1
|
Ovcinnikovs V, Dijkman K, Zom GG, Beurskens FJ, Trouw LA. Enhancing complement activation by therapeutic anti-tumor antibodies: Mechanisms, strategies, and engineering approaches. Semin Immunol 2025; 77:101922. [PMID: 39742715 DOI: 10.1016/j.smim.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025]
Abstract
The complement system plays an integral role in both innate and adaptive immune responses. Beyond its protective function against infections, complement is also known to influence tumor immunity, where its activation can either promote tumor progression or mediate tumor cell destruction, depending on the context. One such context can be provided by antibodies, with their inherent capacity to activate the classical complement pathway. In recent years, our understanding of the mechanisms governing complement activation by IgG and IgM antibodies has expanded significantly. At the same time, preclinical and clinical studies on antibodies such as rituximab, ofatumumab, and daratumumab have provided evidence for the role of complement in therapeutic success, encouraging strategies to further enhance its activity. In this review we examine the main determinants of antibody-mediated complement activation, highlighting the importance of antibody subclass, affinity, valency, and geometry of antigen engagement. We summarize the evidence for complement involvement in anti-tumor activity and challenges of accurately estimating the extent of its contribution to therapeutic efficacy. Furthermore, we explore several engineering approaches designed to enhance complement activation, including increased Fc oligomerization and C1q affinity, bispecific C1q-recruiting antibodies, IgG subclass chimeras, as well as antibody and paratope combinations. Strategies targeting membrane-bound complement regulatory proteins to overcome tumor-associated complement inhibition are also discussed as a method to boost therapeutic efficacy. Finally, we highlight the potential of complement-dependent cellular cytotoxicity (CDCC) and complement-dependent cellular phagocytosis (CDCP) as effector mechanisms that warrant deeper investigation. By integrating advances in antibody and complement biology with insights from efforts to enhance complement activation in therapeutic antibodies, this review aims to provide a comprehensive framework of antibody design and engineering strategies that optimize complement activity for improved anti-tumor efficacy.
Collapse
Affiliation(s)
| | - Karin Dijkman
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
2
|
Li D, Sun X, Li Y, Shang C, Dong Y, Zhao R, Zhang H, Wang Z, Fan S, Ma C, Li X. AGCM-22, a novel cetuximab-based EGFR-targeting antibody-drug-conjugate with highly selective anti-glioblastoma efficacy. Bioorg Med Chem 2024; 102:117657. [PMID: 38428068 DOI: 10.1016/j.bmc.2024.117657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
The epidermal growth factor receptor (EGFR) has received significant attention as a potential target for glioblastoma (GBM) therapeutics in the past two decades. However, although cetuximab, an antibody that specifically targets EGFR, exhibits a high affinity for EGFR, it has not yet been applied in the treatment of GBM. Antibody-drug conjugates (ADCs) utilize tumor-targeting antibodies for the selective delivery of cytotoxic drugs, resulting in improved efficacy compared to conventional chemotherapy drugs. However, the effectiveness of cetuximab as a targeted antibody for ADCs in the treatment of GBM remains uncertain. In this study, we synthesized AGCM-22, an EGFR-targeted ADC derived from cetuximab, by conjugating it with the tubulin inhibitor monomethyl auristatin E (MMAE) using our Valine-Alanine Cathepsin B cleavable linker. In vitro experiments demonstrated that AGCM-22 effectively inhibited GBM cell proliferation through increased levels of apoptosis and autophagy-related cell death, whereas cetuximab alone had no anti-GBM effects. Additionally, both mouse and human orthotopic tumor models exhibited the selective tumor-targeting efficacy of AGCM-22, along with favorable metabolic properties and superior anti-GBM activity compared to temozolomide (TMZ). In summary, this study presents a novel ADC for GBM therapy that utilizes cetuximab as the tumor-targeting antibody, resulting in effective delivery of the cytotoxic drug payload.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xianyan Sun
- Department of General Practice, The First Hospital of Jilin University, Changchun China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Chao Shang
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Yuchao Dong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Renshuang Zhao
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Hang Zhang
- Senior Cadre Dept, The 964(th) Hospital of Joint Logistics Support, PLA, Changchun, China
| | - Zihao Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Chengyuan Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.
| | - Xiao Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Ciechomska IA, Wojnicki K, Wojtas B, Szadkowska P, Poleszak K, Kaza B, Jaskula K, Dawidczyk W, Czepko R, Banach M, Czapski B, Nauman P, Kotulska K, Grajkowska W, Roszkowski M, Czernicki T, Marchel A, Kaminska B. Exploring Novel Therapeutic Opportunities for Glioblastoma Using Patient-Derived Cell Cultures. Cancers (Basel) 2023; 15:cancers15051562. [PMID: 36900355 PMCID: PMC10000883 DOI: 10.3390/cancers15051562] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Glioblastomas (GBM) are the most common, primary brain tumors in adults. Despite advances in neurosurgery and radio- and chemotherapy, the median survival of GBM patients is 15 months. Recent large-scale genomic, transcriptomic and epigenetic analyses have shown the cellular and molecular heterogeneity of GBMs, which hampers the outcomes of standard therapies. We have established 13 GBM-derived cell cultures from fresh tumor specimens and characterized them molecularly using RNA-seq, immunoblotting and immunocytochemistry. Evaluation of proneural (OLIG2, IDH1R132H, TP53 and PDGFRα), classical (EGFR) and mesenchymal markers (CHI3L1/YKL40, CD44 and phospho-STAT3), and the expression of pluripotency (SOX2, OLIG2, NESTIN) and differentiation (GFAP, MAP2, β-Tubulin III) markers revealed the striking intertumor heterogeneity of primary GBM cell cultures. Upregulated expression of VIMENTIN, N-CADHERIN and CD44 at the mRNA/protein levels suggested increased epithelial-to-mesenchymal transition (EMT) in most studied cell cultures. The effects of temozolomide (TMZ) or doxorubicin (DOX) were tested in three GBM-derived cell cultures with different methylation status of the MGMT promoter. Amongst TMZ- or DOX-treated cultures, the strongest accumulation of the apoptotic markers caspase 7 and PARP were found in WG4 cells with methylated MGMT, suggesting that its methylation status predicts vulnerability to both drugs. As many GBM-derived cells showed high EGFR levels, we tested the effects of AG1478, an EGFR inhibitor, on downstream signaling pathways. AG1478 caused decreased levels of phospho-STAT3, and thus inhibition of active STAT3 augmented antitumor effects of DOX and TMZ in cells with methylated and intermediate status of MGMT. Altogether, our findings show that GBM-derived cell cultures mimic the considerable tumor heterogeneity, and that identifying patient-specific signaling vulnerabilities can assist in overcoming therapy resistance, by providing personalized combinatorial treatment recommendations.
Collapse
Affiliation(s)
- Iwona A. Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence: (I.A.C.); (B.K.)
| | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Paulina Szadkowska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Katarzyna Poleszak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Beata Kaza
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Kinga Jaskula
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Wiktoria Dawidczyk
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ryszard Czepko
- Department of Neurosurgery, Scanmed S.A. St. Raphael Hospital, 30-693 Cracow, Poland
| | - Mariusz Banach
- Department of Neurosurgery, Scanmed S.A. St. Raphael Hospital, 30-693 Cracow, Poland
| | - Bartosz Czapski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Pawel Nauman
- Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Pathology, The Children’s Memorial Health Institute, 04-736 Warsaw, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, The Children’s Memorial Health Institute, 04-736 Warsaw, Poland
| | - Marcin Roszkowski
- Department of Pathology, The Children’s Memorial Health Institute, 04-736 Warsaw, Poland
| | - Tomasz Czernicki
- Neurosurgery Department and Clinic, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Andrzej Marchel
- Neurosurgery Department and Clinic, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence: (I.A.C.); (B.K.)
| |
Collapse
|
4
|
Xiao D, Hu X, Peng M, Deng J, Zhou S, Xu S, Wu J, Yang X. Inhibitory role of proguanil on the growth of bladder cancer via enhancing EGFR degradation and inhibiting its downstream signaling pathway to induce autophagy. Cell Death Dis 2022; 13:499. [PMID: 35614042 PMCID: PMC9132982 DOI: 10.1038/s41419-022-04937-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022]
Abstract
A major reason for the high mortality of patients with bladder cancer (BC) is that chemotherapy and surgery are only effective for very limited patients. Thus, developing novel treatment options becomes an urgent need for improving clinical outcomes and the quality of life for BC patients. Here, we demonstrated that proguanil significantly inhibited the growth of BC in vitro and in vivo. Importantly, our results indicated that the sensitivity of BC cells to proguanil is positively correlated with the expression of epidermal growth factor receptor (EGFR). Mechanistically, proguanil specifically targeted EGFR and promoted EGFR binding to Caveolin-1, enhanced its endocytosis in a Clathrin-independent manner, and then recruited c-Cbl to promote EGFR ubiquitination and degradation through the lysosomal pathway. Further studies suggested that proguanil induced autophagy by destabilizing EGFR and inhibiting its downstream signaling pathway. Thus, this study reveals the novel mechanism of proguanil on anticancer activity and implies the potential benefits of this drug in the treatment of BC.
Collapse
Affiliation(s)
- Di Xiao
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Xin Hu
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Mei Peng
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Jun Deng
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Sichun Zhou
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Simeng Xu
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Jingtao Wu
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China
| | - Xiaoping Yang
- grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan China ,grid.411427.50000 0001 0089 3695Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan China
| |
Collapse
|
5
|
Larbouret C, Gros L, Pèlegrin A, Chardès T. Improving Biologics' Effectiveness in Clinical Oncology: From the Combination of Two Monoclonal Antibodies to Oligoclonal Antibody Mixtures. Cancers (Basel) 2021; 13:cancers13184620. [PMID: 34572847 PMCID: PMC8465647 DOI: 10.3390/cancers13184620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The approval of the two antibody combinations trastuzumab/pertuzumab and ipilimumab/nivolumab in oncology has paved the way for novel antibody combinations or oligoclonal antibody mixtures to improve their efficacy in cancer. The underlying biological mechanisms and challenges of these strategies will be discussed using data from clinical trials listed in databases. These therapeutic combinations also lead to questions on how to optimize their formulation and delivery to induce a therapeutic polyclonal response in patients with cancer. Abstract Monoclonal antibodies have revolutionized the treatment of many diseases, but their clinical efficacy remains limited in some other cases. Pre-clinical and clinical trials have shown that combinations of antibodies that bind to the same target (homo-combinations) or to different targets (hetero-combinations) to mimic the polyclonal humoral immune response improve their therapeutic effects in cancer. The approval of the trastuzumab/pertuzumab combination for breast cancer and then of the ipilimumab/nivolumab combination for melanoma opened the way to novel antibody combinations or oligoclonal antibody mixtures as more effective biologics for cancer management. We found more than 300 phase II/III clinical trials on antibody combinations, with/without chemotherapy, radiotherapy, small molecules or vaccines, in the ClinicalTrials.gov database. Such combinations enhance the biological responses and bypass the resistance mechanisms observed with antibody monotherapy. Usually, such antibody combinations are administered sequentially as separate formulations. Combined formulations have also been developed in which separately produced antibodies are mixed before administration or are produced simultaneously in a single cell line or a single batch of different cell lines as a polyclonal master cell bank. The regulation, toxicity and injection sequence of these oligoclonal antibody mixtures still need to be addressed in order to optimize their delivery and their therapeutic effects.
Collapse
Affiliation(s)
- Christel Larbouret
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
- Correspondence: ; Tel.: +33-411-283-110
| | - Laurent Gros
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - André Pèlegrin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
| | - Thierry Chardès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| |
Collapse
|
6
|
Gan HK, Burge M, Solomon B, Lee ST, Holen KD, Zhang Y, Ciprotti M, Lee FT, Munasinghe W, Fischer J, Ansell P, Fox G, Xiong H, Reilly EB, Humerickhouse R, Scott AM. A Phase 1 and Biodistribution Study of ABT-806i, an 111In-Radiolabeled Conjugate of the Tumor-Specific Anti-EGFR Antibody ABT-806. J Nucl Med 2021; 62:787-794. [PMID: 33509972 DOI: 10.2967/jnumed.120.253146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
ABT-806 is a tumor-specific antibody targeting the epidermal growth factor receptor (EGFR). This study assessed safety, biodistribution, and pharmacokinetics of 111In-radiolabeled ABT-806 (ABT-806i) and effects of repeated doses of ABT-806 on receptor occupancy. Methods: Eligible patients had advanced tumors likely to express EGFR/EGFRvIII; adequate performance status and organ function; and measurable disease by RECIST 1.1. In cohort 1, 6 patients received a bolus administration of ABT-806i and underwent SPECT followed by whole-body planar scans. In cohort 2, 12 patients were imaged similarly as in 1 initially; thereafter, they received 3 doses of unlabeled ABT-806, before another dose of ABT-806i with associated SPECT and whole-body planar scans. At the end of both cohorts, patients who had stable or responding disease were able to enroll into an extension study (M12-326) in which they received unlabeled ABT-806 every 2 wk until disease progression, withdrawal of consent, or intolerable toxicity. Results: No toxicity related to ABT-806i infusion was observed. ABT-806i showed minimal uptake in normal tissues and cleared gradually from blood with a half-life of 6.0 ± 1.5 d. The mean effective dose of ABT-806i was 0.137 mSv/MBq for males and 0.183 mSv/MBq for females. ABT-806i tumor uptake varied and did not correlate with archived tumor EGFR expression. No change in ABT-806i uptake was observed after interval ABT-806 treatment, indicating stable EGFR expression in tumor. The patient with highest tumor uptake of ABT-806i had advanced head and neck cancer and experienced a partial response. Conclusion: ABT-806i allows for real-time imaging of EGFR conformational expression in tumors, has an acceptable radiation dosimetry, and provides important additional information about antigen expression compared with standard approaches using archival tissue. Its role to assist in patient selection for EGFR-based therapeutics and investigate treatment resistance should be further investigated.
Collapse
Affiliation(s)
- Hui K Gan
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia .,School of Cancer Medicine, La Trobe University, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Matthew Burge
- Royal Brisbane and Women's Hospital, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Benjamin Solomon
- Department of Medicine, University of Melbourne, Melbourne, Australia.,Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sze Ting Lee
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | | | - Yumin Zhang
- Sinotau Pharmaceutical Group, Beijing, China
| | - Marika Ciprotti
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia
| | - F T Lee
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia
| | | | | | | | | | - Hao Xiong
- AbbVie, North Chicago, Illinois; and
| | | | | | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| |
Collapse
|
7
|
Lee GP, Willis A, Pernal S, Phakatkar A, Shokuhfar T, Blot V, Engelhard HH. Targeted sonodynamic destruction of glioblastoma cells using antibody-titanium dioxide nanoparticle conjugates. Nanomedicine (Lond) 2021; 16:523-534. [PMID: 33660528 DOI: 10.2217/nnm-2020-0452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: We present data on sonodynamic therapy (SDT) against glioblastoma cells utilizing titanium dioxide (TiO2) nanoparticles conjugated to anti-EGFR antibody. Materials & methods: TiO2 nanoparticles were bound to anti-EGFR antibody to form antibody-nanoparticle conjugates (ANCs), then characterized by x-ray photoelectron spectroscopy and transmission electron microscopy. Cells underwent ultrasound and assessment on viability, reactive oxygen species and apoptosis were performed. Results: X-ray photoelectron spectroscopy analysis revealed the formation of an ANC. Transmission electron microscopy showed internalization of the ANCs by glioblastoma cells. With SDT, cell viabilities were reduced in the presence of ANCs, reactive oxygen species production was formed, but minimal effect on apoptosis was seen. Conclusion: For the first time, an ANC can be used with SDT to kill glioblastoma cells.
Collapse
Affiliation(s)
- George P Lee
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexander Willis
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sebastian Pernal
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Abhijit Phakatkar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Vincent Blot
- Division of Oncology Clinical Development, AbbVie Inc., North Chicago, IL 60064, USA
| | - Herbert H Engelhard
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
8
|
Yu J, Wang X, Xu T, Jin Q, Duan J, Wu J, Wu H, Xu T, Ye S. A rational approach to enhancing antibody Fc homodimer formation for robust production of antibody mixture in a single cell line. J Biol Chem 2017; 292:17885-17896. [PMID: 28878018 DOI: 10.1074/jbc.m116.771188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 08/19/2017] [Indexed: 11/06/2022] Open
Abstract
Combinations of different antibodies have been shown to be more effective for managing certain diseases than monotherapy. Co-expression of the antibody mixture in a single cell line is key to reducing complexity during antibody development and manufacturing. However, co-transfection of multiple light and heavy chains into cells often leads to production of mismatched, heterodimeric by-products that are inactive, making the development of co-expression systems that robustly and efficiently produce highly active antibody mixtures a high priority. In this study, we modified the CH3 domain interface of the antibody fragment crystallizable (Fc) region by changing several charge pairs to create electrostatic interactions favoring Fc homodimer formation and disfavoring Fc heterodimer formation. When co-expressed, these modified antibodies with altered charge polarity across the Fc dimer interface preferentially formed homodimers that fully preserved the functions of each component, rather than inactive heterodimers whose formation was reduced because of rationally designed repulsive interactions. We designed eight different combinations and experimentally screened the best one, which enabled us to produce a binary antibody mixture against the EGF receptor with a minimal heterodimer contaminant. We further determined the crystal structure of a triple-mutated Fc variant in the best combination, and we elucidated the molecular interactions favoring Fc homodimer over heterodimer formation, which provided a structural basis for further optimization. The approach presented here demonstrates the feasibility of rational antibody modification for efficient and consistent production of monoclonal antibody mixtures in a single cell line and thus broadens our options for manufacturing more effective antibody-based therapeutic agents.
Collapse
Affiliation(s)
- Jie Yu
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | | | - Tao Xu
- Alphamab Co. Ltd., Suzhou 215125, China
| | - Qiuheng Jin
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Jinyuan Duan
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Jie Wu
- Alphamab Co. Ltd., Suzhou 215125, China
| | - Haiyan Wu
- Alphamab Co. Ltd., Suzhou 215125, China
| | - Ting Xu
- Alphamab Co. Ltd., Suzhou 215125, China
| | - Sheng Ye
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058 and
| |
Collapse
|
9
|
Tammen A, Derer S, Schwanbeck R, Rösner T, Kretschmer A, Beurskens FJ, Schuurman J, Parren PWHI, Valerius T. Monoclonal Antibodies against Epidermal Growth Factor Receptor Acquire an Ability To Kill Tumor Cells through Complement Activation by Mutations That Selectively Facilitate the Hexamerization of IgG on Opsonized Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:1585-1594. [DOI: 10.4049/jimmunol.1601268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
|
10
|
Arena S, Siravegna G, Mussolin B, Kearns JD, Wolf BB, Misale S, Lazzari L, Bertotti A, Trusolino L, Adjei AA, Montagut C, Di Nicolantonio F, Nering R, Bardelli A. MM-151 overcomes acquired resistance to cetuximab and panitumumab in colorectal cancers harboring EGFR extracellular domain mutations. Sci Transl Med 2016; 8:324ra14. [PMID: 26843189 DOI: 10.1126/scitranslmed.aad5640] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The anti-epidermal growth factor receptor (EGFR) antibodies cetuximab and panitumumab are used to treat RAS wild-type colorectal cancers (CRCs), but their efficacy is limited by the emergence of acquired drug resistance. After EGFR blockade, about 20% of CRCs develop mutations in the EGFR extracellular domain (ECD) that impair antibody binding and are associated with clinical relapse. We hypothesized that EGFR ECD-resistant variants could be targeted by the recently developed oligoclonal antibody MM-151 that binds multiple regions of the EGFR ECD. MM-151 inhibits EGFR signaling and cell growth in preclinical models, including patient-derived cells carrying mutant EGFR. Upon MM-151 treatment, EGFR ECD mutations decline in circulating cell-free tumor DNA (ctDNA) of CRC patients who previously developed resistance to EGFR blockade. These data provide molecular rationale for the clinical use of MM-151 in patients who become resistant to cetuximab or panitumumab as a result of EGFR ECD mutations.
Collapse
Affiliation(s)
- Sabrina Arena
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO), IRCCS, Candiolo, Torino 10060, Italy. FIRC Institute of Molecular Oncology (IFOM), Milano 20139, Italy. Department of Oncology, University of Torino, Candiolo, Torino 10060, Italy.
| | - Giulia Siravegna
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO), IRCCS, Candiolo, Torino 10060, Italy. Department of Oncology, University of Torino, Candiolo, Torino 10060, Italy
| | - Benedetta Mussolin
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO), IRCCS, Candiolo, Torino 10060, Italy
| | | | - Beni B Wolf
- Merrimack Pharmaceuticals Inc., Cambridge, MA 02139, USA
| | - Sandra Misale
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO), IRCCS, Candiolo, Torino 10060, Italy
| | - Luca Lazzari
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO), IRCCS, Candiolo, Torino 10060, Italy. Department of Oncology, University of Torino, Candiolo, Torino 10060, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO), IRCCS, Candiolo, Torino 10060, Italy. Department of Oncology, University of Torino, Candiolo, Torino 10060, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO), IRCCS, Candiolo, Torino 10060, Italy. Department of Oncology, University of Torino, Candiolo, Torino 10060, Italy
| | - Alex A Adjei
- Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Clara Montagut
- Medical Oncology Department, Hospital del Mar, Barcelona 08003, Spain. Cancer Research Program, FIMIM (Hospital del Mar Medical Research Institute), Hospital del Mar, Barcelona 08003, Spain
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO), IRCCS, Candiolo, Torino 10060, Italy. Department of Oncology, University of Torino, Candiolo, Torino 10060, Italy
| | - Rachel Nering
- Merrimack Pharmaceuticals Inc., Cambridge, MA 02139, USA
| | - Alberto Bardelli
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO), IRCCS, Candiolo, Torino 10060, Italy. Department of Oncology, University of Torino, Candiolo, Torino 10060, Italy.
| |
Collapse
|
11
|
Iida M, Bahrar H, Brand TM, Pearson HE, Coan JP, Orbuch RA, Flanigan BG, Swick AD, Prabakaran PJ, Lantto J, Horak ID, Kragh M, Salgia R, Kimple RJ, Wheeler DL. Targeting the HER Family with Pan-HER Effectively Overcomes Resistance to Cetuximab. Mol Cancer Ther 2016; 15:2175-86. [PMID: 27422810 PMCID: PMC5010956 DOI: 10.1158/1535-7163.mct-16-0012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/01/2016] [Indexed: 12/31/2022]
Abstract
Cetuximab, an antibody against the EGFR, has shown efficacy in treating head and neck squamous cell carcinoma (HNSCC), metastatic colorectal cancer, and non-small cell lung cancer (NSCLC). Despite the clinical success of cetuximab, many patients do not respond to cetuximab. Furthermore, virtually all patients who do initially respond become refractory, highlighting both intrinsic and acquired resistance to cetuximab as significant clinical problems. To understand mechanistically how cancerous cells acquire resistance, we previously developed models of acquired resistance using the H226 NSCLC and UM-SCC1 HNSCC cell lines. Cetuximab-resistant clones showed a robust upregulation and dependency on the HER family receptors EGFR, HER2, and HER3. Here, we examined pan-HER, a mixture of six antibodies targeting these receptors on cetuximab-resistant clones. In cells exhibiting acquired or intrinsic resistance to cetuximab, pan-HER treatment decreased all three receptors' protein levels and downstream activation of AKT and MAPK. This correlated with decreased cell proliferation in cetuximab-resistant clones. To determine whether pan-HER had a therapeutic benefit in vivo, we established de novo cetuximab-resistant mouse xenografts and treated resistant tumors with pan-HER. This regimen resulted in a superior growth delay of cetuximab-resistant xenografts compared with mice continued on cetuximab. Furthermore, intrinsically cetuximab-resistant HNSCC patient-derived xenograft tumors treated with pan-HER exhibited significant growth delay compared with vehicle/cetuximab controls. These results suggest that targeting multiple HER family receptors simultaneously with pan-HER is a promising treatment strategy for tumors displaying intrinsic or acquired resistance to cetuximab. Mol Cancer Ther; 15(9); 2175-86. ©2016 AACR.
Collapse
Affiliation(s)
- Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Harsh Bahrar
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin. Radboud Department of Radiation Oncology, University Medical Centre Nijmegen, Nijmegen, the Netherlands
| | - Toni M Brand
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Hannah E Pearson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - John P Coan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Rachel A Orbuch
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bailey G Flanigan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Adam D Swick
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Prashanth J Prabakaran
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | | | - Randy J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
12
|
Carvalho S, Levi‐Schaffer F, Sela M, Yarden Y. Immunotherapy of cancer: from monoclonal to oligoclonal cocktails of anti-cancer antibodies: IUPHAR Review 18. Br J Pharmacol 2016; 173:1407-24. [PMID: 26833433 PMCID: PMC4831314 DOI: 10.1111/bph.13450] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 12/11/2022] Open
Abstract
Antibody-based therapy of cancer employs monoclonal antibodies (mAbs) specific to soluble ligands, membrane antigens of T-lymphocytes or proteins located at the surface of cancer cells. The latter mAbs are often combined with cytotoxic regimens, because they block survival of residual fractions of tumours that evade therapy-induced cell death. Antibodies, along with kinase inhibitors, have become in the last decade the mainstay of oncological pharmacology. However, partial and transient responses, as well as emergence of tumour resistance, currently limit clinical application of mAbs. To overcome these hurdles, oligoclonal antibody mixtures are being tested in animal models and in clinical trials. The first homo-combination of two mAbs, each engaging a distinct site of HER2, an oncogenic receptor tyrosine kinase (RTK), has been approved for treatment of breast cancer. Likewise, a hetero-combination of antibodies to two distinct T-cell antigens, PD1 and CTLA4, has been approved for treatment of melanoma. In a similar vein, additive or synergistic anti-tumour effects observed in animal models have prompted clinical testing of hetero-combinations of antibodies simultaneously engaging distinct RTKs. We discuss the promise of antibody cocktails reminiscent of currently used mixtures of chemotherapeutics and highlight mechanisms potentially underlying their enhanced clinical efficacy.
Collapse
Affiliation(s)
- Silvia Carvalho
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| | - Francesca Levi‐Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Michael Sela
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | - Yosef Yarden
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
13
|
Domingues P, González-Tablas M, Otero Á, Pascual D, Miranda D, Ruiz L, Sousa P, Ciudad J, Gonçalves JM, Lopes MC, Orfao A, Tabernero MD. Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav Immun 2016. [PMID: 26216710 DOI: 10.1016/j.bbi.2015.07.019] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control.
Collapse
Affiliation(s)
- Patrícia Domingues
- Centre for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María González-Tablas
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Álvaro Otero
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Daniel Pascual
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - David Miranda
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Laura Ruiz
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Pablo Sousa
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Juana Ciudad
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | | | - María Celeste Lopes
- Centre for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Alberto Orfao
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María Dolores Tabernero
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain; Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain; Instituto de Estudios de Ciencias de la salud de Castilla y León (IECSCYL-IBSAL) and Research Unit of the University Hospital of Salamanca, Salamanca, Spain.
| |
Collapse
|
14
|
Immunobiology and immunotherapeutic targeting of glioma stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:139-66. [PMID: 25895711 DOI: 10.1007/978-3-319-16537-0_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
For decades human brain tumors have confounded our efforts to effectively manage and treat patients. In adults, glioblastoma multiforme is the most common malignant brain tumor with a patient survival of just over 14 months. In children, brain tumors are the leading cause of solid tumor cancer death and gliomas account for one-fifth of all childhood cancers. Despite advances in conventional treatments such as surgical resection, radiotherapy, and systemic chemotherapy, the incidence and mortality rates for gliomas have essentially stayed the same. Furthermore, research efforts into novel therapeutics that initially appeared promising have yet to show a marked benefit. A shocking and somewhat disturbing view is that investigators and clinicians may have been targeting the wrong cells, resulting in the appearance of the removal or eradication of patient gliomas only to have brain cancer recurrence. Here we review research progress in immunotherapy as it pertains to glioma treatment and how it can and is being adapted to target glioma stem cells (GSCs) as a means of dealing with this potential paradigm.
Collapse
|
15
|
Fenton KE, Martirosyan NL, Abdelwahab MG, Coons SW, Preul MC, Scheck AC. In vivo visualization of GL261-luc2 mouse glioma cells by use of Alexa Fluor-labeled TRP-2 antibodies. Neurosurg Focus 2014; 36:E12. [PMID: 24484250 DOI: 10.3171/2013.12.focus13488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT For patients with glioblastoma multiforme, median survival time is approximately 14 months. Longer progression-free and overall survival times correlate with gross-total resection of tumor. The ability to identify tumor cells intraoperatively could result in an increased percentage of tumor resected and thus increased patient survival times. Available labeling methods rely on metabolic activity of tumor cells; thus, they are more robust in high-grade tumors, and their utility in low-grade tumors and metastatic tumors is not clear. The authors demonstrate intraoperative identification of tumor cells by using labeled tumor-specific antibodies. METHODS GL261 mouse glioma cells exhibit high expression of a membrane-bound protein called second tyrosinase-related protein (TRP-2). The authors used these cells to establish an intracranial, immunocompetent model of malignant glioma. Antibodies to TRP-2 were labeled by using Alexa Fluor 488 fluorescent dye and injected into the tail vein of albino C57BL/6 mice. After 24 hours, a craniotomy was performed and the tissue was examined in vivo by using an Optiscan 5.1 handheld portable confocal fiber-optic microscope. Tissue was examined ex vivo by using a Pascal 5 scanning confocal microscope. RESULTS Labeled tumor cells were visible in vivo and ex vivo under the respective microscopes. CONCLUSIONS Fluorescently labeled tumor-specific antibodies are capable of binding and identifying tumor cells in vivo, accurately and specifically. The development of labeled markers for the identification of brain tumors will facilitate the use of intraoperative fluorescence microscopy as a tool for increasing the extent of resection of a broad variety of intracranial tumors.
Collapse
|
16
|
Blumenberg M. Differential transcriptional effects of EGFR inhibitors. PLoS One 2014; 9:e102466. [PMID: 25184905 PMCID: PMC4153546 DOI: 10.1371/journal.pone.0102466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/17/2014] [Indexed: 01/01/2023] Open
Abstract
EGF and its receptor EGFR serve as a paradigm for signaling in cell, molecular and tumor biology. EGFR inhibitors, drugs targeting the intracellular kinase activity and antibodies targeting the extracellular ligand binding, are used to treat breast, lung, colon and other cancers. Nominally affecting the same target, inhibitors have different effects, suggesting that use of inhibitor combinations may provide beneficial in cancer treatment. To explore the specific and the common transcriptional effects of EGFR inhibitors, we present metaanalysis of 20 individual studies comprising 346 microarrays. We identified specific gene subsets regulated by kinase inhibitors, those regulated using antibodies and by suppressing EGFR expression using miR-7. Unreported before, the inhibitors prominently induce lysosome components. All inhibitors rely on related sets of transcription factors and protein kinases, both for transcriptional induction and suppression. However, we find that Gefitinib suppresses apoptosis inhibitors, while inducing cell-cycle inhibitors; conversely, Erlotinib suppresses cell-cycle and cell migration genes, while inducing proapoptotic genes. EGFR-targeting antibodies specifically suppress cell motility, developmental and differentiation processes, while inducing the contractile apparatus. miR-7, distinctively, suppresses cell-cycle genes, while inducing transcription machinery. These metaanalysis results suggest that different inhibitors have overlapping but quite distinct effects in target cells. Judicial use of EGFR-targeting combinations, i.e., simultaneous use of antibodies and multiple kinase inhibitors, may provide more effective cancer treatments with fewer side-effects and avoid development of resistance. We expect, moreover, that specific drug combination treatments can be fine-tuned to achieve specific, personalized results.
Collapse
Affiliation(s)
- Miroslav Blumenberg
- The R.O. Perelman Department of Dermatology, Department of Biochemistry and Molecular Pharmacology and the NYU Cancer Institute, NYU Langone Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Chandramohan V, Mitchell DA, Johnson LA, Sampson JH, Bigner DD. Antibody, T-cell and dendritic cell immunotherapy for malignant brain tumors. Future Oncol 2014; 9:977-90. [PMID: 23837761 DOI: 10.2217/fon.13.47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Modest improvement in brain tumor patient survival has been achieved through advances in surgical, adjuvant radiation and chemotherapeutic strategies. However, these traditional approaches have been unsuccessful in permanently controlling these aggressive tumors, with recurrence being quite common. Hence, there is a need for novel therapeutic approaches that specifically target the molecularly diverse brain tumor cell population. The ability of the immune system to recognize altered tumor cells while avoiding surrounding normal cells offers an enormous advantage over the nonspecific nature of the conventional treatment schemes. Therefore, immunotherapy represents a promising approach that may supplement the standard therapies in eliminating the residual brain tumor cells. This review summarizes different immunotherapeutic approaches currently being tested for malignant brain tumor treatment.
Collapse
|
18
|
Lee ST, Ji H, Greening DW, Speirs RWH, Rigopoulos A, Pillay V, Murone C, Vitali A, Stühler K, Johns TG, Corner GA, Mariadason JM, Simpson RJ, Scott AM. Global protein profiling reveals anti-EGFR monoclonal antibody 806-modulated proteins in A431 tumor xenografts. Growth Factors 2013; 31:154-64. [PMID: 23957735 DOI: 10.3109/08977194.2013.824435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An important mediator of tumorigenesis, the epidermal growth factor receptor (EGFR) is expressed in almost all non-transformed cell types, associated with tumor progression, angiogenesis and metastasis. The significance of the EGFR as a cancer therapeutic target is underscored by the clinical development of several different classes of EGFR antagonists, including monoclonal antibodies (mAb) and tyrosine kinase inhibitors. Extensive preclinical studies have demonstrated the anti-tumor effects of mAb806 against tumor xenografts overexpressing EGFR. EGF stimulation of A431 cells induces rapid tyrosine phosphorylation of intracellular signalling proteins which regulate cell proliferation and apoptosis. Detailed understanding of the intracellular signalling pathways and components modulated by mAbs (such as mAb806) to EGFR, and other growth factor receptors, remain limited. The use of fluorescence 2D difference gel electrophoresis (2D DIGE), coupled with sensitive MS-based protein profiling in A431 tumor (epidermoid carcinoma) xenografts, in combination with mAb806, revealed proteins modulating endocytosis, cell architecture, apoptosis, cell signalling pathways and cell cycle regulation, including Dynamin-1-like protein, cofilin-1 protein, and 14-3-3 protein zeta/delta. Further, we report various proteins, including Interferon-induced protein 53 (IFI53), and Oncogene EMS1 (EMS1) which have roles in the tumor microenvironment, regulating cancer cell invasiveness, angiogenesis and formation of metastases. These findings contribute to understanding the underlying biological processes associated with mAb806 therapy of EGFR-positive tumors, and identifying further potential protein markers that may contribute in assessment of the treatment response.
Collapse
Affiliation(s)
- Sze Ting Lee
- Ludwig Institute for Cancer Research , Victoria , Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Targeted antiepidermal growth factor receptor (cetuximab) immunoliposomes enhance cellular uptake in vitro and exhibit increased accumulation in an intracranial model of glioblastoma multiforme. JOURNAL OF DRUG DELIVERY 2013; 2013:209205. [PMID: 24175095 PMCID: PMC3794561 DOI: 10.1155/2013/209205] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 01/15/2023]
Abstract
Therapeutic advances do not circumvent the devastating fact that the survival rate in glioblastoma multiforme (GBM) is less than 5%. Nanoparticles consisting of liposome-based therapeutics are provided against a variety of cancer types including GBM, but available liposomal formulations are provided without targeting moieties, which increases the dosing demands to reach therapeutic concentrations with risks of side effects. We prepared PEGylated immunoliposomes (ILs) conjugated with anti-human epidermal growth factor receptor (EGFR) antibodies Cetuximab (α-hEGFR-ILs). The affinity of the α-hEGFR-ILs for the EGF receptor was evaluated in vitro using U87 mg and U251 mg cells and in vivo using an intracranial U87 mg xenograft model. The xenograft model was additionally analyzed with respect to permeability to endogenous albumin, tumor size, and vascularization. The in vitro studies revealed significantly higher binding of α-hEGFR-ILs when compared with liposomes conjugated with isotypic nonimmune immunoglobulin. The uptake and internalization of the α-hEGFR-ILs by U87 mg cells were further confirmed by 3D deconvolution analyses. In vivo, the α-hEGFR-ILs accumulated to a higher extent inside the tumor when compared to nonimmune liposomes. The data show that α-hEGFR-ILs significantly enhance the uptake and accumulation of liposomes in this experimental model of GBM suggestive of improved specific nanoparticle-based delivery.
Collapse
|
20
|
Abstract
The ERBB family of receptor tyrosine kinases has a central role in the tumorigenesis of many types of solid tumour. Various therapeutics targeting these receptors have been approved for the treatment of several cancers. Considerable preclinical data have shown that the administration of two inhibitors against an individual ERBB family member--particularly epidermal growth factor receptor (EGFR) or ERBB2--leads to markedly higher antitumour activity than the administration of single agents. This Opinion article describes the preclinical and clinical performance of these dual-targeting approaches, discusses the key mechanisms that mediate their increased efficacy and highlights areas for ongoing investigation.
Collapse
Affiliation(s)
- Niall Tebbutt
- Ludwig Oncology Unit, Austin Health, Studley Road, Heidelberg, Victoria 3084, Australia
| | | | | |
Collapse
|
21
|
Salkeni MA, Zarzour A, Ansay TY, McPherson CM, Warnick RE, Rixe O, Bahassi EM. Detection of EGFRvIII mutant DNA in the peripheral blood of brain tumor patients. J Neurooncol 2013; 115:27-35. [PMID: 23877363 DOI: 10.1007/s11060-013-1209-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/15/2013] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor in adults and remains incurable despite multimodal intensive treatment regimens including surgical resection, radiation and chemotherapy. EGFRvIII is a truncated extracellular mutant of the EGF receptor (EGFR) found in about a third of GBMs. It confers enhanced tumorigenic behavior and is associated with chemo- and radio-resistance. GBM patients testing positive for EGFRvIII have a bleaker prognosis than those who do not. Targeting EGFRvIII positive tumors via vaccines or antibody-drug-conjugates represents a new challenging therapeutic avenue with potential great clinical benefits. In this study, we developed a strategy to detect EGFRvIII deletion in the circulating tumor DNA. The overall goal is to identify a simple and robust biomarker in the peripheral blood of patients diagnosed with GBM in order to follow their disease status while on treatment. Thirteen patients were included in this study, three of which were found to carry the EGFRvIII deletion. The circulating DNA status for EGFRvIII correlates with the analysis performed on the respective tumor samples, and its level seems to correlate with the extent of the tumor resection. This semi-quantitative blood biomarker may represent a strategy to (1) screen patients for an anti-EGFRvIII therapy and (2) monitor the patients' response to treatment.
Collapse
Affiliation(s)
- Mohamad A Salkeni
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati, 231, Albert Sabin Way, Cincinnati, OH, 45267-0508, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Chandramohan V, Bao X, Keir ST, Pegram CN, Szafranski SE, Piao H, Wikstrand CJ, McLendon RE, Kuan CT, Pastan IH, Bigner DD. Construction of an immunotoxin, D2C7-(scdsFv)-PE38KDEL, targeting EGFRwt and EGFRvIII for brain tumor therapy. Clin Cancer Res 2013; 19:4717-27. [PMID: 23857604 DOI: 10.1158/1078-0432.ccr-12-3891] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The EGF receptor gene (EGFR) is most frequently amplified and overexpressed, along with its deletion mutant, EGFRvIII, in glioblastoma. We tested the preclinical efficacy of the recombinant immunotoxin, D2C7-(scdsFv)-PE38KDEL, which is reactive with a 55-amino acid (AA) region present in the extracellular domain of both EGFRwt (583-637 AAs) and EGFRvIII (292-346 AAs) proteins. EXPERIMENTAL DESIGN The binding affinity and specificity of D2C7-(scdsFv)-PE38KDEL for EGFRwt and EGFRvIII were measured by surface-plasmon resonance and flow cytometry. In vitro cytotoxicity of D2C7-(scdsFv)-PE38KDEL was measured by inhibition of protein synthesis in human EGFRwt-transfected NR6 (NR6W), human EGFRvIII-transfected NR6 (NR6M), EGFRwt-overexpressing A431-epidermoid-carcinoma, and glioblastoma xenograft cells (43, D08-0493MG, D2159MG, and D270MG). In vivo antitumor efficacy of D2C7-(scdsFv)-PE38KDEL was evaluated using 43, NR6M, and D270MG orthotopic tumor models. RESULTS The KD of D2C7-(scdsFv)-PE38KDEL for EGFRwt and EGFRvIII was 1.6×10(-9) mol/L and 1.3×10(-9) mol/L, respectively. Flow cytometry with NR6W and NR6M cells confirmed the specificity of D2C7-(scdsFv)-PE38KDEL for EGFRwt and EGFRvIII. The D2C7-(scdsFv)-PE38KDEL IC50 was 0.18 to 2.5 ng/mL on cells expressing EGFRwt (NR6W, A431, 43, and D08-0493MG). The D2C7-(scdsFv)-PE38KDEL IC50 was approximately 0.25 ng/mL on EGFRvIII-expressing cells (NR6M) and on EGFRwt- and EGFRvIII-expressing glioblastoma xenograft cells (D2159MG and D270MG). Significantly, in intracranial tumor models of 43, NR6M, and D270MG, treatment with D2C7-(scdsFv)-PE38KDEL by convection-enhanced delivery prolonged survival by 310% (P=0.006), 28% (P=0.002), and 166% (P=0.001), respectively. CONCLUSIONS In preclinical studies, the D2C7-(scdsFv)-PE38KDEL immunotoxin exhibited significant potential for treating brain tumors expressing EGFRwt, EGFRvIII, or both.
Collapse
Affiliation(s)
- Vidyalakshmi Chandramohan
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 2013; 280:5350-70. [DOI: 10.1111/febs.12393] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Hui K. Gan
- Tumour Targeting Program; Ludwig Institute for Cancer Research; Heidelberg Victoria Australia
| | - Anna N. Cvrljevic
- Oncogenic Signaling Laboratory; Monash University; Clayton Victoria Australia
| | - Terrance G. Johns
- Oncogenic Signaling Laboratory; Monash University; Clayton Victoria Australia
| |
Collapse
|
24
|
Way J, Super M. The potential for cancer combination therapy with multi-targeted, single-protein pharmaceuticals. Expert Opin Drug Discov 2013; 3:147-52. [PMID: 23480218 DOI: 10.1517/17460441.3.2.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many diseases and disorders are best treated by a combination of drugs. Unlike small molecules, engineered proteins can be designed to incorporate multiple independent drug activities. Compared with a combination of two or more proteins, the potential benefits of a single biologic that inhibits multiple targets may include lower cost, simplified clinical testing and greater patient convenience. The evolution of HIV combination therapy is a useful point of comparison, as it occurred in an unusual regulatory environment that allowed the testing of combinations when the clinical benefit of component drugs was unproven. The epidermal growth factor receptor family of cancer targets illustrates how a particular single-molecule combination therapy might be used for cancer therapy, so some attempts to construct single-protein agents with multiple activities that include anti-EGFR moieties are reviewed. Protein engineers have created an armory of multiply-targeted antibody derivatives, but such engineered molecules often have a shorter serum half-life than IgG antibodies. New protein engineering approaches may be needed to address this problem. Nonetheless, multiply-targeted single-protein agents may be an economical solution to the problem of antibody combination therapy for cancer.
Collapse
Affiliation(s)
- Jeffrey Way
- EMD Serono Lexigen Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | | |
Collapse
|
25
|
Nagasawa DT, Fong C, Yew A, Spasic M, Garcia HM, Kruse CA, Yang I. Passive immunotherapeutic strategies for the treatment of malignant gliomas. Neurosurg Clin N Am 2012; 23:481-95. [PMID: 22748660 DOI: 10.1016/j.nec.2012.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This review provides historical and recent perspectives related to passive immunotherapy for high-grade gliomas. The authors discuss approaches that use lymphokine-activated killer cells, cytotoxic T lymphocytes, and monoclonal antibodies.
Collapse
Affiliation(s)
- Daniel T Nagasawa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095-1761, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Gan HK, Burgess AW, Clayton AHA, Scott AM. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res 2012; 72:2924-30. [PMID: 22659454 DOI: 10.1158/0008-5472.can-11-3898] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidermal growth factor receptor (EGFR) and its most common extracellular mutant, EGFRvIII, are important therapeutic targets in multiple cancer types. A number of monoclonal antibodies and small-molecule inhibitors against these receptors are now used for anticancer treatments. New insights into the structure and function of these receptors illustrate how they can be targeted in novel ways, with expected improvements in the therapeutic efficacy. Monoclonal antibody 806 (mAb806) is an antibody that targets a conformationally exposed epitope of wild-type EGFR when it is overexpressed on tumor cells or in the presence of oncogenic mutations such as EGFRvIII. The mechanism of action of mAb806, which allows for EGFR inhibition without normal tissue toxicity, creates opportunities for combination therapy and strongly suggests mAb806 will be a superior targeted delivery system for antitumor agents. Targeting of the epitope for mAb806 also appears to be an improved strategy to inhibit tumors that express EGFRvIII. This concept of conformational epitope targeting by antibodies reflects an underlying interplay between the structure and biology of different conformational forms of the EGFR family.
Collapse
Affiliation(s)
- Hui K Gan
- Joint Austin-Ludwig Medical Oncology Unit, Austin Hospital, Australia
| | | | | | | |
Collapse
|
27
|
Camara-Quintana JQ, Nitta RT, Li G. Pathology: Commonly Monitored Glioblastoma Markers: EFGR, EGFRvIII, PTEN, and MGMT. Neurosurg Clin N Am 2012; 23:237-46, viii. [DOI: 10.1016/j.nec.2012.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Cvrljevic AN, Akhavan D, Wu M, Martinello P, Furnari FB, Johnston AJ, Guo D, Pike L, Cavenee WK, Scott AM, Mischel PS, Hoogenraad NJ, Johns TG. Activation of Src induces mitochondrial localisation of de2-7EGFR (EGFRvIII) in glioma cells: implications for glucose metabolism. J Cell Sci 2012; 124:2938-50. [PMID: 21878501 DOI: 10.1242/jcs.083295] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A common mutation of the epidermal growth factor receptor in glioma is the de2-7EGFR (or EGFRvIII). Glioma cells expressing de2-7EGFR contain an intracellular pool of receptor with high levels of mannose glycosylation, which is consistent with delayed processing. We now show that this delay occurs in the Golgi complex. Low levels of de2-7EGFR were also seen within the mitochondria. Src activation dramatically increased the amount of mitochondrial de2-7EGFR, whereas its pharmacological inhibition caused a significant reduction. Because de2-7EGFR is phosphorylated by Src at Y845, we generated glioma cells expressing a Y845F-modified de2-7EGFR. The de2-7EGFR(845F) mutant failed to show mitochondrial localisation, even when co-expressed with constitutive active Src. Low levels of glucose enhanced mitochondrial localisation of de2-7EGFR, and glioma cells expressing the receptor showed increased survival and proliferation under these conditions. Consistent with this, de2-7EGFR reduced glucose dependency by stimulating mitochondrial oxidative metabolism. Thus, the mitochondrial localisation of de2-7EGFR contributes to its tumorigenicity and might help to explain its resistance to some EGFR-targeted therapeutics.
Collapse
Affiliation(s)
- Anna N Cvrljevic
- Tumour Targeting Program, Ludwig Institute for Cancer Research, Heidelberg, Victoria 3084, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yoshida M, Shimura T, Fukuda S, Mizoshita T, Tanida S, Kataoka H, Kamiya T, Nakazawa T, Higashiyama S, Joh T. Nuclear translocation of pro-amphiregulin induces chemoresistance in gastric cancer. Cancer Sci 2012; 103:708-15. [PMID: 22320154 DOI: 10.1111/j.1349-7006.2012.02204.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/20/2023] Open
Abstract
Amphiregulin (AR) is derived from a membrane-anchored form (proAR) by ectodomain shedding, and is a ligand that activates epidermal growth factor receptor (EGFR). We have recently shown that proAR translocates from the plasma membrane to the nucleus after truncation of 11 amino acids at the C-terminus, which is independent of the conventional EGFR signaling pathway. Although proAR immunoreactivity has reportedly been detected in the nucleus of cancer cells, its biological meaning has never been investigated. This study was performed to investigate the roles of proAR nuclear translocation in human gastric cancer. We constructed proAR truncated 11 amino acids at the C-terminus (proARΔC11) that spontaneously translocates to the nucleus, and established proARΔC11-expression regulatable gastric cancer cells (MKN45, MKN28) using the tet-off system. Using these cells, we found that proAR nuclear translocation significantly induced chemoresistance in vitro and in vivo. Analyzing the relationship between immunoreactive localization of proAR and the clinical outcome for 46 advanced gastric cancer cases treated with chemotherapy, median survival time was 311 days in 16 patients with AR-positive staining in the nucleus and 387 days in 30 patients with AR-negative staining (P < 0.05). The present study demonstrates that proAR nuclear translocation increases resistance to anti-cancer drugs, which might be associated with poor prognosis in human gastric cancer.
Collapse
Affiliation(s)
- Michihiro Yoshida
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Monoclonal antibody therapy for malignant glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:121-41. [PMID: 22639164 DOI: 10.1007/978-1-4614-3146-6_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Monoclonal antibody (mAb) therapy is a rapidly evolving treatment immunotherapy modality for malignant gliomas. Many studies have provided evidence that the blood brain barrier-both at baseline and in the context of malignancy-is permissive for mAbs, thus providing a rationale for their use in treating intracranial malignancy. Furthermore, techniques such as convection enhanced delivery (CED) are being implemented to maximize exposure of tumor cells to mAb therapy. The mechanisms and designs of mAbs are widely varying, including unarmed immunoglobulins as well as immunoglobulins conjugated to radioisotopes, biological toxins, boronated dendrimers and immunoliposomes. The very structure of the immunoglobulin molecule has also been manipulated to generate a diverse armamentarium including single-chain Fv, bispecific T-cell engagers and chimeric antigen receptors. The targeted neutralization capacity of mAbs has been employed to modulate the immunologic milieu in hopes of optimizing other immunotherapy platforms. Many clinical trials have evaluated these mAb strategies to treat malignant gliomas, and the implementation of mAb therapy seems imminent and optimistic.
Collapse
|
31
|
Hackel BJ, Neil JR, White FM, Wittrup KD. Epidermal growth factor receptor downregulation by small heterodimeric binding proteins. Protein Eng Des Sel 2011; 25:47-57. [PMID: 22160867 DOI: 10.1093/protein/gzr056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
No single engineered protein has been shown previously to robustly downregulate epidermal growth factor receptor (EGFR), a validated cancer target. A panel of fibronectin-based domains was engineered to bind with picomolar to nanomolar affinity to multiple epitopes of EGFR. Monovalent and homo- and hetero-bivalent dimers of these domains were tested for EGFR downregulation. Selected orientations of non-competitive heterodimers decrease EGFR levels by up to 80% in multiple cell types, without activating receptor signaling. These heterodimers inhibit autophosphorylation, proliferation and migration, and are synergistic with the monoclonal antibody cetuximab in these activities. These small (25 kDa) heterodimers represent a novel modality for modulating surface receptor levels.
Collapse
Affiliation(s)
- Benjamin J Hackel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
32
|
Koefoed K, Steinaa L, Søderberg JN, Kjær I, Jacobsen HJ, Meijer PJ, Haurum JS, Jensen A, Kragh M, Andersen PS, Pedersen MW. Rational identification of an optimal antibody mixture for targeting the epidermal growth factor receptor. MAbs 2011; 3:584-95. [PMID: 22123060 DOI: 10.4161/mabs.3.6.17955] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is frequently dysregulated in human malignancies and a validated target for cancer therapy. Two monoclonal anti-EGFR antibodies (cetuximab and panitumumab) are approved for clinical use. However, the percentage of patients responding to treatment is low and many patients experiencing an initial response eventually relapse. Thus, the need for more efficacious treatments remains. Previous studies have reported that mixtures of antibodies targeting multiple distinct epitopes are more effective than single mAbs at inhibiting growth of human cancer cells in vitro and in vivo. The current work describes the rational approach that led to discovery and selection of a novel anti-EGFR antibody mixture Sym004, which is currently in Phase 2 clinical testing. Twenty-four selected anti-EGFR antibodies were systematically tested in dual and triple mixtures for their ability to inhibit cancer cells in vitro and tumor growth in vivo. The results show that targeting EGFR dependent cancer cells with mixtures of antibodies is superior at inhibiting their growth both in vitro and in vivo. In particular, antibody mixtures targeting non-overlapping epitopes on domain III are efficient and indeed Sym004 is composed of two monoclonal antibodies targeting this domain. The superior growth inhibitory activity of mixtures correlated with their ability to induce efficient EGFR degradation.
Collapse
|
33
|
Klausz K, Berger S, Lammerts van Bueren JJ, Derer S, Lohse S, Dechant M, van de Winkel JGJ, Peipp M, Parren PWHI, Valerius T. Complement-mediated tumor-specific cell lysis by antibody combinations targeting epidermal growth factor receptor (EGFR) and its variant III (EGFRvIII). Cancer Sci 2011; 102:1761-8. [DOI: 10.1111/j.1349-7006.2011.02019.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
34
|
Abstract
The use of monoclonal antibodies (mAbs) has become a general approach for specifically targeting and treating human disease. In oncology, the therapeutic utility of mAbs is usually evaluated in the context of treatment with standard of care, as well as other small molecule targeted therapies. Many anti-cancer antibody modalities have achieved validation, including the targeting of growth factor and angiogenesis pathways, the induction of tumor cell killing or apoptosis, and the blocking of immune inhibitory mechanisms to stimulate anti-tumor responses. But, as with other targeted therapies, few antibodies are curative because of biological complexities that underlie tumor formation and redundancies in molecular pathways that enable tumors to adapt and show resistance to treatment. This review discusses the combinations of antibody therapeutics that are emerging to improve efficacy and durability within a specific biological mechanism (e.g., immunomodulation or the inhibition of angiogenesis) and across multiple biological pathways (e.g., inhibition of tumor growth and induction of tumor cell apoptosis).
Collapse
|
35
|
Kozer N, Kelly MP, Orchard S, Burgess AW, Scott AM, Clayton AHA. Differential and synergistic effects of epidermal growth factor receptor antibodies on unliganded ErbB dimers and oligomers. Biochemistry 2011; 50:3581-90. [PMID: 21495621 DOI: 10.1021/bi101785h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibodies directed against the epidermal growth factor receptor (EGFR) offer a potentially powerful therapeutic approach against cancers driven by the EGFR pathway. EGFR antibodies are believed to halt cell surface activation by blocking ligand-induced receptor tyrosine kinase activation, i.e., ligand binding, a change in conformation, or the monomer-dimer transition. In this work, we demonstrate that wild-type EGFR and the truncated de2-7-EGFR (tumor-associated mutant) formed unliganded homo-oligomers and examined the effects of two clinically relevant antibodies on the conformation and quaternary state of these ligand-free EGFR oligomers on the surface of cells. The EGFR antibodies were mAb528, a ligand-blocking antibody that binds domain III, and mAb806, a conformationally sensitive antibody that binds near the dimer interface in domain II. We used a model cellular system, BaF/3 cells, with GFP-tagged receptors in the absence of interference from secreted ligands or other erbB receptor members. Different antibody-mediated effects (conformational transition, receptor cross-linking, or receptor dissociation) were distinguished by combining two complementary biophysical techniques: image correlation spectroscopy (submicrometer scale clustering) and homo-Forster resonance energy transfer (association and/or conformation on a 1-10 nm scale). mAb528 cross-linked EGFR into an inactive EGFR dimer of dimers but had no effect when added to de2-7-EGFR oligomers. mAb806 had a minor effect on EGFR dimers as expected from its poor binding to a conformationally shielded epitope on wtEGFR but bound de2-7-EGFR oligomers, causing a conformational change in the intracellular C-terminal GFP-tagged tail. The combination of the two antibodies had synergistic effects, increasing the level of cross-linking of de2-7-EGFR, but did not lead to enhanced cross-linking of EGFR. The results reveal new modes of receptor-antibody interactions for EGFR and de2-7-EGFR.
Collapse
Affiliation(s)
- Noga Kozer
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | | | | | | | |
Collapse
|
36
|
Dong J, Demarest SJ, Sereno A, Tamraz S, Langley E, Doern A, Snipas T, Perron K, Joseph I, Glaser SM, Ho SN, Reff ME, Hariharan K. Combination of two insulin-like growth factor-I receptor inhibitory antibodies targeting distinct epitopes leads to an enhanced antitumor response. Mol Cancer Ther 2010; 9:2593-604. [PMID: 20716637 DOI: 10.1158/1535-7163.mct-09-1018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The insulin-like growth factor-I receptor (IGF-IR) is a cell surface receptor tyrosine kinase that mediates cell survival signaling and supports tumor progression in multiple tumor types. We identified a spectrum of inhibitory IGF-IR antibodies with diverse binding epitopes and ligand-blocking properties. By binding distinct inhibitory epitopes, two of these antibodies, BIIB4 and BIIB5, block both IGF-I and IGF-II binding to IGF-IR using competitive and allosteric mechanisms, respectively. Here, we explored the inhibitory effects of combining BIIB4 and BIIB5. In biochemical assays, the combination of BIIB4 and BIIB5 improved both the potency and extent of IGF-I and IGF-II blockade compared with either antibody alone. In tumor cells, the combination of BIIB4 and BIIB5 accelerated IGF-IR downregulation and more efficiently inhibited IGF-IR activation as well as downstream signaling, particularly AKT phosphorylation. In several carcinoma cell lines, the antibody combination more effectively inhibited ligand-driven cell growth than either BIIB4 or BIIB5 alone. Notably, the enhanced tumor growth-inhibitory activity of the BIIB4 and BIIB5 combination was much more pronounced at high ligand concentrations, where the individual antibodies exhibited substantially reduced activity. Compared with single antibodies, the BIIB4 and BIIB5 combination also significantly further enhanced the antitumor activity of the epidermal growth factor receptor inhibitor erlotinib and the mTOR inhibitor rapamycin. Moreover, in osteosarcoma and hepatocellular carcinoma xenograft models, the BIIB4 and BIIB5 combination significantly reduced tumor growth to a greater degree than each single antibody. Taken together, our results suggest that targeting multiple distinct inhibitory epitopes on IGF-IR may be a more effective strategy of affecting the IGF-IR pathway in cancer.
Collapse
Affiliation(s)
- Jianying Dong
- Department of Discovery Oncology, Biogen Idec, Inc., San Diego, California 92122, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Johns TG, McKay MJ, Cvrljevic AN, Gan HK, Taylor C, Xu H, Smyth FE, Scott AM. MAb 806 enhances the efficacy of ionizing radiation in glioma xenografts expressing the de2-7 epidermal growth factor receptor. Int J Radiat Oncol Biol Phys 2010; 78:572-8. [PMID: 20638193 DOI: 10.1016/j.ijrobp.2010.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/17/2010] [Accepted: 03/30/2010] [Indexed: 01/05/2023]
Abstract
PURPOSE Mutations of the epidermal growth factor receptor (EGFR) are common in glioma. The most frequent mutation, de2-7 EGFR/EGFRvIII, occurs in approximately 40% of high-grade gliomas and confers resistance to ionizing radiation (IR). We have previously shown that mAb 806, a novel EGFR-specific antibody, is able to inhibit the growth of U87MG.Δ2-7 glioma xenografts expressing the de2-7 EGFR and may have potential as a therapeutic. METHODS AND MATERIALS Nude mice bearing U87MG.Δ2-7 xenografts were treated with mAb 806 and/or IR. Comparison of tumor volumes, the effect of treatment on angiogenesis as determined by mean vessel density, and expression changes in prosurvival protein pAkt between treatment groups were undertaken. RESULTS Treatment of mice bearing U87MG.Δ2-7 xenografts with mAb 806 and IR resulted in schedule-dependent radiosensitization. Maximal benefit was obtained when antibody treatment was given before irradiation, with the greatest inhibition of both tumor angiogenesis and tumor growth. Combination treatment mediated radiosensitization by selectively blocking the phosphorylation of the prosurvival protein Akt at serine 473, a process that is independent of DNA-dependent protein kinase catalytic subunit. CONCLUSIONS Our results provide a rationale for the use of mAb 806 in combination with IR for the treatment of glioma and potentially other solid tumors bearing the de2-7 EGFR.
Collapse
Affiliation(s)
- Terrance G Johns
- Ludwig Institute for Cancer Research, Heidelberg, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Robinson R, Bertram JP, Reiter JL, Lavik EB. New platform for controlled and sustained delivery of the EGF receptor tyrosine kinase inhibitor AG1478 using poly(lactic-co-glycolic acid) microspheres. J Microencapsul 2010; 27:263-71. [PMID: 20055747 DOI: 10.3109/02652040903131285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inhibition of the epidermal growth factor receptor (EGFR) reduces tumour growth and metastases and promotes axon regeneration in the central nervous system. Current EGFR inhibition strategies include the administration of reversible small-molecule tyrosine kinase inhibitors (TKIs). However, to be effective in vivo sustained delivery is required. This study explored the feasibility of encapsulating the tyrphostin 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) in poly(lactic-co-glycolic acid) (PLGA) microspheres using three different emulsion methods: solid-in-oil-in-water, oil-in-water and oil-in-water with co-solvent. Addition of a co-solvent increased loading and release of AG1478 and significantly (p < 0.001) decreased microsphere size. Co-solvent addition also prolonged AG1478 release from 6 months to over 9 months. Once released AG1478 remained bioactive and inhibited EGFR in immortalized rat fibroblasts and EGFR-amplified human carcinoma cells. These results demonstrate that AG1478 can be encapsulated in PLGA with sustained release and retain bioactivity; thereby providing a new platform for controlled administration of EGFR TKIs.
Collapse
Affiliation(s)
- Rebecca Robinson
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | | | | | | |
Collapse
|
39
|
Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci U S A 2010; 107:13252-7. [PMID: 20616078 DOI: 10.1073/pnas.0913476107] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Due to its common dysregulation in epithelial-based cancers and extensive characterization of its role in tumor growth, epidermal growth factor receptor (EGFR) is a highly validated target for anticancer therapies. There has been particular interest in the development of monoclonal antibodies (mAbs) targeting EGFR, resulting in two approved mAb-based drugs and several others in clinical trials. It has recently been reported that treatment with combinations of noncompetitive mAbs can induce receptor clustering, leading to synergistic receptor down-regulation. We elucidate three key aspects of this phenomenon. First, we show that highly potent combinations consisting of two noncompetitive mAbs that target EGFR domain 3 reduce surface receptor levels by up to 80% with a halftime of 0.5-5 h in both normal and transformed human cell lines to an extent inversely proportional to receptor density. Second, we find the mechanism underlying down-regulation to be consistent with recycling inhibition. Third, in contrast to the agonism associated with ligand-induced down-regulation, we demonstrate that mAb-induced down-regulation does not activate EGFR or its downstream effectors and it leads to synergistic reduction in migration and proliferation of cells that secrete autocrine ligand. These new insights will aid in ongoing rational design of EGFR-targeted antibody therapeutics.
Collapse
|
40
|
Lee FT, O'Keefe GJ, Gan HK, Mountain AJ, Jones GR, Saunder TH, Sagona J, Rigopoulos A, Smyth FE, Johns TG, Govindan SV, Goldenberg DM, Old LJ, Scott AM. Immuno-PET quantitation of de2-7 epidermal growth factor receptor expression in glioma using 124I-IMP-R4-labeled antibody ch806. J Nucl Med 2010; 51:967-72. [PMID: 20484439 DOI: 10.2967/jnumed.109.068395] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Overexpression, activation, and mutations of the epidermal growth factor receptor (EGFR) are commonly found in solid tumors. The aim of this study was to develop a PET-based method for detecting the constitutively active mutant de2-7 EGFR, which is associated with disease progression and resistance to chemotherapy and radiotherapy in glioma. METHODS The chimeric antibody ch806, which selectively binds an epitope of the EGFR that is exposed only on overexpressed, mutant, or ligand-activated forms of the receptor, was conjugated to the radiohalogen (124)I via the residualizing ligand IMP-R4, and in vitro properties were characterized. In vivo biodistribution and small-animal PET studies were performed in BALB/c nude mice bearing U87MG.de2-7 glioma xenografts. Imaging results were correlated with measured tumor uptake of the radioconjugate. RESULTS (124)I-IMP-R4-ch806 had an immunoreactivity of 78.3% and was stable for 7 d when incubated in serum in vitro. The biodistribution analysis of (124)I-IMP-R4-ch806 demonstrated a maximal uptake of 30.95 +/- 6.01 percentage injected dose per gram (%ID/g) in U87MG.de2-7 xenografts at 48 h after injection, with prolonged tumor retention (6.07 +/- 0.80 %ID/g at 216 h after injection). The tumor-to-blood ratio increased from 0.44 at 4 h after injection to a maximum of 4.70 at 168 h after injection. PET of (124)I-IMP-R4-ch806 biodistribution was able to clearly detect the U87MG.de2-7 tumors at 24 h after injection and for at least 168 h after injection. Correlation between tumor PET image quantitation of (124)I-IMP-R4-ch806 and %ID/g determined from resected tissues (r = 0.9350) was excellent. CONCLUSION These results show that immuno-PET with (124)I-IMP-R4-ch806 is feasible and allows noninvasive quantitation of de2-7 EGFR expression in vivo.
Collapse
Affiliation(s)
- Fook T Lee
- Ludwig Institute for Cancer Research, Heidelberg, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mitra S, Li G, Harsh GR. Passive antibody-mediated immunotherapy for the treatment of malignant gliomas. Neurosurg Clin N Am 2009; 21:67-76. [PMID: 19944967 DOI: 10.1016/j.nec.2009.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite advances in understanding the molecular mechanisms of brain cancer, the outcome of patients with malignant gliomas treated according to the current standard of care remains poor. Novel therapies are needed, and immunotherapy has emerged with great promise. The diffuse infiltration of malignant gliomas is a major challenge to effective treatment; immunotherapy has the advantage of accessing the entire brain with specificity for tumor cells. Therapeutic immune approaches include cytokine therapy, passive immunotherapy, and active immunotherapy. Cytokine therapy involves the administration of immunomodulatory cytokines to activate the immune system. Active immunotherapy is the generation or augmentation of an immune response, typically by vaccination against tumor antigens. Passive immunotherapy connotes either adoptive therapy, in which tumor-specific immune cells are expanded ex vivo and reintroduced into the patient, or passive antibody-mediated therapy. In this article, the authors discuss the preclinical and clinical studies that have used passive antibody-mediated immunotherapy, otherwise known as serotherapy, for the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Siddhartha Mitra
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards Building Room 200, Stanford, CA 94305, USA
| | | | | |
Collapse
|
42
|
Rolle CE, Sengupta S, Lesniak MS. Challenges in clinical design of immunotherapy trials for malignant glioma. Neurosurg Clin N Am 2009; 21:201-14. [PMID: 19944979 DOI: 10.1016/j.nec.2009.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal primary malignant brain tumor. The traditional treatments for GBM, including surgery, radiation, and chemotherapy, only modestly improve patient survival. Therefore, immunotherapy has emerged as a novel therapeutic modality. Immunotherapeutic strategies exploit the immune system's ability to recognize and mount a specific response against tumor cells, but not normal cells. Current immunotherapeutic approaches for glioma can be divided into 3 categories: immune priming (active immunotherapy), immunomodulation (passive immunotherapy), and adoptive immunotherapy. Immune priming sensitizes the patient's immune cells to tumor antigens using various vaccination protocols. In the case of immunomodulation, strategies are aimed at reducing suppressive cytokines in the tumor microenvironment or using immune molecules to specifically target tumor cells. Adoptive immunotherapy involves harvesting the patient's immune cells, followed by ex vivo activation and expansion before reinfusion. This article provides an overview of the interactions between the central nervous system and the immune system, and discusses the challenges facing current immunotherapeutic strategies.
Collapse
Affiliation(s)
- Cleo E Rolle
- The University of Chicago Brain Tumor Center, The University of Chicago, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | | | | |
Collapse
|
43
|
Larbouret C, Robert B, Bascoul-Mollevi C, Penault-Llorca F, Ho-Pun-Cheung A, Morisseau S, Navarro-Teulon I, Mach JP, Pèlegrin A, Azria D. Combined cetuximab and trastuzumab are superior to gemcitabine in the treatment of human pancreatic carcinoma xenografts. Ann Oncol 2009; 21:98-103. [PMID: 19889608 DOI: 10.1093/annonc/mdp496] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Pancreatic carcinoma remains a treatment-refractory cancer with a poor prognosis. Here, we compared anti-epidermal growth factor receptor (EGFR) and anti-HER2 monoclonal antibodies (2mAbs) injections with standard gemcitabine treatment on human pancreatic carcinoma xenografts. MATERIALS AND METHODS Nude mice, bearing human pancreatic carcinoma xenografts, were treated with either combined anti-EGFR (cetuximab) and anti-HER2 (trastuzumab) or gemcitabine, and tumor growth was observed. RESULTS AND CONCLUSION In first-line therapy, mice survival was significantly longer in the 2mAbs group compared with gemcitabine (P < 0.0001 for BxPC-3, P = 0.0679 for MiaPaCa-2 and P = 0.0019 for Capan-1) and with controls (P < 0.0001). In second-line therapy, tumor regressions were observed after replacing gemcitabine by 2mAbs treatment, resulting in significantly longer animal survival compared with mice receiving continuous gemcitabine injections (P = 0.008 for BxPC-3, P = 0.05 for MiaPaCa-2 and P < 0.001 for Capan-1). Therapeutic benefit of 2mAbs was observed despite K-Ras mutation. Interestingly, concerning the mechanism of action, coinjection of F(ab')(2) fragments from 2mAbs induced significant tumor growth inhibition, compared with controls (P = 0.001), indicating that the 2mAbs had an Fc fragment-independent direct action on tumor cells. This preclinical study demonstrated a significant improvement of survival and tumor regression in mice treated with anti-EGFR/anti-HER2 2mAbs in first- and second-line treatments, compared with gemcitabine, independently of the K-Ras status.
Collapse
Affiliation(s)
- C Larbouret
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Generation of fusion protein EGFRvIII-HBcAg and its anti-tumor effect in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:133. [PMID: 19788747 PMCID: PMC2764640 DOI: 10.1186/1756-9966-28-133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 09/29/2009] [Indexed: 01/09/2023]
Abstract
The epidermal growth factor receptor variant III (EGFRvIII) is the most common variation of EGFR. Because it shows a high frequency in several different types of tumor and has not been detected in normal tissues, it is an ideal target for tumor specific therapy. In this study, we prepared EGFRvIII-HBcAg fusion protein. After immunization with fusion protein, HBcAg or PBS, the titers of antibody in BALB/c mice immunized with fusion protein reached 2.75 x 10(5). Western blot analysis demonstrated that the fusion protein had specific antigenicity against anti-EGFRvIII antibody. Further observation showed fusion protein induced a high frequency of IFN-gamma-secreting lymphocytes. CD4+T cells rather than CD8+T cells were associated with the production of IFN-gamma. Using Renca-vIII(+) cell as specific stimulator, we observed remarkable cytotoxic activity in splenocytes from mice immunized with fusion protein. Mice were challenged with Renca-vIII(+) cells after five times immunization. In fusion protein group, three of ten mice failed to develop tumor and all survived at the end of the research. The weight of tumors in fusion protein were obviously lighter than that in other two groups (t = 4.73, P = 0.044; t = 6.89, P = 0.040). These findings demonstrated that EGFRvIII-HBcAg fusion protein triggered protective responses against tumor expressing EGFRvIII.
Collapse
|
45
|
Abstract
The epidermal growth factor receptor (EGFR) is a primary contributor to glioblastoma (GBM) initiation and progression. Here, we examine how EGFR and key downstream signaling networks contribute to the hallmark characteristics of GBM such as rapid cancer cell proliferation and diffused invasion. Additionally, we discuss current therapeutic options for GBM patients and elaborate on the mechanisms through which EGFR promotes chemoresistance. We conclude by offering a perspective on how the potential of integrative systems biology may be harnessed to develop safe and effective treatment strategies for this disease.
Collapse
Affiliation(s)
- Paul H Huang
- Protein Networks Team, Section of Cell and Molecular Biology, Institute of Cancer Research, London, UK.
| | | | | |
Collapse
|
46
|
Ratushny V, Astsaturov I, Burtness BA, Golemis EA, Silverman JS. Targeting EGFR resistance networks in head and neck cancer. Cell Signal 2009; 21:1255-68. [PMID: 19258037 PMCID: PMC2770888 DOI: 10.1016/j.cellsig.2009.02.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 02/17/2009] [Indexed: 01/01/2023]
Abstract
A core set of oncoproteins is overexpressed or functionally activated in many types of cancer, and members of this group have attracted significant interest as subjects for development of targeted therapeutics. For some oncoproteins such as EGFR/ErbB1, both small molecule and antibody agents have been developed and applied in the clinic for over a decade. Analysis of clinical outcomes has revealed an initially unexpected complexity in the response of patients to these agents. Diverse factors, including developmental lineage of the tumor progenitor cell, co-mutation or epigenetic modulation of genes encoding proteins in an extended EGFR signaling network or regulating core survival responses in individual tumors, and environmental factors including inflammatory agents and viral infection, all have been identified as modulating response to treatment with EGFR-targeted drugs. Second and third generation therapeutic strategies increasingly incorporate knowledge of cancer type-specific signaling environments, in a more personalized treatment approach. This review takes squamous cell carcinoma of the head and neck (SCCHN) as a specific example of an EGFR-involved cancer with idiosyncratic biological features that influence design of treatment modalities, with particular emphasis on commonalities and differences with other cancer types.
Collapse
Affiliation(s)
- Vladimir Ratushny
- Programs in Head and Neck Cancer and Molecular Medicine, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129
| | - Igor Astsaturov
- Programs in Head and Neck Cancer and Molecular Medicine, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Barbara A. Burtness
- Programs in Head and Neck Cancer and Molecular Medicine, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Erica A. Golemis
- Programs in Head and Neck Cancer and Molecular Medicine, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Joshua S. Silverman
- Programs in Head and Neck Cancer and Molecular Medicine, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| |
Collapse
|
47
|
Abstract
Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively, resulting in non-specific toxicity. Immune targeting of tumor-specific mutations may allow for more precise eradication of neoplastic cells. EGFR variant III (EGFRvIII) is a tumor-specific mutation that is widely expressed in GBM and other neoplasms and its expression enhances tumorigenicity. This in-frame deletion mutation splits a codon, resulting in a novel glycine at the fusion junction producing a tumor-specific epitope target for cellular or humoral immunotherapy. We have previously shown that vaccination with a peptide that spans the EGFRvIII fusion junction (PEPvIII-KLH/CDX-110) is an efficacious immunotherapy in syngeneic murine models. In this review, we summarize our results in GBM patients targeting this mutation in multiple, multi-institutional Phase II immunotherapy trials. These trials demonstrated that a selected population of GBM patients who received vaccines targeting EGFRvIII had an unexpectedly long survival time. Further therapeutic strategies and potential pitfalls of using this approach are discussed.
Collapse
Affiliation(s)
- Amy B Heimberger
- University of Texas MD Anderson Cancer Center, Department of Neurosurgery, Unit 422, Houston, TX 77230-1402, USA.
| | | |
Collapse
|
48
|
Freeman DJ, Bush T, Ogbagabriel S, Belmontes B, Juan T, Plewa C, Van G, Johnson C, Radinsky R. Activity of panitumumab alone or with chemotherapy in non-small cell lung carcinoma cell lines expressing mutant epidermal growth factor receptor. Mol Cancer Ther 2009; 8:1536-46. [DOI: 10.1158/1535-7163.mct-08-0978] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Adams TE, Koziolek EJ, Hoyne PH, Bentley JD, Lu L, Lovrecz G, Ward CW, Lee FT, Scott AM, Nash AD, Rothacker J, Nice EC, Burgess AW, Johns TG. A truncated soluble epidermal growth factor receptor-Fc fusion ligand trap displays anti-tumour activity in vivo. Growth Factors 2009; 27:141-54. [PMID: 19333814 DOI: 10.1080/08977190902843565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A number of therapeutic strategies including small molecule tyrosine kinase inhibitors and monoclonal antibodies have been developed to target the epidermal growth factor receptor (EGFR) signalling axis for the treatment of cancer. To date, the focus of therapeutic intervention has been the EGFR itself. In the current study, we have assembled and expressed in mammalian cells a soluble, EGFR ligand trap comprising the first 501 amino acids of the mature EGFR sequence fused in-frame with a human IgG Fc domain. The fusion protein, designated sEGFR501.Fc, was secreted as a 220 kDa disulphide-linked homodimer that exhibited high affinity (0.4-8 nM) in competition assays for a number of EGFR ligands including EGF and transforming growth factor-alpha (TGF-alpha). sEGFR501.Fc inhibited EGF-stimulated tyrosine phosphorylation of the EGFR of the lung cancer cell lines A549 and H1437, and inhibited and blocked the proliferation of H1437 cells. Administration of sEGFR501.Fc to mice bearing human tumour xenografts derived from A431 (epidermoid carcinoma) and DU145 (androgen-independent prostate cancer) tumour cell lines resulted in modest retardation of tumour growth. These results provide proof-in-principle that using high affinity soluble receptors is a viable method for inhibiting multi-ligand systems, and the impetus to optimize this approach and develop reagents with greater affinity and broader specificity.
Collapse
Affiliation(s)
- Timothy E Adams
- CSIRO Division of Molecular and Health Technologies, Parkville, VIC, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gan HK, Lappas M, Cao DX, Cvrljevdic A, Scott AM, Johns TG. Targeting a unique EGFR epitope with monoclonal antibody 806 activates NF-kappaB and initiates tumour vascular normalization. J Cell Mol Med 2009; 13:3993-4001. [PMID: 19432811 PMCID: PMC4516546 DOI: 10.1111/j.1582-4934.2009.00783.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Monoclonal antibodies (mAbs) and tyrosine kinase inhibitors targeting the epidermal growth factor receptor (EGFR), which is often pathogenetically overexpressed or mutated in epithelial malignancies and glioma, have been modestly successful, with some approved for human use. MAb 806 was raised against de2–7EGFR (or EGFRvIII), a constitutively active mutation expressed in gliomas, but also recognizes a subset (<10%) of wild-type (wt) EGFR when it is activated by autocrine loop, overexpression or mutation. It does not bind inactive EGFR in normal tissues like liver. Glioma xenografts expressing the de2–7EGFR treated with mAb 806 show reduced receptor autophosphorylation, increased p27KIP1 and reduced cell proliferation. Xenografts expressing the wtEGFR activated by overexpression or autocrine ligand are also inhibited by mAb 806, but the mechanism of inhibition has been difficult to elucidate, especially because mAb 806 does not prevent wtEGFR phosphorylation or downstream signalling in vitro. Thus, we examined the effects of mAb 806 on A431 xenograft angiogenesis. MAb 806 increases vascular endothelial growth factor (VEGF) and interleukin-8 production by activating NF-κB and normalizes tumour vasculature. Pharmacological inhibition of NF-κB completely abrogated mAb 806 activity, demonstrating that NF-κB activation is necessary for its anti-tumour function in xenografts. Given the increase in VEGF, we combined mAb 806 with bevacizumab in vivo, resulting in additive activity.
Collapse
Affiliation(s)
- Hui K Gan
- Oncogenic Signalling Laboratory, Ludwig Institute for Cancer Research, Austin Health, Heidelberg, Australia
| | | | | | | | | | | |
Collapse
|