs included TP53, APC, KRAS, PIK3CA, BRAF, SMAD4 and FBXW7. KRAS, BRAF V600E and SMAD4 mutations were confirmed as prognostic biomarkers by logistic penalised regression for ORR. OS was significantly longer in patients with SMAD4 wild-type (WT) tumours than in those with SMAD4-mutated tumours (hazard ratio = 0.59 [95% confidence interval {CI} = 0.34-1.01], p = 0.05), with a higher probability of ORR [odds ratio, SMAD4 SNV versus WT = 0.32 [95% CI = 0.10-0.98], p = 0.05] when treated with cetuximab. MSI-H (30.0%, p = 0.03) and TMB-H (17.3%, p = 0.003) tumours were enriched by FBXW7 mutations. Numerically lower ORR, OS and PFS were observed in MSI-H tumours. CONCLUSIONS RAS, BRAF V600E and SMAD4 mutations were identified as poor prognostic biomarkers in patients of the FIRE-3 trial, whereas improved outcome was observed for BRAF non-V600E mutation. SMAD4 mutation might provide predictive relevance for cetuximab efficacy. MSI-H tumours showed numerically lower ORR, OS and PFS.
Collapse
Affiliation(s)
- Arndt Stahler
- Department of Medicine III, University Hospital, University of Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Sebastian Stintzing
- Medical Department, Division of Hematology, Oncology and Tumor Immunology (CCM), Charité Universitaetsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany; DKTK, German Cancer Consortium, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jobst C von Einem
- Medical Department, Division of Hematology, Oncology and Tumor Immunology (CCM), Charité Universitaetsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christoph B Westphalen
- Department of Medicine III, University Hospital, University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Kathrin Heinrich
- Department of Medicine III, University Hospital, University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Nicole Krämer
- STABURO Statistical Consulting GmbH, Aschauer Strasse 26b, 81549, Munich, Germany
| | - Marlies Michl
- Department of Medicine III, University Hospital, University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Dominik P Modest
- Medical Department, Division of Hematology, Oncology and Tumor Immunology (CVK), Charité Universitaetsmedizin Berlin, MIttelallee 11, 10117, Berlin, Germany; DKTK, German Cancer Consortium, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | - Thomas Decker
- Onkologische Praxis, Elisabethenstrasse 19, 88212, Ravensburg, Germany
| | - Alexander Kiani
- Department of Medicine IV, Klinikum Bayreuth GmbH, Preuschwitzer Strasse 101, 95445, Bayreuth, Germany
| | - Tobias Heintges
- Department of Medicine II, Lukaskrankenhaus, Preussenstrasse 84, 41464, Neuss, Germany
| | - Christoph Kahl
- Department of Hematology, Oncology and Palliative Care, Klinikum Magdeburg gGmbH, Birkenallee 34, 39130, Magdeburg, Germany
| | - Frank Kullmann
- Department of Internal Medicine I, Klinikum Weiden, Soellnerstrasse 16, 92637, Weiden, Germany
| | - Werner Scheithauer
- Department of Internal Medicine I & CCC, Medical University Vienna, Heiligenstaedter Strasse 46-48, 1090, Vienna, Austria
| | - Markus Moehler
- University Medical Center Mainz, I. Dept. of Internal Medicine, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Florian Kaiser
- VK&K Studien GbR, Achdorfer Weg 5a, 84036, Landshut, Germany
| | - Thomas Kirchner
- Institute of Pathology, University of Munich, Thalkirchner Strasse 36a, 80337, Munich, Germany; DKTK, German Cancer Consortium, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Andreas Jung
- Institute of Pathology, University of Munich, Thalkirchner Strasse 36a, 80337, Munich, Germany; DKTK, German Cancer Consortium, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Volker Heinemann
- Department of Medicine III, University Hospital, University of Munich, Marchioninistrasse 15, 81377, Munich, Germany; DKTK, German Cancer Consortium, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
30
|
Rawat L, Hegde H, Hoti SL, Nayak V. Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells. Biomed Pharmacother 2020; 128:110243. [PMID: 32470748 DOI: 10.1016/j.biopha.2020.110243] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 01/20/2023] Open
Abstract
Piperlongumine (PL), a herbal drug extracted from long pepper (Piper longum L), is known for its anti-inflammatory and anti-cancer properties. Although, its anti-cancer potential has been evaluated in cancer models like breast, pancreatic, gastric, hepatocellular and lung carcinoma, there is no report on its bio-activity evaluation in intestinal cancers. Here, we report the anti-neoplastic potential of PL against human intestinal carcinoma in-vitro and its possible mechanisms of action. Cytotoxicity studies demonstrate that PL inhibits cell proliferation of INT-407 and HCT-116 cells in a concentration and time-dependent manner. Also, PL elevated the levels of intracellular reactive oxygen species, which may lead to lethal oxidative stress, mitochondrial dysfunction, and nuclear fragmentation. Remarkably, P53, P21, BAX, and SMAD4 were significantly upregulated after PL treatment whereas; BCL2 and SURVIVIN were down-regulated. Moreover, the combination study also shows the synergistic effect of PL with the current chemotherapeutic drug paclitaxel. These findings suggest that PL possesses anti-neoplastic properties in intestinal cancer cells.
Collapse
Affiliation(s)
- Laxminarayan Rawat
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726, India.
| | - Harsha Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, 590010, Karnataka, India.
| | | | - Vijayashree Nayak
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726, India.
| |
Collapse
|
31
|
Bidirectional tumor/stroma crosstalk promotes metastasis in mesenchymal colorectal cancer. Oncogene 2020; 39:2453-2466. [PMID: 31974473 DOI: 10.1038/s41388-020-1157-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/13/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022]
Abstract
Patients with the mesenchymal subtype colorectal cancer (CRC) have a poor prognosis, in particular patients with stroma-rich tumors and aberrant SMAD4 expression. We hypothesized that interactions between SMAD4-deficient CRC cells and cancer-associated fibroblasts provide a biological explanation. In transwell invasion assays, fibroblasts increased the invasive capacity of SMAD4-deficient HT29 CRC cells, but not isogenic SMAD4-proficient HT29 cells. A TGF-β/BMP-specific array showed BMP2 upregulation by fibroblasts upon stimulation with conditioned medium from SMAD4-deficient CRC cells, while also stimulating their invasion. In a mouse model for experimental liver metastasis, the co-injection of fibroblasts increased metastasis formation of SMAD4-deficient CRC cells (p = 0.02) but not that of SMAD4-proficient CRC cells. Significantly less metastases were seen in mice co-injected with BMP2 knocked-down fibroblasts. Fibroblast BMP2 expression seemed to be regulated by TRAIL, a factor overexpressed in SMAD4-deficient CRC cells. In a cohort of 146 stage III CRC patients, we showed that patients with a combination of high stromal BMP2 expression and the loss of tumor SMAD4 expression had a significantly poorer overall survival (HR 2.88, p = 0.04). Our results suggest the existence of a reciprocal loop in which TRAIL from SMAD4-deficient CRC cells induces BMP2 in fibroblasts, which enhances CRC invasiveness and metastasis.
Collapse
|
32
|
Iyer DN, Sin WY, Ng L. Linking stemness with colorectal cancer initiation, progression, and therapy. World J Stem Cells 2019; 11:519-534. [PMID: 31523371 PMCID: PMC6716088 DOI: 10.4252/wjsc.v11.i8.519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
The discovery of cancer stem cells caused a paradigm shift in the concepts of origin and development of colorectal cancer. Several unresolved questions remain in this field though. Are colorectal cancer stem cells the cause or an effect of the disease? How do cancer stem cells assist in colorectal tumor dissemination to distant organs? What are the molecular or environmental factors affecting the roles of these cells in colorectal cancer? Through this review, we investigate the key findings until now and attempt to elucidate the origins, physical properties, microenvironmental niches, as well as the molecular signaling network that support the existence, self-renewal, plasticity, quiescence, and the overall maintenance of cancer stem cells in colorectal cancer. Increasing data show that the cancer stem cells play a crucial role not only in the establishment of the primary colorectal tumor but also in the distant spread of the disease. Hence, we will also look at the mechanisms adopted by cancer stem cells to influence the development of metastasis and evade therapeutic targeting and its role in the overall disease prognosis. Finally, we will illustrate the importance of understanding the biology of these cells to develop improved clinical strategies to tackle colorectal cancer.
Collapse
Affiliation(s)
- Deepak Narayanan Iyer
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai-Yan Sin
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
33
|
Zhu SM, Park YR, Seo SY, Kim IH, Lee ST, Kim SW. Parthenolide inhibits transforming growth factor β1-induced epithelial-mesenchymal transition in colorectal cancer cells. Intest Res 2019; 17:527-536. [PMID: 31426622 PMCID: PMC6821947 DOI: 10.5217/ir.2019.00031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Background/Aims Transforming growth factor-β1 (TGF-β1) induction of epithelial-mesenchymal transition (EMT) is one of the mechanisms by which colorectal cancer (CRC) cells acquire migratory and invasive capacities, and subsequently metastasize. Parthenolide (PT) expresses multiple anti-cancer and anti-inflammatory activities that inhibit nuclear factor κB by targeting the IκB kinase complex. In the present study, we aimed to investigate whether PT can inhibit TGF-β1-induced EMT in CRC cell lines. Methods HT-29 and SW480 cell lines were used in the experiment. Cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and sub-G1 analysis was measured by flow cytometry. The induction of EMT by TGF-β1 and inhibition of the process by PT was analyzed by phase contrast microscopy, wounding healing, cellular migration and invasion assays, and Western blotting. Results TGF-β1 inhibits HT-29 cell proliferation, but has no effect on SW480 cell proliferation; different concentrations of TGF-β1 did not induce apoptosis in HT-29 and SW480 cells. PT attenuates TGF-β1-induced elongated, fibroblast-like shape changing in cells. PT inhibits TGF-β1-induced cell migration and cell invasion. In addition, other EMT markers such as β-catenin, Vimentin, Snail, and Slug were suppressed by PT, while E-cadherin was increased by PT. Conclusions Our findings show that PT inhibits TGF-β1-induced EMT by suppressing the expression of the mesenchymal protein and increasing expression of the epithelial protein. These findings suggest a novel approach for CRC treatment by suppression of TGF-β1-induced EMT.
Collapse
Affiliation(s)
- Shi Mao Zhu
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University, and Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Yong Ran Park
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University, and Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Seung Yong Seo
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University, and Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - In Hee Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University, and Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Soo Teik Lee
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University, and Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University, and Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
34
|
Lin Z, Zhang L, Zhou J, Zheng J. Silencing Smad4 attenuates sensitivity of colorectal cancer cells to cetuximab by promoting epithelial‑mesenchymal transition. Mol Med Rep 2019; 20:3735-3745. [PMID: 31485652 PMCID: PMC6755154 DOI: 10.3892/mmr.2019.10597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/04/2019] [Indexed: 12/13/2022] Open
Abstract
The aberrant expression of tumor suppressor Smad4 often occurs in colorectal cancer (CRC), and this phenomenon is believed to be associated with drug resistance. The present study aimed to investigate the effects of Smad4 on the sensitivity of CRC cells to cetuximab, and the possible mechanism underlying such an effect. A total of 629 colorectal adenocarcinoma cases were downloaded from The Cancer Genome Atlas (TCGA) database, and a Smad4 mutation rate of ~21% was demonstrated among the cases. Low expression of Smad4 was present in CRC tissues analyzed by TCGA and in four CRC cell lines, as determined by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis. Cell Counting kit‑8 (CCK‑8) was used to measure the effects of different concentrations of cetuximab on SW480 cell viability at 24 and 48 h. The results demonstrated that treatment of SW480 cells with 20 µg/ml cetuximab for 48 h markedly reduced cell viability. In addition, plasmids were transfected into SW480 cells to induce Smad4 silencing or overexpression. Silencing Smad4 attenuated the sensitivity of SW480 CRC cells to cetuximab; this effect was reflected in increased cell viability and slightly increased migration and invasion, as determined by CCK‑8, wound scratch and Transwell analyses. RT‑qPCR and western blotting was performed to assess the expression levels of apoptosis‑ and epithelial‑mesenchymal transition (EMT)‑related genes. Silencing Smad4 partly reversed the effects of cetuximab on the mRNA and protein expression levels of vimentin, Bax/Bcl‑2 and E‑cadherin. However, Smad4 overexpression enhanced SW480 cell sensitivity to cetuximab. In conclusion, Smad4 may serve a vital role in the sensitivity of CRC cells to chemotherapeutic drugs by promoting EMT.
Collapse
Affiliation(s)
- Zhenlv Lin
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lin Zhang
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Junfeng Zhou
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jiantao Zheng
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
35
|
Kim H, Kim BH, Lee D, Shin E. Genomic alterations in signet ring and mucinous patterned colorectal carcinoma. Pathol Res Pract 2019; 215:152566. [PMID: 31400926 DOI: 10.1016/j.prp.2019.152566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The genetic alterations (GAs) in two specific histological subtypes of colorectal cancer (CRC), signet ring cell colorectal carcinoma (SRC) and mucinous colorectal carcinoma (MC), are not well known. In the present study, we employed next-generation sequencing to perform genetic profiling of SRC and MC, and compared the spectrum of GAs with the alterations found in conventional type colorectal cancer (CON). MATERIALS AND METHODS We selected 46 CRCs comprising 17 SRCs and mucinous carcinoma with signet ring cell component (SRCCs), 17 MCs, and 12 CONs with microsatellite stability or microsatellite instability-low. Deep sequencing was performed using a targeted cancer panel composed of 171 cancer-related genes. SMAD4 protein expression was evaluated by immunohistochemical staining. RESULTS We detected 108 mutations in 18 different genes. Overall, 2.34 GAs were detected per tumor (range, 0-14). The overall frequency of GA and alteration in targetable genes was less prevalent in SRC/SRCC compared to the frequency of alteration in MC/CON (p = 0.040 and p < 0.001, respectively). The GA profile of SRC/SRCC included TP53 (8/17, 47.1%), SMAD4 (5/17, 29.4%), KRAS (4/17.23.5%), APC (4/17.23.5%), PIK3CA, ATM, BRAF, and PIK3R1 (1/17, 5.9%, each). KRAS mutation was significantly less prevalent in SRC/SRCC compared to the number of KRAS mutations in MC (12/17, 70.6%) and CON (9/12, 75.0%) (p = 0.015 and 0.01, respectively). Compared to the 152 non-hypermutated CONs from TCGA database, SMAD4 alteration was predominant in SRC/SRCC (p = 0.045) with aberrant loss of SMAD4 expression (13/17, 76.5%) compared to the SMAD4 alterations in CON (5/15, 33.3%) (p = 0.031). Accordingly, KRAS (12/17, 70.6%), APC (6/17, 35.3%), SMAD4, TP53 (4/17, 23.5%, each), PIK3CA (3/17, 17.6%), AKT1, ATM, BRAF, EGFR, and EZH2 (1/17, 5.9%, each) were altered in MC. APC and TP53 mutations were less frequent in MC compared to those in TCGA-CON (p < 0.001 and 0.003, respectively) whereas KRAS mutation was prevalent (p = 0.041). CONCLUSION Alterations of known cancer associated genes and targetable genes in SRC/SRCC are infrequent. The profile of GAs in SRC/SRCC and MC differs from the GA profile of CON. Specifically, SMAD4 mutation and loss of SMAD4 expression is frequently found in SRC/SRCC. The genetic profiles revealed in the present study may aid in developing precision medicine for CRC treatment based on histological subtype.
Collapse
Affiliation(s)
- Hyunchul Kim
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi, South Korea
| | - Bo-Hyung Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University College of Medicine and Hospital, Seoul, South Korea
| | - Donghwan Lee
- Department of Statistics, Ewha Womans University, Seoul, South Korea
| | - Eun Shin
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi, South Korea; Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, South Korea.
| |
Collapse
|
36
|
Yoo SY, Lee JA, Shin Y, Cho NY, Bae JM, Kang GH. Clinicopathological Characterization and Prognostic Implication of SMAD4 Expression in Colorectal Carcinoma. J Pathol Transl Med 2019; 53:289-297. [PMID: 31237997 PMCID: PMC6755646 DOI: 10.4132/jptm.2019.06.07] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Background SMAD family member 4 (SMAD4) has gained attention as a promising prognostic factor of colorectal cancer (CRC) as well as a key molecule to understand the tumorigenesis and progression of CRC. Methods We retrospectively analyzed 1,281 CRC cases immunohistochemically for their expression status of SMAD4, and correlated this status with clinicopathologic and molecular features of CRCs. Results A loss of nuclear SMAD4 was significantly associated with frequent lymphovascular and perineural invasion, tumor budding, fewer tumor-infiltrating lymphocytes, higher pT and pN category, and frequent distant metastasis. In contrast, tumors overexpressing SMAD4 showed a significant association with sporadic microsatellite instability. After adjustment for TNM stage, tumor differentiation, adjuvant chemotherapy, and lymphovascular invasion, the loss of SMAD4 was found to be an independent prognostic factor for worse 5-year progression-free survival (hazard ratio [HR], 1.27; 95% confidence interval [CI], 1.01 to 1.60; p=.042) and 7-year cancer-specific survival (HR, 1.45; 95% CI, 1.06 to 1.99; p=.022). Conclusions We confirmed the value of determining the loss of SMAD4 immunohistochemically as an independent prognostic factor for CRC in general. In addition, we identified some histologic and molecular features that might be clues to elucidate the role of SMAD4 in colorectal tumorigenesis and progression.
Collapse
Affiliation(s)
- Seung-Yeon Yoo
- Department of Pathology, Seoul National University Hospital, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yunjoo Shin
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Siraj AK, Pratheeshkumar P, Divya SP, Parvathareddy SK, Bu R, Masoodi T, Kong Y, Thangavel S, Al-Sanea N, Ashari LH, Abduljabbar A, Al-Homoud S, Al-Dayel F, Al-Kuraya KS. TGFβ-induced SMAD4-dependent Apoptosis Proceeded by EMT in CRC. Mol Cancer Ther 2019; 18:1312-1322. [PMID: 31053577 DOI: 10.1158/1535-7163.mct-18-1378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022]
Abstract
Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. In Saudi Arabia, colorectal cancer is more aggressive and presents at younger age, warranting new treatment strategies. Role of TGFβ/Smad4 signaling pathway in initiation and progression of colorectal cancer is well documented. This study examined the role of TGFβ/Smad4 signaling pathway in a large cohort of Saudi patients with colorectal cancer, followed by in vitro analysis to dissect the dual role of TGFβ on inducing epithelial-to-mesenchymal transition (EMT) and apoptosis. Our study demonstrated high frequency of Smad4 alterations with low expression of Smad4 protein identifying a subgroup of aggressive colorectal cancer to be an independent marker for poor prognosis. Functional studies using colorectal cancer cells show that TGFβ induces Smad4-dependent EMT followed by apoptosis. Induction of mesenchymal transcriptional factors, Snail1 and Zeb1, was essential for TGFβ-induced apoptosis. Our results indicate that KLF5 acts as an oncogene in colorectal cancer cells regardless of Smad4 expression and inhibition of KLF5 is requisite for TGFβ-induced apoptosis. Furthermore, TGFβ/Smad4 signal inhibits the transcription of KLF5 that in turn switches Sox4 from tumor promoter to suppressor. A high incidence of Smad4 alterations were found in the Saudi patients with colorectal cancer. Functional study results indicate that TGFβ induces Smad4-dependent EMT followed by apoptosis in colorectal cancer cells.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Poyil Pratheeshkumar
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Rong Bu
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tariq Masoodi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Yan Kong
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saravanan Thangavel
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nasser Al-Sanea
- Department of Surgery, Colorectal Unit, Riyadh, Saudi Arabia
| | - Luai H Ashari
- Department of Surgery, Colorectal Unit, Riyadh, Saudi Arabia
| | | | - Samar Al-Homoud
- Department of Surgery, Colorectal Unit, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
38
|
Ramazzotti D, Graudenzi A, De Sano L, Antoniotti M, Caravagna G. Learning mutational graphs of individual tumour evolution from single-cell and multi-region sequencing data. BMC Bioinformatics 2019; 20:210. [PMID: 31023236 PMCID: PMC6485126 DOI: 10.1186/s12859-019-2795-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A large number of algorithms is being developed to reconstruct evolutionary models of individual tumours from genome sequencing data. Most methods can analyze multiple samples collected either through bulk multi-region sequencing experiments or the sequencing of individual cancer cells. However, rarely the same method can support both data types. RESULTS We introduce TRaIT, a computational framework to infer mutational graphs that model the accumulation of multiple types of somatic alterations driving tumour evolution. Compared to other tools, TRaIT supports multi-region and single-cell sequencing data within the same statistical framework, and delivers expressive models that capture many complex evolutionary phenomena. TRaIT improves accuracy, robustness to data-specific errors and computational complexity compared to competing methods. CONCLUSIONS We show that the application of TRaIT to single-cell and multi-region cancer datasets can produce accurate and reliable models of single-tumour evolution, quantify the extent of intra-tumour heterogeneity and generate new testable experimental hypotheses.
Collapse
Affiliation(s)
| | - Alex Graudenzi
- Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Viale Sarca 336, Milan, 20126 Italy
- Institute of Molecular Bioimaging and Physiology of the Italian National Research Council (IBFM-CNR), Viale F.lli Cervi 93, Segrate, Milan, 20090 Italy
| | - Luca De Sano
- Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Viale Sarca 336, Milan, 20126 Italy
| | - Marco Antoniotti
- Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Viale Sarca 336, Milan, 20126 Italy
- Milan Center for Neuroscience, Università degli Studi di Milano-Bicocca, San Gerardo Hospital, Via Pergolesi 33, Monza, 20052 Italy
| | - Giulio Caravagna
- Centre for Evolution and Cancer, The Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG UK
| |
Collapse
|
39
|
Liang Q, Tang C, Tang M, Zhang Q, Gao Y, Ge Z. TRIM47 is up-regulated in colorectal cancer, promoting ubiquitination and degradation of SMAD4. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:159. [PMID: 30979374 PMCID: PMC6461818 DOI: 10.1186/s13046-019-1143-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Background Tripartite motif 47 (TRIM47), a member of the TRIM family proteins, plays a key role in many types of cancers including colorectal cancer (CRC). We found that levels of TRIM47 mRNA and protein were increased significantly in colorectal tumors compared with nontumor tissues and the increased levels were associated with advanced tumor stage and poor outcome. Methods We used quantitative polymerase chain reaction and western blot to measure levels of TRIM47 mRNA and protein in human colorectal cancer and paired normal tissues. TRIM47 was knocked down and overexpressed in colorectal cancer cells, and the effects on cell proliferation, migration and growth of xenograft tumors in nude mice were assessed. The signaling pathways were examined by western blot and immunoprecipitation assays. Results TRIM47 promoted CRC proliferation and metastasis in vitro and in vivo as an oncogene. Mechanistically, TRIM47 interacted physically with SMAD4, increasing its ubiquitination and degradation. Loss of SMAD4 leaded to up-regulation of CCL15 expression and caused growth and invasion in human CRC cells through the CCL15-CCR1 signaling. Moreover, TRIM47 overexpression played a role in CRC chemoresistance in response to 5-FU therapy. Conclusions Our study demonstrated a functional role of the TRIM47-SMAD4-CCL15 axis in CRC progression and suggested a potential target for CRC therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1143-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qian Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Chaotao Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Mingyu Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Qingwei Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Yunjie Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Zhizheng Ge
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
40
|
Liao X, Hao Y, Zhang X, Ward S, Houldsworth J, Polydorides AD, Harpaz N. Clinicopathological characterization of SMAD4-mutated intestinal adenocarcinomas: A case-control study. PLoS One 2019; 14:e0212142. [PMID: 30730996 PMCID: PMC6366887 DOI: 10.1371/journal.pone.0212142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
The SMAD4 tumor suppressor gene product inhibits transforming growth factor-β-mediated signaling and is mutated in ~10% of colorectal carcinomas. The prognostic significance of SMAD4 mutations has been controversial. We studied the pathological and clinical characteristics of SMAD4-mutated intestinal adenocarcinomas using a retrospective case-control study design. Cases and controls were identified among 443 primary adenocarcinomas that had undergone next generation DNA sequencing (NGS) with the Ion AmpliSeq Cancer Hotspot Panel v2, which evaluates 50 cancer-related genes. Twenty-eight SMAD4-mutated (SMAD4m) patients were matched 1:2 with 56 consecutive SMAD4 wild-type (SMAD4wt) control patients from the same analysis stream. Compared with the SMAD4wt controls, the SMAD4m tumors were of higher stage (P = 0.026) and were more likely to feature mucinous differentiation (P = 0.0000), to occur in the setting of Crohn’s disease (P = 0.0041), and to harbor concurrent RAS mutations (P = 0.0178). Tumor mucin content was significantly correlated with mutations involving the MH2 domain of the SMAD4 protein (P = 0.0338). Correspondence between mutation sites and morphology was demonstrated directly in a mixed adenocarcinoma and neuroendocrine tumor where SMAD4 mutations involving different protein domains were found in histologically disparate tumor regions despite both containing identical KRAS and TP53 mutations.
Collapse
Affiliation(s)
- Xiaoyan Liao
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| | - Yansheng Hao
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Xiaofei Zhang
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Stephen Ward
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jane Houldsworth
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alexandros D. Polydorides
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Noam Harpaz
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
41
|
Bhullar DS, Barriuso J, Mullamitha S, Saunders MP, O'Dwyer ST, Aziz O. Biomarker concordance between primary colorectal cancer and its metastases. EBioMedicine 2019; 40:363-374. [PMID: 30733075 PMCID: PMC6413540 DOI: 10.1016/j.ebiom.2019.01.050] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/13/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022] Open
Abstract
Background The use of biomarkers to target anti-EGFR treatments for metastatic colorectal cancer (CRC) is well-established, requiring molecular analysis of primary or metastatic biopsies. We aim to review concordance between primary CRC and its metastatic sites. Methods A systematic review and meta-analysis of all published studies (1991–2018) reporting on biomarker concordance between primary CRC and its metastatic site(s) was undertaken according to PRISMA guidelines using several medical databases. Studies without matched samples or using peripheral blood for biomarker analysis were excluded. Findings 61 studies including 3565 patient samples were included. Median biomarker concordance for KRAS (n = 50) was 93.7% [[67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100]], NRAS (n = 11) was 100% [[90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100]], BRAF (n = 22) was 99.4% [[80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100]], and PIK3CA (n = 17) was 93% [[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100]]. Meta-analytic pooled discordance was 8% for KRAS (95% CI = 5–10%), 8% for BRAF (95% CI = 5–10%), 7% for PIK3CA (95% CI = 2–13%), and 28% overall (95% CI = 14–44%). The liver was the most commonly biopsied metastatic site (n = 2276), followed by lung (n = 438), lymph nodes (n = 1123), and peritoneum (n = 132). Median absolute concordance in multiple biomarkers was 81% (5–95%). Interpretation Metastatic CRC demonstrates high concordance across multiple biomarkers, suggesting that molecular testing of either the primary or liver and lung metastasis is adequate. More research on colorectal peritoneal metastases is required.
Collapse
Affiliation(s)
- D S Bhullar
- Colorectal & Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Science, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - J Barriuso
- Colorectal & Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Science, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - S Mullamitha
- Colorectal & Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Science, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - M P Saunders
- Colorectal & Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Science, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - S T O'Dwyer
- Colorectal & Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Science, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - O Aziz
- Colorectal & Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Science, Faculty of Biology, Medicine and Health, University of Manchester, UK.
| |
Collapse
|
42
|
Zhou J, Zhang C, Zhou B, Jiang D. miR-183 modulated cell proliferation and apoptosis in ovarian cancer through the TGF-β/Smad4 signaling pathway. Int J Mol Med 2019; 43:1734-1746. [PMID: 30720057 PMCID: PMC6414177 DOI: 10.3892/ijmm.2019.4082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
An increasing body of evidence has revealed that the aberrant expression of microRNAs (miRNAs/miRs) is involved in the development and progression of ovarian cancer (OC). miR-183 has been demonstrated to act as a tumor suppressor and oncogene in various types of human cancers. However, the biological role of miR-183 in OC still remains unclear. The aim of the present study was to investigate the role of miR-183 and evaluate its underlying mechanism in OC. In the present study, miR-183 was observed to be upregulated in OC tissues and cell lines as determined by reverse transcription-quantitative polymerase chain reaction. The effects of miR-183 on OC were further investigated via western blotting, MTT, wound healing, Transwell and immunofluorescence analyses. Downregulation of miR-183 markedly inhibited cell proliferation, migration and invasion, and promoted apoptosis in OC cells. Furthermore, it was initially confirmed that mothers against decapentaplegic homolog 4 (Smad4) was identified as an efficient target of miR-183 by luciferase activity assay. Finally, the results revealed that miR-183 directly regulated biological function via the transforming growth factor (TGF)-β/Smad4 signaling pathway in OC cells. In conclusion, the results of the present study suggested that miR-183 exerted tumor-promoting roles in OC, at least partially by regulating Smad4 via the TGF-β/Smad4 signaling pathway. Therefore, miR-183 may serve as a potential target for the diagnosis and prognosis of OC.
Collapse
Affiliation(s)
- Junhui Zhou
- Department of Nursing, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Caixia Zhang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Bo Zhou
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Daqiong Jiang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
43
|
Matevska-Geshkovska N, Staninova-Stojovska M, Kapedanovska-Nestorovska A, Petrushevska-Angelovska N, Panovski M, Grozdanovska B, Mitreski N, Dimovski A. Influence of MSI and 18q LOH markers on capecitabine adjuvant monotherapy in colon cancer patients. Pharmgenomics Pers Med 2018; 11:193-203. [PMID: 30464574 PMCID: PMC6219100 DOI: 10.2147/pgpm.s172467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate whether pretreatment analysis of selected molecular markers can be used for the prediction of disease-free survival (DFS)/overall survival (OS) of capecitabine adjuvant monotherapy in colon cancer patients. PATIENTS AND METHODS A total of 126 patients enrolled in a capecitabine Phase IV clinical trial were analyzed for microsatellite instability (MSI), 18q loss of heterozygosity (LOH), thymidylate synthase (TYMS) 5' variable number of tandem repeat (VNTR), and methylene tetrahydrofolate reductase (MTHFR) C677T variants. The significance in predicting 5-year DFS/OS was assessed by Kaplan-Meier and Cox regression analyses. RESULTS The MSI-high (MSI-H) genotype was significantly associated with DFS (HR 0.205, 95% CI 0.05-0.88, P=0.033) and OS (HR 0.208, 95% CI 0.05-0.89, P=0.035) compared to the microsatellite stable genotype. In models stratified according to clinicopathologic characteristics, the MSI-H genotype remained a positive predictive factor for DFS/OS only in patients with stage III (P=0.023) and patients with tumors localized proximally to the splenic flexure (P=0.004). Distal colon cancers with 18q LOH have a greater survival rate when treated with capecitabine than patients with stable tumors (81.3% vs 50.0%, HR for relapse 0.348, 95% CI 0.13-0.97, P=0.043). TYMS 5'VNTR and MTHFR C677T variants were not associated with DFS or OS. CONCLUSION MSI and 18q LOH markers have the potential to be utilized in the selection of colon cancer patients eligible for capecitabine adjuvant monotherapy.
Collapse
Affiliation(s)
- Nadica Matevska-Geshkovska
- Center for Biomolecular Pharmaceutical Analyses, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia,
| | - Marija Staninova-Stojovska
- Center for Biomolecular Pharmaceutical Analyses, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia,
| | | | | | - Milco Panovski
- University Clinic for Abdominal Surgery, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Biljana Grozdanovska
- University Clinic for Oncology and Radiotherapy, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Nenad Mitreski
- University Clinic for Oncology and Radiotherapy, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Aleksandar Dimovski
- Center for Biomolecular Pharmaceutical Analyses, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia,
| |
Collapse
|
44
|
Song N, Kim K, Shin A, Park JW, Chang HJ, Shi J, Cai Q, Kim DY, Zheng W, Oh JH. Colorectal cancer susceptibility loci and influence on survival. Genes Chromosomes Cancer 2018; 57:630-637. [DOI: 10.1002/gcc.22674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nan Song
- Cancer Research Institute; Seoul National University College of Medicine; Seoul South Korea
| | - Kyeezu Kim
- Division of Epidemiology and Biostatistics; University of Illinois at Chicago School of Public Health; Chicago Illinois
| | - Aesun Shin
- Cancer Research Institute; Seoul National University College of Medicine; Seoul South Korea
- Department of Preventive Medicine; Seoul National University College of Medicine; Seoul South Korea
- Molecular Epidemiology Branch, National Cancer Center; Goyang South Korea
| | - Ji Won Park
- Department of Surgery; Seoul National University College of Medicine and Hospital; Seoul South Korea
- Center for Colorectal Cancer, National Cancer Center; Goyang South Korea
| | - Hee Jin Chang
- Center for Colorectal Cancer, National Cancer Center; Goyang South Korea
| | - Jiajun Shi
- Division of Epidemiology, Department of Medicine; Vanderbilt University School of Medicine; Nashville Tennessee
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine; Vanderbilt University School of Medicine; Nashville Tennessee
| | - Dae Yong Kim
- Center for Colorectal Cancer, National Cancer Center; Goyang South Korea
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine; Vanderbilt University School of Medicine; Nashville Tennessee
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center; Goyang South Korea
| |
Collapse
|
45
|
Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett 2018; 16:9-18. [PMID: 29928381 DOI: 10.3892/ol.2018.8679] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) results from the progressive accumulation of multiple genetic and epigenetic aberrations within cells. The progression from colorectal adenoma to carcinoma is caused by three major pathways: Microsatellite instability, chromosomal instability and CpG island methylator phenotype. A growing body of scientific evidences suggests that CRC is a heterogeneous disease, and genetic characteristics of the tumors determine their prognostic outcome and response to targeted therapies. Early diagnosis and effective targeted therapies based on a current knowledge of the molecular characteristics of CRC are essential to the successful treatment of CRC. Therefore, the present review summarized the current understanding of the molecular characteristics of CRC, and discussed its implications for diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Hong-Quan Duong
- Department of Cancer Research, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi 100000, Vietnam
| |
Collapse
|
46
|
Abstract
Smad4 or DPC4 belongs to a family of signal transduction proteins that are phosphorylated and activated by transmembrane serine-threonine receptor kinases in response to transforming growth factor beta (TGF-β) signaling via several pathways. The gene acts as a tumour suppressor gene and inactivation of smad4/DPC4 is best recognised in pancreatic cancer. However, smad4/DPC4 is also mutated in other conditions and cancers such as juvenile polyposis syndrome with and without hereditary haemorrhagic telangiectasia, colorectal and prostate cancers.Immunohistochemistry for smad4/DPC4 protein is most useful in separating benign/reactive conditions from pancreatic cancer in needle/core biopsies. In normal and reactive states, the protein is localised to the cytoplasm and nucleus, while the protein is lost in high-grade pancreatic intraepithelial neoplasia/carcinoma in situ and pancreatic cancer.
Collapse
Affiliation(s)
- Aoife J McCarthy
- Laboratory Medicine Program, Department of Anatomical Pathology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Runjan Chetty
- Laboratory Medicine Program, Department of Anatomical Pathology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Mei Z, Shao YW, Lin P, Cai X, Wang B, Ding Y, Ma X, Wu X, Xia Y, Zhu D, Shu Y, Fu Z, Gu Y. SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients. BMC Cancer 2018; 18:479. [PMID: 29703253 PMCID: PMC5921972 DOI: 10.1186/s12885-018-4298-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/22/2018] [Indexed: 02/08/2023] Open
Abstract
Background Cetuximab, an anti-EGFR monoclonal antibody, is used in combination with chemotherapy in clinic to enhance the outcome in metastatic colorectal cancer (mCRC) patients with only ~ 20% response rate. To date only activating mutations in KRAS and NRAS have been identified as poor prognosis biomarkers in cetuximab-based treatment, which makes an urgent need for identification of novel prognosis biomarkers to precisely predict patients’ response in order to maximize the benefit. Methods In this study, we analysed the mutation profiles of 33 Chinese mCRC patients using comprehensive next-generation sequencing (NGS) targeting 416 cancer-relevant genes before cetuximab treatment. Upon receiving cetuximab-based therapy, patients were evaluated for drug response, and the progression-free survival (PFS) was monitored. The association of specific genetic alterations and cetuximab efficacy was analyzed. Results Patients carrying SMAD4 mutations (SMAD4mut, n = 8) or NF1 mutations (NF1mut, n = 4) had significantly shorter PFS comparing to those carrying wildtype SMAD4 (SMAD4wt, n = 25) (P = 0.0081) or wildtype NF1 (NF1wt, n = 29) (P = 0.0028), respectively. None of the SMAD4mut or NF1mut patients showed response to cetuximab when assessed at 12-week post-treatment. Interestingly, two patients carrying both SMAD4mut and NF1mut showed the shortest PFS among all the patients. Conclusions Our results demonstrated that SMAD4 and NF1 mutations can serve as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese mCRC patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-4298-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhu Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang W Shao
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, ON, Canada.,School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peinan Lin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaomin Cai
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Biao Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Ding
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, ON, Canada
| | - Xiangyuan Ma
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, ON, Canada
| | - Xue Wu
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, ON, Canada
| | - Yewei Xia
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Dongqin Zhu
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
48
|
Coebergh van den Braak RRJ, Sieuwerts AM, Lalmahomed ZS, Smid M, Wilting SM, Bril SI, Xiang S, van der Vlugt-Daane M, de Weerd V, van Galen A, Biermann K, van Krieken JHJM, Kloosterman WP, Foekens JA, Martens JWM, IJzermans JNM. Confirmation of a metastasis-specific microRNA signature in primary colon cancer. Sci Rep 2018; 8:5242. [PMID: 29588449 PMCID: PMC5869672 DOI: 10.1038/s41598-018-22532-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022] Open
Abstract
The identification of patients with high-risk stage II colon cancer who may benefit from adjuvant therapy may allow the clinical approach to be tailored for these patients based on an understanding of tumour biology. MicroRNAs have been proposed as markers of the prognosis or treatment response in colorectal cancer. Recently, a 2-microRNA signature (let-7i and miR-10b) was proposed to identify colorectal cancer patients at risk of developing distant metastasis. We assessed the prognostic value of this signature and additional candidate microRNAs in an independent, clinically well-defined, prospectively collected cohort of primary colon cancer patients including stage I-II colon cancer without and stage III colon cancer with adjuvant treatment. The 2-microRNA signature specifically predicted hepatic recurrence in the stage I-II group, but not the overall ability to develop distant metastasis. The addition of miR-30b to the 2-microRNA signature allowed the prediction of both distant metastasis and hepatic recurrence in patients with stage I-II colon cancer who did not receive adjuvant chemotherapy. Available gene expression data allowed us to associate miR-30b expression with axon guidance and let-7i expression with cell adhesion, migration, and motility.
Collapse
Affiliation(s)
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Cancer Genomics Center Netherlands, Amsterdam, The Netherlands
| | - Zarina S Lalmahomed
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandra I Bril
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Shanshan Xiang
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michelle van der Vlugt-Daane
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anne van Galen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katharina Biermann
- Department of Pathology, Erasmus MC Medical Center, Rotterdam, The Netherlands
| | - J Han J M van Krieken
- Department of Pathology, Radboud UMC, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Wigard P Kloosterman
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Cancer Genomics Center Netherlands, Amsterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
49
|
Principe DR, DeCant B, Staudacher J, Vitello D, Mangan RJ, Wayne EA, Mascariñas E, Diaz AM, Bauer J, McKinney RD, Khazaie K, Pasche B, Dawson DW, Munshi HG, Grippo PJ, Jung B. Loss of TGFβ signaling promotes colon cancer progression and tumor-associated inflammation. Oncotarget 2018; 8:3826-3839. [PMID: 27270652 PMCID: PMC5354798 DOI: 10.18632/oncotarget.9830] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/14/2016] [Indexed: 01/05/2023] Open
Abstract
TGFβ has both tumor suppressive and tumor promoting effects in colon cancer. Also, TGFβ can affect the extent and composition of inflammatory cells present in tumors, contextually promoting and inhibiting inflammation. While colon tumors display intratumoral inflammation, the contributions of TGFβ to this process are poorly understood. In human patients, we found that epithelial loss of TGFβ signaling was associated with increased inflammatory burden; yet overexpression of TGFβ was also associated with increased inflammation. These findings were recapitulated in mutant APC models of murine tumorigenesis, where epithelial truncation of TGFBR2 led to lethal inflammatory disease and invasive colon cancer, mediated by IL8 and TGFβ1. Interestingly, mutant APC mice with global suppression of TGFβ signals displayed an intermediate phenotype, presenting with an overall increase in IL8-mediated inflammation and accelerated tumor formation, yet with a longer latency to the onset of disease observed in mice with epithelial TGFBR-deficiency. These results suggest that the loss of TGFβ signaling, particularly in colon epithelial cells, elicits a strong inflammatory response and promotes tumor progression. This implies that treating colon cancer patients with TGFβ inhibitors may result in a worse outcome by enhancing inflammatory responses.
Collapse
Affiliation(s)
- Daniel R Principe
- University of Illinois College of Medicine, Urbana-Champaign, IL, USA
| | - Brian DeCant
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jonas Staudacher
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dominic Vitello
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Riley J Mangan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Elizabeth A Wayne
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Emman Mascariñas
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Andrew M Diaz
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jessica Bauer
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ronald D McKinney
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Khashayarsha Khazaie
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Boris Pasche
- Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hidayatullah G Munshi
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Barbara Jung
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
50
|
Dopeso H, Rodrigues P, Bilic J, Bazzocco S, Cartón-García F, Macaya I, de Marcondes PG, Anguita E, Masanas M, Jiménez-Flores LM, Martínez-Barriocanal Á, Nieto R, Segura MF, Schwartz Jr S, Mariadason JM, Arango D. Mechanisms of inactivation of the tumour suppressor gene RHOA in colorectal cancer. Br J Cancer 2018; 118:106-116. [PMID: 29206819 PMCID: PMC5765235 DOI: 10.1038/bjc.2017.420] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Reduced RHOA signalling has been shown to increase the growth/metastatic potential of colorectal tumours. However, the mechanisms of inactivation of RHOA signalling in colon cancer have not been characterised. METHODS A panel of colorectal cancer cell lines and large cohorts of primary tumours were used to investigate the expression and activity of RHOA, as well as the presence of RHOA mutations/deletions and promoter methylation affecting RHOA. Changes in RHOA expression were assessed by western blotting and qPCR after modulation of microRNAs, SMAD4 and c-MYC. RESULTS We show here that RHOA point mutations and promoter hypermethylation do not significantly contribute to the large variability of RHOA expression observed among colorectal tumours. However, RHOA copy number loss was observed in 16% of colorectal tumours and this was associated with reduced RHOA expression. Moreover, we show that miR-200a/b/429 downregulates RHOA in colorectal cancer cells. In addition, we found that TGF-β/SMAD4 upregulates the RHOA promoter. Conversely, RHOA expression is transcriptionally downregulated by canonical Wnt signalling through the Wnt target gene c-MYC that interferes with the binding of SP1 to the RHOA promoter in colon cancer cells. CONCLUSIONS We demonstrate a complex pattern of inactivation of the tumour suppressor gene RHOA in colon cancer cells through genetic, transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Higinio Dopeso
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Paulo Rodrigues
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Josipa Bilic
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Sarah Bazzocco
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Fernando Cartón-García
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Irati Macaya
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Priscila Guimarães de Marcondes
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Estefanía Anguita
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Marc Masanas
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR)-UAB, Barcelona 08035, Spain
| | - Lizbeth M Jiménez-Flores
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Rocío Nieto
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Miguel F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR)-UAB, Barcelona 08035, Spain
| | - Simo Schwartz Jr
- Drug Delivery and Targeting Group, CIBBIM Nanomedicine, Vall d’Hebron Research Institute (VHIR), Barcelona 08035, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50018, Spain
| | - John M Mariadason
- La Trobe University School of Cancer Medicine, Olivia Newton-John Cancer Research Institute, Melbourne 3084, VIC, Australia
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| |
Collapse
|